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THE VELOCITY FIELD Nl3R NON-LIFTING DELTA KINGS
ACCORDING TO SUPEBSONIC  LINEARIZED THF,OHY

bY

R. S. Bartlett, M.A.

The linearized theory of supersonic flow past thin wings is used to
obtain expressions for t'ne  three components of velocity of the flow about a
family of non-lifting, symmetrical delta wings having rhombic cmss sections
and s*Jbsonic  leading edges. A Mercury Autoccde  pmgramme  has been written
for their evaluation and results have been obtained for a particular  wing
for three Uach numbers and two values of the ratio of semi-span to centre-
line chord. Curves of constant velocity, in planes norm&l  to the free stream
direction at and behind the trailing edge, are given for each velocity
component.

a Replaces R.&d. Technical Report No.66177 -A&C. 28453
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1 INTRODJCTION

This Paper is concerned with the calculation, according to linearized
theory, of the velocity fields cf a fenlily  cf synrmetrical delta wings at zero
incidence  in a supersonic strea The cross-sections of the wings  by planes
normal  to the stream  are rh&zc end their centre-secticns  are represented by
pclynomials  of the fifth degree containing four arbitrary coefficients. The cats-
pcnent of the free stream ncnnal  to the leading edge is subsonic. The three
velocity ccmpcnents  are expressed in closed form in terms  of cl6anentary func-
tions. The evaluation of the velocity comprments  has been prcgrenmed for autc-
matic digital computation. As en example, the velocity ccmpcnents  of the wing
known 89 'Lad V' (wing 5 of Ref.?) are calculated for several values of the
similarity parameter pqwhere p2 = M* - 1 and s is the ratio cf the semispan  to
the length. The results are presented as contcuri  or level curves of the com-
ponents in three planes  nor&t to the streem,  at end-behind the trailing edge.

Mngs of this type have fcrmed the basis for a number cf studies (see, for
exemple,  Refs.2 and 3) aimed at the generaticn  cf volume distributions which com-
bine low calculated wave-drag with pressure distributions which make it likely
that the type of flm postulated & the theory will be realized. The main cri-
terion for the realization of the flow, and so of the wave-drag as calculated by
inviscid  flow  theory is the avoidance of wessure  distributions on the wing-which
are markedly unfavourable  to the develcment  uf a boundary layer attached up to
the trailing edge. However, it is not sufficient to ccnsider  conditions cn the
wing surface only. If the calculate6  pressure at the trailing edge of the wing
is well below free-stream  pressure or the s&e between the upper and low sur-
faces of the wing at the trading edge is large, adJustment  to free-stream ccn-
ditions behind the wing through a simple trailing edge shock may not be pcssible.
Instead thdcening,  or even  separation, may extend ever  the rear part af the
wing, as observed by Finnin lb. As a first step in assessing the likelihocd.  of
this, a means of obtaining pressure distributions, scccrS.ng  to linearized
theory, in the plane of the wing behind the trailing edge was required. It was
realized that if furthtr prcgrcss  was to be made, it :vculd  be necessary to inves-
tigate the development  cf the trailing edge shock system  in the real flow. The
opportunity was therefore taken of including  in the present ccmputer  prcgrm
the ca;lculaticn for prints off the wing surface, in order to provide a starting
point for such en investigation. 'Although it'was not possible to proceed wLth
this investigation, SQW calculations of the flow field off the wing are preson-
ted for their intrinsic intcrest.

2 CALCULATIO~I  OF Tii VZi.,mnY  COhG'OMWl'S  BY LINEXRIZED THEORY- - -
In order to calculate the velocity field  around a wing in inviacid

isentrcpic supersonic flow, it is nccessery  to simplify the partial differential
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equation for the velocity potential. For thin wings, this simplifioation  is
aohievad  by linearization of the equation, which is allowable under the
following oonditions:

(i) the angle which any tangent plane  to the wing surface makes  with
the undisturbed stream, and the rate of change of this angle along the
wing, must both be small,

(ii) transonio and hypersonic flows must be excluded.

In the present note we confine our interest to symmetrical wings at
zero incidence, for which, under the above restrictions (i) and (ii), the
perturbation velooity potential can be expressed in terms of a oertsin  double
integral, whose value must, in general, be evaluated numerically, a process
whioh is complicated by the singular behaviour of the integrsnd.  For wings
of sinple  geometry, however, at least one of the integrations msy be performed
analytioally.

'(
In the present case, the same applies to the seoond integration

see Section 3).

Let x, y, e be a right-handed coordinate system with origin 0 at the
apex of the ting, x-axis along the free-stream direction and e-axis normal
to the plane  of the wing and vertically upward. The perturbation velocity
potential is then given, in linear theory, by the solution of the equation _

which satisfies the following boundary conditions:

a6
( >-3x& = 0 outside the wing

(%)& = lJ (~),~,(,,,)  On  the  w- ’

(2)

(3)

ad vanishes upstream of the wing.

Here s= z(x,y)  is the equation of the upper surface of the sing. To
the accuracy of linear theory, it is sufficient to satisfy (3)  in the plane
of the wing, s = 0, rather than on the wing itself, Under these oonditions,
equation (I) has the (unique) solution



hY,Z) = - ;
ii
2i&iQ-- - dx' dy'

J

(4)
'T > (x- x')2 - P2 (y-y'  Y - P2 z2

where the area of integration, 7, is that part of tine  wing which lies inside
the forward Mach oone fro! the ppirrt (x,y,z). It,is  bounded by the two leading
edges of the wing, by the hype&La ABCD, in whioh-th&  forward hfaoh oone
interseots the wing plane, ard, possibly, by part of the trailing  edge of the
wing if the apex, C, of the hyperbola lies downstream of it (see Fig.1).
The curve ABCD ia given by the equstion

z’ = 0 ) (x-x’)2  - p* (y-y’)*  - p* z2 I 0 I

In view of the symmetry about the planes y s 0 and e = 0, it is sufficient to
consider the quadrant for which y ard z are positive or zero.

Consider any function f(x',y'j  define& in the plane of the wing, and
suppose y > 0 and z a 0.

<..
Then, since the leading edges are taken  to b, subsonio

(see Flg.l),

f(x',y')  dx' dy' = , f(x',y') dx' dy'

where 41 = xc ti C is behind. t& leading edge, or xD othekise;

XA, xc ana % are t!le  x-coordinates of the points A, C ski D (see
Appendix  A);

the symbol < denotes min(i,s),  ard similarly for Gi, eto. ;

F ;: y + ; j(X? x9* - p* 2;

Y sy-; (x-x')*-!3 2 2z ;

s is the semi-span of the,wing;  -whioh is-taken to be of unit length.

For wings of delta plsnform  ard rhombio  oross-section, as considered here,
z(x',y')  is given by



2(x’,y’)  = 2(x’,O)  (I -J$)

where s = z(x',O)  is the shape of the centre-section.

It follows that I

h(x’ )
where

h(x') =

(6)

(7A)

(7B)

In order to deal with the term involving  ly'l, it is convenient to split
up the first integral in equation (5), rewriting this equation in the form:

P
0

I f(xl,y')  ax' ay' = ? iIax' fb',Y')  ay' + i f lx'  ,Y' 1 &Y'1
d \ d d. /

x’ =o Y’-+ y’=O

E
xA -sx’

+ F Idx' f(x' rY' ) W' - ; Idx' f(X',Y')  W'

J d
X'=O y ' rsx'

where 5 is the x-coordinate of the  point B and its value is also given
Appedix A. We can now evaluate $(x,y,s)  from equation (4) by giving a
particular value to the function f(x’,y’)  in equation (5A), namely,

f(x;y')  = adx*,y)  , 1
axi

J(x- x' )2 _ p* cy- yl j2 _ f3* z2

in

ad by allowing  equation (7A) to define dz(x',y')/d x1 both on and off the wing.
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Whatever the value of the function a(x',O),  the integrations with respect to
y' may be performed analytically for the wirgs  oonsidered  here:

Y Y

I
f(X’,Y’) ay’ =

I
Ia&t ,yf  ), dy! -

0 ax’0 ( x -  xq2 - o2  (py' )2 - P2 s2

')2-fJ2 (y-~')~-fi~  s2 -$
(
g(x*) + $ h(Y)

>

-sin -1 P(Y- Y' 1 Y

I -
2 2 ZH , for Y > 0

(x-x') -p e : 0

(X-X’)2-p2 (y-y’)2-p2  s2 - $ m.;  h(x’)
>

(8A)

. (8~)

We require the values of the factions  in square brackets in equations (8) for
seven values  of Y, namely

Y 2 0, -sx',Y [in (eB)l

Y = 0, *xl,F,y [in (WI

We denote these values by BfiT, N = 1(1)7, and their values sre given in
Appedix B. By evaluating the integral in equation (4) in the form'given in
equation (5A), we obtain tke folloxing  expression for #(x,y,e):

G x

- ; dX,Y,Z) =
i

[(B,-B$ +  (B~-B~)I  dxl +
J
"(B~-B~)  a~*

0

FE
-.

xA

-i

%I
(B~-B~)  a~* -

J
(B6-B5)  dx' . (9)

‘0 0
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Substituting the dlues of the functions BN into this equation, we obtain

-'
+d

sin
(jy-yg--&] ax' +l [f px') +: h(x')]  dx'

(x-x')2-82  (y+sx')2-82  z2 +; h(x')
>

%-JC
0

p ,/iX-X')2-@2  (Y-sx’)~-~~  z2 + i @(x1)+$ h(x')
8 >

. . . (10)

By differentiating this expression with respect to x, y and e, we can obtain
expressions for the three velocity components.

These are as follows:
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3 EVALUATION OF THE VELOCITY COMPONEI'JTS

In order to calculate the velocity components in psrticular cases, the
oentre line thickness distribution has to be specified. There is oonsiderable
interest (see, for example, Refs.l-8) in the family of wings for which e(x,O)
is given by the following quintio polynomial:4&Go) = 2 (1 - x) c (ON,, xN-’ ) ,

N=l

for whioh the integrals given in equations (IO)-(13)  oen be evaluated analytio-
;rlly. Four simple members of this family are given by

z&x,0) = $1 -xl, N = 1 (I)4

for which

g(x) 8 g,(x) = & [N xN-’ - (X+1)  x”]

h(x) e qx, = & [N xN-’ - (N-l) xN-*] .

If the velooity potentials corresponding to these wings are given by

$ = %'J ' N=l(i)4 ,

then that of ax-y  other member of the family is g3ven  by

and simi1a.r  relations hold for the velocity components. It is suffioient,
therefore, to evaluate the integrals which appear in'the  expressions for
wN a#N yr
-8z'-p., (N = 1,2,3,4)  by substitution of g(x') = g&x') end

h(x') = l$x') into equations (11), (12) and (13) respeotively. Tins prcoess
is simple in principle but entdls a great deal of complicated algebra, best
dealt with by classifying the i&egrals  pihich  arise. These are listed and
evaluated in Appendices C end I) respectively. In terms of these functions

tne expressions for x, -s;- end x become
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+ e wJN,,
2c32

- (N-4 ) VNm21 + + rmN-l - (fir-j) UN-J

B2
++

+ (N-l ) z2 Y
?!*I  gs +NaY N+l&l  - (~')~y?&,611

P2
C

2
+ $ -&I ) Y YNcs9 + @N+f  ) Y YN+60 - +  ym59

+  ( N - l )  s2 Yw58 + Na Yfib60 - @+I  ) a YN+6, 1

G HlmrLTS

4.1 Acauraoy of the oaloulations

The results givenby Eminton6 provide a limited check on the analysis and
computer programme; limited because her method  was restricted to the caloula-
tion of the stream&+=  oomponent  of velocity and that only on the wing surface.
Howaver the cases presented in Tables I and 2 of Ref.6 have been recalculated
and the results found to agree.

No other calculations exist, as far as is knowqforoheoking the progrsmme
for a $I 0. However, the results have been found to be self-consistent in that

the values of the velocity components are continuous functions everywhere,
except aoroas  the trailing edge Maoh wave, and in particular at e = 0, and at
points at which A and the derivatives of zA, etc.are discontinuous.

Across the trailing edge Maoh  wave, the siee of the discontinuity is
found to be oorraot. Continuity at s e. 0 is significant because at certain
stages in the computer programme, one of two alternative sets of instructions  Is

f 0ii0t+3a, depending on whether e is zero cr non-zero.
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4.2 Behaviour at lending and treiling  edge Mach waves

4.2.4  Em Mach wave

One limitation of linear theory affects all the results; namely that it
predicts a bow Mach wave rather than  a shock wave attached to the wing apex.
However, Schlieren  photographs' of these flows indicate that the shock waves
are in fact very weak. Shock wave angles, OS, at the station x * 0.6, have
been measured from these photographs, for several wings of Lord V area distribu-
tion. These show that the ratio 6dp (p = -'sin i) lies between 1.03 and 1.10

in the Mach number range M = 1.4 to 2.8, for these wings with semi-span to
length ratios up to l/3 and thickness chord ratios up to 0.1123.  The dependence
of e/r m M for a given wing is almost linear in this range for the single wing
for which stificient  data is available (see Fig.2).

It is of some interest that, for these weak shocks, linear theory predicts
the pressure rise across the wave quite successfully. According to linear
theor.y,  ths pressure 1s continuous across the conical Mach wave attached to
the apex but has an infinite pressure gradient there. It predicts a maximum
vslue  close to this wave and these maxima have been compared with values
calculated from the shock relations, using the measured values of the shock
angle, tl . In the cases considered, the values computed by linearthecry  are
lwzer  thh the correspoding  values computed from the measured shock angles,
by up to 2&Q see Table I, below. The actual figures are only approximate,
since the estimnted accuracy in the measurement of the shock angles
(20.1 degree) results in an uncertainty of approximately +8$ in the pressure
coefficient.

Table I
Values of C, near Mach eons

(tIode1  nwnbers  refer to the R.A.E. 8' x 8’ tunnel sequence)

Model Mach
No. number cP C

I Range of Cp

(1) p(2) dthfn  .c,,u$; ' h (%I
0f  em %2)1 a

233 2 0.0617 0.0645 0.0618 to 0.0671
2 3 4 2 0 . 0 4 6 3 0 . 0 5 1 4 o.Q487 to 0.0540
2 3 9 2 . 8 0.0341 0.0408 0.0397 to 0.0429
242 2 . 2 0.0236 0.0302 0.0278 to 0.0327
242 2 . 4 0.0235 0.0298 0.0275 to 0.0321
242 2 . 6 0.0234 0.0292 0.0270 to 0.03f3
242 / 2 . 8 0.0233 0.0284 / 0.0264 to 0.0305
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4.2.2 Trailing edge Elach wave

In F&.3(a)-(d),  pressure distributions along the oentre line of the
wing have been plotted for four values  of the paremeter  @a. Linear theory
predicts  a aiaccntinuity  in pressure coeffioient at the trebling edge end the
magnitude  of this discontinuity has been compared with values calculated from
the shock relations using one-half the centre line trailing edge angle  as the
defleotion angle.
0.125 co

This angle, 6, is given by ten S 0 . 5=-y( co + 0, + c2 + 0
3
1, D

for the Lord V area distribution.
6 =‘6.65’  and 3.08’  for a

In the present case oO = 0.28, eo
= l/3  ard 0.65 respectively. The local Maoh number

aheed  of this shook 1s calculated from the pressure coefficient predicted by
linear theory ani, for oompariaon , aleo  taken to be equal to the free stream
Maoh nunbcr. The first of these methods predicts local Mach  numbers which are
&L to @,; above the free strcsm  value in the cases considered.

Fig.3 shows that the juz? predioted by linearized theory is very close to
that calculated from the shock relations, using the local value of the upstream
Mach number. The maximum error in four cases is only II,.. Bigger diaorepances
(Up to 34i;)  arise if the free stream Maoh number is used.

All three predictions of the pressure jump across the trailing edge show
that the _uresaure rises from a value below free stream  to a value well above it.

This may be oommred  with earlier Fnvestigetions  made by various
authorsIO,11 ,I2 . They celculated  the local flow direotion along the oentre
line of the (liresrized)  wake  of a flat-plate delta or rectangular wing at
incidenoe  . In the case of a lifting wing without thiokneas, the pressure in
the :v&e  returcs  to its free stream value immediately downstream of the trail-
ing edge, with a subsequent adjustment of the flow direction to ad~matream
83jTiptOtiO VkllUe. In the present case the flex% in the wake  returns to the
free stream direction immediately downstream of the trailing edge, with a
subsequent adjustment of the pressure to the free stream value. In each case
there is an over-adjustment beyond the ultimate downstream value  ad, in eaoh
case, this decays very rapidly. (Compare Fig.3 with Fig.1 of Ref.10.)  In
the cases considered here, for example, the pressure coeffioient  has deceyea
to values  which are less than 0.003 one ohcrd  length behind the wing (i.e.
x s 2), arri less then 0.0001 another half-chord length downstream (X = 2.5).

In the real flow, the shook wave will attenuate with increasing distance
from the wing. Linear  theory ~refiiota a plane Mach  wave  of constant strength,
making  a oonstant  angl.~ with the free stream direction, ad. occupying the
strip lyl 6 a of the plane  e = (x-1)/P.  The strerdhs  of both the shock  and
the Mach wave vary across the span  (since the trailing edge angle  varies
linearly across the hen).
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4 . 3 Discussion of the okrts

The main body of the results consists of charts of contours, along each of
which one of the three components of the perturbation velocity is constent.
Each chart is for a psdioulsr  plane perpendicular to the free stream dkection.
The region covered is restricted to the positive quadraA  (y, s 3 0); this is
sufficient owing to the symmetry of the functions about the planes y = 0 and
z = 0. Two delta wings, each of "Lord V" area distribution, but of differing
planform geometry (8 = 1/3  and 0.65),  have been considered. For the Lord V
distribution, the values of the coefficients co, c,, 02, c3 (which appear in
Section 3) are given by co: 0,: 02: o3 5 4: -6:4:  -1. The cross-sectional
area distribution is given, therefore, by

s(x) = 2 s  x  z(x,o)

D 0 x0 2 (I - x)' (1 - 1.5 x + x2 - 0.25 1, ,

where c 0 is taken as o. = 0.28 in the present Case.

It can be shown that the thickness/chord ratio (t/o) is given by

t/o = 0.43375 ob , = 0.03745/s  in the present case.

I
It follows that t/o = 0.1123  ad 0.0576 for s = i/3  and 0.65, respectively.
(See Figs.2 and 3 a? Ref.4 for illustrations of the Lord V centre-section and
cross-sectional area  distributions.) Results are given for a plane just
ahead of the trailin;; edge (for which x = 0.9999) for three Mach numbers
(M I 1.6, 2..2 and 3) far the first wing, and for a single Mach number (M = 1.6)
for the seoond  wing. This provides results in this plane  for four values of
the parameter @s (0.41633, 0.65320, 0.81185 and 0.94281). Charts are also
given representing velocities in the plmzs x = 2 and 3 for the smallest of
the four values  of Pa mentioned above (corresponding to M = 1.6, s = i/j).

To the aoouraoy of linear  theory, the pressure coefficient is given
2 abyCp=-ii X.2 It follows that any Curve  on which the stresmwise  velocity

oomponent  is constant is also sn isobar. These curves are each labelled  with
a particular value of Cp, scaled by a factor 100, for convenience. (Hence
the isobar on which CP = -0.03 is labelled  I'-3".)  The other two sets of
curves are labelled  similarly, by values of the functions

200 a#
-v~;;’



The characteristics of these three sets of ourvea are described in
Se&ions  4.3.1, 4.3.2 and b3.3, for the streamwise,  transverse and vertical
oomponents  of velocity, respectively.

4.3.1 w
Figs.4-7  oontein  isobars in the plane x = 0.9999 for four different

values of ps; Figs.8 and 9 contain curves oorre5poding  to the planes x = 2
and 3 respectively for the case pa = 0.41633. For x’= 0.9999 (just on the
wing), the isobars cut the planes y = 0 and e = 0 normally exoept.aoross  the
plare  of the wing (a = 0, lyl d s). l’hey  are approximately ciroular  in shape
in the region of r(=gK'/x) t O.D, but become more elliptical nearer the
wing. The maximum and minimum values of Cp, (denoted Cp(-)  and Cpr(min)),
for a given wing and Mach number, b 0th ocour  on the line x = 0.9999, e = 0,
off and on the vring respectively. ThFse two functions are plotted in Pig.10

against the parameter n = (i-p2  s2)-I.  This parameter is used as $(-) is
approximately a linear function of it in the range considered. The maximum
value on the line x = 0.9999, y = 0 varies very little with n, but is lower in
all oases than the maximum on the line x = 0.9999, e = 0. This oauses  one ar
more of the isobars to contain a loop, be&ming and eniing  on the line
x = 0.9999, 8 = 0 (e.g. the isobar on which Cp = 0.05, in Fig.4).

Near the Ilaoh cone and behind the trailing edge, the curves are
approximately circular, as for x < 1, and the meximum  value of $-which oocurs
in this region decreases as x increases. A similar behaviour would result
from the attenuation of the bow shock wave in the real flow. There is a
discontinuity in the pressure coefficient aoross  the strip IyI 4 8 of the
plane s = (x-1)/p. The magnitude of this disoontinuity on the centre  line
of the wing has been disoussed earlier (Section 4.2). It falls off linearly
(to zero) as y inareases,  from eero, to the value y = a.

4.5.2  Transverse component of velocity

The level ourvea of the function %a3 2-u ~~-  are given in Figs.li-16.
Ahead of the trailing edge (x = 0.9999),  the quadrant is separated into two
regions by a more or less circular curve given by &L-

ay- 0 (the "zero  ourve").
Along this r varies between 0.60  and 0.75 in the oases considered here. This
is the only curve whioh  intersects the line x = 0.9999, y = 0 sinoe +=o
everywhere on thia line, from symmetry.  Outside of the "zero  curve"  the
aouroea at the front of the wing dominate, and behind it the sinks, which lie
behind the line of greatest thickness of the wing, have t&he  greater effect.
On the zero curve the contributions of the two just balance. All the other
curves begin and end on the line x = 0.9999, a = 0. is negative inside
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the 'zero curve' and positive outside. Along the line x = 0.9999, e = 093
decreases (from zero) to a negative minimum in the region of: = 0.6 ard then
increases to a positive maximum near the Mach Gone. These turning values,
scaled by the factor a, are plotted against the parameter II in Fig.17. It will

be aeenwzaT  ',y~[- $ s $1, ia almost indepedent  of n (about

o.w, - - a -
u ay decreases fairly linearly with 71.

min
For x > 1, there are two curves on which $= 0, both of which are more or

leas circular. On the outer one r = 0.81 and 0.88 for x = 2 and 3, respectively,
ard on ;p inner one r n (x-i)/@. Between the Mach cone and the outer zero

c-e, 3 is positive, as for the case x < I, ad negative between the two
curves. Inside the inner "zero curve" 272

' ay
takes small positive values, leas

than 0.005 in the two oases considered. Along the plane Mach wave from the
wing trailing edge (lyl  d a, z = (x-1)/p),  the level ourves  have diaoontinuitiea
in gradient.

4.3.3  Vertical component of velocity

The level curves of the function -T 2 are given in Figs.l8-23.  One
basic feature of these curves results from the boundary coditiona  (given in
equations (2) and (3)). a' *x mcreaaes  linearly along the line x = 0.9999, z = 0,
from its negative minimum at y = 0 to zero at the point y = s, and remains zero
at all points off the wing. For x = 0.9999, there is a "zero curve", which
intersects the line z = 0 where y 2 sx. Between this curve ad the Mach cone '
the behaviour is similar to that described for the transverse component except
that the roles of the planes y = 0 ad z = 0 are reversed. Inside the "zero
ourve"  , 2 is negative ad each Curve  intersects both ol'  the lines x = 0.9999,
z I 0 and x = 0.9399,  y = 0, the latter normally. The minimum value of2

2003ccoura  at the origin, where -
u as a$

= -100  (co + c, + c2 + c )/s,  = -7/s in the3

present case. The maximum value of z occurs on the line x = 0.9999, y = 0
except for the case in which M = 3, ~fnen a small closed contour etiats  in the
region of y = 0.26, z = 0.21 (see Fig.20). In this case  the maximum value lies
inside thla contour.

For x > I, there are two "zero curves", as for the functions. Eetvreen

the outer Curve  and the Mach cone the features are similar to those described
for the case x < I. 29There is a discontinuity in az at the same position as
that in the pressure coefficient (where z = (x-l)/@)  and the behaviour for
smaler values  of z is similar to that of the pressure coefficient, as its
value  falls  rapidly towards the plane of the wing.
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5 g’mJsroN3

The velocity field about a family of symmetrical delta wings at sero
inoidence  in a supersonic stream has been calculated by linearized theory.
Closed-fam  expressions for the three components of the perturbation velocity
in terms of elementary functions have been derived, and have been programmed
for automatic digital oomputaticn on the Ferranti Meroury computer. The
programme has been used  to illustrate features of the flow field cf a "Lord V"
wing having rhcmic orcss-sections normal. to the free stream direoticn, for
four values of the similarity parameter 6s. The main results are presented
aa contours of the velocity ocmoonents  in planes normal to the free stream
direction, at and behind the wing  trailing edge.

The pressure ccelYY.cient predicted by linear theory rises to a maximum
value  a short distance behind the Maoh cone from the apex. This maximum
value has been corpsred  with vsluea  oalculated  by the shook relations from
measured values  of the shock  wave angle for wings with thickness-chord ratios
of 0.0643 and 0.1123. It is found that linear theory somewhat urdereatimates

this pressure coefficient. The discontinuity in pressure on the oentre-line
of the ting  whioh occurs at the trailing edge has been compared with values
calculated from the shock relations. Good  agreement is fourd.
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The values  of the x-coordinates  which  appear  in the integral  limits  in
equation  (5) and/or  (5A) have the following  values:

xA = [(x+P2  SY)  - J(x+P~  s~)2 - (i-p2 s2) (x2-p2y2-p2  z2)l/(~+2  s2j

XD = [(x-P2 sy) - J(x-p* syy - (l-P2 s2) (x2-p2 y*-P2  z2)]/(i-p2  s2)

xhi =
{

xc i f  x-pz > y / s
x~ if x-PZ <y/s

i
I

>(A1)

The ilerivatives  cd'*% and < appee.r  in the expressIons  for the velocity
components,  given in equations  (II)-(

We have

ax
c IT

;r;;
=

axC
-aj7  = O

axC
KF= -P

:

a% r (x - %I
ax- = 4X’ p2 sy) - (I - D2 2) XD1

a%  - P2 byY)

ay’
1(x-  P2 SY)  - (I  - P2 s2) 3y)

:

b.2)

6~3)

a%
il

-P2 z
xi- = (x- P2 SY)  - (I.-  P2 s2) XD

4
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These finctiona  appear  in etytion (9) end hove the following values:

B, = - P2 Y2 - p* z* :;i -$ h(x')- 1
-1

Sin

(

Y

J p2(x-x’ ) -  p*  s
Jl

B2 =
. I
y J(x-xl)* - #B* (y+sX')2  -1 82 -s* - ; rg(x'.)  - 5 $x')]

8

sin-1 ( P(y+sx’  1

.(x-x’)*  - p* eI 31

B5 = c- y Jc~-~~  Y - P* (y-sx~ j* _ g s* _ ; rgtit ) h(x')
S I-

+ $ I-1
Sin

B6 =

+f h(x')101; z - "$
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CI&?,S3XKL'I%TON  OF INTEGRALS

The following integrals occur in the expressions for the velocity
components:

%
GN = J

0

%3
GN+& = J

0

%
%+I0  = J

0

XA
VN = I

0

yrJ,160  ‘=

%
u =N J

0

s
wN = i

"0

c
(x-x’) x ‘N JC x-x’ )? _ p2 2

Y - P2  z2
2

[(x-xq2 - P2  2 1 3

dx'

C

x'N J( x-x')2  - p2  y2  - p2 z2

ux-xq2 -B 2 2
dx'

2 1 3
N=o(j )3

c (x-x’)  x ’ I?
J------52  y2 _ @2 z2l dx’ *‘=o(‘)4[(x-x1J2 - P2 e21 (x-x’)

‘N
X dx'

(x-x')2  - P2 ty+sxq2  - P2 z2
N=O(  I)4

’ Nx-x’ x dx’
N=o( I)5

c(x-xq2  - P 2 z2]  (x-x’)2  - p2  (y+sx’12  - P2  z2

‘N
x dX’ N=o( ‘i )5

[(x-xq2  - P2 2z I (x-x’12 - .I32  (y+sx’ )2 - p2 z2

J(x-x’ )2 - ;:;:x’)2 - p2 z2
N=o( I )4

(x-x') xlN dx' N=O( I )5
[(xe(-X')2 - p2 z2] J (x-xq2  - p2 (y-sx'J2  - P2 z2
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F 'N
%+ta  = I

x ClX'

"0 [(x-xf)2 - p2 a21 ?(x-,,  1' - P2 (y-ax' I2 1 p2 a2
N=o(f )5

The following integrals ocdur  in the solution of the ‘above:

i

9
CN a I coahN  0 d.0

e. L.

$1 N
FN = s cash $I d$

+ y2 oosli? Cp + z2 slnh2  $
0

M(f)4

N=o(1)6
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Appendix D

EVALUATION OF THE INTEGRALS LISTED IN APPENDIX C

D.1 CNa DN> EN, FN

The first three integrals are identical except for the limits of intei;ra-
tion, which are given by

cash  0, = > co& ec =
x - P2 sy

81 = , - p2 s2

cash I, = cash I, = x+ P2 sy, where a
2

=
1 - p2 s2

oosh +I

We have

5 f [sinh  S]:'
0

c2 = [4 0 + 3 sinh 6 cash 901,
0

%
9

= [siti  i.5 sinh3 01,
0

% = [$ 8 + 4 sinh (3 cash 6 + $ sinh3 13 cash 6 + $ sinh 0 Gosh3 961,
0

ad similarly for DN and EN in terms of $ and $ respectively.
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We oan obtain the following reduotion formula for FN:

where

FO E

f o r

F, =

The ease y = 0 has been speoifioally exoluded; sufficiently accurate values
may be obtained by using a very small value for y in the computer programme
(say y = 0.01).

D.2 GNy G(N4)'  H(h’+lO)

These integrals are transformed by the substitution

x-x’ = P.fY2 +z200sh$  .

It follows that:

GO
2= P (Y2  + = > 3/Q (F3  -  F,)

G1 3 x Go ; p2 (y2 + z2)’ ($+ - F2)
, . t

G2 = - x2 Go + 2x G, + fj3 (y2 + =2 5/2> (F
5 -F3'

G3 = 2 Go - 3x2 G, + 3x G2 - fib (y2 + z2j3 (Q - F,+)
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G4 = (y* + s2) (F2 - Fc)

G5 = x G4 - P (Y2 + 22 13'2 'F3 - F,)

G6 = -  x2  G4 + 2x G5 + P2 (y' + z2j2 (F4 - F2)

G, = I G4 - 3x2  G5 + 3x G6 - p3 (y2 t ,2)5/Z  (F5 - F3'

HlO = F, J Y2 + z2h

Hli = x H,. - (y2 + e2) F2

Hi2  =
2

-  x Hi0 + 2x H,, + p (y2 + z~)~" F
3

Hl3
= x? Hi0 - 3x2  H,, + 3x H,2 - 8' (y2 + s2j2 F4

Hl4 =
4-x H,O+ kx3 Hl, - 6x2 H,2 + 4x H,3 + B3 (y2 + e2>5'2  F5

D . 3 ‘IV  ?P y~i6~

The substitution used in these integrals is

We can shm that

x’ = a2 + (xA - a2) oosh 6 .

J(x- x'j2 - p2 (y+ sx'j2 - p2 s2 = J l-p2 s2 (a2-xA)  sinh $

and hence that
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It follow that

27

VN = J '
I- 82 s2

($ Do + i-#-l (xA- a2) D, + ..-.  ".(x~-~~)~D~] N=o(I)~

Two reduction formulae oan be obtained for the evalua~ioti‘of'~  and Y
They are:

N+lkO'

Since the VN are
kZl0W-h In terms

'N+l61 = XYiv+160  - zrj

ZN,, = x 5 - VN - B2 *2 YN+,@  .

l&own,  these integrals can be ivaluated  if Z. end Y,& are
of the variable $, we have

y160  = J&r
a*

lb-a2 + (a*-xA) cash  @I2  - o2  e2] ’
0

It can be'down that

$

i

1
where I@) e de

'v
0

[x-a2 + @z + (a2-xA)  oosh  $1
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!&se  integrals can be evaluated using the transformation

t q tanh+j 1
cash  e-1
cash  $+I

frcnn wllioh  it follows that

whereh =x-x* -'Pz

h'=x A-x +pz

g a 2a2-xA-x+@z

gc*2a7 -x -x-pz,A
all uf which are alwws positive.

The transformation used en the evaluation of these integrda  is
X’ = a, + (% - a,) cash  6. Since UN, "$, Yrr+60  can be obtaned  from U,,, Z>!,
YN+,60, respectively, by the replacement of "y" by "-y" (see Appedix C),
their evaluation is similar to that described in Section D.3. However, tke
functions 9, xA, a2, DN & replaoed  by 8, xD, a,, CN respectively. It should
be noted that

(I-8’ s2) (s - a , )  ‘= .- (x*-p2  .3y)* - (q-p2 s*) (x*-p* y2-p2 z2)J

I
- P J(y-ix)’ + (l-p2 s2) z-5=

For z P 0, therefore,

(l-p2  s2) (%-a,)  = -p Iy-3xl ~
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SYMBOLS

BN

"N

see equation (9) and Appendix B

ocef'f'icients  defining the wing thickness distribution
(N- 0,1,2,3)

CP pressure ooefficient

f(x' ,Y' ) function appearing in equation (5)
g(x), h(x) see equation (7)
M free stream Mach number

r I P /FEqx
S wing  semi-spat'
s(x) oross-sectional area at station x
t/o thickness/ohord  ratio
u free stream velooity
XJYJZ right-handed coordinate system, origin 0 at wing apex, Cx along

wing centre Line, Oyto starboard
x' ,y' ,z' the same when used a$ running ooordinstea
xA,~,xc,x,,,~  see Appendix A

Y
Y, ?
4X,Y)
B
6
rl

eS

value of limit used in equations (8)
see equations (5A)
equation of the upper surface of the wing
&CT- .
semi trailing edge angle of wing (on centre line)
= (I - p2 &$y/2
shock wave angle

x ’
P
7
$

see equation (lb)
Mach an&, = sin-' (l/M)
area of integration (shcwn  shaded  in Fig.1)
perturbation velocity potential, in partioulsr on the upper
surface of the wing
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FIG I (a) FIG I (b )

FIG. I (c)

FIG I (e)

FIG.1 (d)

FIG I PLAN VIEW OF DELTA WING, SHOWING AREA OF
INTEGRATIONJ  ( S H A D E D ) ,  FO R  DIFFERENT RELATIVE

POSITIONS OF THE WING 8, THE HYPERBOLA,ABCD
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FIG 3 PRESSURE DISTRIBUTION ON THE CENTRE-LINE OF A DELTA WING.
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FIG.11 CURVES OF CONSTANT TRANSVERSE COMPONENT OF
VELOCITY IN THE PLANE X=0-9999;  S=f, M = 1.6;  j3s  = O-41633
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FIG.18 CURVES OF CONSTANT VERTICAL COMPONENT OF
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FIG.19 CURVES OF CONSTANT VERTICAL VELOCITY COMPONENT
IN THE PLANE X-O-9999, S=+, M--2.2, ps= 0.65320
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