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It ia shown that the outer part of the velocity defect 
profile6 for equilibrium turbulent boundary layers on solid 
surface6 can be aatiefactorily reduced to k almost universal 

+ curve by the use of the velocity scale U* = Ul(dQ/dx) , with 
dQ/dx obtained from the*momentum integral equation. The 
procedure thus uees a single scale for the complete range of the 
pressure gradient parameter x, whereas previously the u8e of 
UT as in Clauser'B formulation i6 restricted to cases of finite 
wall shear &reee, with an additional scale, ae, for example, 
Mellor and Gibaon1s$re8aure' velocity Up, being necessary to 
treat the zero wall stress leyer. The present scale reduce6 to 
4 aa required for the cowtant prea6ure layer and i6 eimply 
related to U for the xero wall stress layer.. The scale ie 
alto found topaccount well-for the outer part of near-equilibrium 
layers, in particular for the constant pressure layer with 
uniformly distributed injection. Finally, by combining the 
relatiomhip with the two-parameter family of mean velocity 
profile6 of Thompson, a simple method is obtained for calculating 
the variation of the shape-parameter, H. 

Replaces A.R.C.27 287. 
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le Introduction 

The problem of treating the mean velocity distribution in the 
outer part of turbulent boundary layers has occupied a number of 
workers in the past. The various approaches can be identified 
as belonging to one of the following two classes: i) The 
correlation of the departure of the velocity profile in the outer 
region from the law of the wall0 The main contributions have 
been the law of the wake of Coles (1956) and the intermittency 
z;;F;~is of Sarnecki (195!3)? which has been used by Thompson 

ii) The correlation of the velocity defect in the 
layer as's function of y/b and some appropriate pressure 
gradient parametere The principal approaches have been the 
constant eddy.viscosity analyses of Clauser (1956), Townsend 
(1956), Mellor and Gibson (1963) and Libby, Baronti and 
Napolitano (1964), and more recently the extended overlap 
analysis of Stevenson (1965 B). All of the constant eddy 
viscosity analyses are for the particular case of equilibrium 
layerse 

This paper will be concerned with pointing out an interesting, 
but hitherto unobserved, regularity in the velocity defect in the 
outer part of the layer. Although the results can be expected to 
hold precisely only for equilibrium conditions, good agreement is 
shown with experiment for some near-equilibrium layers of practical 
interest. 

2. Velocity Defect Relationship for the Outer l?art 
of Equilibrium Layers 

For constant pressure layers without transpiration, the 
velocity defect law of von Karman using U,r as the velocity 
scale, viz., 

is well established for both smooth and rough walls (Clauser, 1954, 
19%). The law holds throughout the layer except in the sublayer 
and blending region immediately adjacent to the wall, The 
constant pressure layer is a particular case of an equilibrium 
layer, that is a layer which has a constant upstream history and 
is thus governed by local conditions only. This condition is 
satisfied because the rate of change of the wall shear, the only 
force acting on the layer, with x is in practice very small and 
the local value of wall shear stress will be much the same as the 
value obtained by taking a mean over several boundary layer 
thicknesses upstream. For exact e uilibrium, 
stress must be constant, and Rotta ? 

the wsll shear 
1962) has shown that this 

condition will be satisfied if the surface roughness distribution 
is such that the roughness scale varies directly with the distance 
from the leading edge. If the wall stress is changing rapidly, 
then the local value may differ considerably from such an integrated 
value and the velocity profiles will not follow equation (l)e 
This has been shown by Clauser (1956) who used a corrugated 
roughness strip to produce rapid changes in wall stress* 
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For non-zero pressure gradients, the problem of defining the 
conditions for constant u stream history has been treated by 
Rotta (1955) and Clauser f 1954). Clauser recognised that the 
velocity profiles in such layers should form a one-parameter 
family analogous to the Falkner-Skan family for laminar 
equilibrium profiles. Since constant pressure profiles must 
form a single member of such a family, and since the scheme of 
equation (1) is the only one which satisfactorily reduces them to 
a nearly universal curve, he concluded that the one-parameter 
family for turbulent equilibrium profiles would only be obtained 
when the profiles are plotted in the co-ordinates of equation (l), 
so that 

u- % 
- dY/wd, 

UT - 
w 

where x is an appropriate pressure gradient p,arameter which wilI. 
be constant for any particular equilibrium layer. He managed to 
obtain experimentally two equilibrium layers and showed that the 
constant parameter is 
Kzd2LQ 

~~ cix l 

The members of the family obtained by Clauser are 

reproduced in Fig* 1, where mean lines have been taken from his 
original figures0 

The equilibrium layer obtained by Stratford (1959) for zero 
wall shear stress, introduces a difficulty into the formulation 
proposed by Clauser, since the profiles cannot now be plotted in 
the form of equation (2)0 To overcome this, Mellor and Gibson 
(1963) have used a 'pressure velocity' for cases where the 
influence of the pressure gradient dominates. They define 

(3) 

and find that the use of U P 
as velocity scale accounts for 

Stratford's profiles, as UT does for Clauser's. This 

procedure is somewhat unsatisfactory since it introduces the need 
for two velocity scales to cover the complete range of the 
pressure gradient parameter, 7~. A single velocity scale which 
equals UT for the constant pressure case and which can also 
be used with layers of the Stratford type is needed. Such a 
scale can be obtained from a consideration of the two-dimensional 
momentum integral equation, which, for constant pressure, can be 
written as 

The use of Ul(dQ/dx)' (with appropriate dQ/dx) thus provides 
a single scale which can be used In all conditions and which 
reduces to UT as required for constant pressure* For layers 

with pressure gradient and transpiration, the scale follows as 
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(+ VoUl for injection, -VoUl for suction). 

The relationship between the two velocity scales is obtained as, 

For any particular equilibrium layer, the shape parameter, H, 
will be nearly constant and hence the parsmeter @ defined by 
equation (6) will be substantially a constant, since small 
variations in H have a minor effect. 4) could thus be used as an 
alternative to x for labelling members of the one-parameter 
family obtained on a solid surfacee The value of @ ranges from 
0 for the flat plate asymptotic layer with suction to 00 for 
separation. For the constant pressure case, 9 = 1. 

For a Stratford-type layer with UT = 0, equation (5) 
becomes 

U* 2 = (1 +2)Ea! 
H o dx' 

= (1 + &up2 . 

U,, is thus a simple multiple of Mellor and Gibson's pressure 
velocity if H is again considered constant for an equilibrium 
lsyer. 

The velocity defect profiles of Fige 1 may now be tranaformed 
from (u - Ul)& to (u - Ul)/U* co-ordinates, using equation 
0% This has been done using mean values of H, and values of 
x obtained by Mellor and Gibson from a re-examination of 
Clauser's data. The values of the parameters are shown in 
Table le 
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H 7t u&J* 

Pressure Distribution I 1.5 108 .439 

Pressure Distribution II 108 800 .237 

Table l* Parameters of Clauser's Equilibrium Layers. 

The transformed profiles are shown in Fig. 2, where it is 
seen that the procedure brings the profiles into close agreement 
with the constant pressure curve. Over the outer 60-70 per cent 
of the layer the agreement is within the scatter usually 
associated with the constant pressure curve. The curves do, 
however, diverge in the inner part; this is to be expected, 
since the inner region is known to be relatively insensitive to 
pressure gradient and a velocity scale such as U,+, which can 
depend significantly on the pressure gradient, cannot thus be a 
realistic velocity scale. The problem of treating the inner part 
will be discussed later. 

Clauser has plotted his results in terms of 6, the value of 
y at which u/U1 = 100, which in practice is difficult to 
determine with precision. In the profile comparisons to follow, 
the more well-defined thickness, ??, at which u/U - .995, 
be used.* The equilibrium profiles of Stratford 
CK =w and of Bradshaw and Ferriss (1965) for 7T = 

IL ?195;;ef;it;; 
504 

plotted in the universal co-ordinates in Figs. 4 and 50 It is 
seen that for both of these cases the data again fall close to the 
constant pressure curves. 

It can thus be reasonably concluded that the outer part of 
equilibrium velocity profiles is well represented by the universal 
relationship 

(7) 

To obtain the likely spread of the constant pressure velocity 
defect plot in these co-ordinates, use is made of the recently 
formulated two parameter family of mean velocity profiles of 
Thompson (1965 A) together with suitable values of H and RQO 
Accepting H = 1037, RQ = 3,,2 x 103 and H = 1026, RQ = 5 x 104 
as reasonable extremes, the corresponding profiles have been 
extracted from the family. The skin friction coefficients have 
been obtained from Thompson's skin friction law. The velocity 
defect profiles thus obtained should well represent the spread of 
constant pressure results. They are shown on all the profile 
comparisons, the lower curve beinb r that at the higher Reynolds 
number. In Fig0 3, they are plotted in the y/b form for 
comparison with the mean curve used by ClauserO 
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l?or the inner part, an overlap analysis similar to that of 
Millikan (19%) may be invoked to obtain the form of equation (7) 
in this region. The law of the wall is assumed to be 

Any effects of pressure gradients on the law of the wall are thus 
neglected for the purposes of the present analysise This 
assumption is supported for a wide range of pressure gradients 
by the experiments of Ludwieg and Tillmann (1950)e 

The velocity defect law is 

y+ = g(i , 7c) * 

(The function g depends only on yfi in the outer part; it 
has been noted that different equilibrium layers (i.e. different 
values of x) result in different forms for g 
and hence a dependence on x is here included). 

in the inner part 

If a region of overlapping between equations (8) and (9) is 
assumed, then 

Now, 
df 1 af -s 

where the primes denote differentiation with respect to - or 
9 

it 
5 

as appropriate0 

The ratio U& would in general be expected to depend on 
both x and UT/U1 but it is seen from equation (6) that this * 
latter dependence only enters through the dependence of H on 
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on UT/U1 which the experiments of Clauser have shown to be very 
weak. Hence it is assumed that this dependence can be neglected 
and so 

UGt 
F 

= h(x) only. 

Hence equation (10) becomes 

= h(x) . ; . g' 

where IC 
w 

is a constant independent of 7 , z and x and thus 
5 

has the same value as for constant pressure0 

Hence 

where B is independent of K, and, 

where C is a function of 7~~ Equation (11) agrees with the 
observation of Clauser (19'54) that a logarithmic plot of 
h - Ull /u-c in the overlap region has the same slope as the 
constant pressure profile but an intercept which depends on the 
equilibrium parameter x0 

3- Boundary Layers with Uniformly Distributed 
Suction or In.jectLon 

While the use of a single local parameter such as lJ* as the 
scale velocity for the outer region can only be strictly justified 
for equilibrium conditions, in practice there are a number of 
types of layer where the departure from equilibrium is usually 
not very great. A particular case of such layers is the 
constant pressure layer with uniformly distributed suction or 
injection, for which a number of experimental re,sults are 
available. For this case, equation (5) becomes 

u** = UT* L voul , 

03) 
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A comparison of this velocity scale with some other recently 
proposed scales for layers with injection will be given later. 

For lar e injection rates, UT tends to zero and so 
equation (12 7 becomes 

uu 
2 = voul . (14) 

For the particular case of the flat plate asymptotic layer with 
suction, dQ/dx = 0 and hence U* = 0. This result accords 
with the experimentally verified fact that there is little or no 
'outer part' to this type of layer and an inner region analysis 
holds practically to the outer edge* 

plate 
Some results obtained by the author* for injection on a flat 

in zero pressure gradient are shown in Fig. 6a Data 
obtained in similar conditions by MickLLey and Davis (1957) end on 

z9zi?$mare shown in Figs. 7 and 8 
metric body in zero pressure gradient by Stevenson 

In all three cases the 
agreement with the defect curves foi zero transpiration is good. 

It is of interest to note that the constant tiressure layer 
with uniformly distributed injection is not an exact equilibrium 
layer in the sense already discussed. 
required condition that UT/U1 

To correspond with the 
be constant for the flat plate 

zero transpiration layer, it would be expected that the more 
general exact equilibrium layer is obtained when U&J1 is 
constant. The variation of l&/U1 with x prevents U&J1 
from being constant, but just as for the smooth flat plate 
layer with zero transpiration, the rate of change of UT/Ul, 
and hence of U&Jl, with x is small and the layer is very 
nearly in equilibrium.** 
uniform injection should, 

The constant pressure layer with 
in fact, be closer to equilibrium than 

that with zero transpiration, since the effect of the variation of 
UT2hJ12 in the expression for U*2/UlF is suppressed by the 
constant Vo/Ul term. It follows from equation (14) that the 
continuously separating layer obtained at the "blow-off" point*** 
analogous to the layer of Stratford on an impermeable surface, 
should be an exact equilibrium layer0 

These results and those of the author referred to later are 
being prepared for separate publication. 

uu 
E.g. from the author's results for Vo/Ul = 00033, U*2/U12 
changes from .0042 at RQ = 1200 to .0036 at RQ = 9,600. 

w* At about Vo/Ul = .Oll, according to Hacker (1963). 
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From the comparisons presented in Figs. 6 to 8, it is clear 
that the departures of constant pressure, constant injection rate 
layers from equilibrium are insignificant and that the present 
relationship adequately represents the data in the outer part of 
the layer. 

4. Boundary Layers with Arbitrary Pressure Distributions 

Except in the region close to separation where dQ/dx goes 
through a maximum,* it is generally the case that changes in 
dQ/dx and hence in U&J1 occur comparatively slowlye 
Boundary layers in the arbitrary pressure distributions encountered 
in practice can thus be considered to be in a state of near 
equilibrium, as has also been concluded by Nash (1965). Two 
layers with injection in arbitrary pressure distributions obtained 
by the author**, together with the layer of Newman (1951) on a 
solid surface have been analysed and the results are shown in 
Figs. 9, 10 and 11. The agreement with the constant pressure 
curves is reasonable; the departures can very adequately be 
explained if the distribution of local dQ/dx is compared with 
that obtained from the profile in the following way. Equation 
(7) allows of a scheme for the outer region analogous to that of 
Clauser for the inner region using the law of the wall. 
Equation (7) is rearranged to give 

Using equation (15), a chart may be constructed with curves of 
constant dQ/dx on which profiles may be plotted directly as 

dJ1 versus yfi and the value of d0/dx appropriate to the 
profile read off0 The value of dQ/dx so obtained will only 
be equal to the local value for equilibrium layers. However, it 
can be expected that the outer region of layers in arbitrary 
pressure distributions will adjust to some value of dQ/dx 
representing the integrated effect of upstream influences. For 
layers in near equilibrium, where dQ/dx will not be changing 
rapidly, this value will not be far removed from the local value. 
Such a chart can thus be used to determine how far a layer is 
removed from equilibrium0 

* 
Throughout the remainder of the paper, dQ/dx will be written 
as shorthand for the right-hand side of the two-dimensional 
momentum integral equation. It will thus not necessarily be 
the seme as the experimental value of dQ/dx. 

** 
For these layers, the injection rates and pressure gradient 
parameters are: 
Pressure Distribution I: voDJ1 + .002; cH+2) $- 2 + -. 002* 

Pressure Distribution II: Vo/Ul + 0008; (H+2) Q1 d"l - - + +.0035c# Ul dx 
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Since, however, the constant pressure velocity defect curve 
for smooth wall data is not truly universal, but changes slowly 
with Reynolds number, 
acceptable "mean*' 

there is some difficulty about drawing an 
curve through the data to represent the function 

&Ta For any of the particular layers which have been examined, the 
range of Reynolds number covered is smsll* 
author's data of Figs. 

In particular, for the 
6, 9 and 10, the lower constant pressure 

curve seems to be a good "mean" curve. This same "mean" curve 
would not represent as well, for instance, the data of Bradshaw and 
Ferriss. In order to examine the departures from equilibrium in 
the layers of Figs. 9 and 10, this "mean" curve is used to 
construct the chart shown in Fig. 
are also shown. Since any "meen" 

12, where some typical profiles 
curve used in the construction 

of the chart will not give curves of constant dQ/dx which pass 
through the point u/U1 = e9g5, yfi = laO, the "mean" curve is 

used for the range yb = .2 to e8 and each curve is then faired 
into this point,, 

The appropriate value of dQ/dx for each of the profiles in 
these layers has been obtained using the chart and is compared with 
the corresponding value from the momentum integral equation in 
Figs. 13a and 13b. It is seen that the maxima and minima in the 
distribution of dC/dx are reproduced in the profiles, with a 
lag due to the finite response of the outer part of the layer. 
The boundary layer thickness for both of these layers is about 
1" so that in terms of boundary layer thickness the layer adjusts 
reasonably rapidly to perturbations in local conditions0 

5. Comparisons of the Present Velocity Scale with some Previous 
Proposals for Layers with Suction or Injection 

For the case of the constant pressure layer with uniform 
injection, 
q I based 

a velocity defect law with a velocity scale, called 
on the maximum shear stress in the layer has been 

proposed by Mickley and Smith (1963) and Mickley, Smith and 
Fraser (1964, 1965). It is of interest to compare their 
proposal with that put forward here as equation (12)e In their 
latest paper, they present a correlation of UG /UT against 

(l + p)y2 or, in this notation, against U+& ; this is 

reproduced here as Fig0 14. If the two velocity scales are to 
correlate the data for layers with injection, then TJ$ =U* and 
their correlation should be the straight line UG /UT = U,& shown 
in Fig- 14. It is seen that there is a discrepancy between the two 
proposals which increases with the injection paremeter* However, 
Mickley et sl* point out that their procedure correlates the data 
of Fraser on to a curve with ordinates about 6% greater than the 
constant pressure, 
seen that U$ /UT 

zero transpiration curve. From Fig0 14, it is 
is of the order of 6 to 10% smaller than 

wJ* for the data of Fraser, so that the use of U&l* would in 
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fact bring their data into closer agreement with the zero 
transpiration curve, thus supporting the proposal made here. The 
author's results when analysed in this way beha-qe similarly, the 
ordinates of the defect curves obtained using U; increasing with 

vO'"l 
in general agreement with the trend of Fig0 14. 

Stevenson (1963 A) has proposed a defect law 

which he has shown to be in good agreement with his own data and 
the lower injection rate data of Mickley and Davis. Equation 
(16) can be re-arranged to 

u1 - u Y 

+ L( 

UT2 + voul) + (UT2 + vou$ 
ii 

I  

=gii l t 1 

For low to moderate values of Vo/Ul, the local velocity u 

in the outer part of the layer will be about .8Ul or .Wl so that 

to a good approximation 

4 [(UT2 + voul+ + (UT2 + vouq = (UT2 + voul# 
Z 

u* l 

Thus for low to moderate vaLues of Vo/Ul, the defect law of 

Stevenson and that proposed here are very nearly the same0 O&Y 
at high injection rates (above VolUl of about 00006) will the 

difference become significant. 

6. Prediction of Shape Factor H 

The two-parameter profile family of Thompson (1965 A 1 t3 ives 

since 
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The velocity defect relationship proposed here gives 

for yb greater than 
about 0.3, 

or 
U* 

= const. - , 
JL = const ul a 
5 

=a 

(17) 

The profile family gives the function f3 in equation (17) 
while the constant a 
is chosen. 

can be obtained at whatever value of yfi 
Equations (17) and (18) may be combined to give 

@=f(H R) dx 4'Q' 

or, more usefully, 

Equation (19) is thus an auxiliary equation for the calculation of 
H development. It will be expected to hold strictly only for 
equilibrium lsyers on solid surfaces, 
due to the profile family used. 

the latter restriction being 
It should, however, give 

reasonable agreement for layers near equilibrium. For a case of 
particular practicsl interest, that of a layer in an adverse 
pressure gradient with d0/dx increasing up to near separation, 
it will tend to give a predicted H 
the experimental. 

development which will lead 
In the region of separation, however, the 

prediction will fail, due to the rapid changes which occur in 
dO/dx. 

The function f5 in equation (19) has been determined fern 
the profile family using a value of yfi = 0.6 and is shown in 
chart form in Fig. 15. 
ranges from about 

For this value of yfi, the value of a 
109 to 201. 

Fig. 15 has been used together with both values of a to 
obtain H developments for several equilibrium snd non- 
equilibrium layers* The results are shown in Figs. 16a to 16e. 
Also shown are the predictions of Head (1958) and Thompson, 
reproduced from Thompson (1965 B). For Clauser's first 
equilibrium layer and for the equilibrium part of Clauser's 
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second layer*, the comparison for a = 201 gives good agreement0 
For Bradshaw and Ferriss' equilibrium layer, the comparison for 
a = 1.9 is in excellent agreement with experiment. It may be 
noted that these two values of a are within the spread of 
constant pressure boundary layer data. For the non-equilibrium 
layers of Schubauer and Klebanoff (1951) and of Newman (1951), 
the agreement can be considered satisfactory up to the region of 
separation, and compares reasonably with the predictions of Head 
and Thompson. 

In all these comparisons, dQ/dx has been obtained from the 
two-dimensional momentum integral equation, using the measured 
values of H. They are therefore not predictions of H 
development in the usual sense, but serve as indicators of the 
general compatibility of the measured H and dQ/dx in the 
layers with the relation obtained from the defect law and shown 
in Fige 15. In a proper calculation, the procedure would be to 
estimate a value of H at the station considered, use it with the 
known Ii0 to obtain dQ/dx from the momentum integral equation; 
the value of H corresponding to these values of dQ/dx and s 
could then be obtained from Fig0 15 and compared with the estimates 
The procedure could be repeated until the estimated H and the 
value from the chart agree. 
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8. Notation 

B9 ci coefficients in profile laws in overlap 

C 
P 

pressure coefficient used by Stra,tford 

H profile Shape Parameter (= 6*/Q) 

P 

% 
U 

ul 

uO 

local static pressure 

boundary layer Reynolds number t= up/Q 1 

x-component of velocity in the boundary layer 

free stream velocity 

value of ul at reference station 

Between x = 152" and x = 230", according to Xellor and Gibson. 
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&* 

Q 

x 

K 

cl? 

9 

P 

=o 

wall shear velocity 

velocity scale based on maximum shear stress 
used by Mickley et al. 

velocity scale for outer region 

pressure velocity used by Mellor and Gibson 

injection or suction velocity 

localised rectangular Cartesian co-ordinates; 
X is measured along the surface in the 
longitudinal direction; y is measured normal 
to the surface 

constant in relationship for velocity defect 
(equals (Ul - u)/U* at yfi = 0.6) 

value of y at u/U1 = 1 

value of y at u/U1 = 0.995 

displacement thickness - u/Ul)dy 

momentum loss thickness [= d[ (1 - t)dy) 

equilibrium pressure gradient parameter (= 

universal constant in the mixing length 
relationship 

parameter of family of equilibrium profiles 

kinematic viscosity 

density 

wall shear stress. 
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