

MINISTRY OF TECHNOLOGY AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

A Turbulent Skin-friction Law for Use at Subsonic and Transonic Speeds

By J. F. Nash and Miss A G J. Macdonald

> RETAL AIRCRAFT ESTABLISHMEP". BEDFORD

LONDON: HER MAJESTY'S STATIONERY OFFICE

1967

Price 3s 6d net

Ζ

C.P. No. 948*

July, 1966

Pages

A Turbulent Skin-Friction Law for use at Subsonic and Transonic Speeds - By -J. F. Nash and A. G. J. Macdonald

SUMMARY

A proposal is made for a **skin-friction** law suitable for use in **two-dimensional** flow at Mach numbers up to about unity. In **incompressible** flow the law reduces to a slightly **modified** form of that suggested. by Nash'. Compressibility effects are taken into account on the lines **indicated** by Spalding and Chi².

List of Contents

	List of Symbols	••	••		2
1.	Introduction	••	••	. •	3
2.	The Skin-Friction Law in Incompressible Flow	••	••	. •	3
3.	Compressibility Effects	••	••	. •	4
4.	Relation between G and H in Compressible Flow	••	••	. •	5
5.	Conclusions		••	. •	7
	Tables				8
	References		••		12

List/

*Replaces N.P.L. Aero Report 1206 - A.R.C.28 234

List of Symbols

- x, y co-ordinates measured along and normal to the surface, respectively
 - u mean velocity in x-direction
 - M Mach number
 - ρ density
 - v kinematic viscosity
 - T static temperature
 - δ boundary-layer thickness (equation (13))
 - δ^* displacement thickness:-

$$\delta^* = \int_0^\infty \left(1 - \frac{\rho_u}{\rho_e u_e^2} \right) dy$$

θ momentum**thickness:-**

$$\theta = \int_{0}^{\infty} \frac{\rho_{u}}{\rho_{e} u_{e}} \left(1 - \frac{u}{u_{e}}\right) dy$$

H shape factor:- H = δ^*/θ

G shape factor:-

$$G = \frac{1}{U_{\tau}} \cdot \frac{\int_{0}^{\infty} (u_{e} - u)^{2} dy}{\int_{0}^{\infty} (u_{e} - u) dy}$$

in incompressible **flow:-**

$$G = \frac{u_e}{u_\tau} \left(1 - \frac{1}{H} \right)$$

 au_{w} wall shear stress

 u_{τ} "friction velocity":- $u_{\tau}^2 = \tau_w / \rho_e$ u_{β} velocity appearing in equation (13) κ constant appearing in equation (13) \$

- A, B constants appearing in equation (1) (see also equation (3))
 - K function of G appearing in equation (1)

Subscript

e value at edge of boundary layer

Note

The symbol f() denotes any arbitrary function.

1. Introduction

The requirement for a reliable skin-friction law for use at subsonic and transonic speeds has arisen in connection with calculations of the turbulent boundary-layer growth on two-dimensional aerofoils.

The present suggestions are based on the first author's work in Ref. 1, and on the work of Spalding and Chi² which latter related only to the constant-pressure case. The usual assumptions are implicit?, namely, that

- (a) the law of the **wall** is valid
- (b) the mean velocity profiles form a two-parameter family.

The law would be expected to fail in strong negative pressure gradients and also close to separation. Nevertheless the aim has been (as in Ref. 1) to ensure an extrapolation to physically plausible values of skin-friction near separation. The effects of surface roughness and transpiration are not considered; nor are the effects of heat transfer.

2. The Skin-Friction Law in Incompressible Flow

For incompressible flow the proposed skin-friction law is of the form

$$\frac{\tau_{\rm w}}{\rho u_{\rm e}^2} = \left\{ \mathbb{A} \, \ln\left(\frac{u_{\rm e}^{\,\theta}}{\nu}\right) + \mathbb{B} + \mathbb{K}(\mathbf{G}) \right\}^{-2}, \qquad \dots (1)$$

where G is the shape factor based on the velocity defect profile and the other symbols have **their** usual **meanings** (see list at the **beginning** of this paper). Again for **incompressible** flow, G **can** be related to H **and** the wall shear stress by

$$G = \left(\frac{\rho u_e^a}{\tau_w}\right)^{\frac{1}{2}} \left(1 - \frac{1}{H}\right). \qquad \dots (2)$$

Equation (1) is a slightly modified form of the law derived in Ref. 1. It was decided to base the "flat plate" part of the expression (i.e., with K = 0) on $u_{\rho}\theta/\nu$ rather than $u_{\rho}\delta^*/\nu$ after making comparisons with the widely used

flat-plate/

- 4 -

flat-plate skin-friction law of Spalding and Chi². The values of $\{\tau_w/(\rho u_e^3)\}^{-\frac{1}{2}}$ predicted by their method vary almost linearly with $\ln(u_e\theta/\nu)$, and taking

$$\begin{array}{c} A = 2'4711 \\ B = 4^{\circ}75, \end{array}$$
 ...(3)

equation (1) (with K = 0) represents an empirical fit to their values which is accurate to better than ± 1 percent over a range of Reynolds number $(u_e\theta/\nu)$ from 140 to 10^7 (see Table 1).

Following the approach indicated in Ref. 1 the function K(G) in equation (1) is derived empirically. Equation (1), with the values of A and B quoted above, is used as a basis for correlating skin-friction measurements and a plot of K against G, corresponding to Fig. 2 of Ref. 1, is presented in Fig. 1 of the present paper. The collapse of the' points is within about \pm 10 percent of the value of $\tau_{\rm w}/(\rho u_{\rm e}^2)$. An empirical fit to the data in Fig. 1, which also satisfies the requirements:-

> (a) K = 0 when G = 6.5 (the flat-plate case), (b) (dK/dG) $\rightarrow 1.5$ for $G \rightarrow \infty$

is given by

K = 1.5G +
$$\frac{1724}{G^2 + 200}$$
 = 16.87. ...(4)

The specification of the value of $(dK/dG)_{G \to \infty}$ in (b), above, leads to a value of H = 3 at separation (see Ref. 1).

3. <u>Compressibility Effects</u>

The **extension**, to **compressible** flow, of the skin-friction law for the constant-pressure case, is **straightforward**. **Spalding and Chi²** have suggested that **if**

represents a flat-plate **skin-friction** law **in incompressible** flow, a valid relation for **compressible flow** is given by

$$\mathbf{F}_{\mathbf{c}} \cdot \frac{\tau_{\mathbf{w}}}{\rho_{ee}} = \mathbf{f} \left(\mathbf{F}_{\mathbf{R}} \cdot \frac{\mathbf{u} \, \theta}{\nu_{e}} \right), \qquad \dots (6)$$

where F_c and F_R are both functions of Mach number and wall temperature. For zero heat transfer the following empirical expressions represent the

dependence/

dependence of $\mathbf{F}_{\mathbf{c}}$ and FR on Mach number, and apply for values of $\mathbf{M}_{\mathbf{e}}$ up to about 2:-

Equations (I), (6) and (7) specify the skin-friction law for a constant-pressure boundary layer (K = 0). There are insufficient data to assess the effect of Mach number on the function K(G) and some provisional assumption must therefore be made to enable calculations to be performed.

Two plausible suggestions can be made. Equation (6) can be generalised to

$$F_{c} \cdot \frac{r_{w}}{\rho_{e} u_{e}^{2}} = f\left(F_{R} \cdot \frac{u_{e}^{\theta}}{\nu}, G\right), \qquad \dots (8)$$

G

which implies a law of the form*

$$\frac{\tau_{\rm w}}{\rho_{\rm e}u_{\rm e}^2} = \frac{1}{F_{\rm c}} \left[A \ln \left(F_{\rm R} \cdot \frac{u_{\rm e}^{\,\theta}}{\nu_{\rm e}} \right) + B + K(G) \right]^{-1}, \qquad \dots (9)$$

with a suitable definition for G in compressible flow. Alternatively, equation (9) can be modified to

$$\frac{\tau_{\rm w}}{\rho_{\rm e} u_{\rm e}^{\rm a}} = \left[F_{\rm c}^{\frac{1}{2}} \left\{ A \, \ln \left(F_{\rm R} \cdot \frac{u_{\rm e}^{\rm 0}}{\nu} \right) + B \right\} + K(G) \right]^{\rm c} . \qquad (10)$$

- 2

llhe uncertainty as to whether the function K should (equation (9)) or should not (equation (10)) be multiplied by $F_{c}^{\overline{2}}$ (or whether neither approach is adequate) can only be resolved by experiment. Nevertheless it will be shown later that equation (10) gives a plausible variation of $T_{w}/(\rho_{e}, u^{2})$ with H near separation. At a Mach number, M_{e} , of 1 equations (9) and (10) give virtually the same wall shear stress for values of G up to 20.

4. Relation between G and H in Compressible Flow

The shape factor G can be carried over **conveniently** into **compressible** flow if we retain its **definition in** terms of the velocity defect **profile:-**

$$G = \frac{1}{u_{\tau}} \frac{\int_{0}^{\infty} (u_{e} - u)^{2} dy}{\int_{0}^{\pi} (u_{e} - u) dy}, \qquad \dots (11)$$

This form of the skin-friction law was used for the calculations of Ref. 3.

Some **assumption** about the velocity profiles is required **in** order to relate G to H **since** the simple relation

$$G = \frac{u_e}{u_T} \left(1 - \frac{1}{H} \right)$$
 ... (12)

is valid only in incompressible flow. Some calculations have been done using Coles' family of profiles⁴ with the wake function approximated by a cosine:-

$$u = \frac{u_{\tau}}{\kappa} \ln \frac{Y}{\delta} + u_{e} - \frac{u_{\beta}}{2} \left(1 + \cos \pi \frac{Y}{\delta} \right) . \qquad (13)$$

The value of K was taken as 0.41 over the range of Mach numbers considered. The velocity \mathbf{u}_{ρ} can be related to \mathbf{u}_{τ} and G, by performing the integrations in equation (11) (numerically), and thus to G, \mathbf{M}_{e} and $\mathbf{u}_{e}\theta/\nu_{e}$ using the skin-friction law (equation (10) was used). The following relation was assumed to exist between ρ and \mathbf{u} in the boundary layer:-

$$\frac{\rho}{\rho_{\rm e}} = \left\{ 1 + 0.178 \,\,{\rm M}_{\rm e}^2 \left(1 - \frac{{\rm u}^2}{{\rm u}_{\rm e}^2} \right) \right\}^{-1} \,\, . \, ... (14)$$

Equation (14) implies a recovery factor of 0.89.

Ĥ

The results of these **calculations are illustrated** in Fig. 2. It is found. that the values of H are given to a good **approximation** by

$$H = (\bar{H} + 1)(1 + 0.178 M_{e}^{2}) = 1, \qquad \dots (15)$$

with

$$= \left(1 - C \frac{u_{\tau}}{u_{e}}\right)^{-1}, \qquad \dots (16)$$

except at $M_e = 1$ for the larger values of H where there is a **deviation** of up to 2 percent in H. Equations (12), (15) and (16) are, of course, consistent at $M_e = 0$.

In the present work we have assumed that equations (15) and (16) are valid up to separation over the range of Mach numbers of interest. on this basis, the skin-friction law is of the form shown in Fig. 3. The differences between equations (9) and (10) are only significant at these Mach numbers for values of G greater than 20. On balance we favour equation (10) because it implies a more plausible variation of H at separation with Mach number; it must be pointed out however that we can offer no experimental justification for this choice.

Tabulated/

Tabulated values of $\tau_w / (\frac{1}{2} \rho_e u_e^2)$ and H for Mach numbers of 0, 0°5 and 1°0, based on equation (IO), are presented in Table 2.

5. Conclusions

A skin-friction law suitable for use in two-dimensional turbulent boundary-layer calculations has been constructed on the basis of the work of Nash' and Spalding and Chi². The law should be valid. for Mach numbers up to and slightly exceeding unity, and applies to adiabatic smooth walls.

The skin-friction law is specified by:-

$$\frac{\tau_{\rm w}}{\rho_{\rm e}u_{\rm e}^2} = \left[F_{\rm c}^{\frac{1}{2}} \left\{ 2 \cdot 4711 \, \ln\left(\cdot F_{\rm R} \cdot \frac{u \, \theta}{\nu_{\rm e}}\right) + 4 \cdot 75 \right\} + 1 \cdot 5G + \frac{1724}{G^2 + 200} - 16 \cdot 87 \right]^{-2},$$

where F_c and F_R are functions of Mach number (see equations (7)). The shape factor G can be related to the ratio, H, of displacement to momentum thickness by:-

$$H = (\bar{H} + 1)(1 + 0.178 M_{e}^{2}) - 1,$$

$$\bar{H} = \left\{ 1 - G\left(\frac{\tau_{w}}{\rho_{e} u_{e}^{2}}\right)^{\frac{1}{2}} \right\}^{-1}.$$

where

Experimental **data are** urgently required to check the assumptions, regarding the effects of compressibility under **conditions** removed from the flat-plate case.

Table 1/

Table 1

Incompressible Flat-Plate Skin Friction

1

uθ	uL *	$r_{_{\rm W}}/(\frac{1}{2} ho$	Difference	
ν	ν.	Spalding and Chi	Eq. (1)	(percent)
140' 4	2•796 x 10 ⁴	0•0070	0•00695	-0•78
177•6	3•901 x 10 ⁴	0.0065	0•00649	-0•09
233•0	5' 679 × 10 ⁴	0•0060	0•00603	0' 42
319' 4	8•697 × 10⁴	0'0055	q• 00554	0*73
462' 3	1' 417 × 10 ⁵	0• 0050	0. 00504	0' 88
716.0	2•492 x 10 ⁵	0.0045	o- 00454	0•84
1208	4•828 x 10 ⁵	0' 0040	0' 00403	0• 68
2283	1•062 x 10 ⁶	0. 0035	0•00351	0.37
5030	2•778 x 10 ⁶	0• 0030	0. 00300	0.07
1•386 x 10 ⁴	9•340 x 10 ⁶	0• 0025	0.00249	-0• 24
5•425 × 10 ⁴	4•651 x 10 ⁷⁷	0' 0020	0• 001 99	<u>-</u> 0•40
3' 955 × 10 ⁵	4'610 × 10 ⁸	0•0015	0~00149	-0•47
1•086 x 107	5' 758 × 10 ¹⁰	0' 0010	0+000997	-0•30

*L is equivalent run $o\!$ turbulent boundary layer

2 able

Table 2

```
Calculated Values of Skin Friction and H; Me \pm 0
```

	$\frac{u_e^{\theta}}{v} = 500$		=	I d	=	10 ⁴	=	10 ⁵ 1
G	$\frac{\tau_{\rm w}}{\frac{1}{2}\rho u_{\rm e}^2}$ $\times 10^3$	н	$\frac{\tau_{\rm W}}{\frac{1}{2}\rho u_{\rm e}^2} \times 10^3$	Н	$\frac{\tau_{\rm w}}{\frac{1}{2}\rho u^2_{\rm e}} \times 10^3$	Н	$\frac{\tau_{\rm w}}{\frac{1}{2}\rho u^2}$	Н
5•0 5•5 6•0 6•5 7•0 7•5 8•0 9•5 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 50 60 70 80 80 80 80 80 80 80 80 80 8	5.908 5.555 5.237 4.949 4.685 4.494 4.221 4.015 3.644 7.3.647 2.903 2.662 2.447 2.253 2.080 1.922 1.779 1.650 1.534 1.090 0.617 0.485 0.391 0.228 0.170 0.131	1. 373 1. 408 1. 443 1. 443 1. 478 1. 512 1. 547 1. 581 1. 615 1. 649 1. 682 1. 715 1. 780 1. 842 1. 902 1. 960 2. 014 2. 065 2. 114 2. 065 2. 114 2. 065 2. 202 2. 241 2. 402 2. 595 2. 653 2. 697 2. 732 2. 781 2. 815 2. 839 2. 839	4. 943 4. 672 4. 426 4. 201 3. 995 3. 804 3. 627 3. 462 3. 308 3. 164 3. 028 2. 780 2. 558 2. 358 2. 358 2. 178 2. 015 1. 867 1. 732 1. 610 1. 499 1. 398 1. 008 0. 754 0. 581 0. 460 0. 373 0. 308 0. 220 0. 164 0. 128	1.362 1.393 1.424 1.455 1.486 1.517 1.547 1.577 1.607 1.637 1.695 1.752 1.806 1.859 1.909 1.956 2.001 2.044 2.122 2.279 2.394 2.594 2.594 2.594 2.594 2.594 2.594 2.594 2.594 2.594 2.594 2.594 2.594 2.595 2.738 2.7700 2.7700 2.7700 2.7700 2.7700 2.7700 2.7700 2.7700 2.7700	3.004 2.874 2.643 2.539 2.442 2.350 2.264 2.350 2.264 2.182 2.104 2.030 1.892 1.766 1.650 1.544 1.445 1.355 1.271 1.194 1.445 1.2271 1.194 1.22 1.056 0.793 0.611 0.269 0.196 0.148 0.001	1. 240 1. 263 1. 286 1. 309 1. 332 1. 355 1. 378 1. 400 1. 423 1. 445 1. 468 1. 511 1. 554 1. 596 1. 637 1. 676 1. 714 1. 750 1. 785 1. 818 1. 851 1. 991 2. 103 2. 192 2. 266 2. 327 2. 378 2. 460 2. 523 2. 572 3. 619 3. 619 3. 619 3. 619 5. 619	2.016 1-945 1.878 1.878 1.815 1.755 1.699 1.646 1.595 1.546 1.500 1.455 1.546 1.500 1.455 1.500 1.292 1.219 1.151 1.087 1.028 0.972 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.920 0.872 0.920 0.872 0.920 0.872 0.920 0.826 0.135 0.	1. 189 1. 207 1. 225 1. 243 1. 262 1. 280 1. 298 1. 316 1. 334 1. 352 1. 369 1. 404 1. 439 1. 404 1. 439 1. 404 1. 538 1. 569 1. 599 1. 657 1. 685 1. 685 1. 809 1. 712 1. 9999 2. 073 2. 136 2. 136 2. 136 3. 10 1. 298 1. 208 1. 209 1. 404 1. 506 1. 509 1. 665 1. 685 1. 999 2. 073 2. 136 2. 136
100	0.085	2.873	0. 102	2. 824	o- 077	2.659	0. 072	2• 504

contd./

Table 2 (contd.)

Calculated. Values of Skin Friction and H; $M_e = 0.5$

	$\frac{\frac{u}{e}\theta}{\nu_{e}} = 500$		$\frac{u_e^{\theta}}{v_e} = 500 = 10^3 = 10^4$		10 4	= 10 ⁵		
G	$\frac{\tau_{\rm w}}{\frac{1}{2}\rho_{\rm e}u^2_{\rm e}}$ × 10 ³	Н	$\frac{r_{W}}{\frac{1}{2}\rho_{e}u_{e}^{a}}$ $\times 10^{3}$	Н	$\frac{\tau_{\rm w}}{\frac{1}{2}\rho {\rm u}^2}$ $\times 10^3$	H	T -2x- & P & x Id	Н
5.0 5.0 6.0 7.0 7.5 8.0 9.5 10 11 12 13 14 15 16 17 18 9 20 30 5 40 50 45 50 5 5 5 5 5 5 5 5 5 5 5 5 5	5.760 5.760 5.426 5.113 4.581 4.581 4.581 3.932 3.740 3.740 3.740 3.740 3.740 3.740 3.740 3.740 2.218 2.048 1.629 1.629 1.629 1.629 1.629 0.612 0.482 0.320	1-472 1·508 1-544 1.580 1·615 1-651 1.686 1.721 1·755 1·790 1·824 1·890 1·954 2.016 2·075 2.132 2.185 2·235 2·281 2.326 2·367 2·535 2·653 2·737 2·799 2.846 2.883	4. 818 4. 558 4. 320 4. 103 3. 904 3. 719 3. 548 3. 240 3. 100 2. 968 2. 727 2. 511 2. 316 2. 141 1. 982 1. 837 1. 706 1. 587 1. 478 1. 379 0. 996 0. 746 0. 370 0. 306	1. 429 1. 461 1. 493 1. 525 1. 557 1. 588 1. 620 1. 651 1. 682 1. 713 1. 714 1. 803 1. 862 1. 713 1. 744 1. 803 1. 862 1. 918 1. 972 2. 023 2. 073 2. 119 2. 163 2. 205 2. 244 2. 408 2. 528 2. 617 2. 686 2. 739 2. 782	2. 924 2. 800 2. 685 2. 577 2. 477 2. 384 2. 295 2. 222 2. 133 2. 057 1. 986 1. 852 1. 730 1. 618 1. 514 1. 331 1. 249 1. 174 1. 104 1. 040 0. 782 0. 601 0. 478 0. 386 0. 318 0. 267	1•336 1•360 1•383 1-407 1•430 1•454 1•454 1•454 1•524 1•524 1•524 1•524 1•524 1•524 1•524 1•547 1-570 1.615 1-659 1.702 1•743 1•784 1.823 1•861 1•897 1•931 1•964 2.226 2.320 2·397 2.461 2·515	1 • 971 1 • 893 1 • 828 1 • 768 1 • 768 1 • 768 1 • 768 1 • 657 1 • 657 1 • 556 1 • 509 1 • 464 1 • 421 1 • 340 1 • 264 1 • 193 1 • 102 1 • 066 1 • 008 0 • 954 0 • 903 0 • 856 0 • 812 0 • 630 0 • 499 0 • 403 0 • 331 0 · 277 0 · 234	I. 283 1· 302 1· 320 1· 329 1· 358 1· 377 1· 395 1· 414 1· 432 1· 450 I. 469 1· 505 1· 540 I. 575 1· 610 I. 642 I- 674 1· 707 1· 736 I- 765 1· 794 I. 922 2. 029 2. 119 2. 263 2. 321
60 70 80 90 100	0. 227 0. 169 0. 131 0. 104 0- 085	2• 936 2• 973 3. 000 3. 020 3• 036	0.219 0.164 0.127 0.101 0.083	2.846 2.892 2.927 2.954 2.975	0•194 0.148 0.216 0.094 0•077	2.601 2.667 2.719 2.762 2.797	o-174 0.134 0.107 0.087 0.072	2.416 2.492 2.554 2.606 2.649

contd./

Table 2 (con	tđ.)
--------------	------

Calculated Values of Skin Friction and H; $M_e = 1.0$

	$\frac{u_e^{\theta}}{v_{-}} = 500$		= I d		= 10 ⁴		= 16	
Ģ	$\frac{\tau_{\rm w}}{\frac{1}{2}\rho_{\rm e}u^{\rm a}}$ $\times 10^{\rm 3}$	Н	$\frac{\tau_{\rm w}}{\frac{1}{2}\rho_{\rm e}u^{\rm a}_{\rm e}} \times 10^{\rm 3}$	Н	$\frac{\tau_{\rm w}}{\frac{1}{2}\rho_{\rm e}u_{\rm e}^{\rm a}}$ $\times 10^{\rm a}$	Η	$\frac{\tau_{\rm w}}{\frac{1}{2}p_{\rm e}u_{\rm e}^2}$ $\times 10^3$	Н
5.0 5.5 6.0 6.5 7.0 8.5 9.5 10 11 12 13 14 15 16 17 18 90 25 30 50 40 50 60 70 80	5.386 5.079 4.800 4.546 4.314 4.100 3'903 3.719 3.548 3.238 3.238 3.238 3.238 3.238 2.964 2.720 2.501 2.304 2.127 1.967, 1.822 1.690 1.571 1.462 1.690 1.571 1.462 1.690 1.571 1.462 1.690 1.578 0.472 0.598 0.472 0.598 0.472 0.598 0.472 0.598 0.472 0.598 0.472 0.598 0.472 0.598	1.769 1.808 1.846 1.845 1.923 1.923 1.962 2.000 2.038 2.075 2.112 2.149 2.221 2.358 2.423 2.424 2.597 2.649 2.597 2.649 2.698 2.743 2.931 3.065 3.163 3.236 3.401 3.447 3.480	4. 507 4. 267 4. 049 3. 852 3. 670 3. 502 3' 416 3. 200 3. 063 2. 934 2. 813 2. 590 2. 209 2. 045 1. 762 1. 638 1. 525 1. 422 I. 308 0. 966 0. 726 0. 563 0. 215 0. 161 0. 126	1 • 722 1 • 757 1 • 792 1 • 826 1 • 895 1 • 929 1 • 963 1 • 996 2 • 063 2 · 063 2 · 128 2 · 191 2 · 252 2 · 311 2 · 367 2 · 421 2 · 472 2 · 520 2 · 566 2 · 607 2 · 936 3 · 030 3 · 109 3 · 109 3 · 172 3 · 222 3 · 299 3 · 355 3 · 397	2.728 2.611 2.507 2.410 2.320 2.235 2.154 2.078 2.006 1.937 1.872 I.750 1.637 1.534 1.438 1.350 1.268 1.192 1.122 1.056 0.996 0.753 0.584 0.376 0.311 0.260 0.191 0.145 0.114	1.622 1.648 1.674 1.699 1.724 1.750 1.775 1.801 1.826 1.851 1.875 1.924 1.972 2.019 2.064 2.108 2.151 2.231 2.269 2.305 2.466 2.596 2.701 2.788 2.861 2.923 3.023 3.100 3.161	1 • 823 1 • 761 1 • 704 1 • 649 1 • 598 1 • 598 1 • 502 1 • 458 1 • 458 1 • 415 1 • 335 1 • 261 1 • 192 1 • 127 I • 066 1 • 009 0 • 956 0 • 906 0 • 815 0 • 815 0 • 774 0 • 604 0 • 389 0 • 321 0 • 228 0 • 170 0 • 132 0 • 105	1.565 1.586 1.626 1.646 1.667 1.687 1.707 1.727 1.747 1.766 1.805 1.844 1.882 1.919 1.955 1.990 2.024 2.057 2.089 2.120 2.261 2.380 2.480 2.567 2.642 2.707 2.816 2.903 2.903 2.903
90 100	0•103 0•084	3• 506 3• 644	0.100 0•082	3.430 3.456	0. 092 0. 076	3. 212 3. 253	0. 085 0. 065	3• 034 <u>3</u> • 085

<u>References/</u>

- 11 -

- 12 🛛

References

<u>No</u> .	Author(s)	<u>Title, etc.</u>
1	J. F. Nash	A note on skin-friction laws for the incompressible turbulent boundary layer. A.R.c. C.P. No, 862 December, 1964.
2	D. B. Spalding and S. W. Chi	The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer. J. Fluid Mech., Vol.18, Part 1, p.117, 1964.
3	J. F. Nash, J. Osborne and A. G. J. Macdonald	A note on the prediction of aerofoil profile drag at subsonic speeds. A.R.C.28 075. June, 1966.
4	D. Coles	The law of the wake in the turbulent boundary layer. J. Fluid Mech., Vol. 1, Part 2, p.191, July, 1956.
5	H. Ludwieg and W. Tillmann	Untersuchungen über die Wandschubspannung in turbulenten Reibungsschichten. IngArch. Heft 17, S.288, 1949. (Translated as NACA TM 1285)
6	P. Bradshaw	Experiments on the magnification of drag increments by adverse pressure gradients. A.R.C.27 446. November, 1965.
7	P. Bradshaw	The turbulence structure of equilibrium boundary layers. NPL Aero Report 1184. A.R.C.27 675. January, 1966.
8	P. Bradshaw and D. H. Ferriss	The response of a retarded equilibrium turbulent boundary layer to the sudden removal of pressure gradient. MPL Aero Report 1145. A.R.C.26 758. March, 1965.

_

ES.

FIG. I

<u>FIG.2</u>

FIG. 3

A.R.C. C.P. No. **948** July, **1966.** Nash, J. F. and **Macdonald,** A. G. J.

A TURBULENT SKIN-FRICTION LAW FOR USE AT SUBSONIC AND TRANSONIC SPEEDS

A proposal is made for a **skin-friction** law suitable for use **in two-dimensional** flow at Mach numbers up to about unity. In **incompressible** flow the law reduces to a slightly **modified form** of that suggested by Nash. **Compressibility** effects **are** taken into account on the **lines indicated** by **Spalding** and **Chi.** A.R.C. C.P. No. 948 July, 1966. Nash, J. F. and Macdonald, A. G. J.

A TURBULENT SKIN-FRICTION LAW FOR USE AT SUBSONIC AND TRANSONIC SPEEDS

A proposal 15 made for a skin-friction law suitable for use in two-dimensional flow at Mach numbers up to about unity. In incompressible flow the law reduces to a slightly modified form of that suggested by Nash. Compressibility effects are taken into account on the lines indicated by Spalding and Chr.

A.R.C. C.P. No. 948 July, 1966. Nash, J. F. and Macdonald, A. G. J.

A TURBULENT SKIN-FRICTION LAW FOR USE AT SUBSONIC AND TRANSONIC SPEEDS

A proposal is made for a skin-friction law suitable for use in two-dimensional flow at Mach numbers up to about unity. In incompressible flow the law reduces to a slightly modified form of that suggested by Nash. Compressibility effects are taken into account on the lines indicated by Spalding and Chi.

Crown copyright 1967
 Printed and published by
 HER MAJESTY'S STATIONERY OFFICE

 To be purchased from
 49 High Holborn, London W C 1
 423 Oxford Street, London W.1
 13A Castle Street, Edinburgh 2
 109 St. Mary Street, Cardiff
 Brazennose Street, Manchester 2
 50 Fairfax Street, Bristol 1

 35 Smallbrook, Ringway, Birmingham 5
 7 - 11 Linenhall Street, Belfast 2
 or through any bookseller

Printed in England

C.P. No. 948 s 0 Code No 23-9017-48