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Summary 

A study of published work on slander wings has shown that 
the non-linear lift is often increased by leading edge droop. 
In this note the results are given of an investigation, made on 
simple, conically cambered wings, to study this effect in more 
detail. It is found that the main parameter which determines 
the increase in non-linear lift is the angle of droop at the 
leading edge. The magnitude of the increase, and the 
corresponding movements of the vortex positions, are predicted 
qualitatively by a simple extension to the Brown & Michael 
theory carried out for conically cambered wings with circular 
arc cross-sections. A study of the theoretical results shows 
that the principal cause of the increase in lift is the distortion 
of the velocity field of the vorticity which is produced by the 
curvature of the wing in the cross-flow plane. 

____________________---------------------- 

*Replsoes A.R.C.27 63 
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1. Introduction 

The ma~n features of the flow over slender wings at lncldence 
are now well understood. Uas~celly the flow separates from the 
leading edges to form a pair of free vortex sheets which roll up 
into a pair of contra-rotatzng vortzces above the wing surface. 
Associated with these vortices there is a suction peak Inboard of 
each leading edge on the wing's upper surface. The suction peaks 
give an increase 3.n lift-curve slope wath Increase UL xncidence 
and so cause the characteristic non-linear lift curves of slender 
wings. This paper is concerned with the effects of leading edge 
droop on the non-linear lift development. 

These effects first became apparent in wind-tunnel tests on 
early models of a supersonic transport aircraft; the models were 
slender wings of different planforms and incorporated various 
types of leadIng edge droop to meet certain design requirements 
in the supersonic cruising condition, (see, for example, Ref. 1). 
The main effects are illustrated in Figs. 1 and 2 by data from 
Refs. 2, 3 and 4. Fig. 1 refers to cambered gothic wings of 
aspect ratio 0.75, full details of which can be found WI Refs. 
2 and 3. The inner parts of these wings were plane and the outer 
parts, near the leading edges, were drooped to give attached flow 
at a given design lift coefficient. The amount of droop was 
greater the higher the design lift coefficient. The droop was 
greatest at about halfway along the leading edge and fell to zero 
at the trailing edge. 

The left-hand graph of Fig. 1 shows the development of lift 
with the incidence of the central plane portIon of the wings. 
All the wings show the characteristic non-linear lift curves of 
slender wings, but the point of minimum lift-curve slope occurs at 
positive incidence on the cambered wings. However, the results 
for the wing with a design lift coefficient of 0.05 show that 
although the minimum lift-curve slope occu;‘s at about 
4” (C, = 0.071, when the actual lift is lower than that of the 

plane wing, yet by a = la0 the lift of this cambered wing has 
caught up that of the plane wing. This effect is analysed In 
more detail in the two right-hand figures. The upper graph shows 
the ratio of the increment of lift for neighbouring measured 
points to the corresponding increment in incidence, plotted against 
incidence. The curves for all three wings have a flat ‘V’ shape 
with a clearly defined apex. This apex corresponds to the 
incidence for minimum lift-curve slope and the incidence for 
attached flow at the leading edge. (The fact that the minimum 
lift-curve slope occurs at the condition of flow attachment has 
been confirmed by numerous oil flow tests6 see for example Ref. 
4). The three curves are replotted in the lower figure against 
incidence away from the attachment incidence. This figure shows 
that the cambered wings have a larger minimum lift-curve slope 
than the plane wing, and that away from the attachment point the 
increase in lift-curve slope is greater than on the plane wing, 
i.e. at a given incidence above the attachment point the camber 
results in a greater non-linear lift. 



These effects are further illustrated zn Fig. 2 where lift- 
curve slopes are plotted against (a - ;) for the plane wing and 
three cambered wings for whzch results are g&yen zn k&f. 4. The 
camber of these wings 1s more complicatsd than that of the wings 
z.n Fig. 1, but all have drooped leading edges. AgaIn the 
cambered wings have more non-linear lift than the plane wing. 
This is true throughout the tested Plach number range 

(0.44 M g 2.0) and is in fact most marked at the highest speeds 
where the lift of the plane vlng is tendIng to become linear. 

In this paper these effects are studled in more detail by 
means of theoretical and low-speed experimental investigations 
of the non-linear lift development on a series of simple models 
with conical camber. 

2. Details of the Experimental Programme 

Details of the seven wings tested in the main experimental 
investigation are shown in Figs. 3(a) and 3(b). All the wings 
were straight deltas of aspect ratio 1.0. with an overall 
length of 40 inches. The centre portions of the vings were 
approximately 0.5 Inch thick and the leading edges vere tapered 
on the upper surface to give a sharp edge with an included angle 
of approximately 14" normal to the edge. For the basic models 
the trailing edge was cut off square, but some tests were made on 
the flat wing with a sharp trailing edge. The sharp edge was 
obtained by a bevel on the upper surface, giving a Walling edge 
angle of 12O. 

The cambered models are defined in terms of the shape of 
their lower surfaces with approximately the same thickness 
distribution as for the flat wing added above this surface. 
The equations of the camber surfaces are given by 

% 

G) 

n 
- P -A 9 
Ex x 

where p and n are constants for a given wing, and where x is 
measured along the wing chord, y spanwise and z vertically 
upwards from the apex. C is the tangent of the semi-angle of 
the apex of the planform, i.e. it is the ratio of the semi-span 
to the root-chord. The droop of the leading edge relative to 
the centre line is thus 2 and the leading edge droop angle is 

tan'l(ng). Values of n and p for the various wings are given 
in Table I. 
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Table I 

irrulg n 

2 2 

3 5 

4 1 

5 3 

6 5 
7 7 

B 0 (leading edge droop angle 

= tan -?I@) 

0.15 16.7" 
0.15 36.8" 

0.30 16.7" 
0.30 42.0* 

0.30 56.3' 
0.30 64.5" 

From this Table it can be seen that: 

(i) wings 2 and 4 have the same droop angles but different 
total droop at the leading edge, 

(ii) wing 3 has the same camber equation, but half as much 
overall droop as wing 6; also it has slightly less leading edge 
droop angle than wing 4, but only half as much total droop at the 
leading edge, 

(iii) wings 4 to 7 have the same total droop at the leading edge, 
but give a wide range of leading edge droop angles. 

All the models were tested in the 53 ft x 4 ft low-speed 
wind tunnel in the Engineering Laboratory at Cambridge University., 
Overall force tests and surface oil flow tests were made at a 

speed of 100 ft/sec or a Heynolds number of 1.6 x lo6 based on 
mean chord. Lift, drag and pitching moment was measured for an 
incidence range up to about 20°, with the models wire-mounted on 
a mechanical balance. The results have been corrected for 
tunnel interference by the methods given in Ref. 5 and the 
estimated accuracy is as follows: 

a T 0.10 

=L + 0.003 

c m + 0.002 

cD + 0.0005. 

Pitching moments are quoted about the quarter-chord point 
of the aerodynamic mean chord. 

Surface oil flow patterns were obtained by usxng a paint 
composed of titanium dioxide in a mixture of paraffin (Kerosene) 
and linseed oil. 

The vertical positions of the vortices were measured by 
injecting a streamer of smoke Into the tunnel upstream of the model 
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and adjusting the position of the smoke source untxl the vortex 
core was vzsxble. The vertical position was then measured by 
sighting across reference marks on the sides of the tunnel. 
Accurate measurement was not possible when the vortex lay below 
the wing centre lxne (see Fig. 9). These smoke tests were made 
at about 20 ft sec. 

All the basic tests were made with natural transition on the 
wing. 

3. Experimental Results 

3.1 Flat wing results 

Lift results for the flat wing with a bluff trailing edge 
and a bevelled trailing edge are presented in Figs. 4 and 5. 
Except for a displacement in a for cL= 0 the lift curves for 

the two trailing edge shapes are similar in shape. However, the 

curves of bC,/da (Fig. 5) show that the minimum lift-curve 

slope occurs at a slightly higher incidence with the bluff 
trailing edge (1.3" compared with 0.7O). The differences are, 
however, small and are probably associated with the fact that the 
bevelled trailing edge effectively produces a small camber. In 

the lower two figures of Fig. 5 AC,/ Aa is replotted against 

(a - Cr); in both figures the dashed symbols are for the flat 
suction surface. For the wing with a bluff trailing edge it will 

be seen that the lift-curve slope away from F is slightly higher 
when the bevel is on the suction surface, than when the suction 
surface is completely flat. This effect, no doubt, arises from 
the fact that the bevel is equivalent to a small leading edge 
camber. The mean of the results for the two surfaces is shown 
dotted and this dotted curve is taken as the lift-curve slope for 
an infinitely thin wing. This same dotted curve is shown also 
on the lower graph of Fig. 5 and on the results for all the 
cambered wings. The results for the sharp trailing edge again 
show that the bevel on the upper surface produces slightly more 
lift than the flat surface, but that the sharp trailing edge 
appears to reduce the lift-curve slope slightly relative to that 
of the bluff trailing edge. 

3.2 Cambered wing results 

The variations of =L with a and of 4 CL/d a with 

(a - 2 for all the cambered wings are presented in Figs. 6 and 7 
while summaries of the surface oil-flow patterns and vortex 
positions are given in Figs. 8 and 9. The attachment and 
secondary separation lines plotted in Fig. 8 were measured at 
about 80% chord. The attachment line is the line where the main 
flow over the vortex attaches to the wing. The secondary 
separation is the separation which occurs out-board of the vortex 
as the cross-flow from the attachment line passes through the 
suction peak and flows into an adverse gradient near the leading 
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edge. It will be seen from Fig. 7 that the curve5 of 

fiC,/na against (a - i) for wings 5, 6 and 7 do not have a 

clearly defined apex so that a value of z could not be 
determined directly from Fig. 7. However, when these curve5 were 
studied in conjunctlon with the surface oil flows it was found 
that there was an Incidence range In which the flow appeared to be 
attached on both surfaces. The centre of this incidence range 

has been taken a5 g. On the other hand for wings** 2 and 3 
there was only a very small incidence range (about 3") in which 
the oil flow showed that the flow wa5 attached to the wing on both 
surfaces; this incidence range corresponds closely to the apex of 

the curves of OC,/Aa against a. The vertical lines on 

Fig. 6 correspond to a and the dotted lines show the correspond- 
ing lift which would be developed by the flat wing at the same 
incidence about attachment. 

For wings 2 and 3 with $ = 0.15 it can be seen that away 
from the attachment point both wings develop more lift than the 
flat wing, yet at the attachment point the lift-curve slope is 
identical with that of the flat wing. Furthermore the size of 
increase depends on-the leading edge droop angle, being greater 
for wing 3 with a droop angle of 36.8 a than for wing 2 where the 

droop angle is 16.7". Below ii the lift-curve slope is less 
than that of the flat wing. The oil flow pictures showed that on 
the cambered wings there was a small incidence range about the 
attachment point where the flow near the edge formed a number of 
streamwise vortices, which coalesced into a single vortex as the 
incidence wa5 increased. Once formed thi5 vortex at first moved 
inboard less rapidly than the vortex on the flat wing but by 

(a - a) = 16" the vortices on both cambered wings were at 
approximately the same spanwise position as those on the flat 
wing. (Figs. 8 and 9). However, relative to the plane of the 
leading edge the vortices were higher on the cambered wings, the 
height above the edge increasing with leading edge droop. As 
noted in the last section it was impossible to get accurate 
measurements of vortex height when the vortex lay below the 
centre line. However, the result.5 at higher incidence do 
suggest that the vortex initially rises much more rapidly on the 
cambered wings. 

For wing 4, the wing with straight anhedral and f3 = 0.31 
the surface oil-flow patterns were not clear. The smoke tests 
showed that the vortex wa5 below the centre line until about 

a-o= 1.60, i.e. at a - ;; = 160 it was at approximately the 
same height above the leading edge as the vortex above wing 2, 
which has the same droop angle. For this wing the 

D CL/Da curves have a clear apex and it can be seen that the 

lift-curve slope at a-a - is higher than that of the flat wing, 

also that the increase in aC,/na with (a - z) as greater. 

I. 
No clear oil flow results could be obtained for wing 4. 
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When we come to wing 5 there is a change of character in the 

curves of aC,/fla against (a - z), (Fig. 7). Instead of 

giving a clear apex the curve is relatively flat near o=a - and 

then starts to increase rapidly at higher values of (a - z); 
once this increase has started the lift-curve slope becomes much 
greater than that of the flat wing. This behaviour is associated 
with the fact that on this wing the flow appeared to be attached 
at the leading edge for a fair incidence range before first 
forming streamwise vortices and then a single vortex. Once this 
vortex had formed it moved inboard rapidly, (Fig. 8). Fig. 9 
shows that the vortex positions at given (a - 0) are slightly 
further from the wing than on wing 3, and are certainly much 
higher than on wing 4 where the vortex is just level with the 

centre line at (a - 2) = 160. This effect is also shown in the 
comparisons with the theoretical predictions presented in Fig. 16. 

The change in character noted for wing 5 becomes more 
pronounced on wings 6 and 7 and in fact wing 7 shows a distinct 

jump in lift at (a - G) i: lOa. The surface oil patterns for 
this wing showed that the flow development near the leading edge 
was similar to that OM wing 5, but that in addition a second 
vortex formed just inboard of the shoulder (see sketch in Fig. 9). 

The two vortices increased in size until at (a - i) = 10 they 
suddenly combined to form a single vortex and so gave a jump in 
lift. The surface flow patterns were less clear on wing 6. 
Certainly there was no vortex inboard of the shoulder, on the 
other hand the oil motion in this region was sluggish, suggesting 
a thick boundary layer. The main attachment line moved in 

rapidly between (a - z) = 8* and 12O. An attempt was made to 
suppress the inboard vortex on wing 7 with transition wires 
outboard of the shoulder, but without success. However, it is 
felt that these results may be sensitive to variations in 
Reynolds number and so less attention should be paid to these two 
wings. 

In order to put the lift results into perspective the curves 

of DC,/b a against (a - a) for wings 1 to 5 are replotted on 

the same origin in Fig. 10. The upper figure shows the results 
as taken directly from Fig. 7, while in the lower figure CL is 

based on developed area rather than projected area. From the top 

figure it can be seen that above (a - z) = 4" the lift-curve 

slopes of wings 2 and 4 are almost the same and that above 

(a - Z) I 100, the slopes of wings 3 and 5 are the same. 

However, at incidences near z there are differences caused by 

the initial type of development on wing 5, and the different 

minimum slopes at a = Z. When compared on a developed area basis 
this last effect is almost eliminated, and at higher incidences 
the lift-curve slopes of wings 4 and 5 are slightly lower than the 
slopes of wings 2 and 3respectively. From these &omparisons it 
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would appear that at incidences where the vortex flow is 
establzshed the main factor determining the non-lintbar lift is 
the leading edge droop angle, rather than the total droop. 
This conclusion is also in line with the observations for vortex 
position, which again show that the position is mainly determined 
by leading edge droop angle. 

The variations of Cm with CL and of CD with CL2 for all 
the wzngs are presented In Figs. 11 and 12. Again a vertical 
line has been drawn on the curves of Cm against =L to indicate 
the attached point, whzle the dotted line shows the corresponding 
pitching moment curvs of the flat wing about the attachment point. 
In general the effects of camber on pitching moment are small 
showing that distribution of vortex lift along the wing is not 
greatly affected by droop. Again it should be noted that the 
sudden changes in pitching moment for wings 6 and 7 may be 
affected by Reynolds number. 

The drag results are best understood by noting that on wings 
1 and 4 (the flat wing and the wing with anhedral) the main effect 
of the non-linear lift is to reduce the incidence for a given lift 

a% and so to reduce - 
acL2 

as lift, or Incidence, is increased. On 

the other hand for the curved cambered wings there is an additional 
effect since the vortex produces low pressure on forward facing 
surfaces and so further reduces drag. This latter effect is 
considerably modified by the addition of thickness. 

4. Theoretical Investigation 

4.1 Mathematical Model 

In the past a number of mathematical models have been 
proposed to deal with the presence of the leading edge vortex. 
Of these models the simplest one which gives the vortex strength 
and position In additzon to the non-linear lift is that due to 

Brown and Michae16. From comparisons with experiment it has 
been found that this mathematical model gives reasonable agreement 
with the measured non-linear lift and measured vertical position 
of the vortex. However, the vortex core is always much nearer 
the wing centre line than the theory predicts. In this mathemati- 
cal model Brown and Michael replaced the rolled up vortex sheet by 
a concentrated vortex core joined to the leading edge by a 
feeding sheet of vorticity (Fig. 13). Instead of making the core 
and the feeding sheet lie along streamlines as in the real fluid 
they postulated that the total force on the vortex system must be 
zero. By using this condition, and the condition that the flow 
leaves the leadlng edge smoothly they were able to obtain a 
solution within the framework of slender-body theory. 

In conjunction with the present experimental programme the 
Brown and Michael model has been extended to cambered wings with 
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circular-arc cross-sections. This extension follows closely the 
work of Brown and Michael and uses the slender-body solution 

obtained by Smith7 for the cambered wing without vortices. 
Details of the calculations are given In the Appendix and the 
results are plotted in Figs. 14 and 15. From these figures it 
can be seen that as the wing camber is increased the vortex core 
moves upwards and outwards relative to the vortex position on the 
flat wing. Also there is a slight increase in vortex strength at 
given incidence above the attachment incidence. (In the theory 
the attachment angle corresponds to the case of zero leading edge 
singularity in the absence of vortices). Fig. 15 shows that the 
non-linear lift also increases with camber. The relevance of 
these results to the present investigation is discussed in the 
next section. 

It should be noted that there are two other mathematical 
models which give better agreement with experiments for flat 

wings than the Brown and Michael model. Pershing' suggests that 
the reason why the Brown and Michael model fails to predict the 
lateral position of the vortex is that they ignore the secondary 
separation which occurs on the wing surface outboard of the main 
vortex. Thus he suggests that the condition that the flow leaves 
the edge smoothly is unrealistic, and instead he fixes the vortex 

core height as 44 (or (a - K-&)/4 for cambered wings). Using 

this condition and Legendre's' condition that the vortex core lies 
on a streamline he obtains a solution which is in very good 
agreement with experiment, including the prediction of vortex 
position. (Pershing was unable to get a solution if he used the 
condition of zero force on the vortex system). This model was 
not used in the present investigation since an essential feature 
of the experimental results is that the vortex core height changeb 

with camber. Mangler and Smith" have introduced a much more 
realistic model of the vortex sheet structure, and the necessary 
numerical analysis has been further developed and improved by 
Smith to give ..lose agreement with measured results. In theory 
this model could be extended to cambered wings. However, 
because of the large amount of numerical work this has not been 
attempted. 

4.2 Comparison with experiment 

In Figs. 16 and 17 the theoretical results are compared with 
the experimental results! the results are compared at equal 
leading edge droop angles since this appears to be the main 
parameter to determine the experimental behaviour. In Fig. 16 the 
height of the vortex core above the leading edge for the various 
cambered wings is compared with the calculated height for circular 
arc sections with the same droop angle. The theoretical results 
are shown by lines8 the line for @.= 40° is dotted as it was 
extrapolated from the results for 0 P 17" and 16 P 35.5O 
(B = 0.15 and 0.30), and is probably near the limit of the theory. 
At small droop angles the theoretical and experimental heights are 
in close agreement, but at higher droop angles the increase in 
height is underestimated by the theory. As pointed out in 
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sectaon 4.1) the Brown and Michael model also shows the vortex 
core nearer the leading edge than it occurs in experlments, so 
no direct comparisons of the lateral posltions of the vortex 
cores are presented. However, the calculated vortex paths of 

Fig. 14(a) show that at constant (a - a) the effect of camber 
is to move the vortex core up, and out, relative to the leading 
edge; e szrnllar movement is just discernible in the experimental 
results of Fig. 9* So the experimental and theoretical results 
for vortex position are in qualitative agreement when compared at 
equal leadlng edge droop angles. 

There is a difficulty in comparing the lift measurements with 
the theory in that the theory is based on slender-body theory and 
so gives no loss of lift near the trailing edge. This effect is 
illustrated in Fig. 17(a) where the flat wing results are compared 
with theory. It will be seen that the measured lift is much 
lower than the theory predicts. At zero incidence the initial 
lift-curve slope of the flat wing is approximately 2056 lower than 

24 theoretical slope of 2 1 at higher incidence the measured lift 

is much more than 20% lower than the theory. This discrepancy is 
caused, in part, by the simplifications introduced into the 
mathematical model. However, the moment curves of Fig. 11 have a 
tendency to 'pitch up' at higher incidence showing that the lift 
moves forward, i.e. the trailing edge effect becomes greater away 
from zero incidence. In view of these discrepancies a direct 
comparison of the measured lift of the cambered wings with the 
theoretical curves of Fig. 15 would be misleading. Instead in 
Fig. 17(b) the measured lift on wings 2, jr 4 and 5 is compared 
with 'theoretical curves' for the appropriate 0 given by 

cL - (CL)theory ' ((;e~;:,~~d)flat wing * 

i.e. it is assumed that trailing edge effects, and errors in the 
mathematical model, are independent of camber. For wings 2 and 4 
(0 = 16.70) the 'theoretical' curve so obtained is in excellent 
agreement with the measured results, but for wing 3, the lift is 
lower than the theory. It is even lower on wing 5, but this is 

caused by the change in behaviour of the vortex development near 

Although the mathematical model shows quantitative diacrepan- 
ciea from experimental results, the qualitative effects of camber 
are shown. Thua it appears reasonable to assume that the 
mathematical model incorporates the significant features of the 
cambered shape, and so it may be used to discuss the mechanism 
which gives more non-linear lift. 
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5. Discussion of the Mechanism of Increased Non-linear Lift 

In the discussion of the experimental results it has been 
shown that the main parameter which determines the effects of 
leading edge droop on the vortex development is the leading edge 
droop angle (0). These tests do not give any indication of 
the mechanism which produces the increase in non-linear lift with 
leading edge droop, and it was mainly to explain this increase 
that the theoretical investigation of section 4 was undertaken. 

The comparison of the theoretical results with the experi- 
mental results has shown that the simple mathematical model of 
Brown and Michael is capable of predicting the main effects of 
camber. From the theoretical results it can be ssen that the 
main effects of camber are to increase the height of the vortex 
core above the leading edge and to increase the vortex strength. 
The percentage increase in height is somewhat greater than the 
increase in strength. However, when the change in wing shape is 
taken into account it is found that the percentage increase in 
normal distance from the wing surface is about the same as the 
percentage increase in vortex strength. Thus on a simple 
argument one might expect the cross-flow velocity at the wing 
surface due to the vortex to be virtually unchanged, and hence 
that there would be little change in pressure distribution, or 
lift. However, examination of the formula for cross-flow due to 
the vortex (eqn. (14) of the A ppendix) shows that the velocity at 
the wing surface depends mainly on the position of the vortex in 
the transformed 0 plane (see Fig. 13). The velocity increases as 
the vortex moves nearer the wing surface in this transformed plane. 
(This might be expected since in this plane the wing and the two 
vortices transform into a vertical plate with the vortices forming 
images of each other in it.) Fig. 18 shows the calculated vortex 
positions in this plane and it can be seen that as camber is 
increased the vortices move closer to the transformed wing 
surface. Typical values of the resulting cross-flow velocities 
due to the vortices on the actual wing surface are shown in 

Fig. 19 for a[ a = 1.0 and g E 0 and 0.3. This figure also 

includes the cross-flow velocity on the wings in the absence of 

the vortices at the same value of (a - .)/E. . It can be seen 
that camber results in large increases in the cross-flow velocity 
and so gives much lower pressures on the upper surface. It is 
interesting to note that this increase in velocity occurs over 
most of the wing surface in spite of the fact that the singularity 
in the cross-flow velocity at the leading edge is reduced by 
camber. (This singularity is, of course, cancelled by the 
corresponding singularity which would exist in the cross-flow in 
the absence of the vortex). 

The fact that in the transformed plane the vortices are 
nearer the wing surface for the cambered wings than for the plane 
wing, whereas the converse is true in the physical plane, suggests 
that the wing camber produces a large distortion of the flow field 
around the vortices. Thus it would appear that it is this 
distortion of the velocity field of the vortex, together with the 
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slight increase 1n vortex strength which accounts for the 
increase In non-llnenr lift. It should be noted that thzs 
dIstortIon IS assocaated with the shape of the wing surface and 
so would still occur an any lnvestigatlons using more accurate 
representation of the vortex system. 

6. conclusions 

Measurements have been made of the overall forces and vortex 
position on a series of delta wzngs with various types of leading 
edge droop. In addition a theoretical study of conically- 
cambered wings has been made using the Brown and Plichael model. 
This theoretical investigation was undertaken in order to under- 
stand the mechanism of the non-linear lift development on 
cambered wings. 

The results of the experimental programme may be summarised 
as follows. 

(a) For leading edge droop angles less than about 40° the non- 
linear lift development is qualitatively similar to that on a flat 
wing, but the non-linear lift increases with droop angle and the 
vortex core height above the leading edge also increases. 

(b) The increase in lift due to droop is appreciable; for 
example at loo above the attachment incidence the lift is 
approximately 1076 greater for a droop angle of 17" than on a flat 
wing at corresponding incidence. 

(c) For droop angles greater than 40* the initial development of 
the leading edge vortex 1s greatly weakened, but at sufficiently 
high incidence the lift-curve slope becomes greater than on wings 
with smaller droop angles. 

A comparison of the theoretical and experimental results 
shows that the mathematical model predicts qualitatively the main 
camber effects. From the mathematical model it can be deduced 
that the increase in non-linear lift on the cambered wings is 
caused by a slight Increase in vortex strength, together with a 
large distortion of the velocity field around the vortex. This 
distortion causes higher cross-flow velocities on the wing upper 
surface and hence lower pressures. 
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. Appendix 

Details of Calculation of Vortex Positions and Strengths 

As dIscussed in sectlon 4, Brown and Michael replace the 
rolled up vortex sheet by a concentrated vortex core joined to 
the leading edge by a plane feeding sheet of vorticity. They 
then used slender-body theory and solved the problem in the 
cross-flow plane with the following boundary conditions: 

(i) Zero velocity normal to the wing surface. 

(xi) The flow leaves the leadzng edge smoothly. 

(iii) Zero total force on the vortex and the feeding 
sheet. 

The notation for the present investigation, together with the 
conformal transformations used to find the complex potential in 
the cross-flow plane, is illustrated zn Fig. 13. It should be 
noted that for the uncambered wing considered by Brown and 
Michael the Z-plane is identical to the r-plane. In the Z-plane 
the last boundary condition is 

( 
2z 

or (v - ix) O-1 
l,Z=Zo r vE a ) 

where (v + iw)l,Zzz represents the average velocity at the 
0 

position of the right-hand vortex and is found by subtracting the 
velocity field of the vortex at Z. from the total velocity and 

taking the limit as z + zo. 

For the flat wing with Q 1 Z Brown and Michael found the 

complex potential by the transformation Q2 P 2 - a2 giving, 
in the U-plane, 

where the first term is the potential of the concentrated 
vortices and the second is that of the free stream at incidence 

a. The transformation Q2 P (r2 - a2 is singular at the wing 
leading edges so that in order to satisfy the second boundary 
condition we must have 
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dW ==o, at 0 = 0, 

(3) 

Eqn. (1) may be written 

dW(O- ) ir 1 
+2n = (4) 

do- CT- o-o 

when a is eliminated from eqn. (2) by use of eqn. (3) and the 

resulting expression for W(C) substituted into eqn. (4) an 

equation for Q. IS obtained in terms of the parameter P/VC . 

This equation can be solved for the physical positrons of the 
vortices by separation of the equation into its real and 
imaginary parts and then finding values of y,/a and so/a (the 

ordinates of the vortex position) which give the same value of 

r/VC in the two 

For the case 
a circular arc we 

equations. 

of the wing with conical camber in the form of 
use the transformation 

to transform the circular arc in the Z-plane to the flat plate 
in the C -plane. This transformation, which was introduced by 

Smith7, transforms the point at infinity in the Z-plane to the 

finite point, (r = 7 , in the D-plane. The positions of the 

vortices are only changed slightly by this transformation. 

In the CT-plane Smith shows that the complex potential 
corresponding to a uniform flow at incidence a, is 

W(o-) 3 VEa cosa(1 + s212 
log (a - igo-)(a 1 + r-7 + i&77F) 

4fJ2 (a + igo-)(a 1 + 2 m - J3-X) 

+ iVs a2 cosa(1 - S2)G7 _ iVa2 sina LTiF 

2g( o- d> + L/n mm - iaG-3 
(5) 
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To this complex potential must be added the potential for the 

vortices at 'To and - +o, =.a. 

Although this complex potential gives finite velocities at the 
point j-a/$ these velocities tend to zero in the Z-plane. 

Eqn. (5) results in very complicated algebra and so is 

simplified by zgnoring terms of 0((33) and putting cosa I 1, 
sina = a. The final equation for the complex potential in the 
e-plane becomes 

- iVa[@YF + 2 (a2 - 2CY2) + 5 (a2 - 2(r2)@7T ] 

The condition that the flow leaves the edge smoothly is 

dW 
Tic= 0 at 8 

(7) 

This last equation shows that r E 0 at 

As might be expected this is the angle found by Smith for zero 

leading edge singularity; it will be defined as h-, the 
attachment angle. 
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The condition that the vortex system is force free (eqn. (1)) 
gives 

VE dli da- 
x5='dZ +L 1 

2n z-z0 . (10) 
z+ z. 

Elimination of a from eqn. (7) by means of eqn. (8) and then 
substitutxon into eqn. (10) gives, after some lengthy algebra, 

2llVE 
2z 

K ) 

o- 1 
(a - iBZoj2 

r a a2(1 + g2) + : i, : 
( 

/& - 2i :Qo 
) 

+ * 
0 

2a2 ( 
(2W 2 + 2a2) - P 

0 

e 

(2ff2 - a2) 
2 

a2 o Y 

i ta - igZo)3(l - p2) 

f$& * /v 1 /_a, + iG (Z. - iga)(Z: - a2) 

+ p(a - igZo) 

where Z. and CF, are the vortex positions in the Z-plane and 

(T-plane respectively. This complex equation was split into 
its real and imaginary parts and the resulting two equations 

z 
solved by finding values of YO 8 and 0 

8' the real and imaginary 

parts of 
zO’ 

which gave equal values of 2nVE 

P i 
once these 

values ware found eqn. (8) was used to find the corresponding 
value of a. The results are plotted in Fig. 14 for 
p P 0, 0.15 and 0.30. 
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The lift acting on the wing can be found by contour 
integration to give 

L=- 

this integral of the complex 
been evaluated by Smith, while 

the wake. The contribution to 
potential given in eqn. (5) has 
that due to eqn. (6) can be found by finding the Imaginary part 
of the coefficient of l/Z in the expansion of W(Z). Carrying 
through this expansion and adding the resulting lift to that 

obtained by Smith, we find that to O(g2) the lift coefficient is 
given by 

where the contour C contains 

(12) 

where y2 and z 2 are the real and imaginary parts of the vortex 

position in the Q-plane, i.e. Q. - y2 + ie2. 

At a=;(= 2 p(1 + p2/2)) 

?$$I. + 0(p3) 9 

and we may rewrite eqn. (12) as 

cL - EL = 2x("; 7 (1 + p2/2) + 
E2 V*2t 

[;ly+$*y2 )" 

- z2P 

2 

+ B Y2 

']. 

(13) 

Curves of cL - ZL 

EZ 
against (*) are pLotted in Fig. 15. 

The cross-flow velocity on the wing surface is given by 

dW II I dW do- 
95 xz -dQ*dZ* I 

Thus from eqn. (6) we obtain for the 

cross-flow due to the vortices 
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J’l -5 P (y/a)(l q=- - 2p2 + p2 Y2/a2L 2(y,/a) . 
V 

g)z + (b - 2)2 

(14) 
2naVE 

where 
Y2 

and z 
2 are the vortex positions xn the O-plane, 

the local spanwise position and b P + J1-y2/,2 (I + P2 Y2/a2)r 

the positive root corresponding to the wing upper surface and the 
negative root to the lower surface. 
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