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Summary

It is shown that the outer part of the velocity defect
profiles for equilibrium turbulent boundary layers on solid
surfaces can be satisfactorily reduced to an almost universal

curve by the use of the velocity scale U, = Ul(dO/dx)*, with

d0/dx obtained from the momentum integral equation. The
procedure thus uses a single scale for the complete range of the
pressure gradient parameter =, whereas previously the use of
Uy as in Clauser's formulation is restricted to cases of finite

wall shear stress, with an additional scale, as, for example,
Mellor and Gibson's 'pressure' velocity Up, being necessary to

treat the zero wall stress layer. The present scale reduces to
U, as required for the constant pressure layer and is simply

related to Up for the zero wall stress layer. The scale is

also found to account well for the outer part of near-equilibrium
layers, in particular for the constant pressure layer with
uniformly distributed injection. Finally, by combining the
relationship with the two-parameter family of mean velocity
profiles of Thompson, a simple method is obtained for calculating
the variation of the shape-parameter, H.
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1. Introduction

The problem of treating the mean velocity distribution in the
outer part of turbulent boundary layers has occupied a number of
workers in the past. The various approaches can be identified
as belonging to one of the following two classes: i) The
correlation of the departure of the velocity profile in the outer
region from the law of the wall. The main contributions have
been the law of the wake of Coles (1956) and the intermittency
hypothesis of Sarnecki (1959), which has been used by Thompson
(1965 A). 1ii) The correlation of the velocity defect in the
layer as a function of y/6 and some appropriate pressure
gradient parameter, The principal approaches have been the
constant eddy.viscosity analyses of Clauser (1956), Townsend
(1956), Mellor and Gibson (1963) and Libby, Baronti and
Napolitano (1964), and more recently the extended overlap
analysis of Stevenson (1965 B). All of the constant eddy
viscosity analyses are for the particular case of equilibrium
layers.

This paper will be concerned with pointing out an interesting,
but hitherto unobserved, regularity in the velocity defect in the
outer part of the layer. Although the results can be expected to
hold precisely only for equilibrium conditions, good agreement is
shown with experiment for some near-equilibrium layers of practical
interest.

2. Velocity Defect Relationship for the Outer Part
of Equilibrium layers

For constant pressure layers without transpiration, the
velocity defect law of von Karman using U, as the velocity
scale, viz.,

el B
T = &(y/8) , (1)
~

is well established for both smooth and rough walls (Clauser, 1954,
1956). The law holds throughout the layer except in the sublayer
and blending region immediately adjacent to the wall, The
constant pressure layer is a particular case of an equilibrium
layer, that is a layer which has a constant upstream history and
is thus governed by local conditions only. This condition is
satisfied because the rate of change of the wall shear, the only
force acting on the layer, with x 1is in practice very small and
the local value of wall shear stress will be much the same as the
value obtained by taking a mean over several boundary layer
thicknesses upstream. For exact equilibrium, the wall shear
stress must be constant, and Rotta (1962) has shown that this
condition will be satisfied if the surface roughness distribution
is such that the roughness scale varies directly with the distance
from the leading edge. If the wall stress is changing rapidly,
then the local value may differ considerably from such an integrated
value and the velocity profiles will not follow equation (1).

This has been shown by Clauser (1956) who used a corrugated
roughness strip to produce rapid changes in wall stress.
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For non-zero pressure gradients, the problem of defining the
conditions for constant upstream history has been treated by
Rotta (1955) and Clauser (1954). Clauser recognised that the
velocity profiles in such layers should form a one-parameter
family analogous to the Falkner-Skan family for laminar
equilibrium profiles. Since constant pressure profiles must
form a single member of such a family, and since the scheme of
equation (1) is the only one which satisfactorily reduces them to
a nearly universal curve, he concluded that the one-psrameter
family for turbulent equilibrium profiles would only be obtained
when the profiles are plotted in the co-ordinates of equation (1),
so that

u-=U

—_T]—T_J; = g(Y/éy’K), (2)

where =« 1is an appropriate pressure gradient parameter which will
be constant for any particular eguilibrium layer. He managed to
obtain experimentally two equilibrium layers and showed that the
constant parameter is

*
® = %r %5 . The members of the family obtained by Clauser are

0
reproduced in Fig. 1, where mean lines have been taken from his
original figures.

The equilibrium layer obtained by Stratford (1959) for zero
wall shear stress, introduces a difficulty into the formulation
proposed by Clauser, since the profiles cannot now be plotted in
the form of equation (2). To overcome this, Mellor and Gibson
(1963) have used a 'pressure velocity' for cases where the
influence of the pressure gradient dominates. They define

*
ul=422, (3)

and find that the use of Up as velocity scale accounts for
Stratford's profiles, as U, does for Clauser's. This

procedure is somewhat unsatisfactory since it introduces the need
for two velocity scales to cover the complete range of the
pressure gradient parameter, =. A single velocity scale which
equals U, for the constant pressure case and which can also

be used with layers of the Stratford type is needed. Such a
scale can be obtained from a consideration of the two-dimensional
momentum integral equation, which, for constant pressure, can be
written as

2 2 de
Ul =0 2 (4)

1
The use of Ul(dO/dx)I (with appropriate d0/dx) thus provides

a single scale which can be used 1in all conditions and which

reduces to U, as required for constant pressure. For layers

with pressure gradient and transpiration, the scale follows as



2 do 2
i =
au
- 1 Io
= =(H + 2)0U; 7=+ V U; + 5
*
-Q+H LRV 4Vl (5)

(+ V,U; for injection, -V U; for suction).

The relationship between the two velocity scales is obtained as,

U, VU
-——2-= =(1+§')Ki%+l. (6)
Uy Uy

For any particular equilibrium layer, the shape parameter, H,
will be nearly constant and hence the parameter @ defined by
equation (6) will be substantially a constant, since small
variations in H have a minor effect. @b could thus be used as an
alternative to &« for labelling members of the one-parameter
family obtained on a solid surface, The value of (ﬁ ranges from
0 <for the flat plate asymptotic layer with suction to 00 for
separation. For the constant pressure case, <b = 1.

For a Stratford-type layer with U, = 0, equation (5)
becomes

»
UQZ“(l*é)%gr

2vip 2
(1 + H)Up .

U, 1is thus a simple multiple of Mellor and Gibson's pressure
velocity if H is again considered constant for an equilibrium
layer.

The velocity defect profiles of Fig. 1 may now be transformed

from (u - Ul)/U.t to (u - Ul)/U, co-ordinates, using equation

(6). This has been done using mean values of H, and values of
x obtained by Mellor and Gibson from a re-examination of
Clauser's data. The values of the parameters are shown in
Table 1.



H v U, /U
Pressure Distribution I 1.5 1.8 . 439
Pressure Distribution II 1.8 8.0 237

Table 1. Parameters of Clauser's Equilibrium Layers.

The transformed profiles are shown in Fig. 2, where it is
gseen that the procedure brings the profiles into close agreement
with the constant pressure curve. Over the outer 60-70 per cent
of the layer the agreement is within the scatter usually
associated with the constant pressure curve, The curves do,
however, diverge in the inner part; this is to be expected,
since the inner region is known to be relatively insensitive to
pressure gradient and a velocity scale such as U,, which can
depend significantly on the pressure gradient, cannot thus be a
realistic velocity scale. The problem of treating the inner part
wlill be discussed later.

Clauser has plotted his results in terms of &8, the value of
y at which u/Ul = 1,0, which in practice 1s difficult to

determine with precision. In the profile comparisons to follow,

the more well-defined thickness, &, at which u./Ul = .995, will
be used.* The equilibrium profiles of Stratford (1959) for

x =00 and of Bradshaw aad Ferriss (1965) for = = 5.4 are shown
plotted in the universal co-ordinates in Figs. 4 and 5. It is
geen that for both of these cases the data again fall close to the
constant pressure curves.

It can thus be reasonably concluded that the outer part of
equilibrium velocity profiles is well represented by the universal
relationship

-U
E-W—l - g(%). (7)

To obtain the likely spread of the constant pressure velocity
defect plot in these co-ordinates, use is made of the recently
formulated two parameter family of mean velocity profiles of
Thompson (1965 A) together with suitable values of H and Ry.

Accepting H = 1.37, Ry = 3.2 x 107 and H = 1.26, Ry =5 x 104

as reasonable extremes, the corresponding profiles have been
extracted from the family. The skin friction coefficients have
been obtained from Thompson's skin friction law. The velocity
defect profiles thus obtained should well represent the spread of
constant pressure results. They are shown on all the profile
comparisons, the lcwer curve being that at the higher Reynolds
number. In Fig., 3, they are plotted in the y/8 form for
comparison with the mean curve used by Clauser.
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For the inner part, an overlap analysis similar to that of
Millikan (1938) may be invoked to obtain the form of equation (7)
in this region. The law of the wall is agsumed to be

Uy
x f(—v-) ’ (8)

Any effects of pressure gradients on the law of the wall are thus
neglected for the purposes of the present analysis. This
assumption is supported for a wide range of pressure gradients

by the experiments of ILudwieg and Tillmann (1950),

C!IS:

The velocity defect law is

* [
(The function g depends only on y/8 in the outer part; it
has been noted that different equilibrium layers (i.e. different

values of =) result in different forms for g in the inner part
and hence a dependence on =« is here included).

If a region of overlapping between equations (8) and (9) is
agsumed, then

8 T
Now,
df 1 of
U, = = ° '
d(_f_y) TS ofL)
M v 3
A 2
o - ? 3 3
u s  Ux a(%)
Y
Uy U y) Us
L ) 2 Y f L 10
or vf(\) Uto_aog(_o_’x), ()
Uy
where the primes denote differentiation with respect to - or

= as appropriate,
4]

The ratio U*/Ut would in general be expected to depend on
both = and U.,/Ul but it is seen from equation (6) that this -

latter dependence only enters through the dependence of H on
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on U..C/U1 which the experiments of Clauser have shown to be very

weak. Hence it is assumed that this dependence can be neglected
and so

U

T
Hence equation (10) becomes

Uy Uy
< . fl(;L_) = h(ﬂ) % . gt X , T ,
v v 5 5
= l/K ’
Ury y
where K is a constant independent of ! = and = and thus
8
has the same value as for constant pressure.
Hence o _ 1 lo ELZ + B
Uy T K €e 9 !

where B is independent of =, and,

u->0
1 _ 1 J
i hin) = = log, - +C,
u-=0U
1 _ 1 y
or i = 2 log, = + C, (11)

where C is a function of =. Equation (11) agrees with the
observation of Clauser (1954) that a logarithmic plot of
(u - Ul)/Uf in the overlap region has the same slope as the

constant pressure profile but an intercept which depends on the
equilibrium parameter =«

3., Boundary Layvers with Uniformly Distributed
Suction or Injection

While the use of a single local parameter such as U, as the

scale velocity for the outer region can only be strictly justified
for equilibrium conditions, in practice there are a number of
types of layer where the departure from equilibrium is usually

not very great. A particular case of such layers is the

constant pressure layer with uniformly distributed suction or
injection, for which a number of experimental results are
available., For this case, equation (5) becomes

2

U™ = UT

x VOUl ’ (12)

and ¢) =lztgz - (13)
<
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A comparison of this velocity scale with some other recently
proposed scales for layers with injection will be given later.

For large injection rates, UT. tends to zero and so
equation (12) becomes

2 _
Ue" = VOUl . (14)

For the particular case of the flat plate asymptotic layer with
suction, d6/dx = O and hence U, = 0. This result accords
with the experimentally verified fact that there is little or no
'outer part' to this type of layer and an inner region snalysis
holds practically to the outer edge.

Some results obtained by the author* for injection on a flat
plate in zero pressure gradient are shown in Pig. 6. Data
obtained in similar conditions by Mickley and Davis (1957) and on
an axigymmetric body in zero pressure gradient by Stevenson
(1965 A) are shown in Figs. 7 and 8. In all three cases the
agreement with the defect curves for zero transpiration is good.

It is of interest to note that the constant pressure layer
with uniformly distributed injection is not an exact equilibrium
layer in the sense already discussed. To correspond with the
required condition that Uf/Ul be constant for the flat plate

zero transpiration layer, it would be expected that the more
general exact equilibrium layer is obtained when U*/Ul is

constant. The variation of U;r/Ul with x prevents U*/U1

from being constant, but just as for the smooth flat plate
layer with zero transpiration, the rate of change of Ur/Ulr

and hence of U*/Ul, with x is small and the layer is very

nearly in equilibrium.** The constant pressure layer with
uniform injection should, in fact, be closer to equilibrium than

that with zero transpiration, since the effect of the variation of
U1?/Ul2 in the expression for U*Z/Ul2 is suppressed by the
constant VO/Ul term. It follows from equation (14) that the

continuously separating layer obtained at the "blow-off" point¥#*#
analogous to the layer of Stratford on an impermeable surface,
should be an exact equilibrium layer.

* These results and those of the author referred to later are
being prepared for separate publication.

w E.g. from the author's results for vo/Ul = ,0033, U*Z/Ul2
changes from ,0042 at Ry = 1200 to .0036 at Ry = 9,600.

* e

At about VO/U1 = 011, according to Hacker (1963).
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From the comparisons presented in Figs. 6 to 8, it is clear
that the departures of constant pressure, constant injection rate
layers from equilibrium are insignificant and that the present
relationship adequately represents the data in the outer part of
the layer.

4., Boundary Layers with Arbitrary Pressure Distributions

Except in the region close to separation where d0/dx goes
through a maximum,®* it is generally the case that changes in
d6/dx and hence in U*/Ul occur comparatively slowly.

Boundary layers in the arbitrary pressure distributions encountered
in practice can thus be considered to be in a state of near
equilibrium, as has also been concluded by Nash (1965).  Two
layers with injection in arbitrary pressure distributions obtained
by the author**, together with the layer of Newman (1951) on a
solid surface have been analysed and the results are shown in
Figs. 9, 10 and 11. The agreement with the constant pressure
curves is reasonable; the departures can very adequately be
explained if the distribution of local d6/dx is compared with
that obtained from the profile in the following way. Equation
(7) allows of a scheme for the outer region analogous to that of
Clauser for the inner region using the law of the wall.

Equation (7) is rearranged to give

ook
-1 (@t g(%) . (15)

Using equation (15), a chart may be constructed with curves of
constant d0/dx on which profiles may be plotted directly as

u/U; versus y/& and the value of de/dx appropriate to the

profile read off. The value of d6/dx so obtained will only

be equal to the local value for equilibrium layers. However, it
can be expected that the outer region of layers in arbitrary
pressure distributions will adjust to some value of de/dx
representing the integrated effect of upstream influences, For
layers in near equilibrium, where d6/dx will not be changing
rapidly, this value will not be far removed from the local value.
Such a chart can thus be used to determine how far a layer is
removed from equilibrium.

* Throughout the remainder of the paper, de/dx will be written
as shorthand for the right-hand side of the two-dimensional
momentum integral equation. It will thus not necessarily be
the seme as the experimental value of do/dx.

*

For these layers, the injection rates and pressure gradient
parameters are: au

Pressure Distribution I: V_/U, = .002; (H+2) &E 1L = -, 002,
of 71 Ul dx
¢ 40y

Pressure Distribution II: VO/Ul = ,008; (H+2) i £ +,0035,

=
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3ince, however, the constant pressure velocity defect curve
for smooth wall data is not truly universal, but changes slowly
with Reynolds number, there is some difficulty about drawing an
acceptable "mean" curve through the data to represent the function
&o For any of the particular layers which have been examined, the
range of Reynolds number covered is small., In particular, for the
author's data of Figs. 6, 9 and 10, the lower constant pressure
curve seems to be a good "mean" curve. This same "mean" curve
would not represent as well, for instance, the data of Bradshaw and
Ferriss., In order to examine the departures from equilibrium in
the layers of Figs. 9 and 10, this "mean" curve is used to
construct the chart shown in Fig. 12, where some typical profiles
are also shown. Since any "mean" curve used in the construction
of the chart will not give curves of constant d@/dx which pass

through the point u/Ul = ,995, y/8 = 1.0, the "mean" curve is

used for the range y/8 = .2 to .8 and each curve is then faired
into this point,.

The appropriate value of d6/dx for each of the profiles in
these layers has been obtained using the chart and is compared with
the corresponding value from the momentum integral equation in
Figs. 13a and 13D. It is seen that the maxima and minima in the
distribution of d0/dx are reproduced in the profiles, with a
lag due to the finite response of the outer part of the layer.

The boundary layer thickness for both of these layers is about
1" so that in terms of boundary layer thickness the layer adjusts
reasonably rapidly to perturbations in local conditions.

5. Comparisons of the Present Velocity Scale with some Previous
Proposals for Layers with Suction or Injection

For the case of the constant pressure layer with uniform
injection, a velocity defect law with a velocity scale, called

U; y based on the maximum shear stress in the layer has been

proposed by Mickley and Smith (1963) and Mickley, Smith and
Fraser (1964, 1965). It is of interest to compare their
proposal with that put forward here as equation (12). In their
latest paper, they present a correlation of U; /UT against

AU
(1 + =5 or, in this notation, against U,/U, ; this is
U.
T
reproduced here as Fig. 14. If the two velocity scales are to

correlate the data for layers with injection, then U* =TU, and
their correlation should be the straight line U* /U, = U,/U, shown

in Pig. 14. It is seen that there is a discrepancy between the two
proposals which increases with the injection parameter., However,
Mickley et al. point out that their procedure correlates the data

of Fraser on to a curve with ordinates about 6% greater than the
constant pressure, zero transpiration curve. From Fig. 14, it is
seen that U® /U, is of the order of 6 to 10% smaller than

Uu/U, for the data of Fraser, so that the use of U,/U, would in
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fact bring their data into closer agreement with the zero
transpiration curve, thus supporting the proposal made here. The
author's results when analysed in this way behave similarly, the
ordinates of the defect curves obtained using U; increasing with

Vo/Ul in general agreement with the trend of Fig, 14.

Stevenson (1963 A) has proposed a defect law

U VU.\ ¥ vV u\ %
27 .| [1+ 021) - (1 + 2 = g(_l_) (16)
0 Uy Uy 8

which he has shown to be in good agreement with his own data and
the lower injection rate data of Mickley and Davis. Equation
(16) can be re-arranged to

U, - u

- - %) -
¥ [<U»,2 A LI vou>%] 5

For low to moderate values of Vo/Ul’ the local wvelocity u
in the outer part of the layer will be about .8Ul or .9Ul so that

to a good approximation

2

i

3 [(U,t2 P T UNE (02 vou)ﬂ (U2 + Vup)*

Uy -

Thus for low to moderate values of vo/Ul’ the defect law of

Stevenson and that preoposed here are very nearly the same. Only
at high injection rates (above Vo/Ul of about 0.006) will the

difference become significant.

6. Prediction of Shape Factor H

The two-parameter profile family of Thompson (1965 A) gives

C:F:
i
[y

=

O/\
s
g

ool
1
[—.b

N

N
faw
>y

since
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1 = const,

u
Hence (1 - ﬁ—> = f3(H, RO) . (17)
N
)

The velocity defect relationship proposed here gives

Uy - u
lU = g(g) for y/s greater than
* 0

about 0.3,
u - Usn
or 1l - T = const. T
1 % = const. 1
o]
¥
=a (). (18)

The profile family gives the function f; in equation (17)

while the constant a can be obtained at whatever value of y/8
is chosen. Equations (17) and (18) may be combined to give

40
ax = T4(Hs Rg)
or, more usefully,
ae
H = f5(R°' E;) . (19)

Equation (19) is thus an auxiliary equation for the calculation of
H development. It will be expected to hold strictly only for
equilibrium layers on solid surfaces, the latter restriction being
due to the profile family used. It should, however, give
reasonable agreement for layers near equilibrium, For a case of
particular practical interest, that of a layer in an adverse
pressure gradient with d6/dx increasing up to near separation,
it will tend to give a predicted H development which will lead
the experimental, In the region of separation, however, the
pr7diction will fail, due to the rapid changes which occur in
de/dx.

The function f5 in equation (19) has been determined from
the profile family using a value of y/8 = 0.6 and is shown in

chart form in Fig. 15. For this value of y/8, the value of «
ranges from about 1.9 to 2.1.

Pig. 15 has been used together with both values of a to
obtain H developments for several equilibrium and non-
equilibrium layers. The results are shown in Figs. 16a to lé6e.
Also shown are the predictions of Head (1958) and Thompson,
reproduced from Thompson (1965 B). For Clauser's first
equilibrium layer and for the equilibrium part of Clauser's
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second layer*, the comparison for a = 2.1 gives good agreement.
For Bradshaw and Ferriss' equilibrium layer, the comparison for
a = 1.9 1is in excellent agreement with experiment. It may be
noted that these two values of «a are within the spread of
constant pressure boundary layer data. For the non-equilibrium
layers of Schubauer and Klebanoff (1951) and of Newman (1951),
the agreement can be considered satisfactory up to the region of
separation, and compares reasonably with the predictions of Head
and Thompson.

In all these comparisons, d@/dx has been obtained from the
two-dimensional momentum integral equation, using the measured
values of H. They are therefore not predictions of H
development in the usual sense, but serve as indicators of the
general compatibility of the measured H and d9/dx in the
layers with the relation obtained from the defect law and shown
in Fig. 15. In a proper calculation, the procedure would be to
estimate a value of H at the station considered, use it with the
known Rg to obtain dO/dx from the momentum integral equation;

the value of H corresponding to these values of d0/dx and Rg

could then be obtained from Fig. 15 and compared with the estimate.
The procedure could be repeated until the estimated H and the
value from the chart agree.
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8, Notation

B, C coefficients in profile laws in overlap region 5
U

Cp pressure coefficient used by Stratford| =1 - —lg
Uo

H profile Shape Parameter (= 8%/6)

P local static pressure

Rg boundary layer Reynolds number (= UlO/v )

u x~component of velocity in the boundary layer

Ul free stream velocity

UO value of Ul at reference station

Between x = 152" and x = 2%0", according to Mellor and Gibson.
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wall shear velocity (=('ro/o)’1’)

velocity scale based on maximum shear stress
used by Mickley et al.

velocity scale for outer region

pressure velocity used by Mellor and Gibson

_ g:ga)%

T \lp dx

injection or suction velocity

localised rectangular Cartesian co-ordinates;
X 1is measured along the surface in the
longitudinal direction; y is measured normal
to the surface

constant in relationship for velocity defect
(equals (Ul -u)/U, at y/8 = 0.6)

value of y at u/Ul =1

0.995

Il

value of y at u/Ul

oD
displacement thickness (: J/?l - u/Ul)dy)
()

[ =]
momentum loss thickness | = /u_ 1 - 3= dy
o Y1 Y

s

3

equilibrium pressure gradient parameter (= %r

)
universal constant in the mixing length
relationship

parameter of family of equilibrium profiles
kinematic viscosity
density

wall shear stress.
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treat *te zero wall stress layer., The present scale
reduces to U, as required for the constant pressure layer
and is simply related to U_ for the zero wall stress
layer. The scale is also TFound to account well for the
outer part of near-equilibrium layers, in particular for
the constant pressure layer with uniformly distributed
inpgction. Finally, by combining the relationship with
the two-perameter family of mean velocity profiles of
Thompson, & simple method is obtained for calculating

the variation of the shape-parameter, H.
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