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SUMMARY

The linearized theory of supersonic flow past thin wings is used to
obtain expressions for the three conponents of velocity of the flow about a
family of non-lifting, symmetrical delta w ngs having rhonbic ecross sections
and subsonic | eading edges. A Mercury autocode programme has been witten
for their evaluation and results have been obtained for a particular w ng
for three 1gach nunbers and two values of the ratio of seni-span to centre«
line chord. Curves of constant velocity, in planes nermel to the free stream
direction at and behind the trailing edge, are given for each velocity
component .
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1 INTRODUCTION

This Paper is concerned wth the calculation, according to linearized
theory, of the velocity fields cf a family cf symmetrical delta wings at zere
ancidence i N a SUPErsoni ¢ stream. The cross-sections of the wings by planes
normal t0 the stream are rhombic end their centre-secticns are represented by
polynomials of the fifth degree containing four arbitrary ceoefficients. The cam-
pcnent of the free stream nermal to the |eading edge is subsonic. The three
vel ocity components are expressed in closed formin terms of clementary func-
tions. The evaluation of the velocity components has been programmed for auto-
matic digital conputation. As en exanple, the velocity components of the wing
known as 'Lord V' (wing 50f Ref.?) are calculated for several valuesof the
simlarity parameter Ps, where 62 = M2 «1and sis the ratio cf the semispan to
the length. The results are presented as contours ar |evel curves of the com
ponents in three plancs normal t0 the stream, at end-behind the trailing edge.

Wings of this type have formed the basis for a number cf studies (see, for
example, Refs.2 and 3) ained at the generaticn of vol une distributions which com
bi ne low cal cul ated wave-drag with pressure distributions which make it likely
that the type of flaw postulated in the theory will be realized. The main cri-
terion for the realization of the flow, and so of the wave-drag as calculated by
inviscid flow theory is the avoidance of pressure distributions on the w ng-which
are markedly unfavourable t0 the development of a boundary |ayer attached up to
the trailing edge. However, it is not sufficient to censider conditions ¢n the
wing surface only. |f the calculated pressure at the trailing edge of the wing
i s well below free=strcam pressure ort he angle between the upper and low sur-
faces of the wing at the trading edge is large, adjustment to free-stream con-
ditions behind the wing through a sinple trailing edge shock may not be pessible.
Instead thickening, or cven Separation, may extend over the rear part of the
wing, as observed by Firmin® As a first step in assessing the likelihood of
this, a meansof obtaining pressure distributions, according to linearized
theory, in the plane of the wing behind the trailing edge was required. It was
realized that if further pregress Was to be made, it weuld be necessary to inves-
tigate the development cf the trailing edge shock system in the real flow The
opportunity was therefore taken of ancluding in the present ccmputer programme
the caleulation for prints off the wing surface, in order to provide a starting
point for such en investigation. 'Although it'was not possible to proceed with
this investigation, same calculations of the flowfield off the wing are presen-

ted for their intrinsic intcrest.
2 CALCULATION OF Tii VELOCTIY COMPONENTS BY LINEARIZED THEORY

In order to calculate the velocity f£icld around a wing in invigecid
I sentrcpic supersonic flow, it IS neecessary to sinplify the partial differential
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equation for the velocity potential. For thin wings, this simplification iS
achiaved by linearization of the equation, which is allowable under the
foll ow ng conditions:

(i) the angle which any tangent plane to the wing surface makes with
the undi sturbed stream and the rate of change of this angle along the
wing, nust bhoth bhe small,

(ii)  transonio and hypersonic flows nust be excluded.

In the present note we confine our interest to symmetrical wngs at
zero incidence, for which, under the above restrictions (i) and (ii), the
perturbati on veleoity potential can be expressed in terns of a certain double
integral, whose value nust, in general, be evaluated nunerically, a process
whioh is conplicated by the singular behaviour Of the integrand. For wings
of simple geonetry, however, at |east one of the integrations may be performed
. analytically, In the present case, the same applies to the seoond integration
(see Section 3),

Let x, y, % be a right-handed coordinate systemwth origin ¢ at the
apex of the wing, x-axis along the free-streamdirection and e-axis nornal
to the plane of the wing and vertically upward. The perturbation velocity
potential is then given, in linear theory, by the solution of the equation

6% b = By = By = O, (1)
which satisfies the followng boundary conditions:
(%) = 0 outside the wing (2)
g=0
(.g%) = U (__TL_QZ(J;Y)> on the wing , (3)
2=0 - z=z(x,y)

and vani shes upstream of the wing.

Here z= z(x,y) is the equation of the upper surface of the sing. To
the accuracy of linear theory, it is sufficient to satisfy (3)in the plane
of the wing, z =0, rather than on the wing itself, Under these conditions,
equation (1) has the (unique) solution



plwt ot . ! t
¢(xly!z) = - ".,UE . az(:;x;,y ) dx_dy ()

J‘(X' )2« 8? (yey )% - 8% 00

I
T

where the area of integration, =, is that part of the wing which lies inside
the forward Mach oone from the point (x,y,z). It is bounded by the two | eading
edges of the wing, by the hyperbola ABCD, in which' the forvard Mach oone
interseots the wing plane, and, possibly, by part of the trailing edge of the
wing if the apex, C of the hyperbola lies downstreamof it (see Figs1).

The curve ABCD ig given by the equation

zt = 0 , (x~x')2 - {32 (y-—y')2 - [32 22 = 0 ,

In view of the symetry about the planes y = 0 and g =0, it is sufficient to
consider the quadrant for which y amd z are positive or zero.

Consi der any function £{x',y') define& in the plane of the wing, and
suppose y 2 0 and z 2 0. Then, since the'ieadi ng edges are taken {0 be subsonio
(see Fag.t),

;EM y x, -ax
[[ f(xl ’y') dx! dy' =, f f' f(x' ’yl)‘dxt dy! - f . f f(x' .y ) dx! dy'
v =0y X203

X ¥ .
- f £(xt,y") ax' ay' (5)
| x'=0 y"=sx'

where x = x, i Cis behind. the | eadi ng edge, or % otherwise;

X, X, and Xy are the X-coordi nates of the points A C and D (see
Appendix A) ;

the symbol ;M denotes min(1,x), and sinilarly for X, eto. ;

oy e R
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sy-g (x=x')°-p
a is the sem-span of the wing, -which is-taken to be of unit |ength.

For wings of delta planform and rhombioc Or0ss-section, as considered here,
z{x',y') is given by



z(x',y') = &(x",0) (1 -'I'L'J) (6)

ax'

where z = z(x',0) is the shape of the centre-section.

T+ fol l ows that ,

XY o g(x') +-|3§L h(x") (74)

oxt

wher e

g(x') = az{x' 0)

ox!

rxt) = - L (20 J

In order to deal With the terminvolving |y*|, it is convenient to split
up the first integral in equation (5), rewiting this equation in the form

(78)

ﬁ P(x',y') ax' dy' = fBaX' ( [0 fx',y') &' + jyf(x',y') dy')
T x'=0 \ycd_"' _Y':—‘b
t TMdX' Iy £(x' ,y* ) oy - fA dxt r‘x £(xt,y') dy'
J ‘
x';x'B y'=y : x'=0 y'=y
% 7
- [ ax? a{ £f(x',y') dy’ (54)
x'J=0 y ! =sx'

where X I's the x-coordinate of thepoint B and its value is also given in
Appendix A We can now eval uate ¢{x,y,z) fromequation (4) by giving a
particular value to the function £(x*,y')in equation (54), nanely,

fyt) = 2y !
ax’ j'(x— Y w82 (g g )P - 82 52

ad by allowing equation (74) to define az(x',y')/dx' both on and off the wing.
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What ever the value of the function z(x',0), the integrations with respect to
y' may be performed analytically for the wirgs considered here:

Y \

f(x.yy') dyl & {

da{x's¥*) . dy!

ax!

2 2 2
(x- x')2-52 (y-y* )" =B 3

- [— -E;%J(x-x')z-ﬁz (y=3)2-5° 2° -%— (g(x') + 4L h(:c‘))

sin ™t ( Bly-y') ):!Y for Y »0 (84)
2 o

| (X-X' )2 -?3

= [+ %;%J(x-x')z—ﬁz (y-5")%-8° 2 - % (5(2:') -1 h(Jf‘))

sin” <j Bly-v') )]Y, for Y <0 . (8B)

(x_ x )2-62 22 O

W require the values of the functions in square brackets in equations (8) for
seven values Of Y, namely

¥ {in (&B)]

g

[in (SA)]

We denote these val ues by By N=1(1)7,and their values are given in
ApperdixB. By evaluating the integral in equation (4) in the form given in
equation (5A),we obtain the Pollowing expression for ¢(x,y,z):

i

xB i)
- % $(x,¥52) = ] [(B.,-B3) + (Bg-B, )] ax' +f (B-B,) dx'
O %y



Substituting the values of the functions By into this equation, we obtain

%
_.gqb(x,y’z) = f {—lljf—lf(x-x') 'ﬁ y "'B Z + o S(x')*'%%l

(!(x—x'i;-r- o2 zﬂ x ]ﬂ (7 (st + E ] e
2

TAe oy
- [ {Z(xs) {(x-x* )2_(32 (y+axt )2 - 6% ;2 +% (g(x')-% b(x* ))

©
o ()

[*;(X‘) Joext <62 (rmaxt)2- 222 + 1 (glx) n(x')

o (L)) e

(x-x')2-

OL‘-—«_ﬁa‘ z

. (10)

By differentiating this expression with respect to x, y and gz, we can obtain
expressions for the three velocity conponents.

These are as follows:
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3 EVALUATI ON OF THE VELOCI TY COMPONENTS

In order to calculate the velocity conponents in particular cases, the
oentre line thickness distribution has to be specified. There is considerable
interest (see, for exanple, Refs.l-8) in the famly of wings for which g(x,0)
s given by the followng quintio polynomal:

L
-
z(x,0) = Exg (1= x) Z (ON-1 o ),
N=1

for whioh the integrals given in equations (10)-(13) cen be eval uated analytic-
ally. Four sinple menbers of this fanily are given by

N
zN(x,O) 3 %_:-5(1 ~x), N =1 (1%
for which

9(x) = gylx) = 5 [F 2"« (Ne1) %]
(15)
N(x) & hylx) = gz [N = - (N1) 2]

If the velooity potentials corresponding to these wings are given by
b = Fy N=1(1)h |
then that of any other menber of the famly is given by
¢=00¢1+01¢2+02¢3+°3¢l}»’

and similar relations hold for the velocity conponents. It isS gufficienmt,
therefore, to evaluate the integrals which appear in'the expressions for

36 o ¢ o
af' ayN, .ZN (N = 1,2,3,4) by substitution of g(x') = g,(x') end

h(x') = hN(x') into equations (11), (12) and (13)respeotively. This prcoess
is simple in principle but entails a great deal of conplicated al gebra, best
dealt with by classifying the integrals which arise. These are |isted and

eval uated in Appendi ges Caand ) rgspectively. In terms of these fuactions
¢y 0P ¢
tne expressions for —5§, -gylr end —é-g becone
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L RESULTS
4.1 Accuracy Of the calculetions
The results given by Eminton6 provide a limted check on the analysis and
computer programe;  limted because her methed Was restricted to the caleula-

tion of the streamwise component ofvelocity and that only on the wing surface.
However the cases presented in Tables 1 and 2 of Ref.6 have been recal cul ated
and the results found to agree.

No other calculations exist, as far as i S known, for checking the programme
for 2 # 0. However, the results have been found to be self-consistent in tha
the values of the velocity conponents are continuous functions everywhere
except acrpss the trailing edge Mach wave, and in particular at g = 0, and at
points at which N\ and the derivatives of Ek, etc.are discontinuous.

Across the trailing edge Mach wave, the sige of the discontinuity is
found to be oorraot. Continuity at g =0 is significant because at certain
stages in the conputer programme, one of two alternative sets of instructionsis
f ollowed, depending on whether g is zero er non-zero.
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4.2  Behaviour at lending and +trailing edge Mach waves

4,2,4Baz Mach wave

One limtation of linear theory affects all the results; namely that it
predicts a bow Mach wave rather than a shock wave attached to the wing apex.
However, Schlieren photographs' of these flows indicate that the shock waves
are in fact very weak.  Shock wave angl es, ea, at the station x = 0.6, have
been neasured from these photographs, for several wings of Lord V area distribu-
tion. These show that the ratio es/p (u = sin'1-%) lies between 103 and 10
in the Mach number range M= 1.4 to 2.8, for these wings with sem-span to
length ratios up to 1/3and thickness chord ratios up to 0,1123. The dependence
of es/p en Y for agiven wing is alnost linear in this range for the single wng
for which sufficient data is available (see Fig.2).

It is of some interest that, for these weak shocks, Iinear theory predicts
the pressure rise across the wave quite successfully. According to |inear
theory, the pressure 1s continuous across the conical Mach wave attached to
the apex but has an infinite pressure gradient there. It predicts a maxinmm
value close to this wave and these maxima have been conpared with val ues
calculated from the shock relations, using the measured values of the shock
angl e, B In the cases considered, the values conputed by linear thecary are
lower than the corresponding val ues conputed fromthe neasured shock angl es,
by up to 2Z5; see Table 1, below. The actual figures are only approximte,
since the estimated accuracy in the measurenent of the shock angles
(+0.1 degree) results in an uncertainty of approximately +8% in the pressure
coefficient.

Table 4
Val ues of C, near Mach cone

(Model numbers refer to the R AE 8' x 8tunnel sequence)

Range of C?_ e
Model | Mach | ¢ C 2) | P1)
No. number | F(1) P(2) | within acouracy T . (%)
of 6s (2)
233 2 0.0617 0.0645 | 0.0618 to 00671 96
234 2 0.0463 |0.0514 | 0,0487 to 0.0540 90
239 2.8 0.0341 0.0408 0.0397 to 0.0429 8.
242 2.2 0.0236 | 0.0302 0.0278 to 0,0327 78
242 2.4 0.0235 | 0.0298 0.0275 to 00321 79
242 2.6 0.0234 0.0292 0.0270 to 0.0313 80
242 | 2.8 0.0233 | 0.0284 0.0264 to 0.0305 82

Subseripts: (1) Meximum value of cP near Mach cone, in plane x = 0.6, according to
linear theory.
{2} values computed from measured shock anczlesa
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422 Trailing edge Magh waye

In Fig.3(a)~(d), pressure distributions along the oentre line of the
wing have been plotted for four velues of the parameter ps. Linear theory
predicts g discontinuity in pressure coeffioient at the trailing edge and the
magnitude of this discontinuity has been conpared with val ues cal culated from
the shock relations using one-half the centre line trailing edge angle as the

defleotion angle. This angle, 6, is given by ten § -_-9?']-5- (co + 6

+ 8, +0 ), =
0.125 ¢ 3

1 2

far the Lord V area distribution. In the present case 0 = 0.28, so
8 = 6.65° and 3.08° for 5 = 1/3 ard 065 respectively. The local Mach nunber
ahead of this shook is calculated fron the pressure coefficient predicted by
linear theory and, for comparison, also taken to be equal to the free stream
Hach number, The first of these nethods predicts |ocal Mach numbers which are
4. to 8%’ above the free stresm value in the cases considered.

Fig.3 shows that the jurp predioted by linearized theory is very close to
that calculated from the shock relations, using the local value of the upstream
Mach nunber.  The maximumerror in four cases is only II,.. Bisger discrepances
(Up to 34) arise if the free stream Maeh nunber is used.

Al) three predictions of the pressure jump across the trailing edge show
that the pressure rises froma value below free gtream to a value well above it.

This may be compared With earlier investigations made by various
authors 1011212 They celculated the |ocal flow direotion along the oentre
line of the (1inearized) wake Of a flat-plate delta or rectangular wing at
incidence. In the case of a lifting wing wthout thiokneas, the pressure in
the wake returns to its freestream val ue inmediately downstream of the trail-
ing edge, with a subsequent adjustment of the flow direction to & dovmstrean
esymptotio value, In the present case the flow in the wake returns to the
free stream direction imediately dowstream of the trailing edge, with a
subsequent adjustment of the pressure to the free stream val ue. In each case
there is an over-adjustment bevond the ultimte downstream value ad, in eaoh
case, this decays very rapidly. (Conpare Fig.3 with Fig.1 of Ref.10.) In
the cases considered here, for exanple, the pressure coeffisient has decayed
t0 values which are less than 0.003 one chord |ength behind the wing (i.e.

x = 2), and | ess then 0,0001 another hal f-chord length downstream (x = 2.5).

In the real flow, the shook wave will attenuate with increasing distance
from the wing. Lineer theory predicts a plane iach wave of constant strength,
making a constent angle With the free streamdirection, and occupying the
strip |yl € s of the plane g = (x-~1)/B. The strengths of both the shock and
the Maoh wave vary across the span (Since tie trailing edge angle varies
linearly across the span).
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4.3 Discussion of the charts

The min body of the results consists of charts of contours, along each of
whi ch one of the three conponents of the perturbation velocity is constent,
Each chart is for a particular plane perpendicular to the free stream direction.
The region covered is restricted to the positive quadraat (y, z 3 0); thisis
sufficient owing to the symetry of the functions about the planes y = 0 and
z=0. Two delta wings, each of "Lord v" area distribution, but of differing
planform geonetry (s = 1/3and 0,65), have been considered. For the Lord V
distribution, the values of the coefficients Cns Cys Ons 03 (whi ch appear in
Section 3) are given by St % 02: o, = 4: ~6:4s -1 The cross-sectional
area distribution is given, therefore, hy

8(x) = 2s x 3(x,0)

= cox2(1-x) (1-1.5X+x2-0.25 19)

wher e Cy IS taken as Oy = 0.28 in the present case,

It can be shown that the thickness/chord ratio (t/o) is given by
t/o = 0.43375c0/s , = 0.,03745/s in the present case.

It follows that t/0 = 0.1123and 0.0576 for 5 = 1/3and 0.65, respectively.
(See Figs.2 and 3 of Ref.4 for illustrations of the Lord V centre-section and
cross-sectional area distributions.) Results are given for a plane just

ahead of the trailing edge (for which x = 0.9999) for three Mach nunbers

(M= 1.6, 2,2 and 3) far the first wing, and for a single Mach nunber (& = 1.6)
for the second Wing. This provides results in this plane for four values of
the paraneter gs (0.41633, 0.65320, 0.81185 and 0.94281). Charts are also
given representing velocities in the planes x = 2 and 3for the smallest of

the four values of gs mentioned above (corresponding to M= 1.6, s =1/3).

To the aoouraoy of linear theory, the pressure coefficient is given
by Cp, = -%%g o It follows that any curve on which the streamwise velocity
component i S constant is also an isobar. These curves are each labelled with
a particular value of Cy, scaled by a factor 100, for convenience. (Hence
the isobar on which CP =-0.03 is labelled "-3",) The other two sets of

curves are labelled simlarly, by values of the functions - -2-%9-%‘2 ard
y
_ 200 3
U oz°
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The characteristics of these three sets of ourvea are described in
Sections 4.3.1, 4.3.2and &.3.3,for the streamwise, transverse and vertical
components of velocity, respectively.

4.3.1 BStreamwise compor\xent of velocity

Figs.4=7 oontain isobars in the plane x = 0.9999 for four different
val ues of Ps; Figs8and9 contain curves corresponding to thepl anes x = 2
and3respectively for the case Bs = 0.41633. For x = 0.9999 (just on the
wing), the isobars cut the planes y = 0 and z = 0 normal |y except.across the
plane of the wing (a = 0, |y] € s). Theyare approxi mtely ciroular in shape
in the region of r(=BJy“+2/x) = 0.8, but become more elliptical nearer the
wing. The madmum and minimum vaues of Cp, (denoted Cprp.y andCp(psny)s
for a given wing and Mach nunber, b oth ocour on the line x = 0.9999, z = 0,
off and on the wing respectively. These two functions are plotted in Pig.10
against the parameter 7 = (1-—{32 32)"}. This paranmeter is used as cp(max) I's
approximately a linear function of it in the range considered. The maximum
value on the line x =0.9999, y = 0 varies very little with m, but is [ower in
all oases than the maximumon the line x = 0.9999, z = 0. This causes one or
more of the isobars to contain a loop, Tbeginming and emding on the |ine
x%09999 z = 0 (e.g. the isobar on which cP = 0.05 in Fig.4).

Near the liash cone and behind the trailing edge, the curves are
approximately circular, as for x <1, and the maximum val ue of CP.whioh oocurs
in this region decreases as x increases. A simlar behaviour would Iesult
fromthe attenuation of the bow shock wave in the real flow. There is a
discontinuity in the pressure coefficient aoross the strip [yl 4 g of the
pl ane z = (x-1)/B. The nagnitude of this discomtinuity on the centre |ine
of the wing has been discussed earlier (Section 4.2). |t falls off linearly

(to zero) as y insreases, fromzero, to the value y = a.

4..3.2 Transverse conponent of velocity

The level ourvea of the function -2-1(;—0%? are given in Figs.11-16.
Ahead of the trailing edge (x = 0.9999), the quadrant I's separated into two
regions by a more or less circular curve given by % _0 (t he "zero ourve").
Along this r varies between 0.60 and 0.75 in the oases considered here. This
is the only curve which intersects the line x = 0.9999, y = 0 since '35 =0
everywhere on thia line, from gymmetry. Qutside of the "zero curve" the
aouroea at the front of the wng domnate, and behind it the sinks, which lie
behind the line of greatest thickness of the wing, have the greater effect.
On the zero curve the contributions of the two just balance. Al the other
curves begin and end on the line x = 0.9999, z = 0. %g IS negative inside
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the 'zero curve® and positive outside. Aong the line x = 0.9999, gz = 0, 2
decreases (fromzero) to a negative mninumin the region of‘% = 0.6 and then
increases to a positive maxi mumnear the Mach cone. These turning values,
scaled by the factor a, are plotted against the parameter m in Figei7. It will

be seen that the function[ I%‘ 8 %?:I is al nost independent of 7 (about
max
c. 01:-), Whereas[ aﬂ decreases fairly linearly with n,
min

For x > 1, there are two curves on which -a-?r. 0, both of which are nore or
leas circular. On the outer one r = 0.81 and 0.88 for x = 2 and 3, respectively,
ard on the inner one r = (x-1)/B. Between the Mach cone and the outer zero
curve, -?r; is positive, as for the case x <1, ad negative between the two
curves. Inside the inner "zero curve", %.;f; takes small positive values, |eas
than 0.005 in the two oases considered. Along the plane Mach wave fromthe
wing trailing edge (|y| € a, z=(x-1)/8),the | evel curves have discontinuities
in gradient.

4.3,3 Vertical conponent of velocity

The level curves of the function - E%Q %% are given in Figs.18-23. One
basic feature of these curves results fromthe boundary comitions (given in
equations (2) and (3)). -g% increases |linearly along the line x = 0.9999, z = 0,
fromits negative mninumat y = 0 to zero at the point y = s, and remains zero
at all points off the wing. For x = 0.9999, there is a "zero curve", which
intersects the line z = 0 where y 2 sx, Between this curve and the Mach cone
the behaviour is simlar to that described for the transverse conponent except
that the roles of the planes y = 0 and 2 = 0 are reversed. Inside the "zero
ourve'", %E IS negative amd each curve intersects both of the lines x = 0.9999,

=Q0and x = 0,999,y =0, the latter normally. The mi ni num val ue of-g%
ooours at the origin, where 3%—? ~100 (o e, to, to )/s, = -7/s in the
present case. The maxi num val ue of —-‘é occurs on the line x =0.9999, y =0
except for the case in which M = 3, wnen a small closed contour exists in the
region of y =0.26, 2 = 0.21 (see Fig.20). |In this case the maxi numvalue |ies
i nsi de this contour.

For x » 4, there are two "zero curves", as for the functions. Between

the outer curve and the Mach cone the features are simlar to those described
for the case x < 1, There is a discontinuity in%% at the game position as
that in the pressure coefficient (where gz = (x-1)/B) and the behaviour for
smaller valueg Of zis simlar to that of the pressure coefficient, agits

value falls rapidly towards the plane of the wing.
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5  CONCLUSIONS

The velocity field about a fanily of symmetrical delta wings at sero
incidence in a supersonic streamkras been cal cul ated by linearized theory.
Closed~form expressions for the three conponents of the perturbation velocity
in terms of elementary functions have been derived, and have been programmed
for automatic digital oonputaticn on the Ferranti Mereury conputer. The
programme has been used to illustrate features of the fiew field of a "Lord v
wing having rhcmc orcss-sections normal. to the free stream direoticn, for
four values of the simlarity paraneter fs, The main results are presented
as contours of the velocity components in planes normal to the free stream
direction, at and behind the wing trailing edge.

The pressure gcoef{ioient predicted by Iinear theory rises to a maxi num
value a short distance behind the Mach cone fromthe apex. This maxi num
val ue has been compered W th values calculated by the shock relations from
nmeasur ed values of the shock wave angle for wings with thickness-chord ratios
of 0.0643 and 0.1123. It isS found that linear theory somewhat urdereatimtes
this pressure coefficrent, The discontinuity in pressure on the oentre-line
of the wing whieh occurs at the trailing edge has been conpared with val ues
calculated from the shock relations. Good agreenent is fourd,
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Apnendix A
VALUCS OF X-COORDINATLS AND THEIR DERIVATIVES

The values of the x-coordinates which appear in the integral limits in
equation (5) and/or (SA) have the following values:

[(x+6° sy) = J(x+132 )% - (1-62 §2) (xz—B?yZ-Bz 2/ (182 32).'\
x -8 ’yz + z2

X = x-Bz %(M)

1

o

[(x-8° sy) = J(x-6° sy)? = (1-62 &2) (282 y2-8% 22))/(1-82 &%)

d*

N

x, I f x-pz>yls )
% if x-8z £y/s

The derivatives of x. and ;ED appeer in the expressions for the veloeity
components, given in equations (41)-(13).

We have
ax
¥ -0 f (i2)
ox
¢
== = -8
dz _)
il-cg . (x - XD) 1
H o x~ 8 ay) - (182 6D) %
axD ‘32 (s Xy = )
v [(x- 132 sy) = (1 = [32 32) xp3 > )
a]‘D - -—62 Z h
EE l:(x— B° sy) - (1- 8% 5°) xD—}

y

11
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Appendix B

VALUES OF THE PUNCTIONS BN

These functions apnear i N eguation (9) end have the fol | owing val ues:

[%—sll(x-—x') - y2 - AP - [g(x)—zh( zl-
stn”! (J , ;?—23’- . zz)]

(x-x

[%23% Jet)? - 6 (oot )P - 6+ 6x) - L) |
S|n-1 B(y+sx')
()]

[~ -g-l:g(m - L (e )] g}

A %ZL) S )® - 8% 3% - 6% 2 - 1 6t) + L i |

{- %;—;l Joext )2 - B2 (esxt 2o g2 2 1 [_g(;;' ) + £ n(x*)

p
snﬁ( B(y-ex') z)]

(xx )2 -

2]
[— 1 }(m - h(x-)]_@l
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The following integrals occur in the expressions for the velocity

conponent s:

N+l

fnao

Y160

N

W N

1] n i
o'—-___&r‘e ot_______aj‘{e

u

Ok\-—_.e?{a

of——__,_,bs,”

OL_-"_"‘H
b

L_ﬁ?

0

Apvendix C
CITASSIPICATION OF | NTEGRALS

(X'Xl) X 'N J(X' Xa )2 - ﬁE’YZ - BZ 22 ,
N2 2 2 dx
[(x-x")° = B° 27]

{x'N J gt )2 - 82 42 o 2 22} i
[(x—-x')2 -8% A

(x-x') x ©

(
1'[(x-x')z - 8% A 1&%‘)}2 g2 y2 . 8

1
x]'“dXl
2 2

(x-x1)° = B% (yrsxt)? « B° 5

t
X-X’ X H dx’

-} ex

2

[(X“x')z - 82 22] (x=x')" = 52_(y+sx')

'y

2 2 2

-f z

x_— dx'
[(x—x')2 - 82 2 (x—x')2 - Bz (y+sx* )2 - 52 22
X'N dx!
j(x—x' )2 - (32 (y—sx‘)2 - 32 7
(x-x") 2 dx!
2
[(x—-x‘)z - Bz 22] j(x—x’ )2 - ﬁz (:Y-SX')z - B 52

N=0(1 )3

N=0(1)3

0=0(1 Y4

=0(1)4

N=0(1)5

N=0(1)5

M=0( 1)L

N=0(1)5
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Yoo ?CD X N dx!
b [ w6228 S R e 8 (v VP oB
The following integrals oecur in the solution of the 'above

{

]

O~ ®

=

n

-Q'L‘-ﬂ-e‘

0

1

coshN b ae

3

1
] coshN ¥ ay

‘ﬂ!o

fm

¢

0

1

cosh™ ¢ dg

cosh ) d¢

y oosh 1

¢ sinh? ¢

N=0(1)5

N=0(1 )4

N:'O(‘l )2;.

N=0(1 )b

N=0{1)6

23
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Appendi x D
EVALUATION OF THE |NTEGRALS LISTED IN APPENDI X C

DA Gy Dy Eyy B

The first three integrals are identical except for the limts of integra-
tion, which are given by

a a, - % 2
4 1 " % X = B¢ sy
ooshez(_> oosh6:<_)wherea_
1 2, xD ! o & - X, L _‘32 32
a - X 2
cash ¥, = (a _?A) . cosh ¥, = H where a, = X+ B_SYy
2 ¢ 9 X 1eB s
x_~
oosh ¢1 = ( ), cosh ¢ = (———__.—,—._IE_“— .
2
B 3% + 2° Bjy + 2
We have
e
1
CO = [e]e
o
e‘l
C, = [sinh 3]60
¢ °
2 = (£ 0+ % sinh & cosh 9]90
, 0,
G, = [sinh ® 4 3 sinh 6],
o
C )

% = [0+ £ sinh 6 cosh® + § aink’ 6 cosh 6 + § Sinh © cosh’ 6]
0

and simlarly for D, and EN interms of ¥ and ¢ respectively,

17
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25
e oan obtain the follow ng reduotion formula for Fyt
2
o o (2 D2 * By
N 2 2 ’
y t+ gz

where .
1 [, =1 /z tanh é ¢y ]
- 1 tan ———ren for 2 % O
yz Y é

= 0

Rl %
= tanh 56] for g2 = 0

. [ o (jy—T: sinh ¢):l¢1

.YJ.V +5

The case y = 0 has been speoifioally exoluded;
my be obtained by

(say y = 0,00001).
D. 2

sufficiently accurate values
using a very small value for y in the conputer programme

G G(N#h)’ Hm0)

These integrals are transformed by the substitution

x-x' = B\/yz + 32 cosh ¢

2,2, 22 0 .
G, =xG6 -8B (y" + 2°) (Tu F2)
' H

_ 2 3.2, 2v5/2 _
G, = =x Gyt 2X G+ 87 (y° + z%) (F5 Fj)

2 b2 2\3 p
G5 = Go -3 6t 3x G, - B (y" +2°) (F6 FQ)
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2 2
Gh (¥ + 55) (F2 - FC)
G = x & =8P+ Y2 (5, - 8)
5 4 3 1
2 , 2 2.2
G, = -xzcrh+2xc;5+ B (y° + 27) (Fu'Fz)
6. = 6 3o +xe -2 2t DY (. - ¥)
7 [ 5 6 5 3
2
H10 = F1jy +zz_/ﬁ
_ 2 . 2
Hyy =X Hg=- @ +37)F,
2 2 2.3/2
H12 _ -XH10+2XH11+ﬁ(y +z)3/ F3
2 : 2 ,.2 2.2
H,‘3 =15H10-3xH11+3Xh12"I3 (y" + %) Fl+
4 2 3,2 2.8/2
By, . -x H1o*"~13511"6x H, + 4l + B (0 + ) R

D3 Vo Zp Ynago

The substitution used in these integrals is
' - - \
Xt = e, + (xA a2) oosh ¥ .

W can show t hat

Jix- x)? - @2 (y+ sx')? - B2 4° = J1-Bz 6 (a,-x,) sinh ¥

ard hence that

Y - N
1 [a.2 + (xA a.2) cosh ¥]

- [t
N 152 &

ay
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It follow that

1 N -~ N-1
VN z — [6‘2 Do + N B (xA— 32) D_1 oo (xA-az)N DN} N=0{1)4

/1_ 6 2

Two reduction formul ae oan be obtained for the mralute{ti‘on"of”"zliI and Y.,
They are: 160

gt = X Inago = &

_ 2 2
bt T E o Vo B2 Yy

Since the v, are known, these integrals can be eveluated if 2, and ¥, are
known. In ternms of the variable ¥, we have

, 4 [t!r'l r [x-a2+ (a,-x,) cosh ] ]
o = e ay
’1 __;32 52 VQ [x-a2 + (a.2—xA) .cosh 1};]3 - 62 52:}
_ 1 f/" ay
1 - — []
N NRPE - 4, {[x-a, + (a,=x,) cosh ¥} = p? 47}
It can be ghown that
7 = {i(-ﬂ) + I(+B)]
ro Y g X
2J1- 32 32
v = [I(B).= I(+p)
163 j—""‘“""z 5
'2(32.2 1-B" g
ll d!
where I(3#p) = ¥ .
V]

[x-az + 8z + (ag-xA) cosh ¥}

¥
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These integrals can be eval uated using the transformation

i cogh ¥-1
¢+ o tanh 5 = j.—COSh yi

fron which It follows that
T -1 {z' (cosh ¥~ 1)
(+6) Jg‘ ht [: (’h' (cosh v+1)

[ ()T

(-8)

whereh = x « X, -”Bz

h* = x - xA+ B3
g = 2a2-xA-x+Bz
a' =r2a,? -XA-x-Bz,

all of which are always positive.

Dol Ty s Y0

The transformation used in the evaluation ofthese integrals iS
xt = a, + (x_D -' a,) cosh 8. Since UN’ fF’ W€D can be obtained from?Uu
YN+160’ respectively, by the replacenment of "y" by "-y" (see Appendix C),

their evaluation is simlar to that described in Section D,%, However, the

Z

i Sy

functions ¥, X;s & Dy are replaved by &, Xy, @, C respectively. It should

be noted that

N

(1-¢° az)(xD-a C ) J=.~(x2-ﬂzsy)2-(1-3252)(x2-32y2-B232)

= =B “‘l'(:af‘-'sx)2 s (192 5%) 22

For z = 0, therefore,

(1-8° 4)) (x-8,) = -5 |y-ax
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Xy¥,2

xl ’y| s z'

Xp 23X %70 Xy

Ys ¥
z(x:Y)

a A F ¥ © 3 o
-
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SYMBALS

see equation (9) and Appendix B

coefficients defining the wing thickness distribution
(¥=0,1,2,3)
pressure coefficient

function appearing in equation (5)
see equation (7)
free stream Mch nunber

B }yz + 22/x

wing sem - spat’

oross-sectional area at station x

thickness/ehordratio

free stream velooity

ri ght-handed coordinate system origin O at w ng apex, Ox al ong
wing centre iine, Oyto starboard

the same when used as running coordinates

see Apnendix A

value of limt used in equations (8)
see equations (54)
equation of the upper surface of the wing

= W1
sem trailing edge angle of wng (on centre line)
= (1 - ‘32 52)"1/2

shock wave angle

see equation {(14)

Mach engle, = Si n~ (1/u)

area of integration (shown shaded in Fig,1)

perturbation velocity potential, in particular on the upper
surface of the wing
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FIG. 4 ISOBARS IN THE PLANE X= 0.9999;

S-f, M=1-6; Bs=0-41633



FIG.5 |SOBIARS IN THE PLANE X= 0.9999:
?

$=3, M=2-2,8s=0-65320
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VELOCITY IN THE PLANE X=0-9999; S=3, M = 1:65 Bs = 0-41633
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FIG. 14 CURVES Ok-CONSTANT TRANSVERSE VELOCITY
COMPONENT IN THE PLANE X=0-.9999; $=0-65,M=I-6;85-0-81185



FIG.15  CURVES OF CONSTANT TRANSVERSE VELOCITY
COMPONENT IN THE PLANE X=2; S=3; M=I'6; B5=0-41633
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F IG 16 CURVES OF CONSTANT TRAII\ISVERSE VELOCITY COMPONE N T
INTHE PLANE X=3 ;5=3,M=l"6, Bs=0- 41633
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FIG.18 CURVES OF CONSTANT VERTICAL COMPONENT OF
VELOCITY IN THE PLANE X=0-9999; $=3,M=1.6; Bs= 0-41633



FIG.I9 CURVES OF CONSTANT VERTICAL VELOCITY COMPONENT
IN THE PLANE X-0-9999, $=3, M=2-2, fBs= 0.65320
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FIG.22; CURVES OF CONSTANT VERTICAL VELOCITY
COMPONENT IN THE PLANE X= 2; S=3, M=16; Bs=0-41633
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