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The report discusses solutions to the equation: 

rrfl + ff" + p(1-f's) = 0 
subject to the boundary conditions f = fc, f'= 0 at q = 0 and f' + 1 
as .q -, 00. Numerical solutions are tabulated for wide ranges in the pressure 
gradient parameter p and mass transfer parameter fb. Some related topics 
discussed are (i) the asymptotic behaviour of solutions for intensive mass 
transfer 
and (iii I 

(ii) the ranges of p and f, for which acceptable solutions exist 
the application of these "similar)'solutions to problems involving 

non-similar flows. 
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NOTATION 

Where the quantities in the following list possess dimensions, 
typical units are given in brackets after the definitions. 

A 

4, a2, a0 . . . . . ar 

bi , bra, b3 . . . . . br 

C 

Cl , '22, q . . . . . cr 

%, dz, a, . . . . . dr 

% 

81, e2, e3 . . . . . er 

f 

fo 

fy: 

i; 

quantity occurring in equation (84) but later assumed 
to be infinite 

coefficients in equation (1%) 

coefficients in equation (136) 

constant occurring in equation (6) 

coefficients in equation (137) 

coefficients in equation (139) 

correction to a straight-line approximation to 
relationship between F2 and h2 with zero mass 
transfer [see equation (121)] 

coefficiefits in equation (141), [see also equation (14-2)] 

dimensionless stream function defined by equation (10) 

value of f in the fluid at the wall; a measure of the 
velocity with which mass flows through the wall and 
called "the mass transfer parameter"; related to the 
velocity v. by equation (14) 

seoond derivative of f with respect to ?J evaluated 
at the wall; a measure of the shear stress at the wall; 
also equals l/&f 

real form of f when variables are pure imaginary 
[see equation (15)] 
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E‘i 

3’4 

&cl, g2, 633 . . . . . . . . 

h 

h, b, ho . . . . . . . . 

ha 

Hz1 

H24 

%4 

J 

. 
A, 32 

ko 

M 

& 

9 

.\ 

91,9a, ¶a . . . . . qr 

B 

value of 7 at the wall; the mass transfer parameter 
when variables are pure imaginary and /? is small 

rate of growth function for the displacement thickness 
$9 defined by equation (41) with n = 1 

rate of growth function for the momentum thickness &,, 
defined in equation (36) 

rate of growth function for the shear thickness h4; 
occurs in equation (4-Q) 

dimensionless stream function for intensive suction 
defined by equation (128) 

finctions occurring in equation (131) 

dimensionless stream function for intensive blowing 
defined in equation (143) 

functions occurring in equation (146) 

ratio of the displacement thickness to the momentum 
thickness, equation (33) 

reciprocal of %2 

ratio of the momentum thickness to the shear thickness, 
equation (33) 

ratio of the displacement thickness to the shear 
thickness, equation (33) 

function defined by equation (75) 

quantities occurring in equation (126) 

mass transfer parameter when @ is large, related to 
the velocity v. by equation (18) 

real form of k,, when variables are pure imaginary, 
[see equation (28)] 

constant of integration occurring in equation (77) 
given by equation (79) 

function defined by equation (65) 

function defined by equation (107) 

coefficients occurring in equation (14-8); 
note that Q in equations (109) and (110) has a 
different meaning, as it is the value of q at @ = 1 

the quantity -by occurring in equation (99) 

S/ 
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S 

‘sl 3 %a, 93 . . . . . 'r 

top +ic 
fk, t2, t . . . . . % 

U component of fluid velocity in the x-direction (ft/h) 

uG . 

v 

VO 

W 

X 

Y 

2 

function defined by equation (117) 

coefficients occurring in equation (149); see also 
equation (150) 

quantities occurring in equation (151) 

coefficients in equation (I 52) whose numerical values 
are given shortly after that equation 

value of u in the main stream (f-t/h) 

component of fluid velocity iri the y-direction, taken 
to be positive when directed outwarda, (ft/h) 

value of v at the wall boundary; the velocity at 
which mass flows through the wall, (ft/h) 

dependent variable used in Section 9, equation (1%) 

distance parallel to the wall masured from the start 
of the boundary layer, (ft) 

distance perpendicular to the wall measured from the 
wall towards the main stream 

independent variable used in Section 9, equation (153). 

Greek Symbols 

a independent co-ordinate for intensive suction, 
equation (127) 

B parameter occurring in equations (6), (12) and (19) 
related to the magnitude of the main-stream pressure 
gradient 

Y local dimensionless shear stress used as dependent 
variable when p is infinite, equation (21) 

Yo value of y at the wall 

7 real form of y when variables are pure imaginary, 
equation (25) 

boundary layer thickness of the velocity 

s, displacement thickness, = [(l-p (ft) 
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si* displacement thickness in the similar co-ordinates 
(q,f) , equation (29) 

w displacement thickness in the similar co-ordinates (g,e), 
W 

= I (1 - e’>e ; 
0 

V 

E 

momentum thickness, = [i( I -%) dY, et) 

momentum thickness in the similar co-ordinates 
equation (30) 

hf) Y 

momen$m thickness in the similar co-ordinates (w), 

F 
I 

ef(i - e')dg 

0 

shear thickness, = UJW~Y>cl , @t) 

shear thickness in the similar co-ordinates 
equation (31) 

b-d I 

shear thickness in the similar co-ordinates 
W), = l/es 

independent variable used in Section 5.2, equation (74) 

length co-ordinate used as independent variable when 
/3 is small, equation (9) 

real form of 
equation (15) 

q when variables are pure imaginary, 

stream function used as dependent variable when /3 is 
large, equation (17) 

real form of 8 when the variables are pure imaginary 

pressure gradient parameter relating to the displacement 
thickness, equation (39) 

. 
pressure gradient parameter reiating to the momentum 

thickness, equation (35) 

pressure gradient parameter relating to the shear 
thickness, equation (43) 

kinematic viscosity of the fluid, (fi?/h) 

length c-ordinate used as independent variable when 
B is large, equation (I 6) 



e real form of & when variables are pure imaginary 

0 dimensfonless fluid velocity used a3 inde endent 
variable when /3 is infinite, equation P 21) 

$ real form of 
equation (25) 

4 when variables are pure imaginary, 

X independent co-ordinate for intensive blowing, 
equation (143) 

If stream function defined by equation (4) 

Subscripts 

0 denotes condition3i.n the fluid close to the wall 

I denotes conditions in the main stream 

G denotes conditions in the main stream 

aSb denote values at two arbitrary points in the fluid 

Superscripts 

I denotes differentiation with respect to the independent variable 
in question, which may be IJ, 6, # or one of several others 

denotes quantities expressed in terms of the stiilar 
c~+ordint&3s h $1 

** denotes quantities expressed in terms of the similar 
co-ordinates (&9). 
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1. Introduction 

1.1 The interest in "similar" solutions to the boundary-layer equations 

The monograph is concerned with "similar" solutions to the velocity 
equation of the two-dimensional, laminar boundary layer when the properties of 
the fluid are uniform throughout the field of flow. Solutions are given for 
wide ranges in the two parameters which represent the variables: 

(i) The pressure Pradient in the free stream in a direction 
parallel to the wall on which the boundary layer exists, and 

(ii) The velocity with which some component of the fluid passes 
through the wall. This velocity may be directed either 
inwards or outwards and determines the rate of mass transfer 
through the boundary layer. 

The literature contains many discussions of the velocity equation 
for similar boundary layers, namely equation (12) below, so some justification 
must be provided for devoting yet another long publication to it. Such 
justification will,be given in various parts of Section 1, which starts here 
with a brief resume of the various ways in which the solutions may be applied. 
In what follows it will be convenient to abbreviate the name of the above two 
variables simply to "pressure gradient" and "mass transfer rate". 

Practical engineering problems requiring the estimation of rates of 
heat or mass transfer in forced convection frequently cover wide ranges in 
pressure gradient and mass transfer rate. In order to carry out such 
calculations, therefore, solutions to the boundary-layer equations must be 
known for wide ranges in these variables. Yet the similar solutions are the 
only accurate solutions which are known both at sufficiently small intervals 
and over sufficiently wide ranges in the variables to be useful for this 
purpose. 

Quite apart from such important practical considerations, however, 
the study of the similar solutions in the past has contributed greatly to our 
understanding of the mechanisms which govern the processes of heat, mass and 
momentum transfer through laminar boundary layers, and this continues to be 
true today. 

It is of interest to note that the similar solutions are also required 
in several exact series solutions to the partial differential equations of the 
boundary layer, where they usua ly appear as the first term; solutions of this 

t kind have been given by Howarth , G&tler2 and Hahnemannj. 

The solutions may, of course, be directly applied in the calculation 
of rates of heat or mass transfer for fluid flows which satisfy the conditions 
for similarity. The cases of fluids flowing over wedges form one important 
group of such flows, although the name "wedge flows" frequently used in this 
connection is avoided here because it is too restrictive. The name "similar 
flows" is preferred because it oovers a wider range of pressure gradient and 
includes the wedge flows. 

The importance of the similar solutions has greatly increased in 
recent years because they serve as the foundation for a number of more general 
methods of boundary-layer analysis used for estimating transfer rates for both 

similar/ 
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similar and non-similar boundary layers. Although approximate by nature, such 
general methods can, with due care , give results which are sufficiently accurate 
for many practical purposes. 

1.2 The need for solutions of high accuracg 

There has therefore been a considerable and growing interest in the 
similar solutions, but even so, comparatively few were found in the literature 
which were accurate and for which the mass transfer parameter was not zero. 
The solutions know 
Spalding and Evans c 

up to a few years ago were collected and summarised by 
, although more have appeared since then. A number of 

solutions of moderate accuracy were known at that time and with the use of 
interpolation procedures given in that paper, others could be obtained to 
within a few percent for wide ranges of pressure gradient and mass transfer. 
The main conclusion, however, was that many more solutions of high accuracy 
were needed. 

Similar solutions to the velocity equation are obtained not only 
for use in their own right in the ways outline 

8 
in Section 1.1, but also so 

as to solve the b-equation, Spalding and Evans , which governs other conserved 
fluid properties just as the velocity equation governs fluid momentum. 
Solutions to the b-equation are also required for use in general methods of 
boundary-layer analysis. 

Experience during recent years has amply demonstrated that, in order 
to make the use of computers worthwhile when solving the b-equation, the 
accuracy of solutions to the velocity equation which are used must be 
considerably better than is obtained by interpolation. 

On the other hand, there may be objections that the accuracy of the 
solutions in the present monograph is excessive in view of the fact that the 
boundary-layer equations are themselves only an approximation to the complete 
equations of motion of the fluid. While being in some respects sympathetic 
to this point of view, the author has found from experience that, within 
reasonable limits, the final digits in any quantity, which have been used 
during computation and which are known to be correct, should be retained. 
Even if the author himself has no call to do so, a reader may at some future 
date wish to apply some mathematical process to the data which requires high 
accuracy. To cite just one such process, a considerable loss of accuracy 
would occur, for example, if further solutions were obtained from those in 
the present monograph by numerical interpolation; the loss of accuracy would 
be even more severe if an extrapolation process were necessary. 

1.3 Accurate solutions already available 

Solutions are regarded as accurate in the present context when they 
are correct to about six digits, an accuracy which is readily achieved with a 
reasonably advanced digital computer. However, relatively few solutio s were 
known to this accuracy at the time of the survey by Spalding and Evans t- , which 
included work up to mid 1959. 

The case of zero pressure gradient had been adequately treated by 
Emmons and LeighI', including both inward and outward mass tr~+e.ferj their 
results were subsequently used to solve the b-equation, Evans . Accurate 
solutions were also known for zero mass transfer covering a wide, but not 
the whole, range in pressure gradient; these too were applied to the b-equation, 
Evansp. Because few other solutions of the required accuracy were known, work 
on the b-equation had to be discontinued at that stage. 

Some/ 
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Some other solutions for scattered values of the pressure gradient 
and mass transfer parameters were also known, but in general these were only 
accurate to four or five digits. Asymptotic solutions for very intensive 
suction were also known and the accuracy of these solutions improved with 
increasing rate of suction. 

Discussion of the present state of our knowledge of similar solutions 
is best left until the end of the monograph. If reference is made to Fig. 29 
in Section 9, which shows the known solutions marked on the Fz - ha plane 
(for definitions see notation list), the accurate solutions known when the 
present programme of work was initiated were therefons as follows: 

1. Solutions were known for p = 0; these lie along the 
ordinate hz = 0. 

2. The line (vo&/v) = 0 was known from its intercept with 
the separation line up to the line p = 2.0; its intercept 
with the line /? = +a, was also known because that point is 
obtained from an exact analytical solution. 

3. The asymptotic solutions for intensive suction were known; 
on the scale of Fig. 29, however, these were confined to a 
very small region close to the point Pa = Xa = 0. 

4. Some other isolated points on Fig. 29 were also known; 
these were largely confined to the quadrant lying between 
the lines marked /3 = 0 and /3 = 1.0. 

1.4 How the report came to be written 

To overcome the shortage of accurate similar solutions, therefore, 
the task of computing othe 
were duly published, Evans f 

s was undertaken and some of the first results 
. Others were obtained in groups at various times 

using a number of different methods and these too were submitted for publication. 
When several papers had been accepted, however, it became clear that, since 
they treated various aspects of a single subject, some advantage would be 
gained for the reader if they were published together. It was therefore 
decided to prepare the work for publication in the form of the present report. 

While this decision meant that the whole work had to be rearranged, 
and indeed several sections had to be completely rewritten, it gave a welcome 
opportunity for clearing up a number of obscurities in the original versions 
of the papers and for showing more clearly how the various sections are related 
to each other. 

It al be seen in the concluding discussion of the report that there 
still remain large gaps in the available accurate solutions. However, the 
preparation of the report is the end of a phase in the work because, for 
various reasons, further solutions are not likely to be obtained for some time 
to come. 

1.5 Outline of the report 

The forms of the velocity equation for similar boundary layers with 
which the report is concerned are given in Section 2, The pressure gradient 
parameter p occurs in this equation. In the mgnograph, the form of the 

equation/ 
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equation most frequently given in the literature is used when l/31 < I.0 but 
an alternative form is adopted whenever IpI > IrO; far 1~1 = 1 either form 
can be used. For the particular case when 1~1 is infinite a simpler form 
of the equation is deduced and this is found to yield solutions fairly readily. 

Section 3 contains formulae which relate the various functions of 
the velocity layer to each other. They have been used, among other things, to 
evaluate the required boundary-layer functions from quantities given by the 
computer. 

The variation of the shear stress near the main stream is discussed 
in Section 4. By examination of the differential equation it is shown that 
when the dimensionless fluid velocity is 'close to unity, so that the stream 
function is virtually a linear function of distance, the local shear stress 
should diminish rapidly with increasing distance from the wall, although 
computed solutions frequently do not behave in this way. 

A few analytical solutions known to the author are given in Section 5. 

The numerical solutions which are the main contribution of the present 
report are discussed in Section 6. These are divided into several groups, but 
only brief remarks are made about the first two groups, the first with 
accelerated flows when p is small and positive, and the second for decelerated 
flows when p is small and negative. However, more attention is paid to the 
solutions with separation as well as to those for infinite IPI. 

Section 7 is devoted to a general method of boundary-layer analysis 
based on th 
by Spalding 3 

displacement thickness, akin to that based on the momentum thickness 
. For some problems, those involving decelerated flows for example, 

this method may possess some advantages over others because of the way in whioh 
the boundary-layer functions vary under such conditions. 

The work described in Section 8 was carried out in co-operation with 
Miss Joan D. Hayhurst formerly of the Division of Food Preservation, C.S.I.R.O., 
Australia, and is concerned with conditions of intensive mass transfer and with 
conditions of no mass transfer when the parameter p is large. For intensive 
mass transfer, analytical solutions are given in the form of asymptotic series 
in inverse powers of the mass kransfer parameter. The solutions for intensive 
suction, first given by Watson , are complete in the sense that it is possible 
to evaluate all the boundary-layer functions of interest in the present work. 
For intensive blowing, however, only a series for the dimensionless wall shear 
is given. For no mass transfer and large IpJ a polynomial expansion in 
inverse powers of /3 is given; this can be used for positive and negative 
namely for both the real and the imaginary domains relating to equation (12). 

/3, 

In the concluding discussion in Section 9, the present state of our 
knowledge of similar solutions is summerized and suggestions are made about 
how the work should be continued. Solutions which can be related to boundary 
layers exist only as far as certain limiting values in the pressure gradient 
and mass transfer parameters; with solutions for values beyond these limits 
the displacement thickness may not be finite or the local shear may not decrease 
to zero at large distances from the wall. However, there are some unexpected 
features about the behaviour of solutions near the limiting values for 
decelerated flows. 

2./ 
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2. The Velocitv Equation for Similar Boundarv Lavers 

2.1 The partial differential equations 

The transformation of the partial differential equations of the 
uniform-property, laminar boundary layer to similar co-ordinates is given in 
many places in the literature. Only a brief account is needed here; a more 
detailed discussion may be found in a recent paper, Evans-/, which also contains 
references to many earlier papers in the field. 

The velocity equation in similar co-ordinates contains a parameter /3 
which may take any real value, positive or negative. Equation (12) below is 
the form of this equation most frequently encountered in the literature and this 
can be used, for example to obtain numerical solutions, whenever is not 
large. When lpl approaches infinity, 

lal 

equation must be used, see Evans7. 
however, a different form of the 

These alternative forms of the equation are identical for /3 = ? and 
it has been realized recently that some advantages are gained by using the 
more familiar form of the equation only when IpI < 1, and adopting the second 
form, in which the parameter is l/p, whenever 1~1 >/ I. This will be the 
approach in the present report although only some of the numerical solutions 
were obtained after the author became aware of the advantages of this approach. 

For two-dimensional, laminar flow with uniform properties, the 
conservation of the momentum of the fluid in the boundary layer is expressed 
by the equation: 

au au dUG a2u 

II--+~- = uG-+v- ax ay ax af 
. . . (1) 

and the continuity equation is: 

au av 
-+- = 0. 
ax a~ 

. . . (2) 

In these equations: 

X = distance measured parallel to the wall on which the boundary 
layer occurs 

Y = distance measured perpendicular to the wall towards the 
free stream 

u = local component of fluid velocity in the x-directian 

UG = value of u in the free stream 

v = velocity component in the y-direction, and 

v = kinematic viscosity of the fluid, the ratio of the dynamic 
viscosity p to the density p. 

When mass flows through the wall with a velocity vo, which may be 
positive, negative or zero, the boundary conditions to be satisfied are: 

Y/ 
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where v. is positive when directed outwards from the wall. 

The stream function Q is now defined by: 

. . . (3) 

w w 
u = -, v = -- . . . 

ay ax 

thus automatically satisfying equation (2), so that equation (1) becomes: 

a* a2$ a* a2jf duG a’$ 
-e---o- = 

ax ti UGT+Yz l 
.  .  .  

aY axay 

Spalding5 has shun that this equation possesses similar solutions 
when uG, the fluid velocity in the free stream, satisfies the relationship: 

dUG -= c ,$a-1 l/B 
dx 

. . . 

(4) 

(5) 

(6) 

where C and @ are constants. 

When the pressure gradient in the free stream is zero, both du~/dx 
and /3 are zero. In the transformation to be given below, equation (6) is not 
then used directly but is replaced by the following equivalent form: 

' d"G 1 uG 
. . . (7) 

Pax 
-- = (a-a).;-' 

Another relationship required in the transformation, which is also deducible 
from equation (6) is: 

. z/z = 2(1-;)3 . ..(8) 

which is seen to contain the constant j3 but not the constant C. 

2.2 The equation for similar boundary layers when fl is small 

When the dimensionless length co-ordinate is taken to be: 

17 = y(; tzf . . . (9) 

and the dimensionless stream function iS defined as: 

. . . (IO) 

substitution/ 



substitution into equation (5) gives, after some calculation: 

(+!2)[ fU + ff" + /?(I - r"") 
3 

= 0 .** (11) 

where the primes signify differentiation with respect to the independent 
variable q. 

The velocity equation for similar boundary layers to be used when /3 
is small is then: 

I PN + ff" + @(I - f's) = Ol . . . (12) 

and the boundary conditions associated with it are: 

q=o, f=fc, f'=O 

1 
. . . (13) 

l-j -, 00, f' 3 1, 

where fc is a constant related to the velocity v. with which mass flows through 
the wall by 

vo 
fc = - . . . . (14) 

The group in the first bracket in 
velocitg gradient duJdx is zero because 

1 dUG 

equation (11) is not zero when the 
fi is also zero then and, by 

equation (7), the quantity - - does not 
Bb 

vanish. That group would, however, 

be zero if 
equation (19 

were infinite and, instead of equation (-l2), we then have 
of the next section. 

When p and duddx in equations (9) and (10) are of opposite sign, 
rl and f ar_e pure +aginary. If we let i = 6i we may then define real 
quantities q and f by: 

q=it, f=i.F . . . (15) 

and obtain the form of equation (12) valid for the imaginary domain. This 
differs from equation (12) in having a negative sign preceding the first term 
and the equation which connects the parameter Fc with the velocity vo, 
corresponding to equation (lb), does not have a negative sign. 

Although equation (12) has been used for obtainin 
g7 

numerical solutions 
in the real domain even for large p, see for example Evans , it became 
increasingly more difficult to satisfy the main-stream boundary condition as 
B increased. It is now realised that the form of the equation to be given 
in the next section would have been more appropriate for IpI > 1.0. 

2.3/ 
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2.3 The ve1Qcit-y equation when B is large 

The real and imaginary domains relating to equation (12) are separated 
by the line along which l/31 is inf'inite. To obtain an equation which can be 
used for any large value of IPI ? in particular for infinite IpI, we choose 
a transformation whose effect is to remove /3 from equations ( ) and (10) and 
from the mass transfer parameter f0 as defined by equation (14 . 7 Our choice 
of dependent variable also, incidentally, moves the mass transfer parameter from 
the boundary conditions into the differential equation but, apart from making 
the boundary conditions independent of the mass transfer rate, this has little 
effect gn the problem. 

The co-ordinates to be used were discussed more fully in an earlier 
paper, Evans7, and differ only slightly from those already proposed by Spaldin~. 
The independent variable, which is a measure of 'the distance from the wall, is 
defined as: 

I dUG 3 
E =y -- 

( > 
. . . (16) 

v dx 

and the dependent variable is: 

If 8 =- 
UG 

. . . (17) 

The mass transfer parameter b, a constant when the boundary layer is similar, 
is taken to be: 

. . . (18) 

The ordinary differential equation which governs the variation of 8 as a function 
of E; is then: 

with the boundary conditions: 

g = 0, 8 = 81 = 0 

3 
. . . (20) 

gaoo, et-, I. 

The primes in equations (19) and (20) denote differentiation with respect to E. 

Equation (19) is the form of the velocity equation for similar boundary 
layers suitable for use when /3 is large; instead of /3 itself, however, it 
would clearly be more appropriate to treat I/@ as the parameter in this equation. 

Examination/ 
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Examination of equations (16), (17) and (18) shows that the variables 
c and 8 and the parameter kb are real for accelerated flows, when dug/dx 
is positive, and pure imaginary for decelerated flows. Apart from the fact 
that it can be used when the parameter f3 is large, there may be a further 
advantage in using equation (19) in preference to equation (12), for not only 
does the line p = 
the k,e) 

0 divide accelerated flows from decelerated flows, but in 
co-ordinates it also separates the real from the imaginary domains. 

2.4 A simpler form of the velocity equation for infinite ~9 

When /3 is infinite the second term in equation (19) is zero, so that 
the equation does not contain the stream function 8 explioitly. A simpler 
form of the equation can then be obtained by taking the fluid velocity de/e 
as, independent variable and the local dimensionless shear d26/Ea as 
dependent variable. If we give these quantities the symbols 

ae a% 

+=z. y= aq;a’ . . . (21) 

note that 

a30 dY 
- = y-, 
a3 a+ 

substitute into equation (19) and divide by y, we get 

. . . (22) 

aY (1 - 4”) 
-++ + = 0. l em (23) 
w Y 

In this equation the independent variable is confined to the fixed narrow range 
06$61 and the main-stream boundary condition is 

+ I, y=o. = . . . @J+) 

Solutions to equation (23) satiseing (24) will later be given for a wide range 
in the mass transfer parameter ke. 

Equation (23) holds for acuelerated flows when duddx is positive 
so that c, 8 and ke are real quantities. For decelerated flows duG/dx is 
negative and g, 8 
and lc,, = i&,, 

and & are pure imaginary; againwewrite E=g,e =i5 
where barred quantities are real, and define new real variables: 

. . . (25) 

W8 get for 8qUatiOn (23): 

a7 --+i&)+ 
(1 - P) 

= 0 

a? r 
. . . (26) 

with/ 



- 17 - 

with the boundary condition: 

+I, v=o. . . . (27) 

The relationship between the mass transfer parameter &, and the velocity vo 
is: 

. . . (28) 

Solutions to equation (26) satisfyipg (27) will later be given for a range of 
negative i& satisfying I&, 1 z 83. 

3. Relationships between Functions of the Velocity Boundary Layer 

3.1 General formulae 

Relationships between functions of the velocity boundary layer will 
now be given. These have been used in preparing the accompanying tables of 
numerical solutions and are to be referred to frequently in later sections of 
the monograph. Most of the formulae will simply be stated, because they are 
well known and have been d rived and discussed in earlier publications, 5 
Spalding and Evansh, 7 

Spalding , 
Evans . 

Three boundary-layer thicknesses are first defined in terms of the 
similar co-ordinates hf) of Section 2.2: 

Displacement thickness: V = 1"(1 - g) aq, . . . (29) 
0 

Momentum thickness: 63 = [Et -E) drl, . . . (30) 

Shear thickness: 
1 

62 = -. . . . (31) 
f$ 

Other boundary-layer thicknesses can also be defined but we shall confine our 
attention to these three. If a double asterisk is used to denote the same 
thicknessgs in terms of the co-ordinates ,(F;,0) of Section 2.3, since 
T = C/P" 
1, 2 or 4. 

it follows that 6: = 6: p", where the subscript n may be 

These thicknesses are related to each other by the exact relationship: 

1 

G 
z f3 = fo + aw + (1 + d&f . . . (32) 

which is obtained by integrating equation (12) from q = 0 to PJ = 00. 

We/ 
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We also define the following thickness ratios: 

1 63 
H,, = - = - H 

24 

= f2 &!J , $, = f$ Sf . . . (33) 

and the following mass transfer parameters: 

VOsl VO&! V f:: 

- =-f,&+ , - = -fe@ , P = -- . . . (%I 
V V vo 64 f-0 

where the last is written as the reciprocal of a mass transfer parameter because 
this is the form usually adopted. 

It should be noted that because the ratio ha varies over wide ranges, 
even becoming infinite for flow over a flat plate with a sufficiently high rate 
of blowing, in the present work its reciprocal Hzi is often used instead, 
because over most of the region of interest this remains within fairly narrow 
limits. It will still be convenient, however, to use hp in some formulae and 
Hz, in others. 

In terms of the functions just defined, for similar boundary layers 
the pressure gradient parameter relating to the momentum thickness is: 

. . . (35) 

and Fe, the function which gives the rate of growth of 6s in the x-direction, 
is 

voha 
UG aha, I %a4 +- 

Fs 3 --= 2 -- 
v dx ( > 

V 
1 . . . . (36) 

B 1+p +%a 

It may be of interest to note that only l//3, but not /3 itself, occurs in 
these equations; it is also possible to write the fundamental equation (6) and 
the definitions in equations (9) and (10) in terms of l/p only. 

For any uniform-property, laminar boundary layer, whether or not the 
conditions for similarity hold, the integral momentum equation also applies. 
In the present notation this is: 

1 UG d-6; 6," dUG vo6a 
w-m + (2 + 54 -- = Ha4 + - 
2 vdx v dx V 

.** (37) 

3.2 Relationships in terms of an arbitrary thickness 6, 

Equations (35)) ( 36) and ( 37) contain the pressure gradient parameter 
and the rate of growth function applicable to the momentum thickness 6~. We 

shall/ 
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shall now derive a more 
arbitrary thickness 6n, 

general form of these equations which apply to an 
where the subscript n may be 1, 2 or 4. 

When equation (32) is multiplied throughout by the arbitrary thickness 
6; the result can be written in the form: 

vo 6, 
Hn4 = - - + /3(q)" . . . (38) 

V 

where the definitions of the thickness ratios H 
n4' Hln and H2n are obvious. 

Since X n = /3(6:)" we have: 

hn E 
6; dUG Hd + (vo@d 

l - -  (39) 

which clearly corresponds to 
Now, for a similar 

equation (61, we get: 

% __ 

equation (35). 
boundary layer h, is a constant so that, using 

-u 2(8-1)p = oonstant. G 
V 

. . . (40) 

This equation is now differentiated with respect to the distance x, divided 
by u(a-2)/fl 

G and rearranged to give the result: 

UG d6; 1 

Fn9--z 2 -- 
v dx ( > 

1 
6; dUG 
-- 

P v dx 
which is the more general form of equation (36). 

To get the more general form of equation (37) we eliminate the 
parameter /3 between equations (39) and (41), the result being 

1 UG d6a 1 
-- -% (2+%2) 

6; dUG vO 6n 
-- = - 

2vdx v dx H2n c H”4+Y l 3 

. . . (41) 

. . . (42) 

While this equation appears to be a more general form of the integral momentum 
equation which applies to any boundary layer, it is in faot applicable only to 
similar layers as may be suspected from the way in which it was derived.* 

In many branches of study concerned with laminar boundary layers, in 
aeronautical engineering for example, interest is concentrated on the force which 
the moving fluid exerts on the wall, or more precisely on the stagnant fluid 
located very close to the wall but which may be regarded as forming part of the 
wall. The following equations in terms of the shear thickness may therefore 
prove useful in such studies: 

64" duG 1 + (VOUJ) 
L E -- = 

v dx (l+p)ar l ** (43) 

ana/ 

*In general the term - 

"similar" flows this tE:is 
in the x-direction. 

also occurs on the left but for 

the ratio (&/&) is a constant 
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1 UG as,” 

+ (2 + &2) 

64” duG 
we- 

2 v dx 

-- = i!-(,+q). 

v dx 
. . . m+) 

3.3 The special case /3 = -1 

When fl= -1 and n = 1 equation (39) reduces to: 

vo s, 
ht = Kt4 +-. . . . (45) 

V 

It is also known, Evans7, that for this value of p the following relationship 
holds: 

b *2 -2fo&++2 = 0 . . . (46) 

which, with different symbols, is: 

vo6, 
-h,+2--+2 = 0. . . . (47) 

V 

It then follows from equations (45) and (47) that: 

x, 
I&, = -+I . . . (48) 

2 

vo6, x, 1 - = A-. . . . (49) 
V 2 

Equation (4-8) means that when the thickness ratio K4 is plotted as 
a function of the pressure gradient parameter &, points for B = -1 fall on 
a straight line of slope 6. This line passes through the separation point, 
when s.4 =0 and & z-2, as well as the point corresponding to an infinite 
rate of suction, when &4 = I and & = 0. From equation (49) the mass 
transfer parameter v,S,/v can also be given exactly along this line; it 
ranges from -2 at separation to -1 for very intensive suction. 
4. Variation of Shear Stress near the Main Stream 

4.1 Specification of the beginning of main-stream flow 
On examination of accurate numerical solutions to equation (12) with 

boundary conditions (13), th e stream function and its first two derivatives are 
seen to approach their main-stream values in the following order. The stream 
function f first beoomes a linear function of. q, at least to the number 
of significant digits to which the solutions are quoted, then the velocity f' 
becomes unity, and lastly f", which is a measure of the local shear, becomes 
negligibly small. We shall now consider the behaviour of f" when f and f' 
are close to their main-stream values because it is often given incorrectly by 
computers. 

The following are three possible ways of' specifying the beginning of 
main-stream flow: (a) the point where f is linear, say, to six significant 

digits,/ 
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digits, (b) where f' is unity to six digits or (c) where f" is zero in the 
sixth decimal place. The smallest value of 77 at which main-stream conditions 
are satisfied depends not only on which of these criteria is used but also on 
the number of significant digits to which quantities are specified. The present 
work was planned so as to obtain numerical tables of the stream function and 
its first derivative, which gives the dimensionless fluid velocity, correct to 
at least six digits. 

This number of digits may seem excessive for boundary-layer theory, 
which itself contains a number of approximations. The extra effort required to 
obtain this accuracy, however, has been amply justified by the advantages gained 
when the solutions were applied, for example, in obtaining other solutions by 
interpolation or in evaluating quantities associated with the b-boundary layer. 

Of the three conditions listed above, (c) is the most acceptable on 
physical grounds. Unfortunately, however, computed values of f" are 
considerably less reliable near the main stream than either f or f', so 
that for present purposes we shall use condition (b) instead; this turns out 
to be a less stringent condition than (c). We shall therefore regard main-stream 
flow as beginning where the dimensionless velocity f' becomes unity to six 
significant digits. 

4.2 A formula for the decrease of wall shear 

When equation (12) is divided throughout by f" it becomes: 

F" (1 - f') 
- + f + p(1 + f') = 0. . . . (50) 
f" f" 

This operation is allowed because, although f" tends to zero for very large 
T, it is still finite at the point we have chosen as the beginning of 
main-stream flow. 

Now, as the main stream is approached, f' + 1 and f" -, 0, so the 
factor (1 - f')/f" in the last term is indeterminate. It is quite reasonable 
to assume, however, that it tends to the same value as the ratio -f"/f"'. 

The assumption holds only if f' approaches unity rapidly enough. 
It does not hold, far Example, if (1 - f') m A/r, where A is a constant. 
When (1 - f') w De-P17 , where D and p are oonstants, the assumption is 
reasonably accurate provided pga >> 1. For this second example we get by 
differentiation f' w me-Prl which means that f' decreases fairly 
rapidly as q increases. By FnLerting the above assumption into equation (SO), 
however, we shall see that f" decreases even more rapidly than this f'cr 
accurate solutions to equation (12). 

The above argument can, of course, be presented in the reverse order, 
namely that if the assumption we are making is valid, then f' must tend to 
unity fairly rapidly. 

By inserting the assumption into equation (50) we then get as the 
degenerate form of the equation near the main stream: 

P” f" 
- +f-2/3- = 0. . . . (54) 
f" f"' 

This/ 
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This 5s a quadratic in the quantity: 

f(ll a 
-= - fZn f" 
f" aT c 3 

. . . (52) 

with the solution: 

a 
- enf" = -- -&(fa+@)2 
aq c 3 

f r 

2 
. . . (53) 

where a negative sign is chosen to precede the radical because f" must be 
very small and must diminish as q increases. 

Now equation (51), and therefore equation (53) also, applies only where 
the stream function is virtually a linear function of ?J having the form: 

f = q+f~-61*. . . . (54 

The differential sign outside the brackets on the left of equation (53) may 
therefore be replaced by differentiation with respect to f giving: 

. . . (55) 

When this is integrated between the two points ?j = a ana q = b, straightforward 
calculation leads to the following expression for the ratio of the shear stresses 
at these two points: 

f;l 21.3 
-= 
f; c exp. - c 

f% + fb(f$ + &I+ - f"a - fa(f", + 8a) 6 
3 

(56) 

where the subscripts denote values of the functions at the points "a" and 'b". 

Since f is a linear function of r), 
right-hand side of equation (56) in terms d' q, 

it is possible to express the 
but the expression then becomes 

rather unwieldy and less convenient to use than the above form in terms of' the 
stream function f. 

4.3 The special case of zero pressure gradient 

The case when the free stream pressure gradient is zero dis lays some 
special features, as may be seen by putting /3 = 0 into equation (53 . P This 
gives: 

i (en f") + f = 0 . . . (57) 

which is, in fact, an exact form of equation (12) for @ = 0. 

From/ 
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From this we may deduce:* 

dn( f) = ff aq . . . (58) 
0 

which means that the ratio of the shear stresses at ang two points "a" and "b" 
is exactly: 

f" a - = exp.- 
r;: - 

0.. (59) 

When both "a" and "b" are in the region where 
ratio beoomes: 

f satisfies equation (56) this 

r; . 
-= exp. - 3 
f{ (I 

(7, - n)(tla + N + 2(% - @)I 
3 

= exp. - i (f”, - f-9. 

4.4 Comparison with computed values 

. . . (60) 

It is found.fkom experience that much of the error in computed values 
of f" at large q arises from uncertainty in the startFng value f$ . Even 
when the latter is known accurately to six digits, it is possible for uncertainty 
in the seventh digit to give rise to appreciable error in f' after, say 100 
steps in the integration prooess. 

A good test of the validity of equation (56), therefore, is to examine 
the numerical splution for p = -1 with f0 = 1.5. Since we then have 
fJ' = (fi - 2)v = O-5 exactly, see Evans7, there is no error in the starting 
value. Two lines in this solution at the point where the velocity beoomes unity 
to six digits are: 

T f f' f" 

5.0 5’YOW 0. 999999 0’622240 x IO-’ 
5-2 5-70000 1 l 00000 0'218575 x ?(T6 

PO four digits the ratio of the seoond to the first of these values of f" iS 

0'1182; when calculated from equation (56) it is O*l189; The difference 

between/ 

"1-t follows from equation (58) that when p = 0 the re iprocal of the wall 
gradient for the b-boundary layer, Spalding and Evans 1 , is: 

B 00 
- = 

6 

(f"/f;)" aq 
bd 

which, for d = 1, immediately reduces to the well-known result (g/B) = f&'. 
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between these values occurs in the ninth decimal place where, in fact, the error 
produced by rounding-off within the computer is having some effect. 

Equation (56) was also tested at the beginning of free-stream flow 
with several other numerical solutions and, as expected, the agreement depended 
on the accuracy of such solutions. 

The final conclusion was that the equation gives an adequate description 
of the rate of decrease of local shear near the main stream and that its 
accuracy improves with increasing distance from the wall. It can, to some extent, 
be used as a test of the accuracy of numerical solutions. 

5. Some Analytical Solutions 

Most solutions to equation (12) with boundary conditions (13) known 
to the author were obtained by numerical integration. There are, however, a few 
analytical solutions which are useful both for checking the accuracy of numerical 
methods of integration and to serve as exact points of reference when plotting 
relationships between various boundary-layer functions. The solutions for 
intensive mass trans'fer to be discussed in Section 8 are also analytical solutions; 
they become asymptotically exact as the rate of mass transfer increases. 

5.1 Two solutions for infinite 8 

(a) Solution for k0 = 0 

When /3 is infinite and ltb = 0, equation (19) reduces to three 
terms and the solution which satisfies equation (20) is: 

c 

E 
8 = g+ 2sf- fltanh -+tanh+ 

4-F $3 
; . 

By differentiation the dimensionless forward velocity of the fluid is: 

de 

z 
= 3tanh2 

. . . (61) 

. . . (62) 

This solution was discussed more fully in an earlier paper, Evans'. In the 
coordinates of Section 2.4 it is: 

y = E (2 + f#$(, - $) 

which will be referred to later. 

(b) Solution for kc = -5/fi 

When /3 is infinite and 
conditions (20) has the solution: 

. . . $3) 

ko= -5/G, equation (19) with boundary 

where:/ 
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where: 

Q = 1 + (42 - 1)e -c/if3 . 
.  .  .  (65) 

In this case the dimensionless velocity of the fluid in the boundary layer is 
given by: 

and the boundary-layer functions have the following exact values: 

k3 = -5/- 

v* = i"(l-G)dg = J";(2-C!+4n2) 

0 

vo b 
-= 5 (1 + 2iE - 3 en 2). 

v 3 

Other functions can readily be evaluated from these. 

In the co-ordinates of Sectian 2.4 this solution is: 

. . . (66) 

. . . (67) 

5.2 The solution for j3 = -1 with decelerated flow by Thwaites 

Thwaites" has given an analytical solution to equation (12) for 
P= -1 with decelerated flow, namely when the variables are real. His 
cc+ordinates, however, differ greatly from those used here and an awkward 
transformation is needed in order to make use of his solution. It was therefore 
thought worth while expressing the solution directly in terms-of the present 
formulation of similar boundary layers. 

The value $ = -1 also displays some special features in the imaginary 
domain but no analytical solution has yet been found for that case. 

It was shown in an earlier discussion, Evans 7 , that when p = -1 
equation (12) reduces to the following first-order equation: 

2/ 
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df 
2-+fa = f$ + 2f;q + Ti" . . . (68) 

d?l 

and the solution must satisfy the boundary condition: 

df 
-4 1 exponentially as q + 00. . . . (69) 

It was also shown that, following 
thickness given in equation (29), 

so that 

(fg - 2)$. 

These relationships are now used to rewrite equation (68) as: 

11 a 

0 zz -I= 
0. 

If a new independent variable: 

r: = (77 + f,n)/fi 
and a new dependent variable: 

from the definition of the displacement 
the following relationships apply for 

fo -v 
fo + (g - 2+ 

p = -1: 

. . . (70) 

. . . (71) 

. . . (72) 

. . . (73) 

I 
J = 

7-l 
h-t; 

are chosen, equation (73) becomes: 

dJ 
---J-l = 0. 
a 

. . . (75) 

. . . (76) 

This has the solution: 

where Y is a constant of integration. When transformed back to the (q,f) 
variables this is: 

. . . (78) 

Since/ 
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3 exp. - {f$/fij2 

(fo -f;) - 

f finally becomes: 

. . . (79) 

f = q+f::+ 
? + (x/8)$f,-f#)~erf[(~f$)/fl] - erf(f$/Jz)iexp.(f$/fi)2 

VW 

For the particular case of separation with this value of /3 the values 
f. = fi and fY: = 0 are substituted into this to give: 

f = '1+ 
1 + (&/2)erf(q/i@) l 

.  .  .  034) 

Equation (80) gives f as a function of TJ and f. only, because, by 
equation (72), fg is a simple function of f,. For any specified value of the 
parameter fo, therefore, the stream function f can be calculated exactly for 
any q using numerical tables of the exponential and error functions. 

The formula for the fluid velocity, obtained from equation (80) by 
differentiation with respect to q, is rather complicated. To obtain numerical 
values for the velocity it is easier to evaluate 
substitute this into equation (68). 

f from equation (80) and then 

The local dimensionless shear may then be evaluated from the formula: 

f" = ft:+'l-ff' 

which is obtained from equation (68) by differentiation. 

. . . (et? 

6. Numerical Solutions 

6.1 A few general remarks 

The numerical tables reproduced in the present report contain only 
boundary-layer thicknesses, thickness ratios, pressure gradient parameters and 
rate of growth functions, all for specific values of the parameter p and the 
appropriate mass transfer parameter. Tables giving the stream function f and 
its derivatives f' 

P 

and f", and for many solutions the function 

f drl, at regular intervals in the independent variable q, were also obtained 
0 

and prepared for publication; the relevant tables for /3 infinite gave values 
of the local shear y at intervals insthe dimensionless velocity #. However, 
it was decided to omit such tables from this report because they would have 
occupied an excessive amount of space. 

In spite of their absence it will be necessary to refer to these tables 
when we later discuss the behaviour of solutions, and readers who find that they 
require copies should send a request to the author. 

The/ 
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The solutions are divided into four main groups, each of which was 
computed at a different time; a fifth group contains some miscellaneous results. 
Each of these groups will be discussed separately. 

The method7used for integrating equation (12) was described in an 
earlier paper, Evans ; the method of integrating equation (23) will be discussed 
in Section 6.5. A programme was prepared for integrating equation (12) 
numerically on a computer using a Runge-Kutta process. Only approximate values 
of the wall shear fz were known but these were improved by iteration; the 
criterion to be satisfied was that, as q increased, the velocity f' should 
tend to unity from below and remain there for a number of intervals in '1. 

When fd.' was known accurately enough for specified values of fl and 
f o, the data were fed into the computer which then supplied values of f", f' 

and f, and for the more recent solutions 
I' 

f 9, at regular intervals in the 
0 

independent variable q starting at q = 0,. This integral is required in 
solutions of the b-equation. 

The displacement thickness w was evaluated from the value of the 
stream function f in the main stream making use of equation (%), and the 
momentum thickness was obtained by using equation (32). 

For /3=-l, however, equation (32) could not be used, so that 68 
had to be calculated from the values of f' given by the computer. Instead of 00 
evaluating 

i 
f'(l-f')dq directly, however, the following method was found to 

be more accu:ate. The momentum thickness was written as: 

co 
6$ = f(oo) - f, - 

I 
fla a rl . . . (83) 

0 

where f(a) denotes the value of the stream function given by the computer at 
some suitable point in the main stream, and the last term on the right was 
evaluated by the application of Simpson's rule. This method is more accurate 
because the region near the wall, where f' changes most rapidly, makes only a 
small contribution to the third term in equation (83). 

When the values of f$, Sf and 63 were known for specified values 
of the parameters fl and fO, other functions could be evaluated frm the 
formulae given in Section 3. 

6.2 Group I - Solutions for accelerated flows; /3 positive. 

The solutions in this group were the first to be computed and are 
generally less accurate than others which were obtained after gaining some 
experience with the computer. The solutions are given in sets, each set covering 
a range of f0 for a fixed value of B. 

Even for these less accurate solutions, most of the boundary-layer 
functions quoted are known to five significant digits, in many cases six. In the 
tables of the stream function and its derivatives, both f and f1 were accurate 
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to six digits but the local dimensionless shear f"', although accurate near the 
wall,.gradually became less accurate as the main stream was approached. Instead 
of diminishing in an exponential manner as given by equation (56) as 
increased values of f" decreased to between 1 x 10e5 and 1 x lG7, de?pending 
on the solution in question, and changed very little thereafter. 

When equation (56) was used as a test of the accuracy of the solutions, 
it was found that this decreased slightly as both p and f. increased in 
magnitude, remembering that both these parameters are positive for all but a few 
of these solutions. This decrease in accuracy occurred because as p and fc 
increased the boundary layer became thinner and the size of the interval of 
integration, which varied little from one solution to the next, introduced some 
error; for p = 0.5 and 1.0, however, the interval was smaller and these 
solutions are consequently more accurate. 

6.3 Group II - Solutions for decelerated flows; /3 negative 

Far this second group of solutions the free-stream flow is deoelerated, 
the parameter p being in the range -1 d B d 0. For each value of @ the mass 
transfer parameter ranges from the largest value f. = 3'0 to a lower limit 
which is that required to give separation, and which therefore depends on the 
value of p. The separation solutions will be discussed in the next section. 

Very few accurate solutions were previously known i 
't 

this region, 
although some of low accuracy were cited by Spalding and Evans . The solutions 
previously found for /3 = 0 by Emmons and Leigh?? were in different similar 
co-ordinates from those used here and therefore did not include the present 
numerical values of the parameter fO; a new set of solutions was therefore 
obtained for this case. 

The solutions in this group are more accurate than most of those in 
the first group but even with these the function f" still does not vanish in 
the main stream but, as with less accurate solutions, decreases to a small value 
and remains there. 

6.4 Group III - Solutions with separation 

Far the purposes of the present discussion a separation solution to 
equation (12) with boundary conditions (13) is defined as one for which the 
dimensionless wall shear f# is zero. We do not consider whether, or under 
what conditions, such solutions.can be associated with fluid flows which involve 
separation. The present report is restricted to solutions with values of f$ 
which are positive or zero, that is to solutions up to and including separation. 
Solutions with negative values of f&' correspond to back-flow of fluid near the 
wall, as occurs after separation has taken place; these are not considered here. 

Before discussing the present set of separation solutions, however, we 
consider the particular case of zero main-stream pressure gradient (a = 0) 
which displays some unusual features and is of some importance in boundary-layer 
theory; the separation solution for this value of j3 was obtained by Emmons 
and LeighI'. 

6.4.1 The separation solution for @ = 0 

As fluid flows outwards through the wall, the value of the dimensionless 
wall shear fg diminishes. Emmons and LeighI found that when the pressure 
gradient in the free stream was zero, the wall shear ft vanished when the 

blowing/ 
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blowing rate had only reached the relatively low value fO = -0.875745. B8CaUs8 
of a misinterpretation by the present author, however, the thickness ratio 
for this solution was given incorrectly in the paper by Spalding and Evans4. 

IJla 

Quantities appearing in the following discussion contain a numerical factor 
because the present similar co-ordinates differ from those used by Emmons and 
Leigh. 

? x 1o-7 
Their solution was obtained by giving the wall shear fl fz the value 

and adjusting the mass transfer parameter fi f0 so as to satisfy the 
boundary condition in the main stream, the origin of the inde endent co-ordinate 
T#fi being at the wall. This operation gave a value of h/p 2 at which the 
stream function fi f vanished. The origin of the independent variable 7l/fi 
was then shifted to this point and the published tables were given in terms of 
this modified co-ordinate. 

The tables gave values of the stream function and its first thr88 
derivatives for the range -10 to +4 in this modified independent co-ordinate, 
which was negative towards the wall and po itive 

t 
towards the main stream. The 

value of &,z given by Spalding and Evans was incorrect beCaUSe the point at 
which this co-ordinate was -10 was thought to be at the wall, and this was not 
the case. 

Some remarks by Emmons and Leigh are relevant here. They say that (a) 
the differential equation gives f' = 0 for all finite q, (b) for this blowing 
rat8 the boundary layer is "blown away" and (c) the modified independent 
co-ordinate is measured from a point in the boundary region and extends to 
infinity in both directions. While it is not clear how their displacement of 
co-ordinates could haV8 been infinite in practice, it must nevertheless have been 
very much larger than the value 10 assumed When preparing the tables given by 
Spalding and Evans. 

If the magnitude of the shift be denoted by A, which in the absence 
of more precise information we shall have to assume to be infinite, in terms d 
quantities given by Emmons and Leigh the displacement thickness is: 

= AT/~?! - 0*501785. . . . UN 
When p= 0 equation (32) g ives the momentum thickness exactly in terms of fO 
and f;, and when the latter is zero we have: 

6% = -f,, = 1*2384g/r2 = O- 875745. 

Therefore if A is infinite, Sz is also infinite and He, is zero. 

The fact that the displacement thickness is infinite also explains why 
the Nusselt number is always zero for this solu 2 ion whatever the value of the 
Prandtl/Schmidt number of the fluid, see Evans' . 

The solutions found by Emmons and Leigh in the neighbourhood of 
separation are plotted in Figs. 1 and 2. 
transfer parameter (vo&/u) 

In Fig. 1 the reciprocal of the mass 
is plotted along the abscissa and the ratio Hal 

along the ordinate so that the separation solution is at the origin. The part 
of the curve shown as a broken line represents interpolation between the last 
two solutions given by Emmons and Leigh. The ratio of the ordinate to the 

abscissa/ 
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. 

abscissa in this figure is clearly (v,,&./u) and this 
for the separation solution. Because the curvature of 
is quite small and because its slope must approach the -_ ._ 

has the value o-766929 
the line in this figure 
value 0-766929 at the 

origin, the error introduced by graphical interpolat,ion is believed to be very 
small. 

4 
Fig. 2 is a better version of part of Fig. 3 of the paper by Spalding 

and Evans where the mass transfer parameter is now 
ho 62/d l The shape of the 

interpolated portion of this figure was obtained by transferring points from 
Fig. 1, the value of (vo8s/v) b ' g ein simply the ratio of the ordinate to the 
abscissa in that figure. 

The lengths of the interpolated portions of Figs. I and 2 show the 
need for further exact solutions between the last two given by Emmons and Leigh 
although, as stated by those authors, there would appear tobe no more solutions 
beyond the separation point. 

This last remark raises an important question, namely, what meaning, 
if any, should be attached to points beyond the separation point al 

e 
ng the lin 

ha = 0 in the Fa - ha plane. and Evans 3 
lines of constant (Vg6-/U), 

In the papers by Spalding and Evans 
when this mass transfer parameter was large, were 

drawn so as to cut the Fs axis where: 

vosa 
Fs =2-. 

V 
. . . (86) 

This relationship comes from the integral momentum equation which, when equation (37) 
is multiplied throughout by Hai, may be written 

Hai 
-. Fa + (2Hzi + .l)ha = %i l Ha4 + IEzi 

voha 
.-. . . . 037’7) 

2 V 

When @ is sufficiently small, but necessarily positive, the second term on 
the left is small because Xa is small, and when the blowing rate is sufficiently 
high the first term on the right also becomes very small as both Hai and Ha4 
are small. For the limiting case of very small /3 

equation (87) reduoes to equation (86). 
and very intensive blowing, 

therefore, 

It should be noted, however, that to apply equation (86) to the case 
B = 0, while being useful for plotting lines in the Fs - X, plane, contradicts 
a fundamental tenet of boundary-layer theory, for an kD.nite displacement 
thickness is contrary to the assumption that viscous effects are confined to a 
thin region near the wall boundary. 

6.4.2 The present separation solutions 

Most of the present separation solutions are new, the various boundary- 
layer functions for which are given in Table III where three solutions taken from 
the literature are also included; the first of these three is that for zero 
main stream pressure gradient discussed in Section 6.4.1. The author also 

possesses tables, copies of which can be obtained on request, which give the 
distributiy with q of the stream function, its first two derivatives and the 

function 
I 

f dq. A slightly more accurate solution than was previously available 

0 
was/ 



- 32 - 

was also computed for the well-known case of separation with no mass transfer. 
For this solution fc and f$ were zero and /3 was varied so as to satisfy 
the main-stream boundary condition; for the other solutions, however, the 
value of j3 was fixed and the parameter fo was varied. The first estimates 
of the accurate values of fc were taken from the paper by Terrill'4, although 
only a few of the smaller values of p were considered in that paper. 

For large negative /? the solutions were not very sensitive to 
changes in fc; for @= -10 and -18, for example, four figure accuracy in 
fo was sufficient to satisfy the main-stream boundary condition. The computer, 
of course, integrated equation (12) although, as has already been pointed out, 
equation (19) with imaginary variables would have been more suitable for large 
negative /3. 
equation (32) 

Since f, was not known very accurately for such values of 8, 
was not used to evaluate 63 from e but each thickness was 

calculated separately by applying Simpson's rule to the numerical values of 
f' . This is why many functions in Table III are specified more accurately than 
fo l 

The variation of Fz with ha is shown in Fig. 3 and of FL with 
hi in Fig. 4. As the pressure gradient increases in the negative direction 
each of the growth functions Fz and FL decreases to a minimum and then 
increases again when the pressure gradient becomes large and negative. We may 
see how this is brought about in the case of Fs by considering the integral 
momentum equation; a similar argument applies to Pi. 

When the wall shear is zero we get from equation (37): 

TO62 
&Fs = - - (2 + Rta)Xz* . . . (88) 

V 

A glance at Table III shows that, except very close to the case /? = 0, the ratio 
%a varies very little along the separation line, being of the order of 3 or 4. 
We may therefore regard the first term on the right of equation (88) as giving 
the effect of mass transfer on Fz and the second term the effect of pressure 
gradient. Clearly, blowing increases Fa and suction decreases it and an 
increasing negative Xs (we are not here concerned with positive X,) also 
increases F,. 

Fa therefore has a minimum value at the point where a balance is 
achieved between the effects of mass transfer and pressure gradient. For low 
rates of suction the mass transfer rate is the dominating influence but far 
intensive suction, although (vc&/v) is itself becoming large, the pressure 
gradient increases more rapidly and soon becomes the controlling influence on 
F 2. 

6.5 Group IV - Solutions for infinite B 

It is often useful to relate similar solutions to the velocity equation 
for B in the range 0 < /3 d 290 to boundary layers which oocur when fluid 
flows over a wedge of angle /3x. The solutions for infinite /3 may also be 
better understood and appreciated if they can be related to suitable free-stream 
flows. 

When @ is infinite, equation (6) becomes: 

d”G 
-= Cll; 

dx 

. . . (89) 

and,/ 
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and, since 4 is necessarily positive, the two cases of infinite /3 are 
distinguished by the sign of the constant C. 

When C is positive the free stream is accelerated. A suitable 
accelerated flow for which uC satisfies equation (89) is illustrated in Fig. 5 
where fluid flows into a"point sink at 4. If two stream-lines are regarded as 
porous walls, this first case of infinite p may be associated with the boundary 
layers occurring along such walls. On physical grounds a boundary layer would be 
expected in this case at whatever rate mass is transferred inwards or outwards 
through the porous wall. 

When C is negative, the free stream is decelerated and a suitable flow 
is illustrated in Fig. 6, where fluid flows out of a point source at Ag and the 
boundary layer again occurs along porous walls which follow two stream-lines. 
A boundary layer would be expected in this case only for a sufficiently high rate 
of suction. 

6.5.1 Solutions given in the literature 

Throughout the present section we shall use the simpler co-ordinates 
applicable to infinite /3 given in Section 2.4. 

Two exact analytical solutions for infinite /3 when the variables are 
real wqure given above in Section 5.1; these are expressed in the co-ordinates 
of Section 2.4, in equation (63) for b = 0 and equation (67) for k, = 5/<3. 

Hartreel gave numerical tables of solutions to a different problem 
and included what is, in effect, the solution to equation (23) for k,, = -3-O. 
The various functions were tabulated to four digits and agree in the fourth 
place with the same solution given in the present paper. 

Thwaitesi6 also obtained solutions to what is virtually equation (26) 
with boundary condition (27) for several values of the mass transfer parameter 
h, although his formulation differs casiderably from that used here. He also 
discussed the unusu@ behaviour of the solutions, particularly when approaching 
the limiting case k, = -82. 

The most extensive set of solutions taking into account mass transfer 
were given by Holstein'7. Other solutions obtained by interpolation between 
Holstein's results were given by Spalding and Evans4 and the accuracy of the 
interpolations was improved and their range extended by Evans7. The last 
reference also contained asymptotic values of thickness ratios for intensive 
suction,and intensive blowing, agreeing largely with those given earlier by 
Pretsch". 

Before going on to discuss the numerical solutions for infinite 8, 
we shall first of all see that for this case the equation is such that 
considerable progress can be made analytically by assuming a series solution. 

6.5.2 Series expansions for the dependent variable 

(a) When the variables are real 

It will be convenient in this section to let primes denote 
differentiation with respect to 6, or in (b) with respect to q. 

The aim is to express y as a series in increasing powers of ($I - 1). 
Such a series, to be referred to in later sections, can give values of y to 

high/ 
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high accuracy by including sufficient terms but was not used to obtain the 
tabulated solutions, 
Section 6.5.2(c) 

although a similar type of expansion tobe given in 
was used to start numerical integrations on a computer for 

intensive blowing. ThwaiteslO suggested essentially the same approach for 
solving equation (26) with boundary condition (27). 

Since y =O at C#J = 1 the required series takes the form: 

. . . (90) 

in which y:"> is the mth derivative of y with respect to $I evaluated at 
+ = 1. These derivatives may be obtained from equation (23) by differentiation 
as follows: 

Writing the equation as: 

y-y’ + lq)y + (1 - $I") = 0 . . . (91) 

we get by differentiation: 

yylf+ (y' +k,)y'-29 = 0. . . . (92) 
By inserting the boundary condition y = 0 at #I = 1 into this we get a 
quadratic in y: with the solution: 

Y: = - 6 ik, + (ki? + 8)+. . . . (93) 

A positive sign is chosen to precede the radical because solutions must be such 
that y diminishes with increasing I#I very close to 4 = 1 whatever the value 
of ko; in other words y.,! must always be negative. 

By differentiation we also get from equation (92): 

yy"'+(7Jyf +ko)yh -2 = 0 . . . (94) 

which, when evaluated at + = 7, gives for the seoond derivative: 

2 
yi’ = 

O Y :  + 16) l 

. . . (95) 

The higher derivatives are obtained by repeated differentiation of equation (94) 
and evaluating the resulting expressions at (b = 1. This gives the following 
general formula for the mth derivative at + = 1: 

(4 Km + .lh4 + ko ]ya + ($>Y:’ YJm-‘) + @vl” yl!m-2)+ l ** + (m~,)yp-‘)y~ = 0 

. . . (96) 
m! 

where m 3 3 and the symbol (g) signifies 
(m - n)! n! l 

I  

By its nature the series is most accurate near 9 = 1 and least 
accurate at # = 0. When sufficient terms are taken it gives high accuracy; 

fd 
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for b = 0, for example, even at # = 0, ten terms give y. = 1'154.70085, 
the exact value being 1~1%700% Since the accqacy improves as b increases 
in the positive direction, this agreement is highly satisfactory. The accuracy 
diminishes, however, as b increases in the negative direction, becoming very 
poor for large negative &; it is then necessary to use the series expansion 
to be given in Section 6.5.2(c). 

(b) When the vadables are pure imaginary 

By applying the same procedure to equation (26) we get: 

. . . (97) 

where primes now signify differentiation with respect to $ and a negative sign 
is chosen to Erecede the radical because 7; must always be negative and must 
increase as &, increases in magnitude. Clearly, 7: wiLL 
be real only when 
equation (26). 

so setting a limit to the useful solutions to 

The second derivative of 7 at & = 1 is: 

2 
7% = - . . . 

oi2 - G) 
(98) 

the sign being negative whereas y: was positive. The derivatives of higher 
order are the same as the corresponding derivatives for y, except that all 
quantities are written with "bars" and the parameter b is replaced by -&,. 

(c) A series for intensive blowing when the variables are real 

Only equation (23), but not equation (26), needbe considered for 
intensive blowing. 

As the rate of blowing increases the local shear y decreases and 
for intensive blowing y is small throughout the boundary layer. We therefore 
introduce a scaling factor into equation (23) by taking R = -by as the 
dependent variable, the negative sign serving to keep the new variable positive 
because &, is large and negative. When dividea by -b the equation then 
becomes: 

1 aR 
--- 

, + (1 - P> 
= 0. . . . (99) 

ew R 

When k$ is very large the first term is negligible and R becqmes approximately: 

R= (1 - +"> . . . (100) 

so that y has the asymptotic form: 

Y = -I(1 -#"). 
ko 

. . . (IOZ) 

Fig. 9/ 
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Fig. 9 shows the way in which accurate numerical solutions approach this asymptote 
as b becomes large and negative. 

It is readily shown that if y is given by equation (101) the 
displacement thickness is: 

v -d 
s, ** = 

I 
- a+ = -b en 2 

0 
Y 

. . . (~02) 

and the momentum thickness is: 

I @(I - $1 sg+ = 
I 

ii+ = -k,(l - en 2). . . . 003) 
0 

Y 

Since equation (101) also gives y. = -l/b, the thichess ratios tend to the 
following values for intensive blowing: 

H2i = (1 - 4% 2)/4n 2 . . . 004) 

H24 = (1 - 4n 2) . . . (105) 

f&4 = 4n2. . . . (106) 

These were discussed more fully in an earlier paper, Evans 7 . 

The series expansion in equation (90) becomes more accurate as the rate 
of suction increases. We now derive a series of the same kind whose accuracy 
improves as the rate of blowing increases. 

Consider the variable: 

. . . (107) 

Since y approximates to equation (101) for large negative kb, q is then 
close to unity throughout the boundary layer. 
into equation (23) and rearrange, 

When we substitute equation (107) 
the differential equation for q becomes: 

(+" - 1)qq' + WI2 + l&l - 1) = 0 . . . (108) 

the prime signifying differentiation with respect to $. 

We now seek a series for q with the form: 

q = Q+ 
IL- 

!q (0 - $Q 
m=l m. 

where Jrn) is the mth derivative of q at + = 1. 

. . . 009) 

When equation (108) is evaluated at 4 = I we get a quadratic for 
gi with the solution: 



- 37 - b 91 = -- c b + (g + 8+ . 
4 3 

The derivatives Jd are then obtained by repeated differentiation of 
equation (108) and putting C$ = 1. The first two are: 

. . . (110) 

. . . (111) 

and 
(5sie' + 4ad2) 

g = -2. . 
89, + @i 

. . . (112) 

When b is large and negative the series for q converges much more rapidly 
than the corresponding series for y. 

6.5.3 Obtaining solutions by numerical methods 

Although the effect of mass transfer on equations (23) and (26) is 
simply to add a constant to the equations, it was still not possible to obtain 
analytical solutions as simple as those given in Section 5.1. It was therefore 
necessary to use numerical methods to obtain solutions. The first such solutions 
were obtained with a desk calculator but, while these were quite accurate, it 
soon became clear that a computer would be more economical to obtain the large 
number of solutions needed to cover the full ranges of the parameter kb and 
ko adequately. 

By starting the integration at C$ = 1 and proceeding towards C#I = 0 
the problem is to solve a single, first-order differential equation with known 
starting values. This is a straightforward problem for solution by a step-by-step 
Runge-Kutta process on a computer. This process is too well known to warrant 
discussion here, but some information about it may be obtained from an earlier 
paper, Evans7. 

When the computing programme was ready, it was necessary to choose an 
interval of integration which was small enough to give the required accuracy. 
This was done by trial and error, the interval being decreased successively until 
the process gave a value of y. which agreed in the last digit with the value 
obtained using the previous interval. The exact solution for k, = 0 was 
referred to frequently at this stage, For computing the final solutions the 
intervals, expressed as powers of 2 because the computer worked in binary 
numbers, were: 

sange of Integration 
ko and ko interval A# 

4 

c 

-8 to -4 2-i 2 

Equation (26) -4.5 to -10 rii 
-12 to -20 P 

c 

20 to 0 2-7 
Equation (23) -0.1 to -1-o 2-O 

-1.2 to -4-O 2-l: 

For intensive blowing with equation (23), namely when h was beyond 
-b*O, a different approach was used. For these solutions it was found that high 
accuracy was required at the beginning of the range of integration. As the 

computer/ 
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computer would have taken a long time to obtain such accuracy, values of y 
were first-found at Cp = 0*96875 using the series expansion for intensive 
blowing given above in Section 6.5.1(c). These values were then fed into the 
aomputer which continued the integration process using an interval A# = 2". 

6.5.4 Calculating boundary-layer functions from numerical tables 
of 

The computer gave numerical values of y at regular intervals in #. 
For the displacement thickness v* the integrand is (1+)/y, whose value 
at 4J = 1 is readily shown to be -l/yJ, 
ke from equation (93). 

and is known exactly in terms of 
Simpson's rule was therefore used in a straightforward 

manner to evaluate @*. The method was very accurate as the htegrand varied 
only slightly over the range of integration, and even this small variation 
decreased with increasing suction; for intensive suction the integrand was, 
in fact, almost a constant. 

The momentum thickness 6$* was then obtained from the relationship: . 

a* = yo - ko - tq* . . . (113) 

which is obtained by integrating equation (23) over the range 0 s C#J < 1, the 
quantity YO , thevalueof y at $=O, being given by the computer. 

The formulae for calculating the other boundary-layer f'unctions listed 
in Section 3.1 from the quantities 16, yo, &J* and 68' are quite 
straightforward and need not be listed here. Some-care should, however, be taken 
with the signs of some functions when the variables are pure imaginary. 

6.5.5 Tables of solutions 

Values of most of the boundary-layer functions defined in Section 3.1 
are given in Tables IV-I, IV-2 and IV-3, which are arranged so that functions 
including and to the right of Hai are in order of magnitude running from one 
table to the next. The rate of growth functions F, and Fi are not given as 
they are simply 2Xe and &, respectively, although in some cases care 
should be taken with the signs. 

Tables giving values of y (or 7) as functions #I (or $) have also 
been drawn up but are not included in the present report. The author can make 
copies available on request. 

The intervals in the parameters k, and &, are small near zero and 
-8s respectively, because boundary-layer functions then vary rapidly as these 
parameters change. The values of k, and & were chosen so that the tables 
could be checked by diff‘erencing, as well as to facilitate interpolationbetween 
these accurate solutions at some future date. 

The number of significant digits retained is at least seven, often 
more; some reasons for retaining so many digits were given in Section 1.2. 

6.5.6 Acouracy of the solutions 

The values of y given by the computer at an interval of A$ = Ts 
are believed to be accurate to within a few units in the eighth decimal place. 
The main source of error in the data of Tables IV-l, IV-2 and N-3, therefore, 
is the use of Simpson's rule in evaluating bf*. The error due to this is 
approximately: 

Error/ 
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A# 
Error h - x fourth difference of b#wY l 

90 

The solutions for which (l-+)/y had its greatest curvature were tested by this 
formula and it was concluded that, at worst, the error should not be large in 
the sixth digit, although most of the functions should be considerably more 
accurate than this, probably being correct to within three units in the seventh 
digit. 

Tables IV-l, IV-2 and IV-3 were checked by differencing the values of 
H2i , H24, f&4 and (v,,~~/v) and in this way a number of mistakes were detected. 
These were corrected but it is not possible to be certain that all such mistakes 
were found because of the behaviour of some of the functions, particularly those 
for blowing in Table IV-3. 

The interpolated solutions given in an earlier paper, Evans/, were 
tested by plotting Hal against (v~~~/u) and comparing with the present 
values. The over-all agreement was good since the two curves intersected at 
four places. There were, however, two regions, namely near the limiting case 

&, = -8 3 b62 
and when the blowing rate was in the range 0.5 < - < I '0 

where the interpolated solutions were up to 1% Ln erro1;, although elsewhere 
the error was less tyT7this. The error near b = -8T appears to be due to 
an error in Holstein s solution for this limiting case. His value of yo, 
for example, was 1.9257 compared with the present value 1~92058109. An 
independent solution obtained on a desk calculator gave 1'92058086. 

6.5.7 Curves of some boundary-layer functions 

Figures 7, 8 and 9 show the variation of the local shear in the 
boundary layer for a few selected values of the mass transfer parameter. 

Figure 7 shows solutions to equation (26) where the lines are concave 
upwards, although to thjs scale the curvature is only apparent for solutions 
near the limit & = -83. As the suction rate increases this curvature 
diminishes and values of v. tend to -& from below. Corresponding solutions 
to equation (23) shown in Fig. 8 are concave downwards, the curvature again 
diminishing as the suction rate increases, but values of y. now approach kb 
from above. 

Some solutions to equation (23) for blowing are shown in Fig. 9. 
Also drawn on this figur 
intensive blowing, Evans 

9 are curves of (I-$")/(-b), the asymptote for 
, thus showing how the accurate solutions approach the 

asymptote as the blowing rate increases. To this scale the accurate solution 
for k, = -10 is identical with the asymptote, although an examination of the 
accurate value of y. in Table IV-3 (it would be -l/k,-, for the asymptote) 
shows that this solution is still some way from the asymptote. 

Figures IO and 11 show the variation of thickness ratios withthe 
mass transfer parameter (vo6s/v). Figure IO applies to suction and moderate 
blowing and Figure 11 to intensive blowing, where in the latter figure the 
reciprocal of the mass transfer parameter is plotted along the abscissa. 

The variations of the pressure gradient parameters are shown in 
Figs. 12, 13 and 14. Care should be taken with these figures as the curves 

far/ 
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for the displacement thickness and the momentum thickness are drawn to 
different scales, so that the former is uppermost to the right of Fig. 12 and 
the latter is uppermost in Fig. 13. 

The small amount of curvature.in Figs. 12 and 13 means that the 
pressure gradient parameter can be expressed as a simple function, say a cubic, 
of the related mass transfer parameter without appreciable loss in accuracy. 

6.5.8 A cubic approximation for intensive suction 

The curvature of y decreases with increasing suction and when the 
suction rate is very high y is virtually a linear function of @, represented 
by the first term in the series expansion of Section 6.5.2. This linear 
approximation is not, however, very useful except for very intensive suction 
because, like asymptotes in other branches of mathematics, it must be regarded 
as only the first stage in a step-by-step approach to the accurate solution. 
On t&e other hand a cubic approximation is very satisfactory as long as ke, 
or ko, is not small. 

The use of a polynomial expansion about the point $ = 1 means 
neglecting terms in high powers of (+I) in the infinite series of Section 6.5.2. 
Such an expansion gives high accuracy near # = 1 but lower accuracy near $ = 0. 
This less accurate region contributes only a part of the displacement thickness 
62* and contributes even less to the momentum thickness 63". 

For this reason a very accurate procedure for applying a cubic 
approximation is first to evaluate the thicknesses Sf* and Sg* and then to 
substitute these into the equation: 

Yo = & + 62" + 68" 

which is equation (32) expressed in the present co-ordinates. 

. . . (114) 

A cubic expansion for y gives for the displacement thickness: 

1 

61 ** = - 

II 
Yi’ yl’ (+- 1) + -g- 

0 
. 

+ f ($ - I)2jia#l 
. 

which is readily integrated to give: 

I (y:' + 2s)(jy:' - 6s - 2~;') 
61 ** = -&-I I 

S (Yl' - 2s)(3y: + 6s - 2y:') 3 

. . . (115) 

. . . (146) 

where S is an abbreviation far: 

c (y:‘)2 2 4 
S = - - - y; y:” 

3 
. . . . (117) 

4 3 

The derivatives of y at r#~ = I occurring in equations (116) and (117) are, 
of course, known functions of b as given in Section 6.5.2(a). 

For/ 
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For the momentum thichess we have: 1 
i c y:’ (f#l - 1) 

s/: -i 
sty = - 9 Y:'-g + - (+ - v qJ 

. 31 3 
0 

which also integrates to give: 

. . . (118) 

. . . (119) 

where q* is given by equation (116). 

The accuracy of the cubic approximation may be judged from Table A. 

TABLEA 

Comparison of (a) Accurate Solutions and 
(b) Cubic Approximation 

(i) Variables real 

ko sl ** w Yo 

2 Cri b” o- 377584 0~186800 2.566384 
O-377568 0*186797 2.564365 

3 
c 

(4 0*286121 0*1421512 
(b) o*286118 0*1421506 

;'G"4m; 
. 

(ii) Variables imaginary 

h -** s, g* 70 

-84 Ul 
5: 

0.59531 0.31254 I*92058 
o-60869 0.31557 1=90416 

-3 c ((baj "o*tz . 0.23785 2.29717 
0.23794 2.29664 

-4 w b” oa36366 O*lJ44243 3.569391 
0.286372 0'144245 3.569384 

The cubic approximation clearly becomes very accurate when k, 
(or &,) becomes large and gives far better values fm real than for pure 
imaginary variables. 

6.6 Group V - Some miscellaneous solutions 

We now consider briefly some tables of solutions which, for various 
reasons, could not be grouped with those given earlier. 

6.6.1 Solutions for /3 = 0 by Emmons and Leigh 

Emmons and Leigh 
11 computed an almost cmplete set of solutions to 

equatian (12) for ~9 = 0 with both inward and outward mass transfer. The 

boundary/ 



boundary- ayer functions for those solutions were later tabulated by Spalding 
and Evans t . Unfortunately, however, that table not only omitted about one 
third of the solutions actually computed, but most quantities were rounded off 
to about four digits, although the original solutions were more accurate than 
that. 

In order to make full use of the accuracy achieved by Emmons and 
Leigh, therefore, Table V-l was prepared. Here the accuracy is as high as 
the original data allowed. 

It has already been remarked in Section 6.4.1 that, as is evident 
also from the values of Hai in this table, a few more solutions between the 
first two would be useful. 
solution for fife 

There also appears to be a small error in the 
= IO, although this is only evident from large-scale 

eaphs of, say, Ha.4 against (vc&/u). The gap between that solution and the 
case of infinite fc can be filled in quite accurately by use of the asymptotic 
series to be given in Section 8. 

6.6.2 Solutions for fc = 0 and I.3 z $ a -i-O 

Solutions with zero mass transfer when the parameter @ is large 
are given in Table V-2. These occur on either side of the line which divides 
the real and imaginary domains relating to equation (12). They were computed 
by the following method. 

Equation (23), which applies to infinite /3, takes the following 
form when p is finite: 

dY 1% 

I 

0 - #J”> 
-+- -W+ko+ = 0 
w PoY Y 

-.. (120) 

where we are now interested in solutions for ko 6 0. 

When this equation is integrated numerically starting from the wall, 
the accuracy is high near the wall but decreases as the main stream is approached. 
This inaccurate region contributes roughly the same amount to the displacement 
thickness v* as to the momentum thickness &a*. It was therefore possible to 
achieve high accuracy by arranging that the computer evaluate the function: 

PM = 
+ (1 - 4)” 
I w 

0 Y 

since it is clear that at r$ = 1 the value of p is (6?* - ha*). 

The values of the wall shear yo( = 0s) required to start these 
integrations were obtained from the polynomial expansion to be given in 
Section 8.13, although some were further improved by trial and error. 

For the solutions above the broken line in Table V-2, the error 
is believed to be confined to the last two digits, but those below the line 
are probably less accurate. 

The/ 
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The quantity &, which is the correction to a straight-line 
relationship between -FZ &-d hz, is defined by 

Fa = 0*&105 - 5*I6O&ha - 

and from its values in Table V-2 appears to have 
Aa = O-25. 

When the reciprocals of Sf* and 68" 
are found to tend to zero as l/p approaches -2, . _ 

the equation: 

Ea . . . (121) 

a stationary value near 

are plotted against l/P they 
so that the thicknesses 

themselves become infinite. This value of p, namely p = -0.5, is the limit 
to meaningful solui5ons in the imaginary domain relating to equation (12), far 
not only are the displacement and momentum thicknesses infinite, but so are &, 
h . a, Fi and Fa. The ratlo Hai tends to unity, however, as may be shown by 
writing down the form of equation (32) valid for the imaginary domain and dividing 
by the displacement thickness. When f0 is zero this gives: 

p 
0 

-- = 

E-2 

B + (1 + PI Hai l . . . (122) 

Because Fz would still be finite for l/p = -2, this equation gives hi = 1 
when the displacement thickness is infinite. 

6.6.3 Solutions for f, = -0.5 and o < p < -1.0 

Only a start has been made on obtaining solutions with blowing when 
the parameter p is small. The results obtained so far are summarized in 
Table V-3. 

While the accuracy of these solutions is high, it should be emphasized 
that it becomes progressively more difficult to obtain high accuracy as the 
parameter f,, which is negative, increases in magnitude. 

7. A General Method of Boundary-Lager Analysis based on the Displacement 
Thickness 

7.1 General methods of boundary-lager analysis 

The boundary-layer equations are extremely difficult to integrate when 
the main-stream pressure gradient and the rate of mass transfer are distributed 
arbitrarily over the wall surface. For solving general problems of this kind, 
other methods of boundary-layer analysis have been developed which do not entail 
the integration of the equations themselves. These general methods are 
approximate by nature but should, nevertheless, give the order of accuracy 
required for most practical applications. In some of these methods other 
differential equations are set up which may be solved in a reasonably short tFme 
using methods and equipment which are readily available to engineers. The 
variables in these new differential equations are given either as numerical 
tables or in the form of charts, often obtained fYom accurate similar solutions 
to the boundary-layer equations. 

One such method, with a number of applications, was given in detail 
by Spalaing5, who also discussed the assumptions underlying the general methods; 
It was shown that, if 6 is any boundary-layer thickness associated with the 
velocity layer, its rate of growth with distance x may be expressed as a 
f'unction of the pressure gradient and the mass transfer rate by the differential 
equation: 

uG - 
V I 
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UG db2 c b2 duG v,6 -- = F -- - 
VdX 3 

. . . (4 23) 

where F on the right represents some function of the two groups inside the 
brackets. 

For the thickness 6, Spalding chose the momentum thickness 62, the 
function F then being denoted by F2. This choice has several advantages, for 
not only is equation (323) then the integral momentum equation, already given 
in equation (37), but, for a fixed value of the mass transfer parameter (Q&/Y), 
the rate of growth function Fs is then almost a linear function of the pressure 
gradient parameter X2, at least when conditions are not near separation. This 
linearity greatly simplifies the task of integrating the differential equation. 

We now consider a method in which 6 in equation (123) is the 
displacement thickness &. As this is a straightfomard modification of that 
based on &a& we shall not give any applications but shall merely discuss the 
variation of functions required in the method. By plotting these functions we 
gain a considerable amount of new information about the effects of pressure 
gradient and mass transfer on laminar boundary layers, especially for decelerated 
flows where this method may possess soBne advantages over others. 

7.2 Variation of thickness ratios and growth functions 

When the values of two thiclcness ratios are known as functions of the 
free-stream pressure gradient and the rate of mass transfer, it is possible to 
evaluate the other boundary-layer functions which are of interest in the present 
work and to construct tables and charts for use in general methods of boundary- 
layer analysis. I 

e 
the method based on the momentum thickness, Spalding5, 

Spalding and Evans , the ratios H24 and K2 were a suitable pair. We see 
from equation (39) with n = 1, however, that &4 and Hai are better for 
the present method. 

There are advantages in using Hsi instead of l-&s in boundary-layer 
calculations for, while the latter varies over wide ranges, becoming particularly 
large near separation, the former remains within fairly narrow limits, at least 
in most regions where the velocity equation has so far been explored. In the 
real domain, except for some large negative values of /3, it lies in the range 
0 < H21 d O-5. For asymptotic blowing, 
domains where solutions exist, Evans7, 

including both the real and the imaginary 
the values are in the range 0 f Hai d l-0. 

The ratio Hzi is, therefore, not only more suitable for plotting than XQs 
but is also more convenient for interpolation between emot solutions; it was, 
in fact, used for some earlier interpolations, 
the paper by Spalding and &ran&. 

as may be seen from Figure 3 of 

We shall now disouss the variation of the ratios )J14 and Hsi with 
pressure gradient as given by & and the rate of mass transfer as given by 

wi/4 l 

7.2.1 Variation of F&& 

Fig. f5 shows the variation of &4 for decelerated and slightly 
accelerated free streams with suction and some blowing, and Fig. 16 shows its 
variation for intensive blowing. 

Fig. 15 was constructed by interpolation using data given elsewhere 
in the present monograph. It has already been shown in Section 3.3 that points 

along/ 
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along the line fl = -1 are known exactly. The figure is believed to be fairly 
accurate, although the region near the negative arm of the abscissa, which is 
the separation line, did present some difficulty. This fi 
compared with Fig. 4(b) of the paper by Spalding and Evans r 

re should be 
which showed how the 

corresponding ratio Hz4 varied in the ssme region. 

The very small amount of curvature of the lines of constant (Q&/Y) 
in Fig. 15 is quite striking; it is extremely small for accelerated flows and 
does not become large even near the separation line. 

Fig. 16 was also7drawn by interpolation using methods and data given 
in an earlier paper, Evans . It was shown there that for intensive blowing the 
dimensionless wall shear f," tends to the asymptotic value: 

P 
f$ = --• 

f-0 

When both sides of this equation are multiplied by 6: it becomes: 

V 

%4 = -. &. 

vo 61 

. . . (IN 

. . . (125) 

This means that, for sufficiently intensive blowing, lines of constant (v~&/Y) 
on Fig. 16 become linear with a sl y e (v/vo&). Using this fact together with 
~;~;A;~s for p = l-0, see Evans , and for /3 infinite, lines of constant 

could be drawn with reasonable accuracy. The short lines on the right 
of this figure show the asymptotic values of b4 for the values of B 
indicated when the blowing rate is very high; these too were taken from the 
paper just referred to. 

7.2.2 Variation of Hzl 

Figures 17 and I 8 are the corresponding figures for Hsi. Fig. 17 
was constructed in the same way as Fig. 15, except that interpolation was 
necessary along the line /3 = -1 since points were not known exactly. The 
ourvature of lines of constant boW4, although larger than that of &4 
in Figs. 15 and I 6, is still not great. 

There is no reason to expect lines of constant (vo&/v) to become 
linear for intensive blowing when Hsi is plotted as a function of &. 
Fig. 18 gives some interpolated curves but, because the lines are not straight 
and as there are virtually no exact solutions in this region, the accuracy is 
not expected to be high. In spite of this, however, it was thought worthwhile 
giving this figure as so little is known about the behaviour of boundary layers 
under these conditions. The error in the figure is thought to be least near 
the lines marked p = 1, t3 = tco and near the ordinate marked @ = 0, and 
greatest near the middle of the figure. 

7.2.3 Variation of the rate of growth function FL 

When )44 and HZ% are known as functions of the variables &, 
and bo61/v), by substitution into equation (42) with n = 1, we get 
the rate of growth function Fi as a function of the same two variables. 
The resulting values are plotted in Figs. 19, 20 and 21. 

The/ 
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The line /? = -1 was again very useful when drawing these figures 
because points on it were known exactly; by equation (41) the slope of the 
line is -4 and by equation (49) the value of & 
value of the mass transfer parameter (v,&/u). 

is known for any specified 
The separation point on this 

line has the co-ordinates X, = -2, Fi 
is (v&/u) = -2. 

= 8 and the mass transfer parameter 
Because solutions for p = -1 behave in this special 

way, some of the lines in Figs. 19 and 20 could be continued as far as p = -1 
in the imaginary domain. This could not be done for all the lines, however, 
because as (ve&/v) diminished the curvature increased, eventually becoming 
too large for such extrapolation to be accurate. 

Fig. 19 covers decelerated and accelerated flows with suction and 
a moderate rate of blowing, and Fig. 20 shows on a larger scale the region of 
Fig. 19 which is likely to be of greatest use in practical applications. 
Fig. 21 shows how FL varies for intensive blowing but the accuracy is 
considerably lower than in Figs. 19 and 20 because it was drawn from Values of 
Ifai taken from Fig. 18. 

In Fig. 19 the portions of the lines of constant (v,&/u) lying in 
the decelerated region are much longer than the portions in the accelerated 
region, at least if attention be confined to the real domain. This effect, 
which arises because the displacement thickness becomes large as separation 
is approached, is well illustrated by the line of no mass transfer for which 
the part of the line in the range -0*198838 < @ < 0 is more than twice as 
long as that for the range 0 c @ Q 00. This means that the general method 
based on the displacement thickness could give high accuracy when applied in 
the decelerated region. 

On the other hand, the method has two serious disadvantages. Firstly, 
the lines of constant (v~~~/u) are not very straight, so that the first steps 
in the method of integration given by Spalding 5 would be less accurate than is 
the case with the method based on the momentum thickness. It should, however, 
be possible to devise a method of step-by-step integration which depends less 
on a linear approximation to the curves. For example, when the interval of 
integration is small enough, equation (I 23) may be written: 

UG a6' 6' dUG 
-- = &+j2-- . . . (126) 
1, ax u dx 

where j, ad 32 are quantities whose values depend on the local values of 
6= dUG Vi36 
-- and - ; these can be obtained from the similar solutions. Now, not 

o'fiyd?s equati:n (126) 
Spalding5. 

virtually exact but it is also exactly integrable, see 
By carefully selecting j, and j, at each step in the integration 

procedure, therefore, the curvature of the lines in Fig. 19 should present no 
barrier to being able to integrate equation (123) accurately. 

The second disadvantage of the method based on & is that the 
FI - hi relationship cannot be used near the separation point for B = 0 
because, while Pa remains finite, FL becomes infinite; however, practical 
problems which require the use of this region of the FA - & plane should be 
rare. 

7.2.4/ 
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7.2.4 Variation of Fz and Hz4 for decelerated flows 

The functions Fz and Hz4 are required in the general ethod based 
on the momentum thickness, but when the paper by Spalding and Evans t was 
published little information was available for decelerated flows. By making 
use of solutions given elsewhere in this monograph, however, Figs. 22 and 23 
could be drawn to show the variation of these functions in this region. 

These figures are largely self-expganatory and should be u ed in 
conjunction with the discussions by Spalding and Spalding and Evans $ . In 
Fig. 22 there is some uncertainty about the accuracy of the curves of constant 
(vo&/u) for negative values of this parameter beyond -0.55, and such curves 
are shown as broken lines. Corresponding curves could not be drawn with much 
confidence in Fig. 23 and have therefore been omitted. 

a. Some Asymptotic Series for Intensive Mass Transfer 
(By H. L. Evans and Joan D. Hayhurst) 

a.1 Outline of section 

Watson' has given solutions to equation (12) with boundary conditions 
(I 3) for suction in the form of asymptotic series in inverse powers of the mass 
transfer parameter f,. These solutions become asymptotically exact as f. 
becomes large. Series were given for the dimensionless wall shear, the 
displacement and momentum thicknesses and the thickness ratio Ka; other 
boundary-layer functions are readily calculated from these quantities. 

The first term in the series corresponds to the asymptotic suction 
profile and Watson obtained the next three terms, and for the wall shear the 
next four terms. That work has been recalculated and the coefficients given 
by Watson were confirmed, except for a small misprint in the published series 
for the wall shear. The next term in each series was also calculated, although 
the ratio Hai was obtained in preference to Kz obtained by Watson. 

Unfortunately, however, to obtain this next term required such a lang 
calculation that a plan for obtaining further terms was abandoned. Apart from 
a brief statement of the method, details of the calculations will not be given 
as they may be found in Watson's paper. 

When the values of functions calculated from the asymptotic series 
are compared with accurate solutions obtained by numerical integration, for 
most values of the parameter p the series are found to be reasonably accurate 
when the mass transfer parameter is larger than 3.0, although this depends to 
some extent on the magnitude of p. 

As the mass transfer parameter decreases below 3.0, the accuracy 
diminishes because not enough terms are known and the remainder is no longer 
negligible. Provided the mass transfer parameter is not too small, however, a 
simple correction can be added which improves the accuracy and slightly extends 
the lower limit of mass transfer to which the series may be applied. 

Only a trivial change is required to use the series for small /3 in 
the imaginary domain, but when /3 is large in either domain the series must be 
changed by a transformation of co-ordinates. 

When/ 
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When the same approaoh is applied to blowing, a series in inverse 
powers of the mass transfer parameter is obtained for the wall shear; this 
series also becomes asymptotically exact as the blowing rate increases. However, 
the present authors were unable to obtain asymptotic series for the other 
boundary-layer functions. When the remainder is not negligible in the series 
for the wall shear, the accuracy is improved by applying the Euler transformation. 
Again, by making straightforward changes for the imaginary domain and for large 
p in either domain, the series can be used for all values of p. The accuracy 
is acceptable for a wide range of /I when the mass transfer parameter is larger 
than 2.0. 

Finally, when there is no mass transfer and /3 is large, the 
dimensionless wall shear is expressed as a polynomial in inverse powers of @ 
by fitting to known numerical values. This applies to the real and imaginary 
domains and the accuracy is high in the range 2-O < l/p d -I*0 but diminishes 
fairly rapidly outside this range. 

8.2 Evaluation of the series for suction 

Because the velocity layer becomes thinner as the suction rate 
increases, in order to study its behaviour for intensive suction we extend the 
co-ordinates by an amount which is proportional to the rate of mass transfer. 
We therefore introduce the co-ordinates: 

a = forl . . . 027) 

g = fo(f-fo) . . . (428) 

into equation (12) and divide by fg to get: 

The boundary conditions from equation (13) are then: 

dg 
a = 0, g z-c 0 

da 

a400, --I. 
da 

A solution to equation (129) is now assumed to have the form 

. . . WY) 

. . . (130) 

g2 6% 63 

g = & +-+--b-+ . . . . . . . (131) 
6 f40 6 

and to satisfy the boundary conditions: 

&I (0) = &:(o) = 0, id (4 = 1, 

g,(o) = &Jo) = e;.(m) = 0, forr b 2 I 
. . . (132) 

where the primes now denote differentiation with respect to a. 
The/ 
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The assumed solution will clearly become asymptotically more accurate 
as fg increases. 

When we substitute equation (131) into equation (129) and equate 
coefficients in power of Toa, we get differential equations for the functions 
gr which are solved in turn. As r increases the solutions become progressively 
more complex, containing polynomials of increasing orders in a 
powers of eaa as factors. 

and p with 
These solutions were then used to evaluate boundary- 

layer thicknesses, and the results are expressed in the farm of suitable 
dimensionless groups in the next section. 

8.3 The asymptotic series for suction 

(I) The displacement thickness 

hf) Y 
If @ is the displacement thickness in terms of the co-ordinates 

as a function of the quantities gr it is: 

VC& 
-- E fotif = a(m) -a(m) 

&(00) & (4 
--*-- 

fi l *** 

.  .  .  (133) 
v f :  

When expressed in terms of the parameter /3 this series is: 

vo 6, e, aa a, a, -- = I +-+-+-+-+ . . . . . . . 036) 
V e fQ0 fso a0 

where the first four coefficients are: 

sl = - (5 + 7N4 

aa = (359 + 783;p + 460@?/72 

80 = - (56,670 + 156,611/3 + 450,450,@ + 51,589B3)/1728 

152,018,034 + 493,420,561/3 + 615,401,188/3~ 
a4 = 

c 
518,400. 

+ 355,775,339@' + 82,230,278@ 

A useful check of these coefficients is affcrdea by the case /3 = -1, 
see Evans 7 , since the series must reduce to the first terms in the expansion of: 

. . . (135) 

(2) The momentum thiclazess 

This required a much longer calculation from the functions g, than 
did the displacement thickness. The result w-as: 

vo 62 1 b, ba bs b4 
-- I fo6# = -+-+-+-+-+.... 

V 2fzfifso$o 
. . . (136) 

where/ 
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where the coefficients are: 

bi = - (10 + 11/3>/12 

ba = (550 + Q358 + 497PV144 

h3 = - (234,192 + 586,816@ + 494,763~~ + W,46yjP)/8,660 

c 

131,557,872 + 398,264,2758 + 453,852,685pa 
b4 = 

+ 233,270,3Q@ + 46,184,438@ I/ 
518,400. 

(3) The thickness ratio Hai 

The ratio I&i was obtained by dividing equation (136) by equation (Is), 
and the result was: 

W 1 cl Ca % % 
Hai E - = -+-+-+-+-+ .*.. 

6.f 2 f,"f", e 

with the coefficients: 

-0. (337) 

cl = - (5 + Pm4 

Ca = (307 + 3W + 53pa)/288 

% = - (144,059 + 286,80@ + 162,151@' + 16,828@+)/17,280 

c 

87,698,885 + 226,566,669/3 + 204,261,172/3a 
04 = 

+ 71,360,51183 + 5,862,933@" II 
1,036,800. 

(4) The wall shear 

The wall shear could have been evaluated directly from the known 
quantities 
equations (1 

"(O), but we get one more term in the expansion by substituting 
% ) and (1%) into the exact relationship: 

v f$ B voSi (I+P) voba 
-- E-z I --• ---.-. . . . (138) 

vo 64 fo g v f-t v 

This gives the series: 

v a, aa 43 ch a, 
-- = I +-+-+-+-+-+ . . . . 

vo 64 fs ft go a0 r",O 

where the coefficients are: 

. . . (139) 
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a, = (1 + 3m 
aa = - (5 + 18~ + 16ga)/6 

a, = (550 + 23Q9 + 309&?" + 1417~)/144 

ii,+ =- c 
117,096 + 552,1798 + 932,317/t?= 

+ 694,741@ + 200,20784 I/ 4,320 

{ 

131,557,872 + 681,840,181/3 + l,345,537,52fBa 

a, = + 1,302,524+3@ + 635,230,092/P 

II 
518,400. 

+ 128,414,71@= 

The case @ = -1, Evans7, 
in equation (139) 

may also be used to cheek the coefficients 
as the series then reduces to the binomial expansion of: 

8.4 Application of the series in the imaginary domain 

In the imaginary domain we write '1 = iii, f = iF and f. = iTo, 
where the barred quantities are real. The above series can be used in the 
imaginary domain simply by replaoing f. by iTo, or fo by -e. Care should, 
however, be ta&en with the signs of both ,9 and To for, while f. is positive 
for suction, f. is negative. Further, when Ial is large in either domain the 
method in the next section must be used. 

8.5 The series when 101 is larpe 

When IpI is large in either the real or imaginary domains,successive 
coefficients in each of the above series increase in magnitude and, depending 
on the relative values of j3 and f,, the series may either converge very 
slowly or even diverge. 

This difficulty is readily overcome, however, by expressing the series 
in the co-ordinates of Section 2.3. If we consider only the wall shear, for ~- 
example, equation (139) then beoomes: 

V e, 
-- = I+-+"" 

vo 64 e % 

where the coefficients are simply: 

% e4 e5 
+-g+--g+--&+ . . . . . . . (141) 

. . . (142) er = 
% -. 
Br 

Far suffioiently large kb the series then converges very rapidly for 
large j3. The series for the boundary-layer thiohesses and the thickness ratio 
Hai for large /? are obtained in the same way. 

8.6/ 
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8.6 Comparison with accurate numerical solutions 

The asymptotic series give high accuracy for sufficiently large values 
of the mass transfer parameter, which may be fe, Fop k. or &, the last of which 
applies to equation (19) when c and 8 are pure imaginary. The series 
generally give boundary-layer functions correct to six digits when the mass 
transfer parameter, ignoring its sign, is greater than 10, although the accuracy 
depends to some extent on the value of p. When the mass transfer parameter is 
as small as 2, however, the terms omitted from the infinite series are not 
negligible so that the accuracy is poor. 

In Table B* the series are compared with known accurate solutions for 
values of the mass transfer parameter at which the series are just becoming 
inaccurate. We only consider solutions either in the real domain relating to 
equation (12) or along the line which divides the real and imaginary domains, 
because no solutions with suction are known in the imaginary domain. The series 
also apply there, of course, but the accuracy is probably lower than in the 
real domain because the fluid velocity then approaches its main-stream value 
more slowly. 

The accurate solutions for p = 0 where fe contains the factor fl 
were obtained by Emmons and Lei hl' and the wall shear for p = 0*5, fc = 5-O 
was given by Stewart and Prober f 9; the other solutions were computed by the 
present authors. 

When we examine Table B, as well as values given by Watson6, we see 
that the asymptotic series are most accurate near p = -1. The accuracy for 
P= -1 when fc = 2-O is better, for example, than for p = 1 when f, is 
as high as 4-O. 

From equations (14) and (18) we have f. = d$ & so that, for p = 1 
the series expansions are the same in the (c,8) as in the (q,f) co-ordinates. 
If we consider only positive /3, a glance at the coefficients in the asymptotic 
expansions shows that when p < 1 the hf) co-ordinates would give better 
convergence, but when p > 1 the (5,6) co-ordinates should be better; close 
to /I= 1 either can be used. Such poor accuracy was obtained for p = 2*O 
and fe = 3=0 that the values could not be included in Table B. The reason, 
of course, is that while f, appears to be quite large, the relevant parameter 
is then k. and as this is only 2.121 the low accuracy is not so surprising. 
This is what first made it necessary to use the (c,0) co-ordinates for lpl > 1 
in preference to the more usual hf) co-ordinates. 

8.7 Adding a correction for the remainder 

The Euler transformation, which will be discussed in Section 8.11, 
often improves the convergence of a series but did not appear to work well for 
suction, probably because too few terms in the series were known. On the 
other hand a simple method of allowing for the remainder was used which, it was 
realised later, is equivalent to summing the series as far as the penultimate 
term and applying the Euler transformation to the rest of the series. 

In this method the magnitude of the remainder was assumed to be half 
that of the last known term and its sign to be that of the first neglected term; 
this sign was readily determined by inspection. The values marked "c" in 
Table B show that this gave a worthwhile improvement in accuracy. 

When/ 

*See pp.53 and 54. 



- 53 - 

When the mass transfer parameter was large enough for the series to 
give functions accurately to five or six digits, however, this correction 
introduced a small error instead of eliminating one, although the difference 
between values with and without the correction was fortunately very small. 

Table B 

Comparison of the Asymptotic Series for Suction 
with Accurate Solutions 

a. Accurate values 

b. Values from series 
c. Values from series with a correction 

for the remainder (see text) 

Mass V vo &a vo hi 
B transfer -- &di -- -- 

psxameter vo 6, V V 

z'3.0 b” 

c 

O-765723 0*511510 0.713536 1.394961 
ta -L O-7757 0*5091 00681 10338 

C 0.7736 0.5095 0.687 I.351 

c b” 

0.892348 0*503703 0.576973 I*145463 
400 0*89249 0.503647 0.57616 l*lu&-0 

C 0*892369 0*503690 0.57684 1.14525 

5.0 r; 0*934952 0*502043 0.543543 I.082663 
0*934960 0.502038 0*543472 I908254 

6.0 f b” 0*956032 0*501324 0.528543 I*054293 
0*956033 0*501324 0*528533 I.054275 

0*707107 0*449981 0.527186 I*171573 
-100 fo = 2.0 I b" 0.70764 0*45040 0.527094 I*1694 

C On70721 0*45020 0.52732 1~17114 

0*824621 0.470465 00515685 1*096118 
2-5 c b” 0*824651 0*470523 0.515699 I*09593 

C 0.824605 0*470490 0.515738 1.09622 

3-O t ; 
0*881917 0*480167 0=510296 I=062746 
0*881920 0*480233 0*510358 I*062719 

-0.5 fc = 2.0 1 b" 0*937175 0*466871 0=4J+Ol36 0.942736 
0.937076 09509 0.538 l-04 

2.5 c b” 
@959906 09476755 0.456647 0.957823 
0=959899 0*4828 0*470 0.972 

C 0*959909 O-47748 0.4581 o-9593 
0*972188 0.482841 Om467390 0*968000 

3.0 c b" 0*972188 o*l&-o 0*4701 0*9707 
C 0*972190 oati 0.46725 0*96783 

Table B (Continued)/ 
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Table B (Continued) 

Mass v vosa vo s, 
B transfer -- Hai -- -- 

parameter vo 64 V V 

O-0 fo = 442 [ b" f.0537 0=4831 O-4296 0*889399 
1 l 0581 0*495 0-465 O-929 

1.048367 O-484327 0.435303 0.898778 
3.0 c b” lo0507 o-4915 0.456 o-922 

0 I.04852 0.48502 O* 4367 o* go00 

g2 b" 
c 

I*03596 0.48768 O"44Y51 @921724 
1.03634 0*4894 O-4543 0*9271 

0 l-03593 0948762 O=~YlO 0.92113 

6<2 [ i 1.02569 O-49087 0.46245 0*942091 
I-02574 0~49109 O-46326 0*9431 

o-5 fo = 3-o ( ; 
l--l15278 O-48532 0*41004 0*84489 
I.135 O-509 O-492 0*95 

5.0 1; I-046080 1-046150 - 

I-O fo = 3-o i b" I.175547 0.48585 0.3893-f 0*80130 
1.262 O-543 0.62 I*11 

1'107237 0*490043 0.424633 O-866521 
4.0 c a" l*llll 0.4946 O-443 O-891 

0 1*107170 0*49023 0*4a49 0'86574 

5.0 c b" 
I*071908 09492736 o-446136 0-90~6 
1.07223 O-49335 o-4436 0*9086 

0 I*071813 0*49261 O"44-545 0.9044 

10-O ( b" I*019396 O-497729 O-483799 0=972013 
I-019396 0*497729 0.483301 0'972017 

+- ko = 3.0 
c 54 0 I.142757 -I*-&228 

1*144+ o-49717 
0.496822 00496737 09426454 o-4249 

0.4317 
0.858363 0=8556 
o-8677 

19108587 0*497663 0*441896 09888299 
3-5 c b" 1~10889 O-497546 0=4432 O-8905 

0 I*10842 0*497421 0*4J+l18 0.8870 

4.0 I; I.085203 O-497940 0*453165 0-910081 
I.085265 O-497963 0.45352 0*91071 

b5 1," 1.068537 O-498300 OG1576 0.926302 
I.068553 S*498308 0*46169 0.92651 

5-O 1; 1.056265 0.498577 0.467986 0*938&2 
1.056270 O-498580 00468028 O-938718 

8*8/ 
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8.8 An asymptotic series for the wall shear with intensive blowing 

Outward mass transfer has an opposite effect to suction because it 
increases the thickness of the velocity boundary layer. To analyse the case of 
blowing, therefore, we transform the differential equation by contracting the 
co-ordinates, the amount of contraction again being proportional to the rate of 
mass transfer. As with most transformations of the velocity equation, it is 
useful to ensure also that the forward velocity of the fluid is still given by 
the gradient of the dependent variable in the new co-ordinates. A transformation 
which does this is: 

rl f 
x =-, h=- 

fo f-0 

which gives on substitution into equation (12): 

. . . (143) 

1 d3h 
--+h;+,Ti'-(cj] = 0 
f: dx' 

. . . w+J 

with boundary conditions: 

d.h 
x=0, h=l, -== 

dx 

dh 
-x +oo, -- 1. 

dx 
> 

We again assume a series solution having the form: 

h, b 4 hi 
h = hp +F+F+F+fB+ . . . . 

0 0 0 0 

and satisfying the boundary conditions: 

hOI = I* ti:(o) = 0, h+) = I 

hr( 0) = h;(O) = h;(oo) = 0, forr 3 2 3 

where primes signify differentiation with respect to x. 

. . . (145) 

. . . w-6) 

. . . 047) 

When we substitute equation (146) into equation (144) and equate 
coefficients in powers of %a we get a set of differential equations for the 
functions hr. Apart from that for 4, however, these are not easy to solve. 
On the other hand, when the equations are evaluated at the wall where x = 0, 
the wall shear for any particular value of r, namely q(O), may be expressed 
as a function of the wall shear for lower values of r. Since the first of these 
is simply h.J(O) = -/3, each h$O) can be expressed as a function of /I. 

of h$o> 
By differentiating equation (146) twice and inserting these values 
we get finally: 

v f:: g, 92 0 94 
-= -- =I - + . . . . 

vo b & ig + g + i++ f$4 
. . . (148) 

where/ 
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where the coefficients are: 

'ad = (1 - 2p)p2 

Q = (13 - 1@)(1 - @)a" 

94 = (44-8 - IOY@ + 684/P)(1 - q)pQ 

95 = (29,075 - 96,26q + 107,948pa - 41,04883)(1 - %)a” 

e; = c 3,052,533 - 12,3Q7,766P + %883,33@= 
-13,082,408~ + 3,456,288@ 

c 

473,8f3,584 - 2,207,664,99@ + 4,16WW44@ 
97 = - 3,991,748,5aP + 1,Ybo,450,1~/9 

3 
(1 -  *>a’ l 

-  383,354,208@j 

8.9 Application of the series in the ima&~r~ domain 

Except that 
in equation (148) 

-(fit/f,) changes sign to beoome (~&‘/%,o), the series 
can be used in the imaginary domain simply by writing To 

for fO, although it must be remembered that @ is then negative and 7,~ 
positive. 

8.10 The series for intensive blowing when l/31 is larpe 

c The form of the series in the co-ordinates of Section 2.3, applicable 
;i$e;, IPI is law, can again be written down with very little calculation. 

: 

V 0; ?t %a s, s4 
-E-- = -+-+--++.... 

vo 64 kY G G ti” ti* 

where the coefficients are simply: 

qr 
sr = 

B  

-1 l 

.** (149) 

. . . 050) 

8.11 Comparison with values in the literature 

Few acourate solutions to equation (12) with intensive blowing cadd 
be found in the literature. In Table C* values of the wall shear given by 
equations (148) and (149) are compared with accurate values known to the 
authors. Those for @ = 0.5 were given by Stewart and Prober'9 and most of 
the others were obtained by the present authors. 

Each coefficient after the first in equation (148) contains the factor 
(1 - 2/d and is therefore identically zero for j3 = 0.5. The series then 
reduces to the first term and was not expected to be paz.%icularly useful for 
this value of /3. According to the numerical solutions obtained by Stewart and 
ProberAY, however, even this is a good approximation when 1% t B 2.5. 

Table C/ 

*See p.57. 
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Table C 

Comparison of the Series for Intensive Blowinq 
with Values given in the Literature 

a. Values in the literature 

b. From asymptotic series . 

C. From series after applying the 
Euler transformation 

Mass v 
B transfer -- 

parameter vo 64 

+oo b = -3*o 
1 b” C 

O-1 0898 
o-1 0*10880273 

088043 

0*08065090 
-3'5 

1 
b” 0*0806534 
C 0*08065066 

1 a” 
0.06204187 

-4.0 0*06204192 
C 0.06204182 

-5-O b” 
1 

00o3g8754-82 
0*039875481 

c Omo39875478 

1 b" 
0~23790490 

1 l o f, = -2.0 0.23867 
C 0*23790494 

o=l5635564 
-2-5 1 b” 0015635586 

c 0~15635536 

-3-O [ ; 0*10981770 
0*1og81764 

-3'5 l b” 
0~08111 
0~081106011 

-4=o I ; 
0'06225 
0.062260505 

-4.5 1 ; 0 04927 
0 a-v263733 

-5-o I b” 0 03994 
0 039936506 

0*5 f, = -2-o [ ; 0-l 2489365 
0.125 

-2.5 { ; 0 05555551 
0 05555556 
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For /3= 1.0 and If01 > 3.5 only four-figure accuracy was previously 
available, but the values obtained from the series are given in Table C to as 
many digits as are likely to be accurate. 

With some lower values of the mass transfer parameter, it was clear 
from the last terms in the series that the remainder could not be neglected. 
Where this occurred, therefore, the convergence was improved by applying the 
Euler transformation, and the values obtained in this way are marked "c" in the 
table. For an arbitrary convergent series, not necessarily an alternating one 
because the terms tk may have any sign, the transformation is represented 
briefly by the relationship: 

. . . 050 

where A is the forward differenoe operator with respect to k defined by 
htk = 

6 
tk - tk+, 

Hartree2 . 
). The transform is discussed in many textbooks, for example 

It often gives the best results when applied, not to the whole series, 
but to the series after a number of terms. In Table C, for example, when p = 03 
it was applied after four terms; when /3 = 1 it was applied after two terms 
for f, = -2.0, and after three terms for f0 = -2+5 but was not worth 
applying for f0 = -3'0 and larger, because the last term was already very 
small in the eighth decimal place. 

Care should be exercised, however, if values of fJ' obtained from the 
series are to be used in starting numerical integrations of equation (12). 
While the series gives fh' accurately when referring to the differential 
equation (12), for reasons which are not clear to the authors, this is not 
necessarily the most suitable value to apply to the corresponding difference 
equation solved by a computer. The point is illustrated by the following 
values which are quoted to as many digits as were given in the original 
publications; in the first reference a more accurate value than that quoted 
appears to have been used for fb = -2=O but was not given in the paper. 

lJ/ Table 
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Table D 

Values of the Wall Shear -(u/v,&) for B = 1 

7 
source f, = -2-O f, = -3-O 

Eckert, Donoughe and Moore 21 Evans7 0.2379 0*1098177094 

Stewart and Prober'9 
0.2379049 0~1098176962 

Asymptotic series 
0.237905275 0*10981771 
0*23790494 0*10981764 

8.12 An expansion for the wall shear when f. = 0 and la/ is large 

The asymptotic series given in earlier parts of Section 8 were obtained 
analytically from the differential equation for similar boundary layers. We 
shall now obtain an expression for the wall shear when IPI is large and f. 
zero using the simpler procedure of fitting a polynomial to known numerical 
values. 

It has already been shown that when Ij?I is large it is better to 
use the co-Qrdinates of Section 2.3 and to regard l/p as the parameter. The 
advantages of these co-ordinates are further demonstrated in Table E* by the 
small variation in 0; over a wide range of /I. 

A polynomial of the form: 

2 -t;l ta t-3 te 
et = -+-+-+-+ . . . . +-, 

43 B P2 p” a” 
. . . (152) 

was fitted to the nine values taken from the literature and marked by an 
asterisk in Table E. After se'veral attempts with other combinations these 
were considered to be the most reliable. Most of the values from the literature 
quoted in Table E have already been quoted in earlier papers, see for example 
Evans7. The only two values for negative l/p were obtained by R. M. Terrill 
in some unpublished work with E. J, Watson at Manchester University. 

The first term on the right of equation (152) is the exact value of 
0: for l/f3 = 0 and by solving nine simultaneous equations the other coefficients 
were found to be: 

= 0*0746156909 63 = -0*0000475768 
= 0*0050885071 = 

2 
= -0*0018430607 2 = 

-0*0000910583 
0*0000458438 

= -O*OOOjo5592l te = -0~0000069397 
s = 0*0004313478 

Equation (152) is very accurate in the range 2-O 3 1/p 2 -1-O. 
Comparison with published values for positive l//3, other thn those used 
for obtaining the coefficients, shows that the formula gives values of 8s at 

least/ 

*See p.61. 
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least as accurately as they are known. Near l//3 = 0 the formula is probably 
more acourate than published values but it is not possible to judge its accuracy 
for negative l//3. 

The table also contains values of 0," 
when I/@ is given the values le3(O*l)-I-0. 

obtained from the polynomial 
These required only small adjustments 

for use in computing the numerical solutions to equation (19) discussed in 
Section 6.62. 

Equation (152) should only be used with caution for extrapolation 
outside the range 2.0 2 1/p 2 -l-O, as may be seen from the error in the first 
two lines of Table E. The mason for this is that equation (152) is a closed 
polynomial and not simply the first ten terms in an exact infinite series far 
es . This also means that the Euler transformation cannot be applied to improve 
its accuracy. 

E/ Table 
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Table E 

The Wall Shear when fo = 0 and IPI is Large 

qalues used to obtain coefficients in the polynomial 

1 

B From the From the 
literature polynomial 

1 o/3 
2.5 
2.0 
5/3 
1’3 
I.25 
1.2 
1 *I 
I l o 
o-9 
5/6 
0.8 
0.7 
0.625 
0.6 
0.5 
0 04 
v3 
0.3 
0.25 
o-2 
l/7 
O*l 
0.05 

0 
-0.1 
-0=2 
-0.25 
-0.3 
-0-4 
-0.5 
-0.6 
-0=7 
-0.8 
-0.9 
-1 l o 

I.414503 
I.350958 
1*311938* 
1*28561yP 

I l 25uCY74* 

I.23258779 

1°21y3413' 

1*20286232* 

1.1930432* 

I*180059 

1 l 173642 
1~169811 
1.165455 
I -162205 
1~158418 
1.154700538 

1*136391824* 

1*0863757W 

1.3960128 
1.3507180 
1*3119376 
I.2856195 
I.2564794 
I*2524974 
1.2485146 
1 *a-m492 
I*2325877 
I.2246352 
I*2193413 
1.2166975 
I.2087811 
I.20286232 
I*2008936 
I*1930432 
I*1852393 
1.1800675 
I.1774920 
I=1736429 
1~16y8121 
I.1654583 
1~1622111 
1.1584438 
I*154700538 
lm1472917 
1.1399951 
1.136391824 
1.1328200 
I.1257741 
1.1188628 
1*1120891 
1 .lOpl-540 
I-0989570 
I*0925972 
I*086375749 

8.13/ 
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8.13 The variation of some functions with intensive suction 

Figures 24 to 28 show on a large scale the variation of some boundary- 
layer functions under conditions of intensive suction. Figures 24 and 25 shm 
how Fa ana H24 , respectively, vary with the pressure gradient as measured by 
A a, the mass transfer parameter being (VC&/U). In Figs. 26, 27 and 28 which 
show the variation of F%, Hzi and K4, the pressure 
& and the rate of mass transfer by (VC&//V). 

gradient is given by 
The data for drawing these 

figures were obtained from the asymptotic series given in Section 8.3. 

Such narrow ranges of pressure gradient and mass transfer are OOV8r8d 
in these figures that the lines along which the relevant mass transfer parameter 
is a constant are virtually linear. The real and imaginary domains indicated in 
these figures refer, of course, to equation (12), not to equation (19). 

The figures are to a large extent self-explanatory but the following 
points are worth noting. 

In Fig. 24 the slope of the lines of constant (VC&/V) is rcRlghl$ 
-4.2; th8 value -8 given in the Appendix to the paper by Spalding and Evans is 
much too large because the argument pIY?S8nt8d there was not correct. 

But a more important point to note is that, since these figures were 
drawn it has been realised that there are some but probably small regions 
included in the figures where meaningful solu&ons to equation (125 satisfying 
boundary conditions (13) do not exist; this will be discussed more fully in 
Section 9. As we a0 not yet possess enough reliable information to be able to 
mark off such regions for exclusion, however, the figures are given without 
modification. 

9. Concluding Discussion 

9.1 Our present kIKJWl8dg8 of accurate similar solutions 

It was seen in Section 1.3 that few solutions accurate to six digits 
were known before the start of the present investigations. While OUr htd8dg8 

of similar solutions has been appreciably extended by the data contained in the 
present monograph, there still remain extensive regions Where few, if any, even 
approximate solutions exist. As a result of th8 investigations, several 
important questions have also arisen about the behaviour of solutions and further 
work is required in Order to answer them. 

Most of the solutions of high accuracy now known are indicated 
diagrammatically in the F,-ha plane in Fig. 29. The shaded region in that 
figure contains large numbers of solutions and is fairly adequately COVered. 
Solutions are also known along the full lines, in some cases extending as far 
as the indicated values of ha which lie beyond the range of the figure. 

The unmarked regions signify one of three things. They may contain 
solutions of low accuracy, such as those obtained by interpolation; or there 
may be only incomplete solutions available, as is the case when accurate values 
of f$ are known but no estimates of either Q or 63; Or, finally, th8r8 
may be no solutions of any kind. 

There is, of course, more information of the required accuracy 
available than Could b8 accommodated on Fig. 2'3; we hm~, for example, the 
asymptotic behaviour of solutions with intensive blowing. The main conclusion 

to/ 
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to be drawn from that figure, however, is that a great deal more work is needed 
before it can be claimed that enough solutions are known to equation (12) 
satisfying boundary conditions (13). 

9.2 Solutions required in the near fiture 

Accurate data in x of the unmarked regions of Fig. 29 where solutions 
are known to exist would be useful in supplementing our present knowledge. The 
need for obtaining solutions with accelerated flows for low and moderate rates of 
blowing is urgent, however, if for no other reason than that practical problems 
involving mass transfer occur more frequently under such conditions than any 
other. 

Since the wall shear for blowing, whether it be f$ or es, can now 
be evaluated accurately when the appropriate mass transfer parameter is beyond 
-2, one major obstacle to the computation of solutions has been removed. 
Another troublesome one still remains, however, for when integration is carried 
out in the direction from the wall towards the main stream, as the rate of 
blowing increases it becomes progressively more difficult to satisfy the main- 
stream boundary condition. This difficulty is also alleviated, but probably 
not entirely overcome, by the method of integration described in Section 6.6.2 
which of course can be used whether p is large or22mall. The method is 
described more fully in a recent publication, Evans . 

There is less urgency about the decelerated region with p beyond -j. 
The interest in solutions in the imaginary &main relating to equation (12) may 
be mqre academic than practical. Information in that region, while being 
difficult to compute, would help clear up a number of uncertainties about the . _ 
behaviour of solutions. In particular it is necessary to establish where 
boundary-layer solutions exist for, as we shall see, some areas must be excluded 
for various reasons. 

9.3 Mangler's treatment of the aqymptotic behaviour of solutions near 
the main stream 

For some values of the parameter /3, solutions to equation (12) 
satisfying boundary conditions (13) do not behave like boundary layers, either 
because the displacement thickness is not finite or because the dimensionless 
fluid velocity is not confined to the range 0 d U/UG 6 l*O. When the limits 
to boundary-layer solutions are considered in Section 9.4 it will be necessary 
to refer to Mangler's treatment of the asymptotic behaviour of solutions near 
the main stream. His approach, which is outlined briefly below, is more 
informative than the analysis of the same problem given in Section 4. 

There are advantages in considering equation (IV) instead of equation (12) 
and, as solutions for infinite p are now known, we shall in general assume 
that both b and p are finite. 

The following variables are' introduced into equation (19): 

. . . 053) 

w = l-0 . . . (154) 

so that the displacement thickness @* may be written: 



-a- 

w w 

s, ** ¶z 
I 

(l-6’)% = w az. 
0 k - **+kJ 

Sinoe the stream diction 0 is then: 

. . . (155) 

w 
8 = z.- kQp+ waz 

I z 
. . . (156) 

equation (19) beoomes: 

Z w' O" 
Ww + - wt - zw = -w = _ - 

I 

w de 

B pz 

where primes signify differentiationwith respect to Z. 

. . . (4 57) 

The function w is small near the main-stream and terms on the right 
of equation (157) become much smaller than those on the left. Mangler's 
asymptotic form of the velocity equation near the main stream is therefore: 

z 
w” + - w’ 

B 

and solutions are required such that w 

When a solution of the form: 

-2w = 0 

+O as z -, w. 

W 

t- mza 
II 

Pn 
w = z* e - 

rE0 Zn 

is assumed, it is found 
and m = -l/2@ and the 

m= 0 

Et = 

m = -j/2/3 

Wa = 

where & and B are arbitrary constants in each case. 

. . . (158) 

. . . (159) 

by standard methods that m has the two values m = 0 
solutions for these two cases are: 

PoZ28 c P= 
1 + @p-l) - + . . . . 

Z= I 

c B + Plz 2P1 1 + (2/I-1)(2/h2) - + . . . . 
3za 3 . . . (I@ 

+ prz 2iJ-2 e-za’q c 1 - (q-2) (2p3) -!T- + . . . . 3 . . . (161) 
3;” 

For/ 
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. 

FE decelerat@ flczvs the variable z is pure imaginary. 
write z=iz, where z is real, and change w to w, 

If we then 

stream the function w 
close to the main 

obeys an equation which differs from equation (158) only 
in having a negative in place of a positive sign preceding the first term. 
The solutions to this are: 

m= 0 

Gt -@ = poz 
c 

I - (Q-f) $ + . . . . 
3 

-2/3-1 
+ plz 

c 
1 - (2p1)(2/s2) JL + . . . . 

32 3 
. . . (162) 

- = RI*~(~'+') ,?/a W2 
c 

I + (*+I) (33+2) J- + . . . . 
23 I 

+ FkYB’2p+2) ezja 
c 

I + (2p+2) (q+3) ’ -+ . . . . 
3” 3 

. . . (163) 

PO and pi again being arbitrary constants. 

When the parameter p is infinite it is necessary to change the 
independent co-ordinate from z to q = (z-kc@). The asymptotic equation (158) 
then has the form: 

w"+bw'-2w = 0 . . . WJ 

the primes now signifying differentiation with respect to z,. For pure 
imaginary variables this equation becomes: 

-1t W -i&53+2; = 0 . . . (165) 

where the primes mean differentiation with respect to zl. 

9.4 Limits to boundary-layer solutions 

We now discuss the limiting values of the parameters j3 and fc 
$gerc) beyond which soluti ons to equation (12) do not behave like boundary 

. Two of the known limits are marked on Fig. 29; they are: 

1. The separation solution for flow over a flat plate when the 
displacement thickness becomes infinite, and 

2. The case of infinite p with imaginary variables when &, 
reaches the limiting value -&, = -8z; for smaller values 
of i& the gradient (dy/d$) (see Section 6.5.2(b)) at 
the main-stream edge of the boundary layer becomes 
imaginary. This limit is also deducible by an examination 
of solutions to equation (165). 
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It is readily shown that no boundary-layer solutions exist for 
@ = 0 with imaginary variables, far the equation is then: 

-p + ff" = 0 . . . (166) 

Ehere the primes mean differentiation with respect to the dimensionless distance 
?* Reference to Section 4.3 shows that the dimensionless shear is then: 

- 

-n f = 78 exp. 
[I I 

i; at . . . 067) 
0 

where Fg is its value at the wall. Now, near the main stream the exponent 

T at is large and increasing in magnitude. Solutions to equation (166), 

therefore, do not approach the state of inviscid flow at large distances from 
the wall and consequently cannot be associated with any real boundary layers. 

By examination of the asymptotic solutions in equations (160) to (163), 
however, we can exclude a wide range of /3 values extending on either side of 
B = 0 in the imaginary domain indicated in Figi 29. 

From equation (155) the contribution to the displacement thickness 
from points near the main stream is: 

00 
Contribution to q* = I w az . . . 068) 

Z 

where z is large. 

We therefore have: 

(a) For accelerated flows 

This is the case of real variables in equation (19). 

When /3 is positive the solution wa in equation (161) must be 
used for large 1;. When z is large enough this reduces to the first term 
and so it is: 

wa 3 po z 
2/l-1 ,-z2/213 . . . WY) 

which rapidly decreases to zero as z increases. When this is inserted for w 
in equation (168) we see that @* remains finite for all positive 8. 

When /3 is negative the solution x in equation (160) must be 
chosen and for large z this is: 

n = Paz 28 . . . 070) 

which gives a finite contribution to v* only when 101 > 0.5. 

With/ 
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With accelerated flows, therefore, there are no solutions with a 
finite displacement thickness beyond the value p = -0.5; this limiting line 
is shown in Fig. 29. 

Because the momentum thickness will also be infinite for fl = -0.5, 
the line for no mass transfer marked in Fig. 29 will meet the line /3 = -0.5 
at infinity. The slope of the zero mass transfer line has the following 
approximate values near the values of p indicated: 

B= -00 198838 0 I l o 200 -1-O 

Slope of line 
(VOW) = 0 

-6.24 -5.31 -5-07 -5.05 -5.28 

and for very highly accelerated flows this slope must clearly approach that of' 
the line p = -0.5 in Fig. 29, namely -6.0. 

It is interesting to note that the no-mass transfer line seems to 
possess a stationary value. 

(b) For decelerated flows 

This is the case of imaginary variables in equation (19). 

When p is negazive the apptotic solution & in equation (163) 
must be chosen for large z. When z is large enough this is 

and clearly E..* is finite whatever negative value p may have. 

When j!? is positive on the other hand, neither < nor vVZ gives a 
finite displacement thickness. Therefore there appear to be no boundary-layer 
solutions for decelerated flows below the line for infinite f3 shown in Fig. 29. 

9.5 Some unresolved questions concerning the behaviour of solutions 

In the next stage of the work, not only is there need for further 
accurate solutions but answers should also be provided to a number of questions 
about the behaviour of solutions, prompted to some extent by the conclusions 
arrived at in Section 9.4. 

One such question, possibly a minor one, concerns the behaviour of 
solutions close to that which gives separation for p = 0. When j3 is small 
and positive there is a slight but favourable pressure gradient which prevents 
the wall shear from decreasing to zero however large the blowing rate may be. 
According to equation (IL&), when /3 is very small and f0 large and negative, 
the dimensionless wall shear is approximately: 

B 
f(y=-- . . . (172) 

fo 

so that it may become very small but not zero, unless p is itself zero. What, 
however, happens to the displacement thickness? Does it become large very 
rapidly as occurs with p = 01 

The/ 
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The behaviour of solutions for accelerated flows as p approaches 
the limiting value -0.5 is quite reasonable because the displacement thickness 
increases gradually as p approaches this limit; at the limit, of course, the 
displacement thickness is infinite. 

The explanation of the behaviour of solutions near the limits with 
decelerated flows is not so acceptable,however. The following argument will 
be given in terms of the form of equation (19) with imaginary variables, so 
that the parameter is l/p instead of p itself. On examination of the results 
given elsewhere in the monograph one is prompted to ask the following questions: 

1. How is it possible to reconcile the following two solutions? 

-00:00555 
86 = 2;828 -C*OY77 -0*8840 

2-520 -0e4-21 y - I  l 637 

Solution (a) is the limiting case for infinite /3 and (b) is the separation 
solution for p = -18. Although & is larger in (a) than in (b), yet how 
is it possible to obtain a boundary-layer solution, namely (b), whose value of 
l//3 is not very different from zero, but with values of & and (vc&/u) 
which are well beyond those for the limiting case for VP = 01 

2. With decelerated flows what happens to solutions as l/p passes 
through zero? 

and d//3 
It appears from the earlier conclusions that as long as I&I 3 8* 
is negative or zero, the displacement thickness remains finite. As 

soon as l/p becomes positive, however, the displacement thickness suddenly 
becomes infinite. Although it has not yet been possible to find a flaw in the 
mathematical arguments leading to these conclusions, such unexpected behaviour 
by the solutions does prompt one to ask whether those arguments are indeed 
correct. 
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GROUP I 

SOLUTIONS FOR ACCELERATED FLOWS: 8 POSITIVE 

Numerioal solutions are tabulated for the following eleven 

values of the parameter fl: 

B = 0*1(0=1)0*6, O-8, ~0, 1.2, 1-6, 2.0, 

for eaoh of which the mass transfer parameter f, is given the seven 

values: 

fo = 3*0(0*5)0*0. 

For /3 = I.0 the following additional solutions are given: 

Intensive suction: f, = 10, 5, 4; 

Blowing:, f() = 
3. 

-0.5, -1.0, -1.5. 



TABLE$'\. 

SOLUTIO??S TO THE VELOCITY EQUATIOIV FOR jj=O.l, 2.0 > fn a 0 

fo f; s: 
3.0 3.18716 0.29566 

2.5 2.714434 0.34123 

2.0 2.24974 0.40161 

1.5 1.79668 0.48448 

1.0 1.36101 0.60338 

0.5 o.952276 0.78402 

0.0 0.587035 1.08032 

6 
# G $2 2 v 

0.14327 -0.42g80 

0.16392 -0.4og80 

0.19053 -0.38105 

0.22567 -0.33850 

0.27334 -0.27334 

0.33989 -0.16994 

0.43546 0.0 

H 12 
2.0637 

2.0817 

2.1079 

2.1469 

2.2074 

2.3067 

2.4809 

H A = 
s: tiUG d&r 

24 2 Y dx F 2= ydr: 

0.45662 0.20526(-2) 0.036946 

0.44495 (x26869(-2) 0.048365 

0.42863 0.36300(-2) 0.065341 

0.40545 0.50925(-2) 0.091665 

0.37202 0.74714(-2) 0.13448 

0.32366 0,11552(-l) 0.20794 

0.25563 0.18962(-l) 0.34132 



IQ--L 
3.0 

S.5 

2.0 

1S 

1.0 

0.5 

0.0 

3,.2282 0.29191 

2.76083 Oe33572 

2.3028 oe39313 

I .858094 o*47o73 

1.43292 0.57953 

1.037156 0.73886 

0.686708 0.98416 

J-l 12 

0.14152 -0.42455 2.0628 0.45684 O.‘tOO53(-2) 

0.16141 -0.40351 2.0800 0.44561 0.52103(-2) 

0.18681 -0.37362 2.1044 0.43019 0.69797~~2) 

0.21996 -0.32994 2.1401 0.40870 0.96762(-2) 

0.26418 -0.26418 2J937 a37855 0, f3958bI 1 

0.32449 -0.16224 2.2770 ~~33654 0.21058(-l) 

0.40823 0.0 2.4108 0.28033 O*3333OLl) 

H 24 
UC d&y 

Ft’y dy 

0.032042 

0.041683 

0.055838 

0.077410 

0.11166 

o.1684~/ 

0.26664 



TABLE r-3, 

SOLUTIOWS TO THE VELOCITY EQUATION FOR ,d= 0.3. 3.0 >,f, >, 0. 

f0 

300 

2.5 

2.0 

1.5 

1.0 

0*5 

0.0 

8 
* 

I 

3.26828 0.28834 0.13983 

2.80588 0.33053 0.15902 

2.35391 ’ oe38527 0.18333 

1.916588 0.45824 0.21471 

1.50031 oe55856 0.25596 

1.114818 0.70121 0.31112 

0.774755 Oe91099 0.38574 

6 
* 
2 

A/b 6% 
IJ 

-0.41949 2.0621 0.45700 

-0.39754 2.0786 0.44618 

-0.36666 2.1015 0.43154 

-0.32206 2.1343 0.41150 

-0.25596 2.1823 0.38401 

-0.15556 2.2538 . 0.39684 

0.0 2.3617 Oa29885 

H I2 

0.58657G2) 0.027373 

0.75858(-2) 0.035401 

0.10083(-1) 0.047054 

0.13830(-l) 0.064538 

0.19654L1) 0.091718 

0.2$039(-l) 0.13551 

0.44639~~1) 0.20831 



H 12 H 24 
3.0 3.30747 0.28493 0.13821 -0.41463 2.0616 0.45713 

2.5 2.84970 0.32561 0.15675 -0.39188 2.0773 0.44669 

2.0 2.40326 0*37793 0.18006 -0.36012 2.0989 Oe43273 

1.5 1.97252 0.44682 0.20985 -0.31478 2.1292 0*41393 

1.0 1.563888 0.53992 0.24851 -0.24851 2.1726 0.38864 

0*5 1.186757 0.66913 0.29936 lo.14968 2.2352 0.35527 

0.0 0.854421 0.85264 0.36669 0.0 2.3252 0.31331 

* TABLE I-4. 

SOLUTIONS TO THE VELOCITY EQUATION FOR fi= 0.4. 3.0 a f, 2 0, 

0.76408(-2) 

0.98282(-2) 

0.12969~~1) 

o.l7615(-1) 

0.24703(-l) 

0.35847(-l) 

0.53785(-1) 

T 

1 

c 

0.022922 

0.029485 

0.038906 

0.052844 

0.074109 

0.10754 

0.16135 



TABLE 'I-5, 

SOLUTIONS TO THE VELOCITY EQUATION FOR P = 0.5. 7.0 B f, b 0 

3.0 3.3458266 0.2816513 0.1366673 - 0.4100019 0.4852358 0.4572651 0.009338976 0.01867795 

2.5 2.8923738 0.3209478 0.1545999 L 0.3864998 0.4816980 0.4471607 0.01195056 0.02390113 

2.0 2.451013Ob 0.3710622 0.1769880 - 0.3 539760 0.4769766 0.4337999 0.01566238 0.03132475 

1.5 2.0261761 0.4363261 0.2053420 - 0.3080130 0.4706159 0.4160591 0.02108267 0.04216534 

1.0 1.62419876 0.5232081 0.2417298 - 0.2417298 0.4620146 0.3926172 0.02921665 0.05843330 

0.5 1.254022540 0.6413407 0.2889015 - 0.1444508 0.4504649 0.3622890 0.04173204 0.08346408 

0.0 0.92768006 0.8045491 0.3 502703 0.0 0.4353622 0.3249388 0.06134464 0.1226893 

&* %4 F2 



TABLE I-6, 
SOLUTIONS TO THE VELOCITY EQUATION FOR 8= 0.6. 3.0 I 

3.0 3.3836 0.27850 0.13519 -oAo557 2.0601 0.45740 0.010966 0*014621 

2.5 2.933988 0.31650 0.15256 -0.38140 2.0746 0.44761 0.013965 0.018620 

2.0 2.497306 0.36461 0.17409 -0.34818 2.0944 0.43476 0.018184 0.024246 

1.5 2.077807 0.42661 0.20115 -0.30173 2.1209 0*41795 0.024277 0.032369 

1.0 1.681678 0.50808 0.23552 -0.23552 2.1573 0.39607 0.033282 0.044376 

0.5 1.317387 0.61693 oa27952 -0.13976 2.2071 0.36824 0.046879 0.062505 

0.0 0.9958366 0.76397 0*33591 0.0 2.2743 0.33451 0.067701 0.090268 



f," C 
3.0 3 l 4563 53 0.27258 0.13238 

2.5 3.014297 0.30825 0.14872 

2.0 2.585974 0.35279 0.16875 

1.5 2.175753 O.bO920 0.19355 

1.0 I ~89455 0.48169 0.22450 

0*5 1.434611 oe57584 0.26330 

0.0 1.1202677 0.69868 0.31185 

TABLE l-7 

SOLUTIONS TO THE VELOCITY EQUATION FOR 8= 0.8. 3.0 a f, ~0 

/trb & 
v 

-0.39714 

-0.37180 

-Oe3375O 

-0.29033 

-0.22450 

-0.13165 

0.0 

H 12 

2.0591 0.45755 0.014020 o.0070098 

2.0727 0.44829 0.017694 0.0088471 

2.0906 0.43638 0.022781 0.011391 

2.1142 0.42112 0.029969 0.014985 

2.1456 0.40173 0.040320 0.020160 

2.1870 0*37773 0.055462 0.027731 

2.2404 Oe34936 0.0778~0 0.0389oo 



*0 

10.0 

5.0 

4.0 

3.0 

2.5 

2.0 

I*5 
1.0 

0.5 

0.0 

-0.5 

-1.0 

-1.5 

TABLEI- 

SOLUTIONS TO TFlE VELOCITY EQUATION FOR fj = 1.0, 10 2 f& - 1.5 

f”o 4* H21 

10.193961 0.0972013 0.0483799 -o.483799 0.497729 

5.3595396 0.1810852 0.0892272 -0.446136 0.492736 

4.4289466 0.2166303 0.1061582 -o.'t246328 0.4900632 

3.52664010 0.2671050 0.1297676 -0.3893028 0.4858299 

3.09112450 0.3007199 0.1452023 -0.3630058 0.4828490 

2.67005580 0.3421973 0.1639293 a.3278586 0.4790491 

2.26764600 0.3939862 0.1868299 -0.2802449 0.4742042 

1.88931375 0.4593224 0.2149957 -0.2149957 0.4680714 

1.54175106 o.%2334O 0.2497085 -0.1248543 0.4604331 

1.23258760 0.6479004 0.2923436 0.0 0.4512168 

0.969229535 0.7809627 0.3441334 0.1720667 o&o6528 

0.756574938 0.9449815 0.4057967 0.4057967 0.4294229 

0.594281857 1.13998 0.47715 0.71573 0.41856 

‘24 

0.493183 0.00234061 

0.478217 0.00796149 

0.4701690 0.01126956 

0.4576436 0.01683963 

0.4488384 0.02108371 

0.4377004 0.02687282 

0.4236641 o.o349o541 

0.4061943 0.04622315 

o&W383 0.06235433 

0.3603391 o.o854&77 

0.3335443 0.1184278 

0.3070156 0.1646710 

0.28356 0.22767 



TABLE1 -9, 

SOLUTIONS TO THE VELOCITY EQUATION FOR 8=1.?. 7.0 a f, a 0 

fo fo” 4 
Qo sa 

s; - Y H 
S,! due ~(4 d&= 
- - 12 H 14 A,= Y dx Fp-- Y dx 

3.0 3.594534 0.26200 oJ2733 -0.38199 LO577 0.45769 o.of9456 -0~0064852 

2.5 3.1648758 0.29379 0.14197 woe35493 2.0694 O&t932 0.024187 -0.0080622 

2.0 2.750172 0.33263 0.15955 -0.31910 2.0848 0.43879 0.030547 -0.010182 

1.5 2.h4-48 0.38052 0.18083 -0.27125 2.1043 0.42575 0.039239 -o.013080 

1.0 . 1.982722 0.44002 0.20668 -0.20668 2.1290 o*4o979 0.051260 -0.017087 

0.5 1.6409684 0.51430 0.23809 -0.11905 2.1601 o*39o70 0.068024 -0.022675 

0;o 1.3357215 0.60689 0.27612 0.0 2.1979 0.36882 0.091491 -0.030497 



SOLUTIONS TO THE VELOCITY EQUATION FOR fi = 1.6, 3.0 3 f, a 0. Y 

f I 0 f*” I 
3.0 3.723984 

2.5 3.304409 

2.0 2.900391 

1.5 2.515558 

1.0 2.154214 

0.5 1.8212023 

0.0 1.52i5138~ 

0.25275 

0.28148 

0.31596 

0.35763 

0.40819 

0.46962 

0.54402 

s,’ I 
0.12292 

0.13617 

0.15187 

0.17052 

0.19273 

0.21916 

0.25042 
1 

a.36876 2.0562 0.45775 0.024175 -0.018131 

-0.34043 2,0671 0.44996 0.029668 -0.022251 

-0.30374 2.0805 0.44048 0.036903 -0.027677 

-0.25578 2.0973 0.42895 0.046523 4.034892 

-0.19273 2.1179 0.41518 0.059432 -0.044574 

-&log% 2.1428 0.39913 0.076850 -0.057637 
0.0 2.1724 0.38102 ~ 0.10034 ~ -0.075252 



SOLUTIONS TO THE VELOCITY EQUATION FOR B= 2.0. 3.0 Z f 3 0 
0 

f; 4” 6 
* fo v, L W-6 
t Y H IL H 24 

AzS:du, 
2 v dx F 2=ydJc 

3.0 3.8461402 0.24458 0.11899 -0.35697 2.0555 o.45765 0.028317 -0.028317 

2.5 3.4349672 0.27080 0.13112 -0.32780 2.0653 0.45039 0.034385 -0.034385 

2.0 3.0396070 0.30?85 0.14530 -0.29060 2.0774 0.44165 0.042324 -0.042224 

1.5 2.6633174 oe33877 0.16193 -0.24290 2.0921 0.43127 0.052443 -0.052443 

1.0 2.30981668 0.38278 0.18142 -0.18142 2.1099 0.41905 0.065826 -0.065826 

a5 I .983124o 0.43521 0.20423 -0.10212 2.1310 0.40502 0.083420 -0.083420 

0.0 1.6872179 0.49743 0.23079 0.0 2.1553 0.38939 0. I 0653 -0.10653 



GROUP II 

SOLUTIONS FOR DECELFXM!ED FLOWS: /3 NEGA!T!IvE 

Numerical solutions are tabulated far the following values of 

the parameters /3 and corresponding values of fo: 

B 

o*o 
-0.1 
-0.2 
-0.3 
-0 04 
-0.5 
-0.6 
-0.8 
-1-o 

fo 

Except for the first two values of p, the values of fo on 

the right of this table, quoted only as far as the fourth deoimal 

place, give the separation solutions. More accurate values of f. 

and detailed tabulations of these and other separation solutions are 

given in Group III. 



SOLUTIONS TO THE VEiLOCI!l!Y EQUATION FOR B = 0.0. 3.0 3 f 5 0 
0- 

f, 

3.0 

2.5 

2.0 

1.5 
1.0 

0.5 
0.0 

f,” 
3.145lo10 0.2995928 0.145lOlO -0.4353030 0.4843274 0.4563573 0.04210860 
2.6665666 0.3470936 0.1665666 -0.4164165 0.4798896 0.4441609 0.05548886 

2.1945090 0.4107680 0.1945090 -0.3890080 0.4735252 0.4268408 0.07566362 

1.7319130 0.4997125 0.2319l30 -0.3478695 0.4640929 0.4016531 0.1075673 
1.2836345 0.6308872 0.2836345 -0.2836345 0.4495804 0.3640830 0.1608971 

0.8579159 0.8398180 0.3579159 -0.1789580 0.4261827 0.3070617 0.2562076 
0.4696000 1.2167681 0.4696000 0.0 I 0.38594dt 0.2205242 0.4410483 

&* I 4, If +Y F2 



n-2. TABLE 

SOLUTIONS TO THE VELOCITY EQUATION FOR 6 = -0.1. I.0 2 f, 2,o 

3.1ol.9533 
2.6171134 
2.1368524 

1.6632368 

l-. 1994892 

0.7504018 

0.31926% 

0.3037209 0.1470282 

0.3533247 0.1693 843 
0.4207035 0.1988031 

0.967353 0.2387893 
0.6631504 0.2953380 

0.9116167 0.379n50 
1.4426978 0.%5@+38 

-0.4410846 
-0.4234608 

-0.3976~2 
-0.3581840 
-0.29%380 
-0.1897575 
0.0 

0.4840898 

0.4794012 

0.4725492 

0.4621115 

0.44~560 

0.4163098 

0.3 570005 

0.4560746 -0.002361729 0.04755804 

0.4432979 -0.002869104 0.063 12029 

0.4248129 -0.003952267 0.08694988 

0.3971632 -0.005702033 o*m44-47 
0.3!%25'+7 -0.008722453 0.1918940 

0.2847887 -0.014hO3~16 0.3168696 

0.1644378 -0.02652701 o-5835943 



E, f ” 4 l ffW 

3.0 3.0576278 0.3080690 0.1490520 -0.4471560 0.483,7F267 0.4557455 -0.004443298 0.05331958 

2.5 2.5659078 0.3599824 0.1723804 -0.4309flO 0.47s579 oNt23122 -0.005943000 0.07l.31600 

2.0 2.0764478 0.4315499 0.2034472 -0.4068W+ 0.4714338 0.4224475 -0.008278152 0.0?933782 

1.5 1.5899375 0.5359597 0.2464I.I8 -0.36%177 0.4597581 0.3917794 -0.01214376 0.145725I 

1.0 1.1066908 0.7018353 0.3088223 -0.3088223 0.4400210 0.3417708 -0.01YO7424 0.2288909 

0.5 0.6229144 1.0102405 0.4062031 -0.2031016 0.4020855 0.2530298 -0.03300019 0.3960023 

0.0030926 0.0 2.3548790 0.5+8540 -0.0018087 0.2483584 0.0 -0.06841084 0.8209301 

SOLUTIOHS TO TRE VELOCITY EQUATION F'OR B = -0.2. 3.0 1 f,? 0.0030926 



0-4 TABLE 

SOLUTIONS TO THE VELOCITY EQUATION FOR B =, 0.3. 3.0 5 f = 0.246148b 

I f 1 Jo 43’ c . 
3.6 3.0120275 0.3126613 

. 2.5 2.5127634 0.3671264 

2.0 2.0129036 0.4434698 

1.5 1.5110704 c.5579409 

1.0 1.0023506 0.74Y6238 

0.5 0.4596192 1.16328YY 

0.2461484 0.0 2.088572L 

J I I 

0.1511798 -0.4535394 0.483 5258 0.4553577 

0.1755733 -0.4389333 0.4782367 0.4411742 

0.2084922 -0.4169844 0.4701384 0.4196747 

0.2549324 -0.3823986 0.4569165 0.3852208 

0.3246253 -0.3246253 0.433 0510 0.3253884 

0.4408660 -0.2204330 0.3789821 0.2026305 

0.5434619 ~ -0.1338109 0.2602074 0.0 

-0.0~04070 

-0.01949716 

-0.03161448 

-0.0583 0885 

-0.08660525 

F; 

0.05942386 

0.08014j55 

0.113 0194 

0.16897% 

0.2739921 

0.5053436 

0.7679122 



SOLUTIONS TO THE VELOCITY EQUATION FOR /= -0,4. 3.02 fo* 0.456757 

f, k” $I* &* flo - 4 Y H 21 H 21, AZ Fr 
3*0 2.9650480 0*3175l65 0.1534243 -0.4602729 0.4832010 0.45%9104 -0.009415608 0.06590926 
2.5 2.4574680 0.3748150 o.178ggoo -0.4474750 0.4775423 0.4398622 -o.o1281497 o. o8mW 

2.0 1.9457416 0.45665't8 0.2140059 -0.4280118 OS86382 0.4164002 -0.01831941 0.1282359 

1.5 I.4253550 0.5834469 0.2645563 -0.3968345 0.4534368 0.3770866 -o.o27996o2 0.1959721 
1.0 0.8816612 0.8112085 Oa3435743 -0.3435743 0.423 5339 o.3o29161 -0.04721732 0.3305U2 
0.5 0.1901886 1.5112398 0.4911409 -0.2455705 0.3 249920 0.09340940 -0.0964a775 0.6754143 
0.456757 0.0 1.911524 0.513088 -0.234356 0.268418 0.0 -0.105304 0.737126 



3. I sb” 
3JJ 

a5 

2.0 

1.5 

1.0 

o.645966 

I 2.9165650 
I 

2.3997647 

1.8743500 

1.33o9692 

0.7354607 

0.0 

SOLUTIONS TO THE VELOCITY EQUATION FOR p- - 0.5. 7.0 B t,, 0.645966 

6’ 
0.3226665 0~1557965 -0.4673895 

0.3831293 0.1826587 -0.4566468 

0.4713681 0.2200681 -o&t01362 

0.6136199 0.2755583 -0.4133375 

o. 8963188 0.3670402 -0.3670402 

1.781075 0.489143 -0*315970 

H 21 

Oh828406 

0.4767547 

0.4668710 

0.4490700 

0.4095888 

0.274634 

I 
H zc I A2 

o.45439o6 -0.01213627 0.07281765 

o&83379 -0.01668210 o.looog26 

0.4124846 -0.024214gg 0.1452899 

o.3667596 -o.o3796619 0.2277971 

0.2699436 -0.06735926 0.4041555 

0.0 -0.lr9630 0.717782 



#OLUTIONS TO THE VELOCITY EQUATION FOR fi= -0.6. T.0 2 f, Z=o.8196u 

3.0 2.8664360 0.3281'@7 0.1583086 -0.4749258 a.4824339 0.4537815 -0.01503697 
2.5 2.3393454 0.3921666 0.1866134 -0.4665335 0.4758524 0.4365532 -0.02089474 

2.0 1.7979424 0.4879503 0.2267815 -o.4535630 Q.464763 5 oAo77401 -0.03085791 

I*!5 i.2251993 0.6502213 0.2883302 -0.4324953 0.4434340 0.3532620 -0.04988058 
1.0 0.5414380 1.0293784 0.3976626 -0.3976626 a.3863133 0.2153096 -0.09488132 
0.819612 0.0 1.678970 0.469425 -0.384746 0.279591 0.0 -0.132216 

H 21 *24 L 

0.08019715 

0.1114386 

0.1645755 
0.2660298 

0.5060337 
0.705152 



SOLUTIOloS TO THE VELOCITY EQUATIO?? FOR B = - 0.8. 7.0, i,bl.l331752 

& 
3@0 2.7605600 0.34W45 
2.5 2.2087760 0.4129185' 
2.0 1.6255360 0.5287640 

1.5 0.9587710 0.7569940 
1.1331752 0e0 1.5260219 

0.1638180 -0,49145&O 0.4814573 0.4522294 

0.1955540 -0.4888850 0.4735898 0.4319350 
0.2427360 -0.48f?t720 0.4590630 0.3945761 
0.3218310 -0.4827465 0.4251434 0.3085622 

0.4382ll6 -0.4965705 0.2871594 0.0 

I 
I Fa 

-0.02146907 0.09661082 

-0.03059310 O.l376689 

-0.047~662 0.2l21148 

-0.08286015 0.3728707 
-0.1536235 0.6913059 



SOL~IONS TO THE mtocm EQUATION FOR f3 = -1.0. ~0 2 r _-o s 2 t 

3.0 (7$ 3.047+ 0.17oW85 -0.5loz955 0.4801665 
2.5 (17/d 2.5-W/4)* 0.2062741 -WZ%853 0.4704649 
2.0 t2+ 2.0-(2)* 0.2635928 -0.5271856 0.4499811 
1.5 0.5 1.0 0.3767333 -0.565lOOO 0.3767333 
(2,3 0.0 (2)* 0.4140719 -0.5855861 0.2927930 

0.4500383 -0.028933 50 o.ll57340 
0.4252'@ -0.04254900 0.1701960 

0.3727765 -0.069443116 0.2779246 

0.1883667 -0.1419280 0.5677l.H 
0.0 -0.1714555 0.6858220 



SOLUTIONS WITH SEPARATION 

Numerical solutions are tabulated for twenty-six values of the 

parameter B in the range 0 6 /3 < -18; with f$ = 0 the mass 

transfer parameter f0 was adjusted for eaoh @ so as to satisfy the 

main-stream boundary condition. 

Three solutions are quoted from the literature, that fcir /3 = 0 

and two others for small negative 8. The other values Qf p included 

are: 

B = 0(0~05)-0~2(04)-1*0(0~5)-500,-7,-lo,-18 

as well as the case when f, = 0 for which /3 = -0~19883768. 



B 
I 

2 014484 L 
-0:o 

d -0.0 7160 s 
-0.10 
-0.15 
$. y883768 

-0: 
-0. 2 

:*i 
-0: 

8 
29 
-1.0 

-1; 
-18 

@iPA.RATIOH SOLUTIONS TO TRE VELOCITY EQUATION OF THE LAMINAR BOUNDARY UYER WITEi MASS TRANSFER 

f, 

- 0.87 745 
- 
z 

0.70 z s 6 
pgo;33 

- o:29%8D 

- :*t376368 

0.2 42 1484 
o:oo 0926 

$64 2 ;g 

o: 819612 
0.98i231 
1.1331752 
1 j~770976 

4.884 

67’$15 
lo:69 

4. :78 
30 to 50893 

1.595774 

l* 'a 1; 26 
J2 

1.22606 
1.10402 
1.01570 
0.94754 

o.6128g22 

y;g$ 3 
8 

0:274634 

o":;i;gi 
0.2871594 
0.2901554 
y3;~930 

0: 3087 
0.31 2 

2 
2 

0.31 76 

rv, & 
Y 

& yo 
Y 

3:76 

~*~~~ 821 $ 
0:8553236 
0.3517277 

-$0007282 
-0.5s-098 I3 
-0.873102 
-1.150514 
-1.376104 
-1.565823 
-1. 292502 

ii -1. 725687 
-2.0 

0.0843565 

-%i018087 
I;';; ;g9 

z 
-0:315970 
-0. a4746 

244 
:::496;$5 
-0.5433359 
2. F55gz6’ 

-0: 86876 

-1. 5296 
l -1. 7098 

-1.63655 

/ 
h 

0.0 I 
-0; 29432 
-jp!'7 
-0:8145741 
-0.97956% 
-1.1063653 
-1.10 0910 
-1. o 6404 

b 
% 

1:: fjtJgE 
-1.6g1364 
-1. 82546 

g 
::-gg4 
-210 

02 

:$23r;8725 
+& 

-2: 78933 
-2. a7005 

-3.0029 42 

1 y;E$j i! . 

F, L 

0:: ii088385 
-3 ygx$ 

l 22634 d 
:::0563455 
-0.068148 
-0.068410 3 
-0.08860 2 
-0.10530 z 
1;. ;lg%~~ 

-61 345a t 
A.1536235 
-0.1629038 
y;4555 

-0:23235 
1:. ;53o;z 
-0:2 490 l 
-0.29 j5 

is -0,31 21 
-$3’;“8 ; 2 
-0: 2187 r! 

W I 

41.229 
24.34873 
19.012 
17.92063 

:gE67 
13: 30909 
11.34155 
'"9' '5:6"g 

% 
:02061 
.658o8 

;.;3 8159 
iI 

‘0: w;63 ;L 

0: 9297940 
0.8635648 
0.8217629 
0.8205301 
0.7679122 
0.737126 
0.717782 

X265:;; 

“0%: 2: iI 
0Z6856220 
0.68742 

:% 2 . 8 
g’p;f 

0:7 338 i 
;* %iH’ 
0:8326 il 
0. a9061 



GROUP IV 

SOLUTIONS FOR INFINITE B 

With /3 infinite, solutions are given far the values of the 

relevant mass transfer parameter given below. 

Variables imaginaryt suction only 

-G = 16, 2*85(0*05)3*2(0*2)4*0(0-5)10-0(2*0)20-O 

Variables real 

Suction 

ko = 0~0(0~1)1*0(0~2)3*0 and 1~0(0~5)10~0(2~0)20~0 

Blowing 

-kl = 0.0(0~1)1~0(0~2)3~0 and 

1~0(0.5)4~0(1~0)10~0(2-0)20-O. 



3 
P p” 

b 1 O? 
$ 

I 

1 I. * I * 
IWT 



I ,  . I  

FUlVCT1085 OFTBE LUIHARBOlJHMRY UTBR WITH SUCTION h'FJEH@ IS IBFIlKl!EUID TBE VARIABLESARE FE&L 

So80 quant.ltlosrmrtkmltlplled by the pavers of tengivenln bra&&a 

0.4977298 
0.4972032 
0.4%4709 
0.495uo9 

$-f366&3$ 
0:4768924 

:*%;;68~ 
oh615760 

O&8962 
0 4 31650 

0.3736001 

0.2020623 

x9 Oao 524 
0:12912 0 

F 0.10058 3 
0.6%6467(-l 
0.3619470(-l 
0.0000000 

A, I -34 Y I 

.-1) 





GROUP V 

SOME MISCELLANEOUS SOLUTIONS 

The following sets of numerical solutions are tabulated: 

. I  l 
Solutions for fi = 0 by Emmons and Leigh 

The mass transfer parameter is given the following values: 

Suction 

tif, = 0~0(045)0~5(041~5(0~5)3~0(1~0)6~0, 10,~. 

Blowing 

- fif() = 0*0(0*05)1*2, I*23849 

where the last value gives separation. 

2. Solutions for no mass transfer and j3 large 

The mass transfer parameter equal to zero, solutions are tabulated 

for the following values of l//3: 

VP = 1.3(0=1)-1.0 and -0=23. 

3. Solutions for 0 small and slight blowinq 

Solutions are tabulate& for f0 = -0.5 and the fellming values 

of /I: 

B = Q*o(o*1)0~5, l*O. 



* 

2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

000000000000000000000000000000000000000000000000000000 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
000000000000000000000000000000000000000000000000000000 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO~~~~~~~-NN~~ 8 



iz!lla P-2. 

SoI,OTIoRS TO TRE VELOCITY EQUATIOB FOR RO MASS TRAASFW WITH 1.3*# l -1.0 

solutions below the broken lineereless accurate than those above 

I 
p 

0," . g,** - q* sl.* 8:" H 21 H 2Y Aa F2 E2 

l-3 1.25647933 0.3441687 0.6206265 0.2764578 O.ws+% 0.3473635 0.07642890 o&585@+ 0.00079 

1.2 1.2485l453 0.3478487 0.6293068 0.2814581 0.44725lo 0.35l4045 0.07921865 0.03168746 0.000% 

1.1 1.24054914 0.3516431 0.6383870 0.2867439 0.4491694 0.3557199 0.08222206 0.01644441 0.00031 

1.0 1.23258760 0.3555568 0.6479004 0.2923436 0.4512168 0.3603391 0.08%477 0.0 0.00002 

0*9 1.22463!slo 0.3595952 0.6578848 0.29828% 0.4534070 0.3652959 o.08897669 - 0.01779534 - 0.00031 

0.8 G?l669745 0.3637634 0.6683827 0.3dr6193 0.4557558 0.3706295 0.09279291 - 0.03711717 -0.00068 

0.7 1.20878116 0.3680669 0.6794425 0.3113757 0.4582811 0.3763850 0.0%95480 - 0.05817288 - 0.00110 

0.6 1.20089372 0.3725107 0.69111% 0.3186089 0.4610040 0.3826154 0.1015ll6 - 0.08120928 - 0.00158 

0.5 1,19304340 0.3771000 0.7034774 0.3263773 0.4639486 0.3893823 0.1065222 - 0.1065222 - 0.00212 

0.4 1.18523949 0.38183% 0.71658% 0.3347500 0.4671432 0.3%7589 O.ll20575 - O.l3344690 - 0.00274 

003 L177492lO 0.3867337 0.7305417 0.3438080 0.4706206 0.4048312 0.1182039 - 0.1654855 - o.O'J3* 

0.2 1.16981218 0.3917861 0.7454343 0.336482 0.4744191 0.4137020 o.l250671 - 0.2001073 - 0,00424 

0.1 1.16221114 0.3%9998 0.7613862 0.3643864 0.4785829 0.4234939 0.1327774 - 0.2389993 - 0.00514 

0.0 1.154700P 0.4023776 0.7785391 0.3761615 0.4831633 0.4343539 0.1414975 - 0.282@tg - 0.60614 

- 0.1 1.1472917 0.4079216 0.7970638 0.3891421 0.48821% 0.44645% 0.1514316 - 0.3331495 - 0.00725 

- 0.2 la.399951 0.4136339 0.8171679 0.4035340 0.4938202 0.4600268 0.1628397 - 0.39~8153 - 0.00845 

- 0.25 1.13639183 0.4165528 0.8278894 0.4113366 0.4%8497 0.46743% 0.1691978 - 0.4229945 - 0.00908 

- 0.3 l&28200 o.4195o98 o.839lo4o 0.4195*3 0.5000503 0.4753248 0.1760593 - 0.4577543 - 0.00973 
.--_---_I.---_---------------------------------------------------------------I------------------------------------------------- 

- 0.4 1.1257741 0.4255222 0.8631797 0.4376574 0.5070293 0.4927034 0.1915440 - 0.5363232 . - 0.01107 

- 0.5 l.ll88628 0.4316699 0.8897985 0.45al.286 0.5l48678 0.5125830 0.2098818 - 0.62964% - 0.01238 

- 0.6 1.1120891 0.4379406 0.91*752 0.4815347 0.5237060 0.5)55095 0.2318756 - 0.7420020 - 0.01352 

- 0.7 1.10545hO 0.44+3411 0.9528895 0.508.548'+ 0.5336909 0.5621769 0.2586215 - 0.8793130 - 0.01423 

- 0.8 1.0989570 0.4509036 0.9909481 0.!%30445 CL%+9776 0.593M57 0.2916481 - 1.04gg331 - 0.014Ok 

- 0.9 1.0925972 0.4577198 1.0348811 0.5771613 0.5577079 0.6306048 0.3331152 - 1.2658377 - 0.01212 

- 1.0 1.0863757 0.4656%6 1.0863757 0.6206792 0.5713301 0.6742908 0.3852426 - I.5409705 - 0.00599 



0.0 0.148476340 2.1118674 0.6484763 0.3242382 0.3070630 0.09628339 0.0 o.a410431 

0.1 0.295166500 1.6178749 005757991 0.2878996 0.3559041 0.1699566 0.03315446 0.5967803 

0.2 0.406219118 1.3796359 0.5252433 0.2626216 0.3807115 0.2133639 0.05517610 0.4414088 

0.3 0.500323400 1.2262543 0.4864978 0.2632489 0.3967348 0.2434062 0.07100403 0.3313521 

0.4 0.583678009 1.1155525 0.4553264 0.2276632 0.4081623 0.2657640 0.08292887 0.2487866 

0.5 ’ 0.659363833 1.0303663 0.4294538 0.2147269 0.4167972 0.2831663 0.09221528 0.1844306 

1.0 0.969229552 

Solutions to the Velocity Eauation for f’o =-0.5. 0 d 13 Q 1 .Q 

0.78096245 0.3441336 0.1720668 0.4406531 0.3335444 0.1184279 0.0 
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H,, as a function of (IJ/II~~,) for the solutions near separation when p = 0 obtained 

by Emmons and Leigh (II); the broken part of the curve represents interpolation 
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FIG. 3 
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Variation of F, with A, for the separation solutions. The short lines indicate 

ye;. o-76693 

. whore thu curves of specified (‘v, 6,/V) intercept tht separation line. 
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the lines of specified (V, 61 Iv) with the separation line are also indicated 



FIG. 5 

0OUMDARY 
LAYER. 

PONT 
SINK. 

Diagrammatic illustration of the similar flow associatad with infinite fl 

> when the variablus aru real 

FIG.6 

POlNT 
SOURCE. 

The similar flow associated with inflnite p whon the variables aru 
pure imaginary 
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FIG. 7 
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FLUID VELOc\TY 4 
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