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SUMMARY

The report discusses solutions to the equation:
™4+ A" & ,3(1"f'2) = 0

sub ject to the boundary conditions £ = f5, f'=0 at =0 and f' > 1

as TN > oo, Numerical solutions are tabulated for wide ranges in the pressure
gradient parameter S and mass transfer parameter f,. Some related topics
discussed are (i) the asymptotic behaviour of solutions for intensive mass
transfer, (ii) the ranges of B and £, for which acceptable solutions exist
and (1115 the application of these "similar" solutions to problems involving
non-similar flows.
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Where the quantities in the following list possess dimensions,

typical units are given in brackets after the definitions.

A quantity occurring in equation (84) but later assumed

to be infinite
815 82, 8 ..0e. 8, ocoefficients in equation (134)
by, ba, b3 ..... bn coefficients in equation (136)
C constant occurring in equation (6)
C1, Ca, Ca +.... G, coefficients in equation (137)

4, dz, dg ..... dp coefficients in equation (139)

E, correction to a straight-line approximation to
relationship between F; and A; with zero mass

transfer [see equation (121)]

614 €2, 83 ..... €p coefficients in equation (141), [see also equation (142)]
f dimensionless stream function defined by equation (10)
fo value of f in the fluid at the wall;

velocity with which mass flows through the wall and
called "the mass transfer parameter";

velocity v, by equation (14)

ity second derivative of f with respect to 7
at the wall; a measure of the shear stress at the wall;

also equals 1/&F

Hhi

[see equation (15)]

a measure of the

related to the

evaluated

real form of f when variables are pure imaginary
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value of f at the wall;
when variables are pure imaginary and S

the mass transfer parameter
is small

rate of growth function for the displacement thickness

8 , defined by equation (41) with n =1

rate of growth function for the momentum thickness &s,
defined in equation (36)

rate of growth function far the shear thickness §;;

occurs in equation (44)

dimensionless stream function for intensive suction
defined by equation (128)

functions ocourring in equation (131)

dimensionless stream function for intensive blowing
defined in equation (143)

functions occurring in equation (146)

ratio of the displacement thickmess to the momentum
thickness, equation (33)

reciprocal of H, ,

ratio of the momentum thickness to the shear thickmess,
equation (33)

ratio of the displacement thickness to the shear
thickness, equation (33)

function defined by equation (75)
quantities occurring in equation (126)

mass transfer parameter when S 1is large, related to
the velocity v, by equation (18)

real form of X, when variables are pure imaginary,
[see equation (28)]

constant of integration occurring in equation (77)
given by equation (79)

function defined by equation (65)
function defined by equation (107)
coefficients occurring in equation (148);

note that ¢ in equations (109) and (110) has a
different meaning, as it is the value of q at ¢ =1

the quantity -koy occurring in equation (99)
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function defined by equation (117)

coefficients occurring in equation (149); see also
equation (150)

quantities occurring in equation (151)

coefficients in equation (152) whose numerical values
are given shortly after that equation

component of fluid velocity in the x~direction (ft/h)
value of u in the main stream (ft/h)

component of fluid velocity in the y-direction, taken
to be positive when directed outwards, (ft/h)

value of v at the wall boundary; the velocity at
which mass flows through the wall, (ft/h)

dependent variable used in Section 9, equation (154)

distance parallel to the wall measured from the start
of the boundary layer, (ft)

distance perpendicular to the wall measured from the
wall towards the main stream

independent variable used in Section 9, equation (153).

independent co-ordinate for intensive suction,
equation (127)

parameter occurring in equations (6), (12) and (19)
related to the magnitude of the main-stream pressure

gradient

local dimensionless shear stress used as dependent
variable when S is infinite, equation (21)

value of y at the wall

real form of y when variables are pure imaginary,
equation (25)

denotes any boundary leyer thickness of the velocity
layer (ftE

©0
u
displacement thickness, = f<1 - -) dy, (f£t)
ug
o]
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oF displacement thickness in the similar co-ordinates
(n,f), equation (29)

5#*  displacement thickness in the similar co-ordinates (&,0),

= 7?(1 - 0')& ;

6q momentum thickness, =

u u
—-<1 -—) ay, (£t)
uG uG

6% momentum thickness in the similar co-ordinates (n,f),
equation (30)

0\8

64* momentum thickness in the similar co-ordinates (g,9),

= j'e'(1 - 6')d

o
8  shear thickness, = ug/(du/dy)o, (£t)

8¢ shear thickness in the similar co-ordinates (n,f),
equation (31)

8¥* shear thickness in the similar co-ordinates

(E,e) sy = 1/66'
Z independent variable used in Section 5.2, equation (7#)

n  length co-ordinate used as independent variable when
p 1is small, equation (9)

real form of m when variables are pure imaginary,
equation (15)

31

©  stream function used as dependent variable when £ is
large, equation (17)

|

real form of 6 when the varisbles are pure imaginary

M pressure gradient parameter relating to the displacement
thickness, equation (39)

Az pressure gradient parameter reiating to the momentum
thickness, equation (35)

N pressure gradient parameter relating to the shear
thickness, equation (43)

v  kinematic viscosity of the fluid, (£t°/h)

£ length co-ordinate used as independent variable when
B is large, equation (16)

&/
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E  real form of E when variables are pure imaginary
dimensionless fluid velocity used as independent
variable when B is infinite, equation 521)

¢ real form of ¢ when variables are pure imaginary,
equation (25)

x independent co-ordinate for intensive blowing,

equation (143)

¥ stream function defined by equation (4)

Subscripts

0 denotes conditionsin the fluid close to the wall
1 denotes conditions in the main stream
G denotes conditions in the main stream
a,b denote values at two arbitrary points in the fluid
Superscripts

' denotes differentiation with respect to the independent varieble
in question, which may be 7, E, ¢ or one of several others

® denotes quantities expressed in terms of the similar
co-ordinates (7,f)

** denotes quantities expressed in terms of the similar
co-ordinates (E,0).




1. Introduction

1.1 The interest in "similar" solutions to the boundary-layer equations

The monograph is concerned with "similar" solutions to the velocity
equation of the two-dimensional, laminar boundary layer when the properties of
the fluid are uniform throughout the field of flow. Solutions are given for
wide ranges in the two parameters which represent the variables:

(1) The pressure gradient in the free stream in a direction
parallel to the wall on which the boundary layer exists, and

(ii) The velocity with which some camponent of the fluid passes
through the wall, This velocity may be directed either
inwards or outwards and determines the rate of mass transfer
through the boundary layer.

The literature contains many discussions of the velocity equation
for similar boundary layers, namely equation (12) below, so some justification
must be provided for devoting yet another long publication to it. Such
Justification will be given in various parts of Section 1, which starts here
with a brief resume of the various ways in which the sclutions may be applied.
In what follows it will be convenient to abbreviate the name of the asbove two
variables simply to "pressure gradient" and "mass transfer rate".

Practical engineering problems requiring the estimation of rates of
heat or mass transfer in forced convection frequently cover wide ranges in
pressure gradient and mass transfer rate. In order to carry out such
calculations, therefore, solutions to the boundary-layer equations must be
known for wide ranges in these variables. Yet the similar solutions are the
only asccurate solutions which are known both at sufficiently small intervals
and over sufficiently wide ranges in the variables to be useful for this

purpose.

Quite apart from such important practical considerations, however,
the study of the similar solutions in the past has contributed greatly to our
understanding of the mechanisms which govern the processes of heat, mass and
momentum transfer through laminar boundary layers, and this continues to be
true today.

It is of interest to note that the similar solutions are also required
in several exact series solutions to the partial differential equations of the
boundary layer, where they usua}ly appear as the first term; solutions of this
kind have been given by Howarth', Gortler and Hahnemann/,

The solutions may, of course, be directly applied in the calculation
of rates of heat or mass transfer for fluid flows which satisfy the conditions
for similarity. The cases of fluids flowing over wedges form one important
group of such flows, although the name "wedge flows" frequently used in this
connection is avoided here because it is too restrictive., The name "similar
flows" is preferred because it covers a wider range of pressure gradient and
includes the wedge flows.

The importance of the similar solutions has greatly increased in
recent years because they serve as the foundation for a number of more general
methods of boundary-layer analysis used for estimating transfer rates for both

similar/
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similar and non-similar boundary layers. Although approximate by nature, such
general methods can, with due care, give results which are sufficiently accurate
for many practical purposes,

1.2 The need for solutions of high accuracy

There has therefore been a considerable and growing interest in the
simriar solutions, but even so, comparatively few were found in the literature
which were accurate and for which the mass transfer parameter was not zero.
The solutions knowg up to a few years ago were collected and summarised by
Spalding and Evans™, although more have appeared since then, A number of
solutions of moderate accuracy were known at that time and with the use of
interpolation procedures given in that paper, others could be obtained to
within a few percent for wide ranges of pressure gradient and mass transfer.
The main conclusion, however, was that many more solutions of high accuracy
were needed.

Similar solutions to the velocity equation are obtained not only
for use in their own right in the ways outlined in Section 1.1, but also so
as to solve the b-equation, Spalding and Evans™, which governs other conserved
fluid properties Jjust as the velocity equation governs fluid momentum,
Solutions to the b-equation are also required for use in general methods of
boundary-layer analysis.

Experience during recent years has amply demonstrated that, in order
to make the use of computers worthwhile when solving the b-equation, the
accuracy of solutions to the velocity equation which are used must be
considerably better than is obtained by interpolation.

On the other hand, there may be objections that the accuracy of the
solutions in the present monograph is excessive in view of the fact that the
boundary-layer equations are themselves only an approximation to the complete
equations of motion of the fluid, While being in some respects sympathetic
to this point of view, the author has found from experience that, within
reasonable limits, the final digits in any quantity, which have been used
during computation and which are known to be correct, should be retained.
Even if the author himself has no call to do so, & reader may at some future
date wish to apply some mathematical process to the data which requires high
accuracy, To cite Jjust one such process, a considerable loss of accuracy
would occur, for example, if further solutions were obtained from those in
the present monograph by numerical interpolation; the loss of accuracy would
be even more severe if an extrapolation process were necessary.

1.3 Accurate solutions already available

Solutions are regarded as accurate in the present context when they
are correct to about six digits, an accuracy which is readily achieved with a
reasonably advanced digital computer. Howeﬁer, relatively few solutions were
known to this accuracy at the time of the survey by Spalding and Evans™, which
included work up to mid 1959.

The case of zero pressure gradient had been adequately treated by
Emmons and Leigh 1, including both inward and outward mass transfer; their
results were subsequently used to solve the b-equation, Evans12. Accurate
solutions were also known for zero mass transfer covering a wide, but not
the whole, range in pressure gradient; these too were applied to the b-equation,
Evans?. Because few other solutions of the required accuracy were known, work
on the b-equation had to be discontinued at that stage.

Some/
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Some other solutions for scattered values of the pressure gradient
and mass transfer parameters were also known, but in general these were only
accurate to four or five digits. Asymptotic solutions for very intensive
suction were also known and the accuracy of these solutions improved with
increasing rate of suction.

Discussion of the present state of our knowledge of similar solutions
is best left until the end of the monograph. If reference is made to Fig, 29
in Section 9, which shows the known solutions marked on the F, - A, plane
(for definitions see notation 1list), the accurate solutions known when the
present programme of work was initiated were therefore as follows:

1. Solutions were known for f = O; these lie along the
ordinate A; = 0,

2, The line (vbﬁz/v) = 0 was known from its intercept with
the separation line up to the line B = 2<0; its intercept
with the line B = fo0 was also known because that point is
obtained from an exact analytical solution.

3. The asymptotic solutions for intensive suction were known;
on the scale of Fig, 29, however, these were confined to a
very small region close to the point F, = Ay = 0.

4, Some other isolated points on Fig. 29 were also known;
these were largely confined to the quadrant lying between
the lines marked g =0 and B = 1°0,

1.4 How the report came to be written

To overcome the shortage of accurate similar solutions, therefore,
the task of computing others was undertaken and some of the first results
were duly published, Evans/, Others were obtained in groups at various times
using a number of different methods and these too were submitted for publication,
When several papers had been accepted, however, it became clear that, since
they treated various aspects of a single subject, some advantage would be
gained for the reader if they were published together., It was therefore
decided to prepare the work for publication in the form of the present report,

While this decision meant that the whole work had to be rearranged,
and indeed several sections had to be completely rewritten, it gave a welcome
opportunity for clearing up a number of obscurities in the original versions

of the papers and for showing more clearly how the various sections are related
to each other.

It «ill be seen in the concluding discussion of the report that there
still remain large gaps in the available accurate solutions, However, the
preparation of the report is the end of a phase in the work because, for
various reasons, further sclutions are not likely to be obtained for some time
to come,

1.5 Outline of the report

The forms of the velocity equation for similar boundar& layers with
which the report is concerned are given in Section 2, The pressure gradient
parameter S occurs in this equation, In the monograph, the form of the

equation/
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equation most frequently given in the literature is used when lﬁl < 10 but
an alternative form is adopted whenever |B| > 1:0; far |[B| = 1 either form
can be used. For the particular case when [B| is infinite a simpler form

of the equation is deduced and this is found to yield solutions fairly readily,

Section 3 contains formulae which relate the various functions of
the velocity layer to each other. They have been used, among other things, to
evaluate the required boundary-layer functions from quantities given by the
computer,

The variation of the shear stress near the main stream is discussed
in Section 4, By examination of the differential equation it is shown that
when the dimensionless fluid velocity is close to unity, so that the stream
function is virtually a linear function of distance, the local shear stress
should diminish rapidly with increasing distance from the wall, although
computed solutions frequently do not behave in this way.

A few analytical solutions known to the author are given in Section 5,

The numerical solutions which are the main contribution of the present
report are discussed in Section 6, These are divided into several groups, but
only brief remarks are made about the first two groups, the first with
accelerated flows when g 1is small and positive, and the second for decelerated
flows when B 1is small and negative. However, more attention is paid to the
solutions with separation as well as to those for infinite |g

Section 7 is devoted to a general method of boundary-layer analysis
based on the displacement thickness, akin to that based on the momentum thickness
by Spalding”. For some problems, those involving decelerated flows for example,
this method may possess some advantages over others because of the way in which
the boundary-layer functions vary under such conditions,

The work described in Section 8 was carried out in co-operation with
Miss Joan D. Hayhurst formerly of the Division of Food Preservation, C.S.I.R.O.,
Australia, and is concerned with conditions of intensive mass transfer and with
conditions of no mass transfer when the parameter f 1is large. For intensive
mass transfer, analytical solutions are given in the form of asymptotic series
in inverse powers of the mass gransfer parameter, The solutions for intensive
suction, first given by Watson , are complete in the sense that it is possible
to evaluate all the boundary-layer functions of interest in the present wark.
For intensive blowing, however, only & series for the dimensionless wall shear
is given. For no mass transfer and large lﬁl e polynomial expansion in
inverse powers of £ 1is given; this can be used for positive and negative g,
namely for both the real and the imaginary domains relating to equation (12).

In the concluding discussion in Section 9, the present state of our
knowledge of similar solutions is summarized and suggestions are made about
how the work should be continued. Solutions which can be related to boundary
layers exist only as far as certain limiting values in the pressure gradient
end mass transfer parameters; with solutions for values beyond these limits
the displacement thickness may not be finite or the local shear may not decrease
to zero at large distances from the wall. However, there are some unexpected
features about the behaviour of solutions near the limiting values for
decelerated flows.
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2. The Velocity Fquation for Similar Boundary Layers

2.1 The partial differential equations

The transformation of the partial differential equations of the
uniform-property, laminar boundary layer to similar co-ordinates is given in
many places in the literature. Only a brief account is needed here; a more
detailed discussion may be found in a recent paper, Evans7, which also contains
references to many earlier papers in the field.

The velocity equation in similar co-ordinates contains a parameter §B
which may take any real value, positive or negative. Equation (12) below is
the form of this equation most frequently encountered in the literature and this
can be used, for example to obtain numerical solutions, whenever |B| is not
large. When |B| approaches infinity, however, a different form of the
equation must be used, see Evans/,

These alternative forms of the equation are identical for 8 =1 and
it has been realized recently that some advantages are gained by using the
more familiar form of the equation only when |B] < 1, and adopting the second
form, in which the parameter is 1/, whenever |B8| > 1. This will be the
approach in the present report although only some of the numerical solutions
were obtained after the author became aware of the advantages of this approach.

For two-dimensional, laminar flow with uniform properties, the
conservation of the momentum of the fluid in the boundary layer is expressed
by the equation:

du du dug *u
U —4+ V¥V — = uG——+V— soe (1)
ox oy dx oy’

and the continuity equation is:

du aJv
—_—t — = oo se0 (2)
ox dy
In these equations:
X = distance measured parallel to the wall on which the boundary
layer occurs
Y = distance measured perpendicular to the wall towards the
free stream
u = local component of fluid velocity in the x-direction
ug = value of u in the free stream
v = velocity component in the y-direction, and
v = kinematic viscosity of the fluid, the ratio of the dynamic

viscosity p to the density p.

When mass flows through the wall with a velocity vy, which may be
positive, negative or zero, the boundary conditions to be satisfied are:

y/



y = 0, u = 0, vV = Vo
} e (3)
y > oo, u - ug,
where vo is positive when directed outwards from the wall,

The stream function V¥ is now defined by:

¥ oY
u = — V = = — coe (li-)
ay ax

thus automatically satisfying equation (2), so that equation (1) becomes:

Y oy %y dug oY
_ . - —_—, —— = uG _—% Y — XX (5)
dy o9xdy ox oy° ax ay>

Spalding5 has shown that this equation possesses similar solutions
when ug, the fluid velocity in the free stream, satisfies the relationship:

du
¢ C ué<ﬂ_1)/’3 oo (6)

dx
where C and g are constants.

When the pressure gradient in the free stream is zero, both dug/dx
and S are zero. In the transformation to be given below, equation (6) is not
then used directly but is replaced by the following equivalent form:

1 duG _ 1 gE (7)
(2-8)  x N

Another relationship required in the transformation, which is also deducible
from equation (6) is:

8 ax

a® | dax

1-=-)—. oo (8)

d*ug | dug 2( 1>1 dug
B/ ug dx

which is seen to contain the constant A but not the constant C.

2.2 The equation for similar boundary layers when g is small

When the dimensionless length co-ordinate is taken to be:

1
2

N = y<§;%> )

and the dimensionless stream function is defined as:
¥, 1 dug?
f = —(————) coe (10)

substitution/
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substitution into asquation (5) gives, after some calculation:
uG d.uG
<--————>{f"+ff" + p(1 -f‘z)} = 0 oo (11)
g dx

where the primes signify differentiation with respect to the independent
variable .

The velocity equation for similar boundary layers to be used when g
is small is then:

M4 £2" 4 g1 - £12) = 0 oo (12)

and the boundary conditions associated with it are:
n =0, f = £, f' =20
} eee (13)

n > o, ' 1,

where f, dis a constant related to the velocity v with which mass flows through
the wall by

Vo

fo = m—— . cer (1)
v duG z
( p dx )

The group in the first bracket in equation (11) is not zero when the
velocity gradient duG/ﬁx is zero because f is also zero then and, by

1 dug

equation (7), the quantity — —— does not vanish, That group would, however,
g dx

be zero if were infinite and, instead of equation (12), we then have

equation (19) of the next section.

When B and dug/dx in equations (9) and (10) are of opposite sign,
n and f are pure imaginary. If we let i = v=1 we may then define real

quantities n and f Dby:
Tl = i-ﬁ s f = i? es e (15)

and obtain the form of equation (12) valid for the imaginary domain., This
differs from equation (12) in having a negative sign preceding the first term
and the equation which connects the parameter f, with the velocity v,
corresponding to equation (14), does not have a negative sign.

Although equation (12) has been used for obtaining7numerica1 solutions
in the real domain even for large S, see for example Evans!, it became
increasingly more difficult to satisfy the main-stream boundary condition as

B 1increased. It is now realised that the farm of the equation to be given

in the next section would have been more appropriate for Iﬁl > 10,

2.3/
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2.3 The velocity equation when g is large

The real and imaginary domains relating to equation (12) are separated
by the line along which lﬁl is infinite. To obtain an equation which can be
used for any large value of lﬁl, in particular for infinite |B|, we choose
a transformation whose effect is to remove S from equations (9) and (10) and
from the mass transfer parameter f, as defined by equation (14? Our choice
of dependent variable also, incidentally, moves the mass transfer parameter from
the boundary conditions into the differential equation but, apart from making
the boundary conditions independent of the mass transfer rate, this has little
effect on the problem,

The co~ordinates to be used were discussed more fully in an earlier
paper, Evans7, and differ only slightly from those already proposed by Spaldin
The independent variable, which is a measure of the distance from the wall, is
defined as:

1
2

E = y<1%> ... (16)

v dx

and the dependent variable is:

o - (1 duG)% ( du:) i R CY)

The mass transfer parameter k,, a constant when the boundary layer is similar,
is taken to be:

Vo

]{0 = - —_'_—T o soe (18)
< duG>'2‘
v ———————
dx
The ordinary differential equation which governs the veriation of 0 as a function
of E is then:

1

gm +Eee" + k0" +1-6" = 0 oo (19)

with the boundary conditions:

E = 0 6 6' = O

’ } ... (20)
E - oo, 0'-> 1,
The primes in equations (19) and (20) denote differentiation with respect to E&.

Equation (19) is the form of the velocity equation for similar boundary
layers suitable for use when B 1is large; instead of B itself, however, it
would clearly be more appropriate to treat 1/B as the parameter in this equation,

Examination/
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Examination of equations (16), (17) and (18) shows that the variables
€ and 6 and the parameter Ik, are real for accelerated flows, when dug/dx
is positive, and pure imaginary for decelerated flows. Apart from the fact
that it can be used when the parameter B is large, there may be a further
advantage in using equation (19) in preference to equation (12), for not only
does the line B =0 divide accelerated flows from decelerated flows, but in
the (556) co-ordinates it also separates the real from the imaginary domains,

2,4 A simpler form of the velocity equation for infinite g

When S 1is infinite the second term in equation (19) is zero, so that
the equution does not contain the stream function © explicitly, A simpler
form of the equation can then be cobtained by taking the fluid velocity a0/aE
as independent variable and the local dimensionless shear d%°0/dE® as
dependent variable. If we give these quantities the symbols

an aze
¢ = —, ¥y = —, .o (21)
dg ag
note that
ae dy
— = Y— ’ so (22)
ag® d¢
substitute into equation (19) and divide by y, we get
dy (1 -¢°)
—+1Q) + — = o. s (23)
d¢ Y

In this equation the independent variable is confined to the fixed narrow range
O0<¢ <1 and the main-stream boundary condition is

$ =1, vy = O e (24)

Solutions to equation (23) satisfying (24) will later be given for a wide range
in the mass transfer parameter k.

Equation (23) holds for accelerated flows when duG/dx is positive
so that £, 6 and k; are real quantities, For decelerated flows dug/dx is
negative and E, 6 and X are pure imaginary; agein we write E = iE, 6 = i
and k, = ik,, where barred quantities are real, and define new real variables:

_ a6 _ a*e (25)
¢ - _: s y = —— cee 25
g dE?
we get for equation (23):
&y _ (1-¢%)
- — + ko + — = 0 see (26)
do Y

with/
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with the boundary condition:

9_5 = 1, y = 0. eoe (27)

The relationship between the mass transfer parameter k, and the velocity v,
is:

— Vo
k = ——m— . ... (28)

( duG >2
v ——
dx

Solutions to equation (26) _satisfying (27) will later be given for a range of

negative ko, satisfying 'kb, > 8z,

3. Relationships between Functions of the Velocity Boundary Layer

3.1 General formulae

Relationships between functions of the velocity boundary layer will
now be given, These have been used in preparing the accompanying tables of
numerical solutions and are to be referred to frequently in later sections of
the monograph., Most of the formulae will simply be stated, because they are
well known and have been d%rlved and discussed in earlier publlcatlons, Spalding5
Spalding and Evans4 Evans

Three boundary-layer thicknesses are first defined in terms of the
similar co-ordinates (m,f) of Section 2.2:

X ar

Displacement thickness: oF = ‘[ (1 - ——-) dn, .ee (29)

an

< ar

Momentum thickness: 8% = .[ ——-(1 - ——-) dn, ... (30)
A d:
1

Shear thickness: & = —. ces (31)
3

Other boundary-layer thicknesses can also be defined but we shall confine our
attention to these three. If a double asterisk is used to denote the same
thicknessgs in terms of the co-ordinates 1(5 ®) of Section 2.3, since

n = E/BZ it follows that 6} = 8} B2, where the subscript n may be

1, 2 or L.
These thicknesses are related to each other by the exact relationship:

— = fY = fo + pSF + (1 + )6} eee (32)

which is obtained by integrating equation (12) from m =0 to m =oo,

We/
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We also define the following thickness ratios:

1 0%
H21 = [ = — H24 = fg 85 ’ Ii‘l = fg 81* LR (33)
Hi 2 &8¢
and the following mass transfer parameters:
V051 Voag 14 C‘)'
= ~fo8F = ~fo 8%, = - — cee (34)
1% v Vo 84 fo

where the last is written as the reciprocal of a mass transfer parameter because
this is the form usually adopted.

It should be noted that because the ratio H, 5 varies over wide ranges,
even becoming infinite for flow over a flat plate with a sufficiently high rate
of blowing, in the present work its reciprocal Hp; is often used instead,
because over most of the region of interest this remains within fairly narrow
limits. Tt will still be convenient, however, to use H;; in some formulae and
Hs; in others.

In terms of the functions just defined, for similar boundary layers
the pressure gradient parameter relating to the momentum thickness is:

V062
53 dnG Hay + v
Ny = o— — e ... (35)
v dx 1+1+Hiz

B

and Fy, the function which gives the rate of growth of &; in the x-direction,
is

v062
U.G_dbg 1 H24+ v
A ) uaaray e (9
v dx B 1+719-+Hiz

It mey be of interest to note that only 1/8, but not B itself, occurs in
these equations; it is also possible to write the fundamental equation (6) and
the definitions in equations (9) and (10) in terms of 1/8 only.

For any uniform-property, laminar boundary layer, whether or not the
conditions for similarity hold, the integral momentum equation also applies.
In the present notation this is:

1 ug 483 83 dug Vo 82
—_— —— (2 +I{12) —_—— = HQ4 + eee (37)
2 v dx vy dx v

3.2 Relationships in terms of an arbitrary thickness &,

Equations (35), (36) and (37) contain the pressure gradient parameter
and the rate of growth function applicable to the momentum thickness &,. We

shall/
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shall now derive a more general farm of these equations which apply to an
arbitrary thickness 6y, where the subscript n may be 1, 2 or 4,

When equation (32) is multiplied throughout by the arbitrary thickness
6% the result can be written in the form:

V05n 2 1
Hy = -+ A(E) {H1n+<1+E>H2n} ver (38)
where the definitions of the thickness ratios H H and H are obvious
Since A = ﬁ(&ﬁ)z we have: 2k Mn 2n .
)\n = 6_;. du(; = Hm1+ (VO6n/v) see (39)
v dx <1 + E-) H2n + H1n

which clearly corresponds to equation (35).

Now, for a similar boundary layer A, 1is a constant so that, using
equation (6), we get:

52

2 ué(ﬁ_1)ﬁ = oonstant, ... (L0O)

v
This equation is now differentiated with respect to the distance x, divided
by ué?-z)AB and rearranged to give the result:

2 2
Fn = —-3 = 2<—-1>£—— soe (#1)
r dx B vy dx

which is the more general form of equation (36).

To get the mare general form of equation (37) we eliminate the
parameter B between equations (39) and (41), the result being

1 ug d8? 62 du 1 Yo
____ri+(2+}{12 _E—E= ——{Hnl‘_-b- n}. cee (11-2)
2 v dx v dx H2n v

While this equation appears to be a more general form of the integral momentum
equation which applies to any boundary layer, it is in fact applicable only to
similar layers as may be suspected from the way in which it was derived.*

In many branches of study concerned with laminar boundary layers, in
aeronautical engineering for example, interest is concentrated on the force which
the moving fluid exerts on the wall, or more precisely on the stagnant fluid
located very close to the wall but which may be regarded as forming part of the
wall, The following equations in terms of the shear thickness may therefore
prove useful in such studies:

642 d.uG 1 + (Vo&;/V) (43)

N o= — = 3
v dx <1+—>HQ4 + H,
P and/
*In general the term - — — &3 ——-( ——-) also occurs on the left but for
2 v dx \ 63

"similar" flows this term is zero because the ratio (BH/SQ) is a constant
in the x-direction.
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and
1 ug 487 87 dug 1 Vo 84
_-—-——+(2+I‘I12)——-—-— = ——<1+ )0 eee (M)
2 v dx v dx Ha, v
3.3 The special case B = -1
When 8 =-1 and n =1 equation (39) reduces to:
Vo &
)‘1 = I-I14 + . s oo ()+5)
v
It is also known, Evans7, that for this value of B the following relationship
holds:
5#2 - 2668F +2 = O eee (46)
which, with different symbols, is:
Vo &y
D+ 2 +2 = o. cee (47)
v
Tt then follows from equations (45) and (47) that:
1
H14 = — + 1 ceee (L|'8)
2
Yo Oy M
= — -1, eeo (49)
v 2

Equation (48) means thet when the thickness ratio H, is plotted as
a function of the pressure gradient paremeter N , points for g = ~1 fall on
a straight line of slope %. This line passes through the separation point,
when Hj4 =0 and N = -2, as well as the point corresponding to an infinite
rate of suction, when H4, =1 and N = 0. From equation (49) the mass
transfer parameter Vo8& /v can also be given exactly along this line; it
ranges from -2 at separation to -1 for very intensive suction,

4, Variation of Shear Stress near the Main Stream

4,1 Specification of the beginning of mein-stream flow

On examination of accurate numerical solutions to equation (12) with
boundary conditions (13), the stream function and its first two derivatives are
seen to approach their main-stream values in the following order., The stream
function f first becomes a linear function of. m, at least to the number
of significant digits to which the solutions are quoted, then the velocity f!'
becomes unity, and lastly f", which is a measure of the local shear, becomes
negligibly small. We shall now consider the behaviour of f" when f and £
are close to their main-stream values because it is often given incorrectly by
computers.

The following are three possible ways of specifying the beginning of
main-stream flow: (a) the point where f is linear, say, to six significant

digits,/
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digits, (b) where f' is unity to six digits or (c) where f" is zero in the
sixth decimal place. The smallest value of mn at which main-stream conditions
are satisfied depends not only on which of these criteria is used but also on
the number of significant digits to which quantities are specified. The present
work was planned so as to obtain numerical tables of the stream function and
its first derivative, which gives the dimensionless fluid velocity, correct to
at least six digits.

This number of digits may seem excessive for boundary-layer theory,
which itself contains a number of approximations. The extra effort required to
obtain this accuracy, however, has been amply justified by the advantages gained
when the solutions were applied, for example, in cbtaining other solutions by
interpolation or in evaluating quantities associated with the b-boundary layer.

0f the three conditions listed above, (c) is the most acceptable on
physical grounds, Unfortunately, however, computed values of f" are
considerably less reliable near the main stream than either f or f', so
that for present purposes we shall use condition (b) instead; this turns out
to be a less stringent condition than (¢). We shall therefore regard main-stream
flow as beginning where the dimensionless velocity f' becomes unity to six
significant digits.

4,2 A formula for the decrease of wall shear

When equation (12) is divided throughout by f£" it becomes:

£ (1 -£)
—_— +f+ﬂ(1 +f') —_ = 0. s (50)
£ £

This operation is allowed because, although f" +tends to zero for very large
1, it is still finite at the point we have chosen as the beginning of
main-stream flow,

Now, as the main stream is approached, f' > 1 and f" » O, so the
factor (1 - f')/f" in the last term is indeterminate, It is quite reasonsble
to assume, however, that it tends to the same value as the ratio -f"/f",

The assumption holds only if f' approaches unity rapidly enough.
It does not hold, for gxample, if (1 - £') ~ A/m, where A 1is a constant.
When (1 - f') ~De™PM, where D and p are constants, the assumption is
reasonably accurate provided pp® >> 1. For this second example we get by
differentiation f" ~ 2Dne™PN, which means that f" decreases fairly
rapidly as 7 increases. By inserting the above assumption into equation (50),
however, we shall see that f" decreases even more rapidly than this for
accurate solutions to equation (12).

The above argument can, of course, be presented in the reverse order,
namely that if the assumption we are making is valid, then f' must tend to
unity feirly rapidly.

By inserting the assumption into equation (50) we then get as the
degenerate form of the equation near the main stream:

fﬂ" f"
— f bt Zﬂ -_— = O. XXl (51 )
£ £

This/
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This is a quadratic in the quantity:
fﬂll d
— - B {81}_ f"} eece (52)
£ dan
with the solution:
d f 1
an {'6n f"} = - o %(fg + 85)2 LR ] (53)
dn 2

where & negative sign is chosen to precede the radical because f" must be
very small and must diminish as 7 increases,

Now equation (51), and therefore equatian (53) also, applies only where
the stream function is virtually a linear function of m having the form:

f = n+fo - 8. eoo (54)

The differential sign outside the brackets on the left of equation (53) may
therefore be replaced by differentiation with respect to f giving:

da f 1
_{en f"} = - - - (2 4 86)7. ver (55)
ar 2

When this is integrated between the two points m =a and 7m =b, straightforward

calculation leads to the following expression for the ratio of the shear stresses
at these two points:

.
" 2 z 28
£ £, + (f3 + 88) 1 ki
= ~ c- £+ (£ + 88)% - £5 — £,(F3 8/32}(56)

{ o+ (7 + 86)5-} exp { B+ £, (£f + 86) a a(f3 + 86)

f" B
a
where the subscripts denote values of the functions at the points "a" and "b",
Since f is a linear function of 1, it is possible to express the
right-hand side of equation (56) in terms of m, but the expression then becames
rather unwieldy and less convenient to use than the above form in terms of the
stream function £,

4.3 The special case of zero pressure gradient

The case when the free stream pressure gradient is zero displays some
special features, as may be seen by putting f = 0O into equation (53). This
gives:

d
S ent et = 0 e (57)
dn

which is, in fact, an exact form of equation (12) for g = 0.

From/
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From this we may deduce:*

f"

en<f6-'> = jnf‘ dn ... (58)

which means that the ratio of the shear stresses at any two points "a" and "b"

is exactly:
f; a
2 . exp,-{ fdn}. .es (59)

fg T g =0

When both "a" and "b" are in the region where f satisfies equation (5.4) this
ratio becomes:

£ ‘
f—j- = exp., - % [(na - m)ng + m + 2(£ - 61’))}
b

= exp. - & (£ - ). -eo (60)

4.4 Comparison with computed values

It is found from experience that much of the error in computed values
of f" at large m arises from uncertainty in the starting value £ff. Even
when the latter is known accurately to six digits, it is possible for uncertainty
in the seventh digit to give rise to appreciable error in f" after, say 100
steps in the integration process,

A good test of the validity of equation (56), therefore, is to examine
the numerical sQlution for g = -1 with f,_= 1+5. Since we then have
£ = (f2 - 2)z = 0-5 exactly, see Evans/, there is no errar in the starting
value, Two lines in this solution at the point where the velocity becomes unity
to six digits are:

n £ £1 £

50 5° 50000 0°+999999 0°62224,0 x 1078
542 5+70000 1+00000 0218575 x 1075

To four digits the ratio of the second to the first of these values of f" is
0°1182; when calculated from equation (56) it is 0°1189. The difference

between/

*Tt follows from equation (58) that when B = O the regiprocal of the wall
gradient for the b-boundary layer, Spalding and Evans®, is:

[ o]

= [ (e7/£8)° an

bd
which, for o = 1, immediately reduces to the well-known result (od/B) = £3.
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between these values occurs in the ninth decimal place where, in fact, the error
produced by rounding-off within the computer is having some effect.

Equation (56) was also tested at the beginning of free-stream flow
with several other numerical solutions and, as expected, the agreement depended
on the accuracy of such solutions.

The final conclusion was that the equation gives an adequate description
of the rate of decrease of local shear near the mein stream and that its
accuracy improves with increasing distance from the wall., It can, to some extent,
be used as a test of the accuracy of numerical solutions.

5. Some Analytical Solutions

Most solutions to equation (12) with boundary conditions (13) known
to the author were obtained by numerical integration. There are, however, a few
analytical solutions which are useful both for checking the accuracy of numerical
methods of integration and to serve as exact points of reference when plotting
relationships between various boundary-layer functions. The solutions for
intensive mass transfer to be discussed in Section 8 are also analytical solutions;
they become asymptotically exact as the rate of mass transfer increases.

5.1 Two solutions for infinite S

(a) Solution for k, = O

When B is infinite and k, = 0, equation (19) reduces to three
terms and the solution which satisfies equation (20) is:

E
6 =g+2/—-3/§tanh{—+tanh'1,%}. ... (61)
V2
By differentiation the dimensionless forward velocity of the fluid is:
ae - g 5
—_—= 3 tan.hz {._ + ta-nh_i '3} - 2. see (62)
3 V2

9

This solution was discussed more fully in an earlier paper, Evans®, In the
co-ordinates of Section 2.4 it is:

y = J7§-<2+¢>"2‘(1-¢) .. (63)

which will be referred to later.

(b) Solution for kg = =-5A3

When B is infinite and ko = -5/ 3, equation (19) with boundary
conditions (20) has the solution:

0 =§-17_3'{6n2-‘/_2-}+2\/3{6nQ-jQ-} veo (64)

where:/
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where:
Q = 14+ (V2 - 1)3—5/\/3. ... (65)

In this case the dimensionless velocity of the fluid in the boundary layer is

given by:
ae 2
— = (=-1 ' oe. (66
== (3 1) (66)

and the boundary-layer functions have the following exact values:

ke = =5N3
a2e
(=)

J';-w‘z'-n

* a6
&2* = [(1-—)&5 = V3(2 -V2 + ¢n 2)

E=0

g
< ae e 1
5%* = [_<1__>dg = — (1 + 222~ 3¢n2)
; & dg 3
Vo &2 5
= —(1+2/2-3¢n2).
v 3

Other functions can readily be evaluated from these.

In the co-ordinates of Section 2.4 this solution is:

y = \[_%(¢+ 1) {w/?- (¢ +1)1§} . .ee (67)

5.2 The solution for B = -1 with decelerated flow by Thwaites

Thwaites10 has given an analytical solution to equation (12) for
B = -1 with decelerated flow, namely when the variables are real. His
co-ordinates, however, differ greatly from those used here and an awkward
transformation is needed in order to make use of his solution, It was therefore
thought worth while expressing the solution directly in terms- of the present
formulation of similar boundary layers.

The value B = -1 also displays some special features in the imaginary
domain but no analytical solution has yet been found for that case.

It was shown in an earlier discussion, Evans7, that when B = -1
equation (12) reduces to the following first-order equation:

2/
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af
2 —+ 2 = 3 4+ 2 + 7P ... (68)
dn

and the solution must satisfy the boundary condition:

daf
—_ > 1 expanentially as 1 - oo, ees (69)
dn

It was also shown that, following from the definition of the displacement
thickness given in equation (29), the following relationships apply far g = -1:

fg = fo - 8? oo (70)
i
& = fo + (f§ - 2)2 oo (71)
so that
hE
£8 = (f§ - 2)%, oo (72)
These relationships are now used to rewrite equation (68) as:
af £ 2 n+ £ 2
_—+<——> —( > - 1 = O. L ] (73)
dn V2 V2
If a new independent variable:
Z = (n+ N2 oo (T4)
and a new dependent variable:
1
J = i_z s e (75)
V2
are chosen, equation (73) becomes:
aJ
—-%J-1 = O, ... (76)
az
This has the solution:
Vx 72
J = —e {erf;+M} oo (77)
2

where M 1is a constant of integration. When transformed back to the (m,f)
variables this is:

eo. (78)

. o 8.2 exp.- [N ZP
=Nt ( ;> ferf[ ()N 2] + M}

Since/
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Since f =f, at 71 =0 we get for the constant M:

- (1;‘:)% e"j’f; ”j" ot ( F) e (79)

so that the stream function f finally becomes:

(fo-18)exp. { (£3A2)* = (n+£8)?/2}
f = n+ 18+ (80)

1 + (n/8)2(fo-18) [ore[ (e ) NZ] - ert(LNZ)Joxp. (FAAE)?

For the particular case of separation with this value of B the values
fo =V2 and f3 = O are substituted into this to give:

V2 e_na/ 2

f = 7 +1 N (ﬁ/g)erf(n/‘/ﬁ) . cee (81)

Equatlon (80) gives f as a function of n and f, only, because, by
equation (72), f§ is a simple function of f,. For any specified value of the
parameter f,, therefore, the stream function f can be calculated exactly for
any 71 using numerical tables of the exponential and error functions.

The formula for the fluid velocity, obtained from equation (80) by
differentiation with respect to m, is rather complicated. To obtain numerical
values for the velocity it is easier to evaluate f from equation (80) and then
substitute this into equation (68).

The local dimensionless shear may then be evaluated from the formula:

" = f§ +n =~ ff' ceo (82)
which is obtained from equation (68) by differentiation,

6. Numerical Solutions

6.1 A few general remarks

The numerical tables reproduced in the present report contain only
boundary-layer thicknesses, thickness ratios, pressure gradient parameters and
rate of growth functions, all for specific values of the parameter g and the
appropriate mass transfer parameter, Tables giving the stream function f and
its derivatives f' and f", and for many solutions the function

f dn, at regular intervals in the independent variable m, were also obtained

o
and prepared for publication; the relevant tables for p infinite gave values
of the local shear y at intervals in 'the dimensionless velocity ¢. However,
it was decided to omit such tables from this report because they would have
occupied an excessive amount of space,

In spite of their sbsence it will be necessary to refer to these tables
when we later discuss the behaviour of solutions, and readers who find that they
require copies should send a request to the author. i

The/
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The solutions are divided into four main groups, each of which was
computed at a different time; a fifth group contains some miscellaneous results.
Each of these groups will be discussed separately,

The method _used for integrating equation (12) was described in an
earlier paper, Evans/; the method of integrating equation (23) will be discussed
in Section 6,5. A programme was prepared for integrating equation (12)
numerically on a computer using a Runge-Kutta process. Only approximate values
of the wall shear f§ were known but these were improved by iteration; the
criterion to be satisfied was that, as 71 increased, the velocity f' should
tend to unity from below and remain there for a number of intervals in 7.

When f}' was known accurately enough for specified values of B and
fo, the data were fed into the computer which then supplied values of f", f*

and f, eand for the more recent solutions |[f dn, at regular intervals in the

)
independent variable mn starting at 71 = 0. This integral is required in
solutions of the b-equation.

The displacement thickness &Ff was evaluated from the value of the
stream function f in the main stream making use of equation (54), and the
momentum thickness was obtained by using equation (32).

For B = -1, however, equation (32) could not be used, so that &f
had to be calculated from the values of f' given by the computer. Instead of
(oo}

evaluating ‘[ f'(1-f')dn directly, however, the following method was found to

o
be more accurate, The momentum thickness was written as:

00

8 = flo) - fo - /.f'z dn ... (83)

[o]

where f(co) denotes the value of the stream function given by the computer at
some suitable point in the main stream, and the last term on the right was
evaluated by the application of Simpson's rule. This method is more accurate
because the region near the wall, where f' changes most rapidly, makes only a
small contribution to the third term in equation (83).

When the values of £, O&F and 6% were known for specified values
of the parameters g and f,;, other functions could be evaluated fram the
formulae given in Section 3,

6.2 Group I - Solutions for accelerated flows: B positive -

The solutions in this group were the first to be camputed and are
generally less accurate than others which were obtained after gaining some
experience with the computer. The solutions are given in sets, each set covering
a range of f, for a fixed value of £,

Even for these less accurate solutions, most of the boundary-layer
functions quoted are known to five significant digits, in many cases six. In the
tebles of the stream function and its derivatives, both f and f' were accurate

to/
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to six digits but the local dimensionless shear f", although accurate near the
wall,  gradually became less accurate as the main stream was approached. Instead
of diminishing in an exponential manner as given by equation (56), as 1
increased values of f" decreased to between 1 x 10°° and 1 x 1077, depending
on the solution in question, and changed very little thereafter,

When equation (56) was used as a test of the accuracy of the solutionms,
it was found that this decreased slightly as both B and f, increased in
magnitude, remembering that both these parameters are positive for all but a few
of these solutions. This decrease in accuracy occurred because as f and £
increased the boundary layer became thinner and the size of the interval of
integration, which varied little from one solution to the next, introduced some
error; for B = 0°5 and 1°0, however, the interval was smaller and these
solutions are consequently more accurate.

6.3 Group II - Solutions for decelerated flows; S negative

For this second group of solutions the free-stream flow is decelerated,
the parameter pS ©being in the range -1 < 8 < 0. For each value of B the mass
transfer parameter ranges from the largest value fp = 3°0 to a lower limit
which is that required to give separation, and which therefore depends on the
value of B. The separation solutions will be discussed in the next section,

Very few accurate solutions were previously known in this region,
although some of low accuracy were cited by Spalding and Evans™., The solutions
previously found for S = O by Emmons and Leigh11 were in different similar
co-ordinates from those used here and therefore did not include the present
numerical values of the parameter f,; a new set of solutions was therefore
obtained for this case,

The solutions in this group are more accurate than most of those in
the first group but even with these the function f" still does not vanish in
the main stream but, as with less accurate solutions, decreases to a small value
and remains there,

6.4 Group IIT - Solutions with separation

For the purposes of the present discussion a separation solution to
equation (12) with boundary conditions (13) is defined as one for which the
dimensionless wall shear f§ 1is zero., We do not consider whether, or under
what conditions, such solutions can be associated with fluid flows which involve
separation, The present report is restricted to solutions with values of f§
which are positive or zero, that is to solutions up to and including separation.
Solutions with negative values of f§ correspond to back-flow of fluid near the
wall, as occurs after separation has taken place; these are not considered here,

Before discussing the present set of separation solutions, however, we
consider the particular case of zero main-stream pressure gradient (=0
which displays some unusual features and is of some importance in boundary-layer
theory; the separation solution for this value of f was obtained by Emmons
and Leigh11.

6.4.,1 The separation solution for 8 =0

As fluid flows outwards through the wall, the value of the dimensionless
wall shear f§ diminishes. Emmons and Leigh11 found that when the pressure
gradient in the free stream was zero, the wall shear f§ vanished when the
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blowing rate had only reached the relatively low value f, = -0°875745. Because
of a misinterpretation by the present author, however, the thickness ratio H; ,
for this solution was given incorrectly in the paper by Spalding and Evansu.
Quantities appearing in the following discussion contain a numerical factor
because the present similar co-ordinates differ from those used by Emmons and

Leigh.

Their solution was obtained by giving the wall shear V8 f§ the value
1 x 1077 and adjusting the mass transfer parameter V2 f, so as to satisfy the
boundary condition in the main stream, the origin of the independent co-ordinate
W2 being at the wall, This operation gave a value of 2 at which the
stream function V2 f vanished. The origin of the independent variable A2
was then shifted to this point and the published taebles were given in terms of
this modified co-ordinate.

The tables gave values of the stream function and its first three
derivatives for the range -10 to +4 in this modified independent co~ordinate,
which was negative towards the wall and positive towards the main stream, The
value of H; > given by Spalding and Evans™ was incorrect because the point at
which this co~ordinate was -10 was thought to be at the wall, and this was not
the case,

Some remarks by Emmons and Leigh are relevant here. They say that (a)
the differential equation gives f' = O for all finite m, (b) for this blowing
rate the boundary layer is "blown away" and (c) the modified independent
co-ordinate is measured from a point in the boundary region and extends to
infinity in both directions, While it is not clear how their displacement of
co-ordinates could have been infinite in practice, it must nevertheless have been
very much larger than the value 10 assumed when preparing the tables given by
Spalding and Evans,

If the magnitude of the shift be denoted by A, which in the absence

of more precise information we shall have to assume to be infinite, in terms of
quantities given by Emmons and Leigh the displacement thickness is:

A2 4 12 = 1:238L9/2 = 74711042
&2 - 04501785, eeo (84)

hy

When f =0 equation (32) gives the momentum thickness exactly in terms of £
and f§, and when the latter is zero we have:

8% = -fo = 1-23849A2 = 0-875745. oo (85)
Therefore if A is infinite, O&f is also infinite and H,; is zero.

The fact that the displacement thickness is infinite also explains why
the Nusselt number is always zero for this solugion whatever the value of the
Prandtl/Schmidt number of the fluid, see Evans <.

The solutions found by Emmons and Leigh in the neighbourhood of
separation are plotted in Figs. 1 and 2, In Fig., 1 the reciprocal of the mass
transfer parameter (vo8y/v) is plotted along the abscissa and the ratio Hy,
along the ordinate so that the separation solution is at the origin., The part
of the curve shown as a broken line represents interpolation between the last
two solutions given by Emmons and Leigh. The ratio of the ordinate to the
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abscissa in this figure is clearly (vo8./v) and this has the value 0°-766929
for the separation solution. Because the curvature of the line in this figure
is quite small and because its slope must approach the value 0°766929 at the
origin, the error introduced by graphical interpolation is believed to be very
small,

Fig. 2 is a better version of part of Fig, 3 of the paper by Spalding
and Evans* where the mass transfer parameter is now (voﬁz/v). The shape of the
interpolated portion of this figure was obtained by transferring points from
Fig. 1, the value of (vod5/v) being simply the ratio of the ordinate to the
abscissa in that figure.

The lengths of the interpolated portions of Figs, 1 and 2 show the
need for further exact solutions between the last two given by Emmons and Leigh
although, as stated by those authors, there would appear to be no more solutions
beyond the separation point.

This last remark raises an important question, namely, what meaning,
if any, should be attached to points beyond the separation point alﬁpg the lin%
A2 = 0 in the F, = A; plane, In the papers by Spalding and Evans* and Evans
lines of constant (vbéz/v), when this mass transfer parameter was large, were
drawn so as to cut the F, axis where:

Vo 62
F2 = 2 ° o0 (86)
v

This relationship comes from the integral momentum equation which, when equation (37)
is multiplied throughout by H,; , may be written

H21 Vo 62
—_ . Fy + (2}121 + 1)),2 = Hy; o Hyy + Hyy, . cee (87)
2 v

When B is sufficiently small, but necessarily positive, the second term on

the left is small because Ay is small, and when the blowing rate is sufficiently
high the first term on the right also becomes very small as both Hp, and Hy,
are small, For the limiting case of very small B and very intensive blowing,
therefore, equation (87) reduces to equation (86).

It should be noted, however, that to apply equation (86) to the case
B = 0, while being useful for plotting lines in the F, - A; plane, contradicts
a fundamental tenet of boundary-layer theory, for an infinite displacement
thickness is contrary to the assumption that viscous effects are confined to a
thin region near the wall boundary.

6.4.2 The present separation solutions

Most of the present separation solutions are new, the various boundary-
layer functions for which are given in Table III where three solutions taken from
the literature are also included; the first of these three is that for zero
main stream pressure gradient discussed in Section 6.4.,1. The author also
possesses tables, copies of which can be obtained on request, which give the
distributig? with 7 of the stream function, its first two derivatives and the

function [ f dn. A slightly more accurate solution than was previously available

o
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was also computed for the well-known case of separation with no mass transfer,
For this solution f, and f§ were zero and B was varied so as to satisfy
the main-stream boundary condition; for the other solutions, however, the
value of B was fixed and the parameter f; was varied. The first estimates
of the accurate values of fy were taken from the paper by Terri1114, although
only a few of the smaller values of S were considered in that paper.

For large negative pf the solutions were not very sensitive to
changes in f,; for B = =10 and -18, for example, four figure accuracy in
fo was sufficient to satisfy the main-stream boundary condition. The camputer,
of course, integrated equation (12) although, as has already been pointed out,
equation (19) with imaginary variables would have been more suitable for large
negative pB. Since f, was not known very accurately for such values of g,
equation (32) was not used to evaluate 6% from &F but each thickness was
calculated separately by applying Simpson's rule to the numerical values of
f'. This is why many functions in Table III are specified more accurately than
fo.

The variation of F, with A; is shown in Fig. 3 and of F, with
A, in Fig. 4. As the pressure gradient increases in the negative direction
each of the growth functions F, and F, decreases to a minimum and then
increases again when the pressure gradient becomes large and negative. We may
see how this is brought about in the case of F; by considering the integral
momentum equation; a similar argument applies to F, .

When the wall shear is zero we get from equation (37):
Vo 02

IF = ~ (2 + Ha)rs. ... (88)
14

A glance at Table III shows that, except very close to the case S = O, the ratio
H 2 varies very little along the separation line, being of the order of 3 or 4.
We may therefore regard the first term on the right of equation (88) as giving

the effect of mass transfer on F; and the second term the effect of pressure
gradient, Clearly, blowing increases F; and suction decreases it and an
increasing negative A, (we are not here concerned with positive A;) also
increases F,.

F; therefore has a minimum value at the point where a balance is
achieved between the effects of mass transfer and pressure gradient, For low
rates of suction the mass transfer rate is the dominating influence but for
intensive suction, although (vo0z/v) 1is itself becoming large, the pressure
gradient increases more rapidly and soon becomes the caontrolling influence on
F,.

6.5 Group IV = Solutions for infinite g

It is often useful to relate similar solutions to the velocity equation
for B in the range O < 8 < 20 to boundary layers which occur when fluid
flows over a wedge of angle pr. The solutions for infinite f may also be
better understood and appreciated if they can be related to suitable free-stream
flows.

When B is infinite, equation (6) becomes:

— = Oy ... (89)
and,/
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and, since u% is necessarily positive, the two cases of infinite f are
distinguished by the sign of the constant C,

When C is positive the free stream is accelerated. A suitable
accelerated flow for which wug satisfies equation (89) is illustrated in Fig, 5
where fluid flows into a’point sink at A;. If two streamlines are regarded as
porous walls, this first case of infiinite S may be associated with the boundary
layers occurring along such walls, On physical grounds a boundary layer would be
expected in this case at whatever rate mass is transferred inwards or outwards
through the porous wall,

When C is negative, the free stream is decelerated and a suitable flow
is illustrated in Fig. 6, where fluid flows out of a point source at A; and the
boundary layer again occurs along porous walls which follow two stream-lines.

A boundary layer would be expected in this case only for a sufficiently high rate
of suction.

6.5.4 Solutions given in the literature

Throughout the present section we shall use the simpler co-ordinates
applicable to infinite B given in Section 2.k,

Two exact analytical solutions for infinite p when the variables are
real were given above in Section 5.1; these are expressed in the co-ordinates
of Section 2.4, in equation (63) for’ ko = 0 and equation (67) fr k = SA/3.

Hartree15 gave numerical tables of solutions to & different problem
and included what is, in effect, the solution to equation (23) for ky, = =30,
The various functions were tabulated to four digits and agree in the fourth
place with the same solution given in the present paper.

Thwa1tes16 also obtained solutions to what is virtually equation (26)
with boundary condition (27) for several values of the mass transfer parameter
kb, although his formulation differs considerably from that used here., He also
discussed the unusual behayiour of the solutions, particularly when approaching
the limiting case k = -82,

The most extenslve set of solutions taking into account mass transfer
were given by Holstein 17, Other solutions obtained by interpolation between
Holstein's results were given by Spalding and Evans™ and the accuracy of the
interpolations was improved and their range extended by Evans/. The last
reference also contained asymptotic values of thickness ratios for intensive
suction gnd intensive blowing, agreeing largely with those given earlier by
Pretsch

Before going on to discuss the numerical solutions for infinite g,
we shall first of all see that for this case the equation is such that
considerable progress can be made analytically by assuming a series solution,

6.5.2 Series expansions for the dependent variable

(a) When the variables are real

It will be convenient in this section to let primes denote
differentiation with respect to ¢, or in (b) with respect to ¢.

The aim is to express y as a series in increasing powers of (¢ - 1).
Such a series, to be referred to in later sections, can give values of y ¢o
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high accuracy by including sufficient terms but was not used to obtain the
tabulated solutions, although a similar type of expansion to be given in
Section 6.5.2(0) was used to start numerical integrations on a computer for
intensive blowing. ThwaiteslO suggested essentially the same approach for
solving equation (26) with boundary condition (27).

Since y =0 at ¢ =1 the required series takes the form:

= o)
y = ; - (¢ - " ... (90)

in which yfm) is the mth derivative of y with respect to ¢ evaluated at
¢ = 1. These derivatives may be obtained from equation (23) by differentiation
as follows:

Writing the equation as:

w'+ky + (1-4%) = 0 .ee (91)
we get by differentiation:
wh+ (Y +klyt -2 = O. oo (92)

By inserting the boundary condition y = 0 at ¢ =1 into this we get a
quadratic in yd with the solution:

Vo= =%k + (13 + 82, cee (93)

A positive sign is chosen to precede the radical because solutions must be such
that y diminishes with increasing ¢ very close to ¢ = 1 whatever the value
of ky; in other words y{ must always be negative.

By differentiation we also get from equation (92):

" + (3}" + ko)Y" -2 =0 oo (94)
which, when evaluated at ¢ = 1, gives for the second derivative:

2

v s — eee (95)
(3y! + ko)

The higher derivatives are obtained by repeated differentiation of equation (9&)
and evaluating the resulting expressions at ¢ =1, This gives the following
general formula for the mth derivative at ¢ = 1:

(m)

fm s 1)y + o ™+ @y v (€)% =2, (nﬁh)yfnk1)yf = 0
eee (96)

m!
where m > 3 and the symbol (%) signifies —— .
m=-n)! n!
By its nature the series is most accurate near ¢ =1 and least
acocurate at ¢ = 0, When sufficient terms are taken it gives high accuracy;
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for k, = 0, for example, even at ¢ = O, ten terms give 1y, = 1°15470085,

the exact value being 1°15470054, Since the accuracy improves as k, increases
in the positive direction, this agreement is highly satisfactory. The accuracy
diminishes, however, as k, 1increases in the negative direction, becoming very
poor for large negative ko; 1t is then necessary to use the series expansion
to be given in Section 6.5.2(c).

(b) When the variables are pure imaginary

By applying the same procedure to equation (26) we get:
- — 1
i = 2 ik - (B - 8)%] eee (97)

where primes now signify differentiation with respect to $ and a negative sign
is chosen to precede the radical because y,; must always be negative and must
increase as ko, which is pegative, increases in magnitude. Clearly, y, will
be real only when |k | > 82, s0 setting a limit to the useful solutions to

equation (26).
The second derivative of y at ¢ =1 is:

_ 2
i = - eee (98)
(i - &)
the sign being negative whereas y' was positive, The derivatives of higher
order are the same as the corresponding derivatives for y, except that all
quantities are written with "bars" and the parameter k, is replaced by -ky.

(¢) A series for intensive blowing when the variables are real

Only equation (23), but not equation (26), need be considered for
intensive blowing.

As the rate of blowing increases the local shear y decreases and
for intensive blowing y is small throughout the boundary layer. We therefore
introduce a scaling factor into equation (23) by taking R = ~k,y as the
dependent variable, the negative sign serving to keep the new variable positive
because ko is large and negative. When divided by =k, the equation then
becomes:

1 4aR (1 -¢%)
— — - 1 -+ — = O. eee (99)
K dap R
When X2 is very large the first term is negligible and R becomes approximately:
R = (1-¢%) ... (100)

so that y has the asymptotic form:

-_1_(1 - ¢%). oo (101)
ko

~<
1}
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Fig., 9 shows the way in which accurate numerical solutions approach this asymptote
as k, Dbecomes large and negative.

It is readily shown that if y 1is given by equation (101) the
displacement thickness is:

(1 - 9)
&1** = f — d¢) = -k'o én 2 cee (102)
: Y

and the momentum thickness is:

o8* = a¢ ~k (1 - en 2), .eo (103)

2 4(1 - 9)
[=—

[o)

Since equation (101) also gives y, = -1/k,, the thickness ratios tend to the
following values for intensive blowing:

Hoy = (1 -én 2)/en 2 eeo (104)

Haa = (1 -¢n2) ... (105)

Ha = £€n 2. ees (106)
7

These were discussed more fully in an earlier paper, Evans',

The series expansion in equation (90) becomes more accurate as the rate
of suction increases, We now derive a series of the same kind whose accuracy
improves as the rate of blowing increases.

Consider the variable:

ko
G-
Since y approximates to equation (101) for large negative k,, q 1is then

close to unity throughout the boundary layer. When we substitute equation (107)
into equation (23) and rearrange, the differential equation for q becomes:

eeo (107)

(¢* - 1)aa" + 2¢¢° + K(a~1) = © ... (108)
the prime signifying differentiation with respect to ¢.

We now seek a series for g with the form:

o (m)
q = Q1+Z‘ c]h—'—(¢-1)m oo (109)
m=1 m.

where qﬁno is the mth derivative of q at ¢ = 1.

When equation (108) is evaluated at ¢ =1 we get a quadratic for
g with the solution:
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@ = -—kl-:;{ko + (K5 + 8)15} . ... (110)
(m)

The derivatives g, are then obtained by repeated differentiation of
equation (108) and putting ¢ = 1. The first two are:

=202 /(6q + X2) coo (111)

@

and
(50 qf + 4q'?)
o = -2 . . oo (112)
8q + k3

When Xk, 1s large and negative the series for g converges much more rapidly
than the corresponding series for vy.

6.5.3 Obtaining solutions by numerical methods

Although the effect of mass transfer on equations (23) and (26) is
simply to add a constant to the equations, it was still not possible to obtain
analytical solutions as simple as those given in Section 5,1, It was therefore
necessary to use numerical methods to obtain solutions, The first such solutions
were obtained with a desk calculator but, while these were quite accurate, it
soon became clear that a computer would be more economical to cbtain the large
number of solutions needed to cover the full ranges of the parameter k, and
ko adequately.

By starting the integration at ¢ = 1 and proceeding towards ¢ =0
the problem is to solve a single, first-order differential equation with known
starting values, This is a straightforward problem for solution by a step-by-step
Runge-Kutta process on a computer. This process is too well known to warrant
discussion here, but some information about it may be obtained from an earlier
paper, Evans/,

When the computing programme was ready, it was necessary to choose an
interval of integration which was small enough to give the required accuracy.
This was done by trial and error, the interval being decreased successively until
the process gave a value of yo which agreed in the last digit with the value
obtained using the previous interval, The exact solution for k, = O was
referred to frequently at this stage, For computing the final solutions the
intervals, expressed as powers of 2 because the computer worked in binary
numbers, were:

Range of Integration
ko and ko interval A¢
1
p _82 tO "'l!- 2—12
Equation (26) -4+5 to -10 ot
L =12 to0 -20 o®
- 20 to O 27
Equation (23) -0+1 to =1+0 e
L =12 to =40 o1

For intensive blowing with equation (23), namely when Lk, was beyond
-4+0, a different approach was used, For these solutions it was found that high
accuracy was required at the beginning of the range of integration. As the
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computer would have taken a long time to obtain such accuracy, values of vy
were first found at ¢ = 0+96875 using the series expansion far intensive
blowing given above in Section 6.5.1(c). These values were then fed into the
computer which continued the integration process using an interval A¢ = 2731,

6.5.4 Calculating boundary-layer functions from numerical tables

of vy

The computer gave numerical values of y at regular intervals in ¢,
For the displacement thickness 0#* the integrand is (1-¢)/y, whose value
at ¢ =1 is readily shown to be =-1/y), and is known exactly in terms of
ko from equation (93), Simpson's rule was therefore used in a streightfarward
manner to evaluate 6F*. The method was very accurate as the integrand varied
only slightly over the range of integration, and even this small variation
decreased with increasing suction; for intensive suction the integrand was,
in fact, almost a constant.

The momentum thickness O6%* was then obtained from the relationship:

8%* = yo - ko - OF* eeo (113)

which is obtained by integrating equation (23) over the range 0 < ¢ < 1, the
quantity y,, the value of y at ¢ = O, Dbeing given by the computer,

The formulae for calculating the other boundary-layer functions listed
in Section 3.1 from the quantities k,, Yo, Of* and O&f* are quite
straightforward and need not be listed here. Some ‘care should, however, be taken
with the signs of some functions when the variables are pure imaginary.

6.5.5 Tables of solutions

Values of most of the boundary-layer functions defined in Section 3.1
are given in Tables IV-1, IV-2 and IV-3, which are arranged so that functions
including and to the right of Hyy are in order of magnitude running from one
table to the next. The rate of growth functions F, and F, are not given as
they are simply 2A, and 2\, , respectively, although in some cases care
should be taken with the signs.

Tables giving values of y (or y) as functions ¢ (ar ¢) have also
been drawn up but are not included in the present report. The author can make
copies available on request.

1 The intervals in the parameters k, and %k, are small near zero and
~82 respectively, because boundary-layer functions then vary rapidly as these
parameters change. The values of k, and k, were chosen so that the tables
could be checked by differencing, as well as to facilitate interpolation between
these accurate solutions at some future date.

The number of significant digits retained is at least seven, often
more; some reasons for retaining so many digits were given in Section 1,2.

6.,5.6 Accuracy of the solutions

The values of y given by the computer at an interval of A$ = 275
are believed to be accurate to within a few units in the eighth decimal place.
The mein source of error in the data of Tables IV-1, IV-2 and IV-3, therefore,
is the use of Simpson's rule in evaluating &f*. The error due to this is
approximately:
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A
Error ~ — x fourth difference of (1~¢)/y.
90

The solutions for which (1-¢)/y had its greatest curvature were tested by this
formula and it was concluded that, at worst, the error should not be large in
the sixth digit, although most of the functions should be considerably more
accurate than this, probably being correct to within three units in the seventh
digit,.

Tables IV-1, IV-2 and IV-3 were checked by differencing the values of
Hoy , Hoy, gy and (vbéz/v) and in this way a number of mistakes were detected.
These were corrected but it is not possible to be certain that all such mistakes
were found because of the behaviour of some of the functions, particularly those
for blowing in Table IV-3.

The interpolated solutions given in an earlier paper, Evans7, were
tested by plotting Hpy against (vo8,/v) and comparing with the present
values, The over-all agreement was good since the two curves intersected at
four places. There were, however, two regions, namely near the limiting case

1 Vo 62

ko = =82 and when the blowing rate was in the range 0°5 < < 10

where the interpolated solutions were up to 1% in error, although elsewhere
the error was less than_this., The error near k, = -82 appears to be due to
an error in Holstein's'/ solution for this limiting case. His value of vy,,
for example, was 1°9257 compared with the present value 1:92058109, An
independent solution obtained on a desk calculator gave 1°92058086.

6.5.7 Curves of some boundary-layer functions

Figures 7, 8 and 9 show the variation of the local shear in the
boundary layer for a few selected values of the mass transfer parameter,

Figure 7 shows solutions to equation (26) where the lines are concave
upwards, although to thjs scale the curvature is only apparent for solutions
near the limit Xk, = -82. As the suction rate increases this curvature
diminishes and values of ¥y, tend to -k, from below. Corresponding solutions
to equation (23) shown in Fig. 8 are concave downwards, the curvature again
diminishing as the suction rate increases, but values of y, now approach ko
from above.

Some solutions to equation (23) for blowing are shown in Fig. 9.
Also drawn on this figur9 are curves of (1-¢%)/(~k), the asymptote for
intensive blowing, Evans’, thus showing how the accurate solutions approach the
asymptote as the blowing rate increases. To this scale the accurate solution
for ko = -10 is identical with the asymptote, although an examination of the
accurate value of y, in Table IV-3 (it would be -1/k, for the asymptote)
shows that this solution is still some way from the asymptote.

Figures 10 and 11 show the variation of thickness ratios with-the
mass transfer parameter (voﬁg/v). Figure 10 applies to suction and moderate
blowing and Figure 11 to intensive blowing, where in the latter figure the
reciprocal of the mass transfer parameter is plotted along the abscissa.

The variations of the pressure gradient parameters are shown in
Figs. 12, 13 and 14, Care should be taken with these figures as the curves
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for the displacement thickness and the momentum thickness are drawn to
different scales, so that the former is uppermost to the right of Fig, 12 and
the latter is uppermost in Fig, 13.

The small amount of curvature  in Figs. 12 and 13 means that the
pressure gradient parameter can be expressed as a simple function, say a cubic,
of the related mass transfer parameter without appreciable loss in accuracy.

6.5.8 A cubic approximation for intensive suction

The curvature of y decreases with increasing suction and when the
suction rate is very high y is virtually a linear function of ¢, represented
by the first term in the series expansion of Section 6,5.2, This linear
approximation is not, however, very useful except for very intensive suction
because, like asymptotes in other branches of mathematics, it must be regarded
as only the first stage in a step-by-step approach to the accurate solution.

On the other hand a cubic approximation is very satisfactory as long as ko,
or ko, 1is not small,

The use of a polynomial expansion about the point ¢ = 1 means
neglecting terms in high powers of (¢-1) in the infinite series of Section 6.5,2.
Such an expansion gives high accuracy near ¢ = 1 but lower accuracy near ¢ = O,
This less accurate region contributes only a part of the displacement thickness
O0f* and contributes even less to the momentum thickness &%,

For this reason a very accurate procedure for applying a cubic
approximation is first to evaluate the thicknesses ©OF* and &%* and then to
substitute these into the equation:

Yo = ko + OFF + 1% cee (112)
which is equation (32) expressed in the present co-ordinates.

A cubic expansion for y gives for the displacement thickness:

: 2% i -
61**=-“y;+~27(¢-1)+—37(¢—1)3}dqb ..o (115)

which is readily integrated to give:

... (116)

1 (vl + 28)(3yd - 65 - 2y¢"
(yi - 28)(3yd + 65 - 2"

S
where S 1is an abbreviation for:

1

(ynN? 2 2
S = { - —vy! y'i"} . eee (117)
L3

The derivatives of y at ¢ =1 occurring in equations (116) and (117) are,
of course, known functions of k, as given in Section 6.5.2(a).
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For the momentum thickness we have:

1 " 1" -1

Y4 i
58* = -[¢{y;+—'(¢-1)+—'(¢>-1)”} d .+e (118)
. 2! 3:
which also integrates to give:
5 " -Y'" ij.v y‘"
63‘* = ___{&n (1 - —:-_j.) - (—— - —1—> &1**} coe (119)
yi 6ys 2 3

where &f* 1is given by equation (116).

The accuracy of the cubic approximation may be judged from Table A.

TABLE A

Comparison of (a) Accurate Solutions and
(b) Cubic Approximation

(1) Variables real

ko Of* o%* Yo
5 gag 0+37758L 0186800 24564384
b 0+ 377568 0186797 2+564365
3 (a) 0°286121 01421512 3428272
(b) 0-286118 0*1421506 3428269

(ii) Variables imaginary

ko

gik*

55*

Yo
8% g 0°59531 0°31254 192058
0-60869 0-31557 190416
-3 a) 0° 46499 0-23785 2.29717
b) 046542 0-23794 2-2966.
2 0°286366 0-144243 3+569391
0+286372 0144245 3+569384

_ The cubic approximation clearly becomes very accurate when ko
(or ko) becomes large and gives far better values far real than far pure
imaginary variables.

6.6 Group V - Some miscellaneous solutions

We now consider briefly some tables of solutions which, for various
reasons, could not be grouped with those given earlier.

6.6.1 Solutions for B8 = 0 by Emmons and Leigh

Emmons and Leigh11 computed an almost complete set of solutions to
equation (12) for B = O with both inward and cutward mass transfer. The
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boundary-layer functions for those solutions were later tabulated by Spalding
and Evans™, Unfortunately, however, that table not only omitted about one
third of the solutions actually computed, but most quantities were rounded off
to about four digits, although the original solutions were more accurate than
that.

In order to make full use of the accuracy achieved by Emmons and
Leigh, therefore, Table V-1 was prepared., Here the accuracy is as high as
the original data allowed.

It has already been remarked in Section 6.4.1 that, as is evident
also from the values of Hy; in this table, a few more solutions between the
first two would be useful. There also appears to be a small error in the
solution for V2f, = 10, although this is only evident from large-scale
graphs of, say, Hgs against (vo6:/v). The gap between that solution and the
case of infinite f, can be filled in quite accurately by use of the asymptotic
series to be given in Section 8,

6.6,2 Solutions for fy, =0 and 1°3 2 1—2 ~1+0

B

Solutions with zero mass transfer when the parameter £ 1is large
are given in Table V-2, These occur on either side of the line which divides
the real and imaginary domains relating to equation (12). They were computed
by the following method.

Equation (23), which applies to infinite B, takes the following
form when f is finite:

dy 1 ¢ ¢ (1 - ¢%)
__+_]_d¢+k°+—————= 0 ee. (120)
dp B4V 14

where we are now interested in solutions for k; = O.

When this equation is integrated numerically starting from the wall,
the accuracy is high near the wall but decreases as the main stream is approached.
This inaccurate region contributes roughly the same amount to the displacement
thickness &F* as to the momentum thickness 6%*. It was therefore possible to
achieve high accuracy by arranging that the computer evaluate the function:

p(¢) =

]"(1-¢>)" y

o Y
since it is clear that at ¢ = 1 the value of p is (&6F* - 6%*),

The values of the wall shear yg( = 8Y) required to start these
integrations were obtained from the polynomial expansion to be given in
Section 8,13, although some were further improved by trial and errar.

For the solutions above the broken line in Table V-2, the error

is believed to be confined to the last two digits, but those below the line
are probably less accurate.
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The quantity E;, which is the correction to a straight-line
relationship between F, and A, is defined by the equation:

Fa = O0°-44105 = 51604\, - E, eee (121)

and from its values in Table V-2 appears to have a stationary value near
)\g = 0'25.

When the reciprocals of &6f* and 6f* are plotted against 1/8 they
are found to tend to zero as 1/8 approaches -2, so that the thicknesses
themselves become infinite. This value of S, namely g = -0+5, is the limit
to meaningful solutions in the imaginary domain relating to equation (12), for
not only are the displacement and momentum thicknesses infinite, but so are A,
A2, B, and F,. The ratio H;; tends to unity, however, as may be shown by
writing down the form of equation (32) valid for the imaginary domain and dividing
by the displacement thickness. When f, is zero this gives:

|

T,
-— = B+ (1+p8) Hy. eeo (122)
of

Because f§ would still be finite for 1/ = -2, this equation gives Hyy =1
when the displacement thickness is infinite,

6.6.3 Solutions for fy; = -0°5 and 0 < 8 < 10

Only a start has been made on obtaining solutions with blowing when
the parameter g is small, The results obtained so far are summarized in
Table V-3,

While the accuracy of these solutions is high, it should be emphasized
that it becomes progressively more difficult to obtain high accuracy as the
parameter f;, which is negative, increases in magnitude.

7. A General Method of Boundary-Layer Analysis based on the Displacement
Thickness

7.1 General methods of boundary-layer analysis

The boundary-layer equations are extremely difficult to integrate when
the main-stream pressure gradient and the rate of mass transfer are distributed
arbitrarily over the wall surface. For solving general problems of this kind,
other methods of boundary-layer analysis have been developed which do not entail
the integration of the equations themselves. These general methods are
approximate by nature but should, nevertheless, give the order of accuracy
required for most practical applications. In some of these methods other
differential equations are set up which may be solved in a reasonably short time
using methods and equipment which are readily available to engineers. The
variables in these new differential equations are given either as numerical
tables or in the form of charts, often obtained from accurate similar solutions

to the boundary-layer equations,

One such method, with a number of applications, was given in detail .
by Spalding5, who also discussed the assumptions underlying the general methods.
It was shown that, if & is any boundary-layer thickness associated with the
velocity layer, its rate of growth with distance x may be expressed as a .
function of the pressure gradient and the mass transfer rate by the differential

equation:
ug
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’

uG d62 . { 62 duG V06 }
v dx v

.o (123)
vy dx .

where F on the right represents some function of the two groups inside the
brackets.

For the thickness &, Spalding chose the momentum thickness &,, the
function F then being denoted by F,. This choice has several advantages, for
not only is equation (123) then the integral momentum equation, already given
in equation (37), but, for a fixed value of the mass transfer parameter (vo03/v),
the rate of growth function F; dis then almost a linear function of the pressure
gradient parameter A;, at least when conditions are not near separation. This
linearity greatly simplifies the task of integrating the differential equation,

We now consider a method in which & in equation (123) is the
displacement thickness & . As this is a straightforward modification of that
based on O3, we shall not give any applications but shall merely discuss the
variation of functions required in the method, By plotting these functions we
gain a considerable amount of new information about the effects of pressure
gradient and mass transfer on laminar boundary layers, especially for decelerated
flows where this method may possess same advantages over others.

7.2 Variation of thickness ratios and growth functions

When the values of two thickness ratios are known as functions of the
free-stream pressure gradient and the rate of mass transfer, it is possible to
evaluate the other boundary-layer functions which are of interest in the present
work and to construct tables and charts for use in general methods of boundary-
layer analysis, In the method based on the momentum thickness, Spalding5,
Spalding and Evans™, the ratios Hzy, and H , were a suitable pair, We see
from equation (39) with n =1, however, that Hy4 and Hyy are better for
the present method.

There are advantages in using H,; instead of H, 3 in boundary-layer
calculations for, while the latter varies over wide ranges, becaming particularly
large near separation, the former remains within fairly narrow limits, at least
in most regions where the velocity equation has so far been explored, In the
real domain, except for some large negative values of B, it lies in the range
0 < Hpy < 0-5. For asymptotic blowing, including both the real and the imaginary
domains where solutions exist, Evans7, the values are in the range O < Hyy < 10,
The ratio Hzy is, therefore, not only more suitable for plotting than H 5
but is also more convenient for interpolation between exact solutions; it was,
in fact, used for some earlier interpolations, as may be seen from Figure 3 of
the paper by Spalding and Evanst,

We shall now discuss the variation of the ratios N4 and Hyy with
pressure gradient as given by N and the rate of mass transfer as given by

(7051/1’)-

7.2.1 Variation of Hg

Fig. 15 shows the variation of H, for decelerated and slightly
accelerated free streams with suction and some blowing, and Fig., 16 shows its
variation for intensive blowing,

Fig. 15 was constructed by interpolation using data given elsewhere
in the present monograph., It has already been shown in Section 3,3 that points
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along the line B = -1 are known exactly. The figure is believed to be fairly
accurate, although the region near the negative arm of the abscissa, which is
the separation line, did present some difficulty. This figure should be
compared with Fig. 4(b) of the paper by Spalding and Evans™ which showed how the
corresponding ratio Hp; varied in the same region.

The very small amount of curvature of the lines of constant (vb81/b)
in Fig. 15 is quite striking; it is extremely small for accelerated flows and
does not become large even near the separation line,

Fig. 16 was also_drawn by interpolation using methods and data given
in an earlier paper, Evans’!. It was shomn there that for intensive blowing the
dimensionless wall shear f§ tends to the asymptotic value:

fg = = . cse (122"')
fo
When both sides of this equation are multiplied by 5: it becomes:
v

Hys = AV ... (125)

Vo 51

This means that, for sufficiently intensive blowing, lines of constant (vb61/v)
on Fig, 16 become linear with a slgpe (v/v8,). Using this fact together with
solutions for B = 1°0, see Evans’, and for A infinite, lines of constant
(vo8 /v) could be drawn with reasonable accuracy., The short lines on the right
of this figure show the asymptotic values of Hy, for the values of g
indicated when the blowing rate is very high; these too were taken from the
paper Jjust referred to.

7.2.2 Variation of Hyy

Figures 17 and 18 are the corresponding figures for Hp,. Fig, 17
was constructed in the same way as Fig. 15, except that interpolation was
necessary along the line p = -1 since points were not known exactly. The
curvature of lines of constant (vb81/v), although larger than that of H 4
in Figs. 15 and 16, is still not great.

There is no reason to expect lines of constant (vo 8, /v) to become
linear for intensive blowing when Hy; 1is plotted as a function of .
Fig. 18 gives some interpolated curves but, because the lines are not straight
and as there are virtually no exact solutions in this region, the accuracy is
not expected to be high. In spite of this, however, it was thought worthwhile
giving this figure as so little is known about the behaviour of boundary layers
under these conditions, The error in the figure is thought to be least near
the lines marked S =1, f = *co and near the ordinate marked g = O, and
greatest near the middle of the figure.

7.2.3 Variation of the rate of growth function ¥

When K, and Hy, are known as functions of the variables A,
and (vo8,/v), by substitution into equation (42) with n =1, we get
the rate of growth function F; as a function of the same two variables.

The resulting values are plotted in Figs, 19, 20 and 21.
The/
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The line B = -1 was again very useful when drawing these figures
because points on it were known exactly; by equation (41) the slope of the
line is -4 and by equation (49) the value of A, is known for any specified
value of the mass transfer parameter (v061/v). The separation point on this
line has the co-ordinates N = -2, F;, = 8 and the mass transfer parameter
is (voﬁi/v) = =2, Because solutions for S = -1 behave in this special
way, some of the lines in Figs., 19 and 20 could be continued as far as g = -1
in the imaginary domain, This could not be done for all the lines, however,
because as (v051/v) diminished the curvature increased, eventually becoming
too large for such extrapolation to be accurate.

Fig, 19 covers decelerated and accelerated flows with suction and
a moderate rate of blowing, and Fig, 20 shows on a larger scale the region of
Fig. 19 which is likely to be of greatest use in practical applications.
Fig., 21 shows how F, varies for intensive blowing but the accuracy is
considerably lower than in Figs., 19 and 20 because it was drawn from values of
Hy; taken from Fig. 18.

In Fig. 19 the portions of the lines of constant (v,8,/v) 1lying in
the decelerated region are much longer than the portions in the accelerated
region, at least if attention be confined to the real domain, This effect,
which arises because the displacement thickness becomes large as separation
is approached, is well illustrated by the line of no mass transfer for which
the part of the line in the range -0:198838 < 8 < O is more than twice as
long as that for the range O < B < . This means that the general method
based on the displacement thickness could give high accuracy when applied in
the decelerated region.

On the other hand, the method has two serious disadvantages. Firstly,
the lines of constant (vo8,/v) are not very straight, so that the first steps
in the method of integration given by Spalding5 would be less accurate than is
the case with the method based on the momentum thickness, It should, however,
be possible to devise a method of step-by-step integration which depends less
on a linear approximation to the curves. For example, when the interval of
integration is small enough, equation (123) may be written:

ug d6® 8% dug
—_—— = h + jy —— see (126)
v & v dx

where % and Jj» are quantities whose values depend on the local values of

52 dU.G, Vo&

— —— and —— ; these can be obtained from the similar solutions. Now, not

v dx v

only is equation (126) virtually exact but it is also exactly integrable, see
Spalding5. By carefully selecting 4% and Jj» at each step in the integration
procedure, therefore, the curvature of the lines in Fig. 19 should present no
barrier to being able to integrate equation (123) accurately.

The second disadvantage of the method based on & is that the
F, - N, relationship cannot be used near the separation point for g =0
because, while F, remains finite, F, becomes infinite; however, practical
problems which require the use of this region of the F;, -\ plane should be
rare,

7.2.4/



- 47 -

7.2.4+ Yariation of F, and Hp, for decelerated flows

The functions F, and Hpy; are required in the general Eethod based
on the momentum thickness, but when the paper by Spalding and Evans* was
published little information was available for decelerated flows. By making
use of solutions given elsewhere in this monograph, however, Figs. 22 and 23
could be drawn to show the variation of these functions in this region.

These figures are largely self-explanatory and should be used in
conjunction with the discussions by Spalding5 and Spalding and Evans™. In
Fig. 22 there is some uncertainty about the accuracy of the curves of constant
(v82/v) for negative values of this parameter beyond -0-55, and such curves
are shown as broken lines, Corresponding curves could not be drawn with much
confidence in Fig, 23 and have therefore been omitted.

8. Some Asymptotic Series for Intensive Mass Transfer
(By H. L. Evans and Joan D, Hayhurst)

8.1 Outline of section

Watson6 has given solutions to equation (12) with boundary conditions
(13) for suction in the form of asymptotic series in inverse powers of the mass
transfer parameter f,. These solutions become asymptotically exact as fg,
becomes large., Series were given for the dimensionless wall shear, the
displacement and momentum thicknesses and the thickness ratio H;5; other
boundary=-layer functions are readily calculated from these quantities.

The first term in the series corresponds to the asymptotic suction
profile and Watson obtained the next three terms, and for the wall shear the
next four terms., That work has been recalculated and the coefficients given
by Watson were confirmed, except for a small misprint in the published series
for the wall shear, The next term in each series was also calculated, although
the ratio Hyy was obtained in preference to H,; obtained by Watson,

Unfortunately, however, to obtain this next term required such a lang
calculation that a plan for obtaining further terms was abandoned, Apart from
a brief statement of the method, details of the calculations will not be given
as they may be found in Watson's paper.

When the values of functions calculated from the asymptotic series
are compared with accurate solutions obtained by numerical integration, far
most values of the parameter B the series are found to be reasonably accurate
when the mass transfer parameter is larger than 3°0, although this depends to
some extent on the magnitude of g.

As the mass transfer parameter decreases below 30, the accuracy
diminishes because not enough terms are known and the remainder is no longer
negligible, Provided the mass transfer parameter is not too small, however, a
simple correction can be added which improves the accuracy and slightly extends
the lower limit of mass transfer to which the series may be applied.

Only a trivial change is required to use the series for small f in

the imaginary domain, but when pA 1is large in either domain the series must be
changed by a transformation of co-ordinates.

When/
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When the same approach is applied to blowing, a serles in inverse
powers of the mass transfer parameter is obtained for the wall shear; this
series alsoc becomes asymptotically exact as the blowing rate increases. However,
the present authors were unable to obtain asymptotic series for the other
boundary-layer functions, When the remainder is not negligible in the series
for the wall shear, the accuracy is improved by applying the Euler transformation.
Again, by making straightforward changes for the imaginary domain and for large
B in either domain, the series can be used for all values of pf. The accuracy
is acceptable for a wide range of S when the mass transfer parameter is larger
than 2-0,

Finally, when there is no mass transfer and g is large, the
dimensionless wall shear is expressed as a polynomial in inversgse powers of §
by fitting to known numerical values., This applies to the real and imaginary
domains and the accuracy is high in the range 20 < 1/b < =1+0 but diminishes
fairly rapidly outside this range.

8.2 Evsaluation of the series for suction

Because the velocity layer becomes thinner as the suction rate
increases, in order to study its behaviour for intensive suction we extend the
co-ordinates by an amount which is proportional to the rate of mass transfer,
We therefore introduce the co-ordinates:

a = fon ..o (127)

fo (£ - fo) ... (128)

g
into equation (12) and divide by f3 to get:

*g Pg 1 g dg \?
___+___+__{g___+ﬂ[ -(—)]} = 0, Ty (129)
de® da® f3 da® da

The boundary conditions from equation (13) are then:

dg
e = 0, g = — = 0 \
N (130)
LN ) 1_30
dg >
a -» OO, —_— -> 10
da

/
A solution to equation (129) is now assumed to have the form

0] & &
g: &+——+—'+——'+ eoes oo (131)
£8 £ 13
and to satisfy the boundary conditions:
& (0) & (0)
8,(0) g.(0)

where the primes now denote differentiation with respect to a.

L)
i

0’ %L(°°) = 1,} . (132)

g;Qn) = 0, forr > 2
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The assumed solution will clearly become asymptotically more accurate
as f2 increases.

When we substitute equation (131) into equation (129) and equate
coefficients in power of f5?, we get differential equations for the functions
gy which are solved in turn, As r increases the solutions become progressively
more complex, containing polynomials of increasing orders in a and g with
powers of e % as factors. These solutions were then used to evaluate boundary-
layer thicknesses, and the results are expressed in the form of suitable
dimensionless groups in the next section.

8.3 The asymptotic series for suction

(1) The displacement thickness

If &f 1is the displacement thickness in terms of the co-ordinates
(n,f), as a function of the quantities g, it is:

Vo Oy 8 (0) & ()
- = fobf = a(ub - a_@n) - - = eree see (133)
v £3 £8
When expressed in terms of the parameter g this series is:
Vo8, & 8 8 &
= = T+—+—+ —+—+ csee see (1%)
v f§ f5 £ fo

where the first four coefficients are:

g = - (5+78)/k

aa = (359 + 7838 + L60p?)/72

80 = - (56,670 + 156,6118 + 150,4508% + 51,5898°)/1728
152,018,034 + 493,420,5618 + 615,401,18887

ag = { } // 518,400,
+ 355,775,3398° + 82,230,2788"

A useful check of these coefficients is affarded by the case g = -1,
see Evans7, since the series must reduce to the first terms in the expansion of:

|.s

o 2 2
_ Tl fg{1-<1-_>}, e (135)
v 2 g =-1.

(2) The momentum thickness

This required a much longer calculation from the functions 8p than
did the displacement thickness, The result was:

Yo 63 1 bi bg b3 b4
£o80F = — 4 —+ —+ — + — + .00
v 0 2 f,g f‘g fg f‘s oee (1 36)
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where the coefficients are:

b = - (10 + 118)/12
ba = (550 + 1,0358 + 4978°)/14k
by = - (234,192 + 586,8168 + L9k, 7638° + 142,L695°)/8,640

131,557,872 + 398,26L,2758 + L53,852,6856
b, = { } / 518,400.

+ 253,270,515° + 46,184 4388
(3) The thickness ratio Hy,

The ratio Hy; was obtained by dividing equation (136) by equation (134),
and the result was:

o% 1 (N Ca Ca C4
Hyy = — = — 4 — 4 — 4 — — + ..., .o (137)

& 2 f§ f3 f£§ f£3

with the coefficients:

@ = -(5+p8)/2

ca = (307 + 3848 + 538%)/288

es = - (144,059 + 286,8028 + 162,1518% + 16,8288°)/17,280
Cqy =

87,698,885 + 226,566,6698 + 20L4,261,1728°

{ } 1,036,800,
+ 71,360,5118° + 5,862,933p%

(4) The wall shear

The wall shear could have been evaluated directly from the known
quantities "(O), but we get one more term in the expansion by substituting
equations (1§E) and (1%) into the exact relationship:

14 i) B Vo &y (1*ﬁ) Vo Oz
1 -—, - - . so e (138)
V°64 fo fg v fg v

This gives the series:
v dg

+ — +
£5

1

a ds
1 + — + —— + L0 ece (139)
3 1%

Vo 84

where the coefficients are:
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4 = (1+38)/2
da = - (5+ 188 + 168%)/6
d = (550 + 23038 + 309882 + 14176°)/14L

117,096 + 552,1798 + 932,3178°

d4 = - { } 4’320
+ 694,7418° + 200,2076%

131,557,872 + 681,840,1818 + 1,345,537,5216°

+ 1,302,524.,1888° + 635,230,0926* 518,400,

+ 128,414,7166°

&
I

7

The case f = -1, Evans', may also be used to check the coefficients
in equation (139) as the series then reduces to the binomial expansion of:
1

_ = (1-1)2, oo (140)

Yo 54 fg ﬁ="1 .

8.4 Application of the series in the imaginary domain

In the imaginary domain we write = = in, f = if and f, = if,,
where the barred quantities are real, The above series can be used in the .
imaginary domain simply by replacing fo, by if,, or f2 by -f3. Care should,
however, be taken with the signs of both g and fo for, while f, is positive
for suction, f, is negative., Further, when |g| is large in either domain the
method in the next section must be used.

8.5 The series when [éﬂ; is large

When |B]| 4is large in either the real or imaginary domains, successive
coefficients in each of the above series increase in magnitude and, depending
on the relative values of B8 and f,, the series may either converge very
slowly or even diverge.

This difficulty is readily overcome, however, by expressing the series
in the co-ordinates of Section 2,3. If we consider only the wall shear, for
example, equation (139) then becomes:

v & O3 €3 €4 €5

- = 14— —+—+—+— + ..., cee (141)
Vo O, k3 X3 X3 o X5°
where the coefficients are simply:
d.
er - —B; - se e (1)4'2)

Far sufficiently large k, the series then converges very rapidly for
large B. The series for the boundary-layer thicknesses and the thickness ratio

Hay for large f are obtained in the same way.

8.6/
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8.6 Comparison with accurate numerical solutions

The asymptotic series give high accuracy for sufficiently large values
of the mass transfer parameter, which may be fo, fo, k or k,, the last of which
applies to equation (19) when £ and 6 are pure imaginary. Thé series
generally give boundary-layer functions correct to six digits when the mass
transfer parameter, ignoring its sign, is greater than 10, although the accuracy
depends to some extent on the value of . When the mass transfer parameter is
as small as 2, however, the terms omitted from the infinite series are not
negligible so that the accuracy is poor,

In Table B* the series are compared with known accurate solutions for
values of the mass transfer parameter at which the series are just becoming
inaccurate. We only consider solutions either in the real domain relating to
equation (12) or along the line which divides the real and imaginary domains,
because no solutions with suction are known in the imaginary domain, The series
also apply there, of course, but the accuracy is probably lower than in the
real domain because the fluid velocity then approaches its main-stream value
more slowly.

The accurate solutions for B = O where f, contains the factor V2
were obtained by Emmons and Lei§h11 and the wall shear for g = 0+5, f, = 50
was given by Stewart and Prober 9; the other solutions were computed by the
present authors.

When we examine Table B, as well as values given by WatsonG, we see
that the asymptotic series are most accurate near g = -1. The accuracy for
B =-1 when fy = 20 is better, for example, than for S =1 when f, is
as high as 4°0, '

From equations (14) and (18) we have fp, = VB k so that, far g =1
the series expansions are the same in the (E,8) as in the (n,f) co-ordinates.
If we consider only positive S, a glance at the coefficients in the asymptotic
expansions shows that when B8 < 1 the (n,f) co-ordinates would give better
convergence, but when g > 1 the (E,9) co-ordinates should be better; close
to A =1 either can be used, Such poor accuracy was o¢btained for g = 2-0
and f, = 30 that the values could not be included in Table B. The reason,
of course, is that while f, appears to be quite large, the relevant parameter
is then Xk, and as this is only 2°121 the low accuracy is not so surprising.
This is what first made it necessary to use the (£,0) co-ordinates for |[B]| > 1
in preference to the more usual (n,f) co-ordinates.

8.7 Adding a correction for the remainder

The Buler transformation, which will be discussed in Section 8.11,
often improves the convergence of a series but did not appear to work well for
suction, probably because too few terms in the series were known, On the
other hand a simple method of allowing for the remainder was used which, it was
realised later, is equivalent to summing the series as far as the penultimate
term and applying the Euler transformation to the rest of the series.

In this method the magnitude of the remainder was assumed to be half
that of the last known term and its sign to be that of the first neglected term;
this sign was readily determined by inspection. The values marked "c" in
Table B show that this gave a worthwhile improvement in accuracy.

When/
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When the mass transfer parameter was large enough for the series to
give functions accurately to five or six digits, however, this correction
introduced a small error instead of eliminating one, although the difference
between values with and without the correction was fortunately very small.

Table B

Comparison of the Asymptotic Series for Suction
with Accurate Solutions

a. Accurate values
b. Values from series

¢c. Values from series with a correction
for the remainder (see text)

Mass v Vo Og Vo 01
B transfer - Has - -
parameter vo 04 v v
_ a | 0765723 | 0°511510 | 0°713536 | 1-39.961
oo ~ko =" 30 [b 07757 0+5091 0681 10338
¢ | 07736 0+ 5095 0+687 14351
a | 0-892348 | 0503703 | 0576973 | 1-145u63
420 {b 0°89249 0:503647 | 057616 141440
c | 0892369 | 0:503690 | ©O-5768L 1414525
50 { a 0+ 934552 0+ 502043 O* 543543 14082663
b | 0:93,960 | 04502038 | 0543472 | 1-08254
60 [ & | 00956032 | 0-501324 | 0-528543 | 1-054295
b | 0-956033 | 0-50132% | 0-528533 | 1-054275
a | 0°707107 | 04449981 | 0+527186 | 1:171573
-10| fo = 20 {b 070761 045040 02527094 | 1-169%
¢ | 0-70721 045020 052732 1-17114
a | 0-824621 | 0470465 | 0-515685 | 1-096118
2*5 { b 0-824651 | 0.470523 0+ 515699 109593
c | 0824605 | oe470490 | 0-515738 | 1-09622
o & | 0881917 | 0-480167 | 0-510296 | 1-062746
30 1y | 0-881920 | 0-480233 | 0510358 | 1-062719
fo = 20 | a 0937175 0+466871 0° 440136 0+942736
051 o = b | 0937076 | 0-509 0+538 10l
a | 0°959906 | 0-476755 | 0-456647 | 0-957823
2*5 { b 0+959899 04828 O 470 0°972
c 0+ 959909 O 47748 0+ 4581 09593
a | 0972188 | o0-4828,1 | 0-467390 | 0-968000
3.0 {b 0:972188 | 0-4840 0+4701 0-9707
¢ | 0972190 | 0-482805 | 0-46725 0-96783

Table B (Continued)/
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Table B (Continued)

Mass v Vo Oa Vo Oy
B transfer - Has - -
parameter Vo Og4 v v
. B a | 1-0537 0-4831 014296 0-889399
00 | fo = W2 {y | .05 0°495 0-465 0-929
a 1-048367 0-484.327 0+435303 0-898778
3.0 { b 1+0507 0°4915 0+ 456 0-922
c 1-04852 0+48502 04367 0+ 9000
a 1+03596 0-48768 0-44951 0-92172)
52 { b 1+0363) 04894 04543 0-9271
c 1-03593 048762 044910 0.92113
6/ { a 1+02569 0+49087 0* 46245 0+942091
b 1°02574 0495109 0+46326 0-9431
. . a 1115278 | 0-48532 0° 4100k 0- 84,489
05 | fo = 30 {1y | 4435 0+ 509 0492 0-95
. a 1+046080 _
50 | b 1+ 046150 - -
. . a 1175547 | 0-48585 0+ 38931 0-80130
1°0 | fo = 30 [ | 4.5 0543 0-62 1.1
a 14107237 | 0°4,90043 | 0°42,633 | 0-866521
40 { b 11111 0+ 4946 0° 4L 3 0+ 891
c 1-107170 | 0-49023 0° 42449 086574
a 1-071908 0°492736 0+ 446136 0+ 905426
50 { b 1-07223 049335 0+ 44,86 0+9086
c 1-074813 | 049261 0° 44545 0° 904,
jor0 {8 | 1019396 | 0497729 | 0483799 | 0-972013
b 1-019396 | 0-497729 | 0-483801 0972017
a 1142757 0+1,96822 0° 42645 0+858363
+00 ko = 30 { b 1144 049717 04317 0-8677
c 1+ 14228 0496737 0* 4249 0-8556
a 1+108587 | 0°497463 | 0-441896 | 0-888299
3«5 { b 1-40889 0+ 497546 04432 0-8905
c 1+108,2 0 497421 04,4118 0+8870
yo 2 14085203 | 0497940 | 0453165 | 0-910084
b 1.085265 | 0°497963 | 0°45352 091071
5 g2 1.068537 | 0°498300 | 0°461576 | 0°926302
b b 1-068553 | 0°498308 | 0+46169 092651
5.0 {8 1056265 | 0-498577 | 0467986 | 0938642
b 1-056270 | 0-498580 | 0-468028 | 0-938718

8.8/
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8.8 An asymptotic series far the wall shear with intensive blowing

Outward mass transfer has an opposite effect to suction because it
increases the thickness of the velocity boundary layer, To analyse the case of
blowing, therefore, we transform the differential equation by contracting the
co-ordinates, the amount of contraction again being proportional to the rate of
mass transfer, As with most transformations of the velocity equation, it is
useful to ensure also that the forward velocity of the fluid is still given by
the gradient of the dependent variable in the new co-ordinates. A transformation
which does this is:

X = T h = - see (1)"'3)

which gives on substitution into equation (12):

2

1 &n a*h dh
-———+h——+ﬂ{1-<—)} = 0 eeo (144)
£2 a ax? dx

with boundary conditions:

eoo (145)

dh
X = oo, — > 1.
ax

We again assume a series solution having the form:

h, he hy b
h = hi+——+"'—+—+_'+--oo see (1)"’6)
£5 f5 £ £
and satisfying the boundary conditions:
h(0) = 1, h! (0)
hr(O) h;(o) = h;(aﬂ

where primes signify differentiation with respect to ¥.

eeo (147)

"
o
&
g
i
-
—

o, forr 2 2

When we substitute equation (146) into equation (144) and equate
coefficients in powers of f52 we get a set of differential equations for the
functions hp. Apart from that for hy, however, these are not easy to solve.
On the other hand, when the equations are evaluated at the wall where X = O,
the wall shear for any particular value of r, namely hg(O), may be expressed
as a function of the wall shear for lower values of r, Since the first of these
is simply h'(0) = =B, each hN(0) can be expressed as a function of §g.

By differentiating equation (146) twice and inserting these values
of hi(0) we get finally:
v e G

+ — + —

@
0 4

+ + ceee oo (1)*'8)

E - =

Bl

Q
Y, 84 f £5

where/
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where the coefficients are:

@ = B

@ = (1-28)p°

@ = (13 -188)(1 - 28)8°

a = (448 - 10988 + 6848°%)(1 - 28)6*

s = (29,075 - 96,2628 + 107,9488° - L41,04868° )(1 - 28)6°

_{ 3,052,533 - 12,307,7668 + 18,883,33267

% = {-13,082,wsp° + 3,156,2886" } (1 - 28)p°
473,813’584 - 2’207’6614'999@ + l";168’)"l"6921"hﬁ2

Q@ = {"‘ 3:991 ,748:50h'ﬂ5 + 1’911'0’)4'509160ﬂ4 } (1 = zﬁ)ﬁ7°
- 383,35l.,2088°

8.9 Application of the series in the imaginary domain

Except that -(fJ/fo) changes sign to become (f§/f,), the series
in equation (148) can be used in the imaginary domein simply by writing To
for f,, although it must be remembered that g is then negative and To
positive.

8.10 The series for intensive blowing when |B8| is large

¢ The form of the series in the co-ordinates of Section 2.3, applicable
when ]ﬂ] is large, can again be written down with very little calculation.
It is:

v 6¢ S 83 83 &
E = —_— 2 —f—t —— — + ceee 000(111'9)

o84 ko KooK Kk K

where the coefficients are simply:

qr
S8p = ﬁ—z——r_-;l- . oo (150)

8.11 Comparison with values in the literature

Few accurate solutions to equation (12) with intensive blowing could
be found in the literature. In Table C*¥* values of the wall shear given by
equations (148) and (149) are compared with accurate values known to the
authors, Those for B = 0,5 were given by Stewart and Prober!? and most of
the others were obtained by the present authors,

Each coefficient after the first in equation (148) contains the factor
(1 = 28) and is therefore identically zero for B = 0,5. The series then
reduces to the first term and was not expected to be particularly useful far
this value of pB. According to the numerical solutions obtained by Stewart and
Prdber19, however, even this is a good approximation when Ifof > 2.5.

Table C/

*¥See p.57.
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Table C

Comparison of the Series for Intensive Blowing

with Values given in the Literature

a, Values in the literature
b. From asymptotic series

¢. From series after applying the
Euler transformation

Mass v
transfer -
parameter Vo 04

0-10880273
0-10898
0°+1088043

0+08065090
0+080653.
0+08065066

0-06204187
0+06204192
0-06204182
0-039875482

0039875481
0039875478

&
1

\?
S

oo ooe

Cop o0 op

1°0

023790490
0°23867

023790494
0+15635564
0+15635586
0-15635536
0-10981770
0°10981 764

0.-08111
0-081106011

0°06225
0.062260505

0 04927
0 049263733

0 03994
0 039936506

fo = ""2.0

[} ]

by &

o o

~ Y MY Y Y Y M
ocoUpP oUw

|
W
.
w
~—

op o o T op

0+5

0-12489365
0125

0 05555551
0 05555556

&®

i

‘ 1
Noow
w0
~—— e
oe o

For/
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For 8 =1.0 and |fo] = 3.5 only four-figure accuracy was previously
available, but the values obtained from the series are given in Table C to as
many digits as are likely to be accurate.

With some lower values of the mass transfer parameter, it was clear
from the last terms in the series that the remainder could not be neglected,
Where this occurred, therefore, the convergence was improved by applying the
Euler transformation, and the values obtained in this way are marked "c" in the
table., For an arbitrary convergent series, not necessarily an alternating one
because the terms t) may have any sign, the transformation is represented
briefly by the relationship:

) Acto
k
k_g— (-1)" t = > F ee. (151)

£=0

where A is the forward difference operator with respect to k defined by
Aty = gtk - tk+1)' The transform is discussed in many textbooks, for example
Hartree<“.

It often gives the best results when applied, not to the whole series,
but to the series after a number of terms. In Table C, for example, when g =oo
it was applied after four terms; when B =1 it was applied after two terms
for fg = -2¢0, and after three terms for fy = -2:5 but was not worth
applying for f; = ~3°0 and larger, because the last term was already very
small in the eighth decimal place.

Care should be exercised, however, if values of f§ obtained from the
series are to be used in starting numerical integrations of equation (12).
While the series gives f§ accurately when referring to the differential
equation (12), for reasons which are not clear to the authors, this is not
necessarily the most suitable value to apply to the corresponding difference
equation solved by a computer., The point is illustrated by the following
values which are quoted to as many digits as were given in the original
publications; in the first reference a mare accurate value than that quoted
appears to have been used for f; = =20 but was not given in the paper.

Table D/
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Table D

Values of the Wall Shear -(v/v,8,) for 8 =1

Source fo = =20 fo = =30
Eckert, Donoughe and Moore21 0-2379 0°1098177094
Evans/ 02379049 0°10984176962
Stewart and Prober!? 0°237905275 0-10981771
Asymptotic series 0+23790494 0-10981 764

8.12 An expansion for the wall shear when f, =0 and [B] is large

The asymptotic series given in earlier parts of Section 8 were obtained
analytically from the differential equation for similar boundary layers. We
shall now obtain an expression for the wall shear when Iﬁl is large and 1,
zero using the simpler procedure of fitting a polynomial to known numerical
values.

It has elready been shown that when |B] is large it is better to
use the co-ordinates of Section 2,3 and to regard 1/8 as the parameter. The
advantages of these co-ordinates are further demonstrated in Table E¥* by the
small variation in 06§ over a wide range of §g.

A polynomial of the farm:
2 % K b %

e(')' = —+_+—'—+_+QID.+-—’ A (152)

V3 B B P B

was fitted to the nine values taken from the literature and merked by an
asterisk in Table E, After several attempts with other combinations these

were considered to be the most reliable. Most of the values from the literature
quoted in Table E have already been quoted in earlier papers, see for example
Evans/. The only two values for negative 1/8 were obtained by R, M, Terrill
in some unpublished work with E, J, Watson at Manchester University.

The first term on the right of equation (152) is the exact value of
oy for 1/6 = 0 and by solving nine simultaneous equations the other coefficients
were found to be:

t, = 0°0746156909 tg = =0-0000475768
t, = 0-0050885071 t; = -0°0000910583
ta = -0-0018430607 ts = 0°0000458,438
%4 = -0-0003055921 ts = -0°0000069397
ts = 0°0004313478

Equation (152) is very accurate in the range 2°0 > 1/ > -1-0,
Comparison with published values for positive 1/8, other than those used
for obtaining the coefficients, shows that the formula gives values of 6§ at

least/

*See p.61.
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least as accurately as they are known. Near 1/ﬁ = 0 +the formula is probably
more accurate than published values but it is not possible to judge its accuracy
for negative 1/b.

The table also contains values of 6§ obtained from the polynomial
when 1/8 is given the values 1¢3(0°1)-1-0, These required only small adjustments
for use in computing the numerical solutions to equation (19) discussed in
Section 6,62,

Equation (152) should only be used with caution for extrapolation
outside the range 2:0 > 1/8 > -1-Q, as may be seen from the error in the first
two lines of Table E, The reason for this is that equation (152) is a closed
polynomial and not simply the first ten terms in an exact infinite series for
6. This also means that the Buler transformation cannot be applied to improve
its accuracy.

Table E/
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Table E

The Wall Shear when f, = O and lﬁl is Large

*Values used to obtain coefficients in the polynomial

1 oy
B From the From the
literature polynomial
10/3 1444503 1+3960128
2-5 1.350958 1.3507180
2.0 1+311938*% 13119376
5/3 12856195 12856195
13 - 1+ 256479
125 1°2524.974* 12524974
1.2 - 1.2485146
149 - 1-2405492
10 12325877 1-2325877
0°9 - 12246352
5/6 1219341 3* 1.2193413
0.8 - 12166975
0°7 - 1.2087811
0625 1+20286232* 120286232
0+6 - 1+2008936
0-5 119304 32% 1+1930432
04 - 1+1852393
1/3 1180059 11800675
0°3 - 11774920
0-25 1.173642 11736429
0-2 1169811 11698121
1/7 14165455 1.1654583
0-1 1162205 11622111
0-05 1.158418 1.15844.38
0 1+154700538 1+154700538
-0-1 - 11472917
-0-2 - 1-1399951
-0+25 1+136391824* 1.136391824
-0+3 - 1+1328200
=04 - 1125774
-0+5 - 1.1188628
-0°6 - 1°1120891
-0-7 - 1.1054540
-0°8 - 1+0989570
-0°9 - 1-0925972
-1+0 1+086375740% 1-086375740

8.13/
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8.13 The variation of some functions with intensive suction

Figures 24 to 28 show on a large scale the variation of some boundary-
layer functions under conditions of intensive suction. Figures 24 and 25 show
how F, and H4, respectively, vary with the pressure gradient as measured by
N2, the mass transfer parameter being (vbﬁg/v). In Figs. 26, 27 and 28 which
show the variation of ¥ , Hyy; and Hy4, the pressure gradient is given by
N and the rate of mass transfer by (vb81/v). The data for drawing these
figures were obtained from the asymptotic series given in Section 8.3.

Such narrow ranges of pressure gradient and mass transfer are covered
in these figures that the lines along which the relevant mass transfer parameter
is a constant are virtually linear. The real and imaginary domains indicated in
these figures refer, of course, to equation (12), not to equation (19).

The figures are to a large extent self-explanatory but the following
points are worth noting.

In Fig., 24 the slope of the lines of constant (v8,/v) is roughl;
~4+2; +the value -8 given in the Appendix to the paper by Spelding and Evans™ is
much too large because the argument presented there was not correct.

But a more important point to note is that, since these figures were
drawn it has been realised that there are some, but probably small, regions
included in the figures where meaningful solutions to equation (125 satisfying
boundary conditions (13) do not exist; this will be discussed more fully in
Section 9. As we do not yet possess enough reliable information to be able to
mark off such regions for exclusion, however, the figures are given without
modification,

9. Concluding Discussion

9.1 Our present knowledge of accurate similar solutions

It was seen in Section 1.3 that few solutions accurate to six digits
were known before the start of the present investigations. While our knowledge
of similar solutions has been appreciably extended by the data contained in the
present monograph, there still remain extensive regions where few, if any, even
approximate solutions exist. As a result of the investigations, several
important questions have also arisen about the behaviocur of solutions and further
work is required in order to answer them.

Most of the solutions of high accuracy now known are indicated
diagrammatically in the F,-A; plane in Fig, 29. The shaded region in that
figure contains large numbers of solutions and is fairly adequately covered.
Solutions are also known along the full lines, in some cases extending as far
as the indicated values of A, which lie beyond the range of the figure.

The unmarked regions signify one of three things. They may contain
solutions of low accuracy, such as those obtained by interpolation; or there
may be only incomplete solutions available, as is the case when accurate values
of f& are known but no estimates of either &8Ff or 06%; or, finally, there
may be no solutions of any kind,

There is, of course, more infarmation of the required accuracy
available than could be accommodated on Fig. 29; we know, for example, the
asymptotic behaviour of solutions with intensive blowing. The main conclusion

tq/
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to be drawn from that figure, however, is that a great deal more work is needed
before it can be claimed that enough solutions are known to equation (12)
satisfying boundary conditions (13).

9.2 Solutions required in the near future

Accurate data in any of the unmarked regions of Fig, 29 where solutions
are known to exist would be useful in supplementing our present knowledge. The
need for obtaining solutions with accelerated flows for low and moderate rates of
blowing is urgent, however, if for no other reason than that practical problems
involving mass transfer occur more frequently under such conditions than any
other.

Since the wall shear for blowing, whether it be f§ or 6§, can now
be evaluated accurately when the appropriate mass transfer parameter is beyond
-2, one major obstacle to the computation of solutions has been removed.
Another troublesome one still remains, however, for when integration is carried
out in the direction from the wall towards the main stream, as the rate of
blowing increases it becomes progressively more difficult to satisfy the main-
stream boundary condition. This difficulty is also alleviated, but probably
not entirely overcome, by the method of integration described in Section 6.6.2
which of course can be used whether A is large or2§mall. The method is
described more fully in a recent publication, Evans .

There is less urgency about the decelerated region with S beyond -1,
The interest in solutions in the imaginary domain relating to equation (12) may
be more academic than practical. Information in that region, while being
difficult to compute, would help clear up a number of uncertainties about the
behaviour of solutions, In particular it is necessary to establish where
boundary-layer solutions exist for, as we shall see, some areas must be excluded
for various reasons.

9.3 Mangler's treatment of the asymptotic behaviour of solutions near
the main stream

For some values of the parameter B, solutions to equation (12)
satisfying boundary conditions (13) do not behave like boundary layers, either
because the displacement thickness is not finite or because the dimensionless
fluid velocity is not confined to the range O < ufug < 1°0. When the limits
to boundary-layer solutions are considered in Section 9.4 it will be necessary
to refer to Mangler's treatment of the asymptotic behaviour of solutions near
the main stream, His approach, which is outlined briefly below, is more
informative than the analysis of the same problem given in Section 4.

There are advantages in considering equation (19) instead of equation (12)
and, as solutions for infinite pB are now known, we shall in general assume
that both k, and S are finite.
The following variebles are introduced into equation (19):
z = E-8* + kb ... (153)
w = 1-06' e (154)

so that the displacement thickness O&F* may be written:

6/
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(o] o0
5FF = [(1-6')dg = w dz. veo (155)
o -8
Since the stream chtion © is then:
z
equation (19) becomes:
4 wt %
W'+ —w - 2w = -w"’-—fwdz veo (157)
B B

z
where primes signify differentiation with respect to z.

The function w is small near the main-stream and terms on the right
of equation (157) become much smaller than those on the left. Mangler's
asymptotic form of the velocity equation near the main stream is therefore:

Z

w" + —_—w' - 2w = O cee (158)
B

and solutions are required such that w-» 0 as 2z - oo,

When a solution of the form:

... (159)

is assumed, it is found by standard methods that m has the two values m =0
and m = -1/28 and the solutions for these two cases are:

m=0
R pz
W = pozl {1 £ (26-1) =+ ..o }
Zz
261 i
+ Pz {1 + (28-1)(28-2) — + ... ] .eo (160)
3z°
m= -1

B
Wa = Dozt ! e'”a/zp {1 - (28-1)(28-2) 2—2;+ }

8
o pg 282 /% {1 - (22)(283) — + oo } . (161)

where p, and p are arbitrary constants in each case.
For/
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Far decelerated flows the variable gz is pure imaginary. If we then
write 2z = iz, where z is real, and change w to w, close to the main

stream the function W obeys an equation which differs from equation (158) only

in having a negative in place of a positive sign preceding the fi
The solutions to this are: = F § the Himst tern.

m=0
;1 = pozzﬁ {1 - (2ﬁ—1)f—;+ ....}
Z
+ P&;23_1 {1 - (2-1)(26-2) ;@; + eeee } ... (162)
m=1/2

.;v.z po..z.-(2ﬂ+1) e?/zﬁ {1 + (23.’.1)(23-{-2) —g—-*' vece }

2z

+ PLE_(26+2) e?/z‘e {1 + (28+2)(28+3) —f— + ceee }

3z°
ee. (163)

Po and p again being arbitrary constants.

When the parameter S is infinite it is necessary to change the

independent co-ordinate from 2z to 2z = (z-koB). The asymptotic equation (158)
then has the form:

W+ kow' = 2w = O eeo (164)

the primes now signifying differentiation with respect to 2z,. For pure
imaginary variables this equation becomes:

W -kW +2w = O ... (165)

where the primes mean differentiation with respect to 1z, .

9.4 Limits to boundary~layer solutions

We now discuss the limiting values of the parameters S and £
(or o) Dbeyond which solutions to equation (12) do not behave like boundary
layers, Two of the known limits are marked on Fig., 29; +they are:

1. The separation solution for flow over a flat plate when the
displacement thickness becomes infinite, and

2. The case of infinite p with imaginary variables when k
reaches the limiting value k, = -82Z; for smaller values
of k the gradient (dy/dp) (see Section 6.5.2(b)) at
the main-stream edge of the boundary layer becomes
imaginary. This limit is also deducible by an examination
of solutions to equation (165).

1t/
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It is readily shown that no boundary-layer solutions exist for
B = 0 with imaginary variables, for the equation is then:

-+ FF" = 0 ..o (166)

where the primes mean differentiation with respect to the dimensionless distance
M. Reference to Section 4.3 shows that the dimensionless shear is then:

oo T exp. {]f dﬁ} ... (167)
(o]

where fy is its value at the wall, Now, near the main stream the exponent

] f dn is large and increasing in magnitude. Solutions to equation (166),

o
therefore, do not approach the state of inviscid flow at large distances from
the wall and consequently cannot be associated with any real boundary layers.

By examination of the asymptotic solutions in equations (160) to (163),
however, we can exclude a wide range of f vaelues extending on either side of
B =0 in the imaginary domain indicated in Fig. 29.

From equation (155) the contribution to the displacement thickness
from points near the main stream is:

Q0
Contribution to &¥* = '[ w dz ... (168)

z
where 2z 1is large.
We therefore have:

(a) For accelerated flows

This is the ocase of real variables in equation (19).

When S is positive the solution w, in equation (161) must be
used for large z. When 2z is large enough this reduces to the first term
and so it is:
- 2
Po 2P g /28 ee. (169)

Wa

which rapidly decreases to zero as z increases. When this is inserted for w
in equation (168) we see that &F* remains finite for all positive g.

When B is negative the solution w in equation (160) must be
chosen and for large z this is:

W poZzﬁ ceoe (170)

which gives a finite contribution to &#* only when [B] > 0°5.

With/
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With accelerated flows, therefore, there are no solutions with a
finite displacement thickness beyond the value g = -0°5; +this limiting line
is shown in Fig. 29.

Because the momentum thickness will also be infinite for g 5
*5

the line for no mass transfer marked in Fig. 29 will meet the line B =
at infinity. The slope of the zero mass transfer line has the following
approximate values near the values of f indicated:

s

-0
-0

p = -0-198838 0 1:0 to  -1-0
CRATT) e s e

and for very highly accelerated flows this slope must clearly approach that of
the line B = -0-5 in Fig. 29, namely -6°0,

Tt is interesting to note that the no-mass transfer line seems to
possess a stationary value,

(b) For decelerated flows

This is the case of imaginary variables in equation (19).

When f 1s negative the asymptotic solution w, in equation (163)
must be chosen for large z. When 1z 1is large enough this is

7 = po-z—(2ﬁ+1) o2 /2P
and clearly &}* is finite whatever negative value p may have,.

When B 1is positive on the other hand, neither W, nor w, gives a
finite displacement thickness. Therefore there appear to be no boundary-layer
solutions for decelerated flows below the line for infinite S shown in Fig. 29.

9.5 Some unresolved questions concerning the behaviour of solutions

In the next stage of the work, not only is there need for further
accurate solutions but answers should also be provided to a number of questions
about the behaviour of solutions, prompted to some extent by the conclusions
arrived at in Section 9.L.

Une such question, possibly a minor one, concerns the behaviour of
solutions close to that which gives separation for g = 0, When f is small
and positive there is a slight but favourable pressure gradient which prevents
the wall shear from decreasing to zero however large the blowing rate may be.
According to equation (1&8), when f is very small and £, large and negative,
the dimensionless wall shear is approximately:

f§ = - - eeo (172)

so that it may become very small but not zero, unless B is itself zero., What,
however, happens to the displacement thickness? Does it become large very
rapidly as occurs with g = 0%

The/
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The behaviour of solutions for accelerated flows as f approaches
the limiting value -0.5 is quite reasonable because the displacement thickness
increases gradually as f approaches this limit; at the limit, of course, the
displacement thickness is infinite.

The explanation of the behaviour of sclutions near the limits with
decelerated flows is not so acceptable, however. The following argument will
be given in terms of the form of equation (19) with imaginary variables, so
that the parameter is 1/f instead of B itself, On examination of the results
given elsewhere in the monograph one is prompted to ask the following questions:

1. How is it possible to reconcile the following two solutions?

1/8 o Aa (vo82/v)

1
éag 0+0 82 = 27828 -0-0977 ~0-88L40
b ~0-0555 2520 -0°4219 ~1+637

Solution (a) is the limiting case for infinite B and (b) is the separation
solution for B = -18. Although %k is larger in (a) than in (b), yet how
is it possible to obtain a boundary-layer solution, namely (b), whose value of
1/B is not very different from zero, but with values of A, and (vo85/v)
which are well beyond those far the limiting case for 1/8 = 0?

2. With decelerated flows what happens to solutions as 1/ﬁ passes
through zero?

It appears from the earlier conclusions that as long as |§5| > 82
and 1/8 is negative or zero, the displacement thickness remains finite. As
soon as 1/B becomes positive, however, the displacement thickness suddenly
becomes infinite, Although it has not yet been possible to find a flaw in the
mathematical arguments leading to these conclusions, such unexpected behaviour
by the solutions does prompt one to ask whether those arguments are indeed
correct,
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GROUP I

SOLUTIONS FOR ACCELERATED FLOWS; g POSITIVE

Numerical solutions are tabulated for the following eleven

values of the parameter gB:
g = 0°1(0-1)0+6, 0-8, 1-0, 12, 1+6, 20,
for each of which the mass transfer parameter f, is given the seven
values:
f, = 3-0(0-5)0-0.

For B 1.0 the following additional solutions are given:

10, 5, Ly

Intensive suction: fo

BloWingt; fo '-0.5’ -1.0, -1'5-



SOLUTIONS TO THE VELOCITY EQUATION FOR g=0.1,

TABLE 1=\,

3.0=f, 20

a 2
fo f, S 5 %78'& Hia H,. A=Y i(;ca F,= %ﬁiiz
3.0 3.18716 0.29566 0.14327 -0.42980 2.0637 0.45662 0.20526(~2) 0.036946
2.5 2.714434 0.34123 0.16392 ~0.40980 2.0817 0.44495 0.26869(~2) 0.048365
2.0 2.24974 0.40161 0.19053 -0.38105 2.1079 0.42863 0.36300(-2) 0.065341
1.5 1.79668 0.48448 0.22567 ~0.33850 2.1469 0.40545 0.50925(-2) 0.091665
1.0 1.36101 0.60338 0.27334 -0.27334 2.2074 0.37202 0.74714(-2) 0.13448
0.5 0.952276 0.78402 0.33989 ~0.16994 2.3067 0.32366 0.11552(~1) 0.20794
0.0 0.587035 1.08032 0.43546 0.0 2.4809 0.25563 0.18962(-1) 0.34132




TABLE =2,
SOLUTIONS TO THE VELOCITY EQUATION FOR A= 0.2, 3.0 = £, =0

2 2
'Fo 'Fo” 8,* 8: 4_”;}_8:, H 2 HZ‘f Azg TSJL ;T:::G an? :f:
3.0 3.2282 0.29191 0. 14152 -0. 42455 2.0628 0. 45684 0. 40053(-2) 0.032042
2.5 2.76083 0.33572 0,161 -0.40351 2.,0800 0. 44561 0.52103(=2) 0.041483
2.0 2.3028 0439313 0. 18681 -0.37362 2.104% 0. 43019 0.69797(=2) 0.055828
1.9 1.85809% | 0.47073 0.21996 -0.3299% 2.1401 0. 40870 0.96762(-2) 0.077410
1.0 1.%43292 0. 57953 0.26418 -0,26418 2.1937 0.37855 0. 13958(=1) 0. 11166
0.5 1.037156 | 0.73886 0.32449 -0.16224 2.2770 0.33654 0.21058(-1) 0. 16847
0.686708 | 0.98416 0. 40823 0.0 2,4108 0. 28033 0.33330(-1) 0.26664

0.0




TABLE I-3,

SOLUTIONS TO THE VELOCITY EQUATION FOR 8= 0.3, 3.0 >f =0
fo £, §* 5 Yo 6a H, Huy | Az 62 dus |F_ugdbl
Y YV dx |*T v d=
3.0 3.26828 0.2883% | 0.13983 -0. 41949 2.0621 0. 45700 0.58657(-2) 0.027373
2,5 2.80588 0.33053 0.15902 -0.39754% 2,0786 0. 44618 0.75858(=2) 0. 035401
2.0 2.35391 | 0.38527 0.18333 -0, 36666 2,1015 | 0.43154 0.10083(-1) 0. 047054
1.5 1.916588 | 0.45824 0. 21471 -0,32206 2.1343 0.%1150 0.13830(~1) 0.,064538
1.0 1.50031 0.55856 0.25596 -0.25596 2,1823 0. 38401 0.19654(=1) 0.091718
0.5 1.114818 | 0.70121 0.31112 -0.15556 2,2538 | 0.34684 0.29039(=1) 0.13551
0.0 0.774755 | 0.91099 0.3857k4 0.0 2,3617 0.29885 0. 44639(<1) 0.20831




SOLUTIONS TO THE VELOCITY EQUATION FOR B = 0.4, 3,0 = f = 0.

. TABLE 1= 4,

2 S
fo £y 8'* 8: %Tgl' H,, Hy |A = % % F,= % gfg
3.0 3.30747 0.28493 0.13821 -0, 41463 2,0616 0.%45713 0. 76408(=-2) 0.022922
2.5 2.84970 0.32561 | 0.15675 ~-0,39188 2.0773 0. 44669 0.98282(=-2) 0., 029485
2.0 | 2.40326 0.37793 0.18006 | =0.36012 2,0989 0.43273 0.12969(=1) 0. 038906
1.5 | 1.97252 0. 44682 0.20985 -0.31478 2.1292 0. 41393 0.17615(~1) 0.052844
1.0 1.563888 | 0453992 0. 24851 -0, 24851 2.1726 0.38864 0.24703(=1) 0. 074109
0.5 1.186757 | 0.66913 0.29936 -0, 14968 2.2352 0.35527 0.35847(=1) 0.10754
0.0 0.85u%21 | 0,85264 0. 36669 0.0 2.3252 0. 31331 0.53785(=1) 0.16135




TABLE I-85,

SOLUTIONS TO THE VELOCITY EQUATTON FOR B = 0,5, 3,0 2 £, 2 0
* * YA
%o T S, & v Hy, B, A2 F,
3.0 |3.3u58266 | 0.2816513 | 0.1366673 |- 0.4100019 | 0.4852358 | 0.4572651 | 0.009338976 | 0.01867795
2.5 |2.8923738 | 0.3209478 | 0.1545999 | - 0.3864998 | 0.4816980 | 0,4%71607 | 0.01195056 | 0,02390113
2.0 °| 2.4510130% | 0.3710622 | 0.1769880 | - 0.3539760 | 0.4769766 | 0.4337999 | 0.01566238 | 0.03132475
1,5 |2.0261761 | 0.4363261 | 0.2053420 | - 0.3080130 | 0.4706159 | 0.4160591 | 0.02108267 | 0.0421653%
1,0 | 1.62419876 | 0.5232081 | 0.2417298 | - 0.2417298 | 0.4620146 | 0.3926172 | 0.02921665 | 005843330
0.5 | 1.25%022540| 0,6413407 | 0,2889015 | - 0.144%508 | 0.4504649 | 0.3622890 | 0.0417320% | 0.08346408
0.0 | 0.92768006 | 0.8045491 | 0.3502703 0.0 0.4353622 | 0.3249388 | 0.06134464% | 0.1226893




TABLE I-6,
SOLUTIONS TO THE VELOCITY EQUATION FOR ; = 0.6, 3,0 = f,=0.

fo fy ) 6, L Hia He oS R
3.0 | 3.383% [0.27850 | 0.13519 | -0.%40557 | 2.0601 | 0.45740 | 0.010966 0.014621
2.5 | 2.933988 |0.31650 | 0.15256 | =0.38140 | 2,0746 | 0.44761 0.013965 0.018620
2,0 | 2.497306 |0,36461 0.17409 | -0.34818 | 2.0944% | 0.43476 | 0.01818% 0. 024246
149 2.077807 | 0. 42661 0.20115 -0.30173 2.1209 0. 41795 0. 024277 0.032369
1.0 1.681678 |0.50808 0.23552 -0.23552 2.1573 0.39607 0.033282 0. 044376
0.9 1.317387 [ 0.61693 0.27952 -0.13976 2,207 0.36824 0.046879 0.062505
0.0 | 0.9958366[0.76397 | 0.33591 0.0 2.2743 0.33451 0. 067701 0.090268




TABLE1=7
SOLUTIONS TO THE VELOCITY EQUATION FOR A= 0.8, 3,0 > f =0

£ fo 8'* 51* ”:;81 H Han A= ‘?J; % f= Tu;_ %s?:
3.0 | 3.456353 0.27258 0.13238 -0.3971% | 2,0591 0. 45755 0. 014020 0. 0070098
2.5 3.014297 0.3082% 0. 14872 -0.37180 | 2,0727 0. 44829 0. 017694 0.0088471
2.0 2.585974 | 0.35279 | 0.16875 | =0.33750 | 2.0906 | 0.43638 0. 022781 0. 011391
1.5 2.175753 0. 40920 0.19355 | =0.29033 | 2.11k42 0. 42112 0. 029969 0. 014985
1.0 | 1.789455 | 0.48169 0. 22450 -0.22450 | 2,1456 | 0.40173 0. 040320 0. 020160
0.5 1.434611 0. 57584 0.26330 -0.13165 | 2.1870 0.37773 0.055462 0.027731
0.0 1.1202677 | 0.69868 0.31185 0.0 2.,2404 | 0.34936 0.,0778°0 0. 038900




TABLEI -8
SOLUTIONS TO THE VELOCITY EQUATION FOR B = 1.0, 10 2 52 = 1.5

¥

o 8,

fo £3 §* $, Y H,, Hyy, A,
10.0 |10.193961 0.0972013 | 0.0483799 | -0.483799 0.497729 0.%493183 0.00234061
5.0 | 5.3595396 0.1810852 | 0.0892272 | -0.446136 0.492736 0.478217 0.00796149
4,0 | 44089466 0.2166303 0.1061582 | -0.4246328 | 0.4900432 | 0.4701690 | 0.01126956
3.0 3.52664010 0.2671050 0.1297676 -0.3893028 0.4858299 0.4576436 0.01683963
2.5 3.09112450 0.3007199 0.1452023 -0.3630058 0.4828490 0,4148838Y 0.,02108371
2.0 | 2.67005580 0.3421973 | 0.1639293 | -0.3278586 | 0.4790491 0.4377004% | 0.02687282
1.5 2,26764600 0.3939862 0.1868299 -0.2802449 0. 4742042 0.423664 0.034905L+1
1.0 1.88931375 0.459322% | 0.2149957 | <0.2149957 | 0.468071% | 0,4061943 0.04622315
0.5 1,541 75106 0.5423340 0.2497085 -0.1248543 0. 4604331 0.3849883 0.06235433
0.0 | 1.23258760 0.647900% | 0.2923%436 0.0 0.4512168 | 0.3603391 0. 08546477
-0.5 | 0,969229535 | 0.7809627 | 0.344133% 0.1720667 0.4406528 0.3335443 0.1184278
-1.0 0.756574938 0.9449815 0.4057967 0.4057967 0.4294229 0.3070156 0.1646710
-1.5 | 0.594281857 | 1.13998 0.47715 0.71573 | 0.41856 0.28356 0.22767




TABLE I -9,

SOLUTIONS TO THE VELOCITY FQUATION FOR S=1,2, 3,0 » £, >0

fo £o" 8* 5 ve b Hia H,., R R
3.0 3.59453% 0.26200 0.12733 -0.38199 2.0577 0.45769 0.019456 -0, 0064852
2.5 3.1648758 0.29379 0. 14197 -0, 35493 2.0694 0. 44932 0. 024187 -0, 0080622
2.0 | 24750172 | 0433263 | 0.15955 | =0.31910 | 2.0848 | 0.43879 0. 030547 -0.010182
1.5 2.354hh8 0.38052 0.18083 -0.27125 2.1043 0. 42575 0. 039239 -0,013080
1.0 | 1.,982722 0. 44002 0.20668 -0.,20668 2.1290 0. 40979 0.051260 -0.017087
0.5 1.6%0968# 0. 51430 0.23809 =0. 11905 2.1601 0.39070 0.06802% =0.022675
0;0 1.3357215 0. 60689 0.27612 0.0 2.1979 0.36882 0. 091491 =0,030497




TABLE T=\0.

SOLUTIONS TO THE VELOCITY EQUATION FOR 8 = 1,6, 3.0=f =0,
f 8 5, S T T - R a3
3.0 | 3.723984 | 0.25275 | 0.,12292 | -0,36876 | 2,0562 | 0,45775 | 0,024175 | ~0,018131
2.5 3.304409 | 0,28148 | 0,13617 -0.34043 | 2,0671 | 0.44996 | 0,029668 | -~0,022251
2,0 | 2,900391 | 0,31596 | 0.15187 | -0,30374 | 2,0805 | 0,44048 | 0,036903 | ~0.027677
1.5 | 2.515558 | 0.35763 | 0.17052 | ~0,25578 | 2,0973 | 0,42895 | 0,046523 | -0,034892
1.0 2,154214 | 0,40819 | 0,19273 -0.19273 | 2.,1179 | 0,41518 | 0,059432 | ~0,044574
0.5 | 1.8212023 | 0,46962 | 0,21916 | =0,10958 | 2,1428 | 0,39913 | 0.076850 | =0,057637
0.0 1.52151386{0. 54402 | 0.25042 0.0 2.172% | 0.38102 | 0.1003% -0.075252




TABLE 1=,

SOLUTIONS TO THE VELOCITY FQUATION FOR 8= 2,0, 3,0 2f >0

2 2
fo 'F: 8!* S: %VS& Hix H,y )‘z':' —)%- % 2= % %_83-5&

3.0 | 3.8461402 |0,2u458 | 0.11899 [ -0.35697 | 2.0555 | 0.45765 | 0.028317 | -0.028317
2,5 | 3.4349672 |0.27080 | 0.13112 | -0.32780 | 2.0653 | 0.45039 | 0.034385 | -0.034385
2.0 | 3.0396070 |0.30185 | 0.14530 | -0.29060 | 2,0774 | 0.44165 | 0.042224 | -0, 042224
1.5 | 2.663317% | 0.33877 | 0.16193 | -0.24290 | 2.,0921 | 0.43127 | 0.052443 | -0.052443
1.0 | 2.30981668 | 0.38278 | 0,18142 | -0.18142 | 2.1099 | 0.41905 | 0.065826 | -0.065826
0.5 | 1.9831240 | 0.43521 | 0.20423 | -0.10212 | 2.1310 | 0.40502 | 0.,083420 | -0.083420

0.0 | 1.6872179 | 0.49743 | 0.23079 | 0.0 2.1553 | 0.38939 | 0.10653 -0.10653




GROUP II

SQLUTIONS FOR DECELERATED FLOWS; A NEGATIVE

Numerical solutions are tabulated for the following values of

the parameters f and corresponding values of fo:

B fo

0-0 3.0(0+5)0+0
-0-1 3+0(0+5)0-0
-0-2 3-0(0+5)0+5, 00031
-0-3 3-0(0-5)0+5, 0-2461
-0k 3.0(0:5)0+5, 0-4567
=045 3.0(0+5)1+0, 06460
-0-6 3-0%0-5§1-o, 0-8196
-0-8 3-0(0+5)1+5, 1-1332
-1-0 3-0(0+5)1+5, V2

Except for the first two values of S, the values of fo on
the right of this table, quoted only as far as the fourth decimal
place, give the separation solutions. More accurate values of f,
and detailed tabulations of these and other separation solutions are

given in Group III.



SOLUTIONS TO THE VELOCITY EQUATION FOR B = 0,0, 3,0 = £, =0

TABLE &=\

fo f: S.* 8: ﬂ'fo_y&* Hy, Hy 4 Fa

3.0 3.1451010 0.2995928 0.1%51010 -0,4353030 0. 4843274 0.4563573 0, 04210860
2,5 2.6665666 0.3470936 0.1665666 -0,4164165 0.4798896 0,416 09 0, 05548886
2.0 2,1945090 0.4107680 0.19%45090 -0,3890080 0.4735252 0.4268408 0, 07566362
1.5 1.7319130 0.14997125 0.2319130 -0.3478699 0.46%40929 0.4016531 0.1075673
1.0 1.2836345 0.6308872 0.2836345 -0.2836345 014495804 0.3640830 0.1608971
0.5 0.8579159 0.8398180 0.3579159 -0,1789580 0.4261827 0.3070617 0.2562076
0.0 0.4696000 1.2167681 0.4696000 0.0 0.385%%04% 0.2205242 0. 4410483




SOLUTIONS TO THE VELOCITY EQUATION FOR § = =0,1, 3,0 £ =0

TABLE T ~2.

1, £ 5" 5 vk H,, » A F
3.0 3.1019533 0,3037209 0.1470282 -0, 4410846 0.4840898 0.4560746 -0,002161729 0.04755804
2.5 2.6171134 0.3533247 0.1693843 ~0.4234608 0.4+794012 0.4432979 -0,002869104 0.06312029
2,0 2,1368524 0.4207035 0.1988031 -0.3976062 0.4725492 0.4248129 -0.003952267 0.08694988
1.5 1.6632368 0.5167353 0.2387893 -0,35818%0 0.4621115 0.3971632 -0,005702033 0.1254447
1.0 1.1994892 0.6631504 0.2953380 -0.2953380 0.4%453 560 0.3 542547 -0,008722453 0.19189%0
0.5 0.7504018 0.9116167 0.3795150 -0,1897575 0.4163098 0.2847887 -0,014+0316 0.3168696
0.0 0.31926%6 14426978 0.5150438 0,0 0.3570005 0.1644378 -0.02652701 0.583 5943




SOLUTIONS TO THE VELOCITY EQUATION FOR B

TABLE T[-3.

0,2, 3,0 = f°3 0,0030926

4 s 5 &' “d o o A A
3.0 3.0576278 0.3080690 0.1%490520 -0,4471560 0.4832267 0.4557455 -0,00444+3298 0,05331958
2.5 2.5659078 0.3599824% 0.172380k4 -0.4309510 0.4785579 0.4423122 ~0,005943000 0.07131600
2.0 2.07641478 0.4315499 0.2034472 «0.40689L1 0.4714338 0.4224475 -0,008278152 0.09933782
1.5 1.5899375 0.5359597 0.2464118 -0.3696177 0.4597581 0.39177%% -0,01214376 0.1%57251
1.0 1.1066908 0.7018353 0.3088223 -0.3088223 0.4400210 0.3417708 -0.,0190742% 0.2288909
0.5 0.6229144% 1.0102405 0.4062031 -0.2031016 0.%020855 0.2530298 -0,03300019 0.3960023
0,003 0926 0.0 2.3548790 0. 5848540 -0.0018087 0.2483 584 0.0 -0, 0681+108k 0.8209301




SOLUTIONS TO THE VELOCITY EQUATION FOR B = -0,3, 3,03 f: = 0,246148%

TABLE -4

4, 5 5 5,f ) Ha, Has A F.
3.0 3.0120275 0.3126613 0.1511798 -0.4535394 0.4835258 0.4553577 -0.006856599 0.05942386
2.5 2.5127634% 0.3671264 0.1755733 -0.4389333 0.4782367 O ul11742 -0.00924779% 0.08014755
2.0 2.0129036 0.4434698 0,2084922 -0,4169844 0.470138k 0.4196 747 -0,01304070 0.1130194
1.5 1.511070% C. 5579409 0.25%9324 -0.3823986 0.4569165 0.3852208 -0,01949716 0.1689754
1.0 1,0023506 0.7456238 0.3246253 -0.3246253 0.4330510 0.325388% -0.03161448 0.2739921
0.5 0.4596192 1.1632899 0.4408660 -0.2204330 0.3789821 0.2026305 -0.05830885 0.505343%
0. 2461484 0.0 2.088572u 0. 5434619 -0.1338109 0.260207% 0.0 -0.08860525 0.7679122




SOLUTIONS TO THE VELOCITY EQUATION FOR A= -0.4, 3,0> fo 2 0,456757

TABLE

I-5,

v, &,

j:o fo” Sl* 8: Y, Hzi Hz b )‘ 2 Fz

3.0 2.9650480 0.3175165 0.1534243 ~0,4602729 0.4832010 0.45%9104 -0,009415608 0.06590926
2.5 2.4574680 0.3748150 0.1789900 0, u474750 | 0.4775423 0.4398622 -0,01281497 0,08970478
2.0 1.9457416 0.4566548 0.2140059 -0.4280118 | 0.4686382 0.4164002 -0.01831941 0.1282359

1.5 1.%4253550 0. 5834469 0.2645563 -0,3968345 | 0.4534368 0.3770866 =0,02799602 0.1959721

1,0 0.8816612 0.8112085 043435743 =0.3435743 0.4235339 0.3029161 -0, 04721732 043305212

0.5 0.1901886 1.5112398 0.4911409 -0,2455705 | 0.3249920 0. 09340940 -0,09648775 0.6754143

0.456757 0.0 1.911524 0.513088 -0,234356 0.268418 0.0 -0.10530% 0.737126




SOLUTIONS TO THE VELOCITY EQUATION FOR A= - 0,5, 3,0> f°> 0,645966

IABLE I~-G,

5, 5" §” 5, ”LS‘ Ha, Has A Fa
3.0 2.9165650 0.3226665 0.1557965 -0.4673895 0.14+828406 0.4543906 -0,01213627 0.07281765
2.5 2.3997647 0.3831293 0.1826587 ~0.4566468 0.4767547 0.14383379 -0,01668210 0.1000926
2.0 1.8743500 0.4713681 0.2200681 -0,.4401362 0.14668710 0.4124846 -0,02421499 0.1452899
1.5 1.3309692 0.6136199 0.2755583 ~0,%133375 0.4490700 0.3667596 -0,03796619 0.2277971
1.0 0.7354607 0.8961188 0.3670402 ~0.3670402 0.4095888 0.2699%36 -0.06735926 0.4041555
0.645966 0.0 1.781075 0.489143 -0.315970 0.27463k4 0.0 -0,119630 0.717782




IABLR T-7

OLUTIONS TO T VELOCI EQUATION FOR B = .0,6 0 = to 20,819612
” * A o 53 F
-'F o -'F o Su Sz. Vv H 21 H 4 A 2 2

3.0 2.8664360 0.3281457 0.1583086 =0.4749258 0.4824339 0.453781% -0,01503697 0.,08019715
2.5 2.3393454 0.3921666 0.1866134% -0,4665335 0.4758524 0.4365532 =0,020894: 74 0.1114386
2,0 1.797942k 0.4879503 0.2267815 -0.4535630 0. k647635 0.4077401 ~-0,03085791 0.164575%
1.5 1.2251993 0.6502213 0.2883302 =0.4324953 04434340 0.3532620 -0,04988058 0.2660298
1.0 0.5414380 1.029378% 0.3976626 -0,3976626 0.3863133 0.2153096 -0,09488132 ' 0.5060337
0.819612 0.0 1,678970 0.4k69425 -0,384746 0.279591 0.0 -0.132216 0.705152




SOLUTIONS TO THE VELOCITY EQUATION FOR B

IABLE T-8.

= - 018. 300 ; fo ) 1.;"1252

5, 5 I Se ”;& H,, He, A, F,
340 2,7605600 0.3402545 0.1638180 -0.49145%0 0.4814573 0.1452229% -0.02146907 0.09661082
2.5 2.2087760 0.4129185 0.1955540 -0.4888850 | 0,%735898 0.4319350 -0.03059310 0.1376689
2.0 1.6255360 0.52876%0 0.2427360 =0,4854720 0.4590630 0.3945761 -0.04713662 0.2121148
1.5 0.9587710 0.7569940 0.3218310 -0.4827465 | 0.425143% 0.3085622 -0.08286015 0.3728707
1.1331752 0,0 1.5260219 0.4382116 -0.4965705 | 0.28715%% 0.0 -0.1536235 0.6913059




SOLUTIONS TO THE VELOCITY EQUATION FOR P = -1,0, 3,0 2 £ 2 (2)t

TABLE [ -9,

. & 8 & % H, » b A
3.0 (7)* 3.0-(7)‘} 0,1700985 -0,5102959 0.4801665 0.4500383 -0,02893350 0.1157340
2.5 (17/“)‘1r 2.5-(17/#)’} 0,2062741 -0,5156853 0.4704649 0.4252449 -0,04254900 0.1701960
2.0 (2)% 2,0-(2)} 0.2635928 | -0.5271856 | 0.4499811 | 0.3727765 | -0.06948116 | 0.2779246
1.5 0.5 1.0 0.3767333 -0.5651000 0.3767333 0.1883667 -0.1419280 0.5677119
(2)‘} 0.0 (2)* 0.4140719 -0,5855861 0.2927930 0.0 ~0,1714555 0.6858220




GRoup YLI

SOLUTIONS WITH SEPARATION

Numerical solutions are tabulated for twenty-six values of the
parameter A in the range O < B < -18; with f§ = O the mass
transfer parameter f, was adjusted for each B so as to satisfy the
main-stream boundary condition.

Three solutions are quoted from the literature, that for g =0
and two others for small negative pJ. The other values of S included

are:
g = 0(0-05)-0-2(0+1)=-1-0(0+5)-5-0,-7,-10,-18

as well as the case when f, = O for which g = -0-19883768.



TABLE I

ARATION S0 VELOCITY EQUATION OF THE LAMINAR BOUNDARY LAYER W MASS TRANSFER
' Solution by Exmons and Leigh [/}
* Solutions by Brown and Donoughe [13]
#* #* ’VoSI Vo 82
p \‘Fo 8] 82 y _—-))_ AI Xz F| Fz

0 - 0.875745 0o 0.875745 oo 0.766929 0.0 0.0 oo 1 533859
-0.014484 * - 0.702 4, 5078 0.78117 3.176 0.55038 -0,29432 -0.,0088385 | 41,229 g
-o.og - 0,500 333 3.4050893 | 0.7064082 1.705&821 0. 35 7927 | -0.5797317| -0.0249506 | 2%.34873 1 o 79263
-0.087160 - 0.34609 2.9570 0.66148 1.023 0.22893 -0.76211 -0,038137 | 19.012 0.95139
-0.10 - 0.2996851 2.8540745 o 6501028 0.8553236| 0,1948261| -0.8145741| -0,0L22634% | 17.92063 | 0.9297940
-0,15 - 0.1376368 | 2,555477 0.6128922 0.3517277 0.08h3565 -0,9795696| -0,0563455| 15,02007 | 0.8635648
«0.19883768 0.0 2.3588478 | 0.58543%2 0.0 0.0 -1,1063653| -0.0681483 | 13.34106 | 0.8217629
«0,2 030926 | 2.3548790 | 0.5848540 ~0.0072827| -0.0018087| ~1.1090910| -0.0684108 | 13.30909 | 0.8209301
<0, 2u61484 | 2,0885724 | 0.5434619 -0.51%0988{ -0.1338109 -1.Eg 6404 | -0,0886052( 11.34155 | 0.7675122
-0, o.h36757 1.911524% o.£é3088 -0.873102 | -0.234356 1570 -0.10530 10.23099 | 0.737126
«0.5 0.645966 | 1.781075 9143 -~1.15051% | -0.315670 | -1.58 -0.119630 9.51668 | 0,717782
0. 0.819612 | 1.678970 o.h69h25 ~1,37610% -o.E§t7h6 -1. 69136& -0.132216 .02061 | 0,705152
-o.g 0.981231 | 1.59577% | 0.452703 ~1,565823 | -0.L44206 -1. 825%6 «0.1543458 .65808 | 0.696735
-0, 1.1331752 | 1.5260219 | 0.4382116 -1,7292502| -0.496570% 629902 -0,1536235]| 8.383474 0.6913099
-0.9 1.2770976 | 1. 4662691 | 0.4254459 ~1,8725687| -0.5433359 -1 93u95 -0,1629038 | 8.169791 0.687 160
«1,0 J2 J2 0.1140719 2,0 -0.5855861| -2.0 -0,1714555| 8.0 0.6858220
«1l.5 2.0245 1,22606 0.37079 -2.4821%5 -0,75066 -2,25485 -0,20623 51616 0.68742
-2,0 2.5489 1.10402 0.34084% ~2.81402 ~0.86876 -2.43772 -0.23235 7 31316 | 0.6970%
2.5 3.01653 1.01570 0.31818 ~3.06390 -0.95979 -2.57914% -0.25309 7.22159 | 0.70866
-E.s E.837 0.89272 0.28531 -3. 4260 -1.09496 -2. 78933 -0.28490 7.17256 | 0.73261
~k.0 +2062 0.84706 0.27265 ~3. 56290 -1.,14682 -2.87005 -0.29735 7 17512 | 0.74%338
-5 4,884 0.77498 0.2522 -R . 78500 -1,23211 -3.0029 0, 31 21 20712 0.76371
-7 6,065 0.67522 0.2230 09519 =1, 35296 -3 191 -o 3 3 ; E9 Zz o."962§
-10 7.561 0.58100 J19%55 89296 2098 27566 7809 0.8326
«18 10.69 930 0.15309 ~4,.80299 -1.63659 3366 2187 7.67106 0.89061




GROUP IV

SOLUTIONS FOR INFINITE 8

With B infinite, solutions are given for the values of the

relevant mass transfer parameter given below.

Variables imaginary: suction only

-k, = VB, 2:85(0-05)3-2(0-2)4-0(0-5)10-0(2-0)20-0

Variables real

Suction
ko = 0:0(0:1)1-0(0+2)3-0 and 1:0(05)10-0(2:0)20-0
Blowing
ko = 0.0(01)1:0(0:2)3-0 and

1.0(0-5)4+0(1-0)10-0(2-0)20-0.
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IABLE V-2

FUBCTIONS OF THE LAMINAR BOUNDARY LAYER WITH SUCTION WHEN § IS INFINITE AND THE VARIABLES ARE REAL

Some quantities must be multiplied by the powers of ten given in brackets

Py - v, &, v, d,
ko % § 5 Ha Hiy Ay -5 A, T
20 zo. 466971)0,4978322(-1) 0,2488649(-1)| 0.4998972]0,4995881| 0.9993817{0.6193374(-3 ) 0.4977298 0.2478369(-2)| 0.995664k4
18 28812210,5525882(-1)] 0.2762240(-1)} 0.%998731]0,4994926| 0.9992387]0,7629970(-3 )| 0.4972032 0.3053537(~2)| 0.99546588
16 16 ~09310817 0.62078714+(-1) .31029&3(-1) 0.499839910.4993600} 0.9990399]0.9628255(-3) o.h96h7o9 .38537 0(-2)| 0.9932558
bl 14.10618891 | 0,7080252(-1) 0 a5386k9(-1) 0.4997921]0.4991685} 0.9987523 | 0.125220%(-2)] 0.4954109 0,5012933(-2) 0.991233
12 12.123149509 0. 234547(-1) 0,4114962(-1)| 0.4957193 | 0. h988772 0.9983149]0.1693291(-2) 0.4937954% 0.6780776( 2){ 0.9881456
10 1o.1h L2734 o 9831105(-1) 0.4911629(-1)| 0.4996009|0.149840%0] 0. 9976042 |0, 24:12410(-2)| 0,4911629 0.9665063 (-2){ 0.583110
9.5 9053 006 0.5160480(-1){ 0 k995597 0,4982 95 0.9973572]0.266 0 5(-2)] 0.4902456 0.1067101(-1)| 0.98135
g .1631662 129 o.skas3 4(-1)] 0.%4995119 210.9970707 | 0. 2954286 (~2)] 0.4891801 0.1184%025(~1)| 0.9793161
5 .63233668 o.11h9328 0.5740389(-1)] 0.499%562 | 0.4978259| 0. 9967359 0.3295207(-2)] 0.4879331 0,1320955(-1)| 0,976928
8 8,18257156|0,12176 9 0.6080771(-1){ 0,4993905|0,497563 14| 0,996341k |0 369757 (-2)] 0. 4861617 0.1482604(-1)] 0.974110
7.5 7.69#06196 0.12943%0 0.6462800(~1){ 0.4993125|0.4972518] 0.9958729 |0, 4176778 (~2)} 0,4847100 0.1675315(-1)| 0,9707547
7 7.20704588 0'1i 1025 o.ssgua 8(-1)| 0,4592189|0,496878110.9953111 |0.4753190(-2)! 0.4826037 0.1907230(-1) 0.966g175
6.5 6.72182310|0,1%7970 7385280(-1)| 0,4991056 |0, 4964255 0,9946302 |0, S454236(-2)| 0.4800432 0.2189521(-1)} 0.9616070
6.23877544 o 159293 o.g9h8207(-1) 0.4989666 | 0,4958708] 0. 9937956 o 6317#00( 2)| 0.476892% 0.2537 ig(-l) 0.9557602
Se5 5.798399523 | 0.1724021 §99315(-1)| 0.49879%1 [0.%951826 | 0. 99zz g39h822(-2) 0.14729623 0.29722L8(-1)| 0.9482116
Z E.z 255710 §g285 0.9359711(-1){ 0,4985771]0,4943168] 0,991 1 760419(-2)| 0,4679856 0.3524198(-1){ 0.9386423
o5 .80841733 (0 0.1025725 0.4982997 (0. u932112 0,689788110.1052111(-1)| 0,4615760 0.k237212(-1){ 0.9263020
L k.3%081 7|0, 2275201 0,1132913 0,4979395 geo 0.9876219 0,1283491(-1) o 4531650 0.5176541(~1)| 0.9100305
3.5 | 3.88005585(0,2537998 0.1262561 049714632 0.984756% |0, 1594059(-1)| 0,14+18962 0.6441633(-1)| 0.8882993
3.0 3.,42827210/0,2861209 o.1u21512 0.4968223|0,4873331 0.5809002|0. 2020697 (-1)| 0. 42614537 0.8186516(~1)| 0.8563626
2.8 3.25069179 .30116% 0.1495288 0.496 5045 0,4860720( 0.9789881 |0, 2E§5886( -1)] 0,4186806 0.9069915(-1)| 0.8432564%
2.6 3.og 2&339 .31763 9 0.157594 0. h961u 0.484639710.976813910 3601(-1)| 0. ko 7456 0.1008945 0,8258612
2.3 2.93838052|0,3264697 0.161910 0.4959 0.483851110.9756157 0. 2621511 (-1)| 0 77zo 0.1065825 0.8161Zk3
2. 2.90215900| 0.3357280 0.166%4310 0.4957318 04830093 | 0.9743360{0. 2769929(-1)| 0.3 9tg 0.1127133 0.80574+71
2.2 2.7317647910.3556332 0.1761316 0. h922619 0.481150110.9715063 }0.3102233 (~1)| 0.3874895 0.1264750 0.7823931
2.0 .33%38396 0.3775839 0.1868000 7246 |0.479027010,9682702|0.3489%26(-1)| 0.3736001 0.1425696 0.7551678
1,8 2.40038892|0,%4018373 0.1985516 o u941095 0,%76601110.9645658 o 42275(-1)] O .355&929 0.1614732 0.7233071
1.6 2,24019249 o.u286797 0.2115128 0.4934053 |0,%738294|0,9603 250 |0, 73767 (-1)] 0.338L205 0.1837663 0.685887
1.3 2,16165869| 0 %1692 0,2184895 0,4930160}0,%472299710,9579806 |0, h773766( 1)} 0.3277342 0,1963989 0.664%753
1. 2.08426720| 015 4265 0.2258207 0.4925997 |0, 4706662 |0,9554741 {0, 5099500( 1)| 0 .3161 90 0,2101548 0.6%17971
1.2 1.93304202 0, 4914205 0.2416215 0.4916797 |o. 4670645 (0.9499365 0, 5838094 (-1)| 0,2899458 0. 2414941 « 5897046
1.0 1,78709566 | 0, 5280280 0.2590676 0.14906323 |0,4629786 [ 0.9436366 |0,6711604%(-1)| 0.2590676 0.2788136 0,5260280
o.g 1 71626219 o.5ugsoso 0. 2684562 0.4500571 |0, h607u12 0.94%01787 0.720687%( 1)] 0.2416106 .3ooo91u 0.bg3025%
0. 4694566 0. 5686315 0,2783142 0.489u56 83683 |0.9365052 o.g7h58 (-1)] 0.2226513 hg}le 0.45L6052
0.7 1 57921363 0.5905532 0.2886604 0.4887966 565/0,9326097 |0, 332h8u( 1)]| 0.2020623 75§ 0.4133C73
0.6 L. 13256|0.6136193 0.2995133 0.4881093 |0, u532033 0.9284673 [0.8970£20(-1) o.17gzg§o agg 6 0.3681716
o.z 76708 0,6378769 0.3108902 0,4573828 0, h 04075 | 0. 9241350 0. 9665273 (-1)] 0.1554451 869 0.3189384
0. 386179lg 0.6633Z6Z o «3228075 0.4866164 {0 4691 |0.9195520 |0, 1042047 0,1291230 4400620 0.2653487
0.3 .32 272 0.6901 3 2809 o.k828113 3904 [0,9147389(0.1124133 0,1005843 o k76%020 o.zo7ot§3
0.2 shii 0, 7182#21 3234 0.4849665 |0 uh117u 0,909 06 0,1213292 0. 6966u67(-1) 0.5158717 0.1436
0.1 1 20 k23 0, 7476954 .3619%70 0.484083% |0.437826 o.go °'1i10056 .3619h70(-1) 0. 5590484 0.747695%(-1)
0.0 70054/ 0,7785391 0.3761615 0.4831633 3539 (0.898979510,1414975 0.0000000 0.6061231 0,0000000
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GROUP V

SOME MISCELLANEQUS SOLUTIONS

The following sets of numerical solutions are tabulated:

1. Solutions fer g = 0 by Emmons and Leigh

The mass transfer parameter is given the following values:
Suction

V2f, = 0.0(0:05)0-5(0+1)1:5(0+5)3-0(1-0)6:0, 10, oo.

Blowing
-VY2f, = 0.0(0-05)1-2, 1-23849

where the last value gives separation.

2. Solutions for no mass transfer and B large

The mass transfer parameter equal to zero, solutiens are tabulated

for the following values of 1/ﬁ:
1/8 = 1.3(0+1)-1.0 and =-0-25,

3. Solutions for A small and slight blowing

Solutions are tabulated for fy = -0°5 and the fellewing values
of B:

B = 0.0(0:1)0.5, 1.0,
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SOLUTIONS TO THE VELOCITY EQUATIOR FOR KO MASS TRANSFER WITH 1.})% » 1,0

IABLE ¥-2,

Solutions below the broken line are less accurate than those above

7;- 8," 5 - 8" 8" 8" H,, Hae AL £ E,
1.3 1.25647933 | 0.3441687 | 0.,6206265 | 0.2764578 | 0.uk5u496 | 0.3473635 | 0.07642890 0.04585734 0.00079
1.2 1.24851453 | 0.3478487 | 0.6293068 | 0.2814581 | 0,4472510 | 0.3514045 | 0.07921865 0.03168746 0.00056
1.1 1,2405491% | 0.3516431 | 0.6383870 | 0,2867439 | 0.449169% | 0.3557199 | 0.08222206 0.016k4Lkk41 0.00031
1.0 1.23258760 | 0.3555568 | 0.6479004% | 0,2923436 | 0.4512168 | 0.3603391 | 0.08546477 0.0 0.00002
0.9 1.22463510 | 0.3595952 | 0.6578848 | 0.2982896 | 0.4534070 | 0.3652959 | 0.08897669 0.0177953% 0.00031
0.8 1.21669745 | 0,363763% | 0,6683827 | 0.3046193 0.4557558 | 0.3706295 | 0.09279291 0.03711717 0.00068
0.7 1,20878116 | 0.3680669 | 0.6794425 | 0,3113757 | 0.4582811 | 0.3763850 | 0.09695480 0.05817288 0.00110
0.6 1.20089372 | 0.3725107 | 0.6911196 | 0,3186089 | 0,4610040 | 0.38261%% | 0.1015116 0.08120928 0.00158
0.5 1.19304340 | 0,3771000 | 0,703477% | 0.3263773 0.4639486 | 0.3893823 0.1065222 0.1065222 0.00212
O+ 1.18523949 | 0,3818396 | 0.7165896 | 0.3347500 | 0.4671432 | 0.3967589 | 0.1120575 0.13446%0 0.00274
0.3 1.17749210 | 0.3867337 | 0.7305417 | 0.3438080 | 0.4706206 | O0.4048312 | 0.1182039 0.1654855 0.003k4
0.2 1,16981218 | 0.3917861 | 0.745u4343 0.3536482 | 0,47u4191 | 0.4137020 | 0.1250671 0.2001073 0,002l
0.1 1.1622111% 0.3969998 0.7613862 0.364386% 0.4785829 0.4234939 0,1327774 0.2389993 0.00514
0.0 1.154700% | 0,4023776 | 0.7785391 | 0.3761615 | 0.4831633 | 0.4343539 | 0.1414975 0.2829949 0.0061k
0.1 1.1472917 0.4079216 | 0,7970638 | 0.3891421 | 0,4882196 | O.u464596 | 0.1514316 0.3331495 0.00725
0.2 1.1399951 0.4136339 | 0.8171679 | 0.4035340 | 0.4938202 | 0.4600268 | 0.1628397 0.3908153 0.00845
0.25 1,13639183 0.4165528 0.827889%4 0.4113366 0.4968497 0.4674396 0.1691978 0.4229945 0.00908
0.3 1.1328200 0.4195098 | 0.8391040 | 0,41959%43 0.5000503 0.4753248 | 0.1760593 0.4577543 0.00973
0.4 1.1257741 0.14255222 0.2-363 1797 -o.h3 76574 5:;5'-10293 0.4927034% | 0,1915440 0:533232 . 0.01107
0.5 1.1188628 0.4316699 | 0.8897985 | 0.4581286 | 0.5148678 | 0.5125830 | 0.2098818 0.6296L:54 0.01238
0.6 1.1120891 0.4379406 | 0.919%4752 | 0.4815347 | 0.5237060 | 0.5355095 | 0.2318756 0.7420020 0,01352
0.7 1.1054540 0.1443%1] 0.9528895 0.508548% 0.5336909 0.5621769 0.2586215 0.8793130 0.01423
0.8 1,0989570 0.4509036 0.9909481 0.54004h45 0. 5449776 0.5934857 0.2916481 1.0499331 0.014ck
0.9 1.0925972 0.4577198 | 1.0348811 | 0.5771613 0.5577079 | 0.6306048 | 0.3331152 1,2658377 0.01212
1.0 1.0863757 0.4656566 | 1.0863757 | 0.6206792 | 0.5713301 | 0.67%42908 | 0.3852426 1,5409705 0.00599




TABLE ¥ -3,
Solutions to the Velocity Equation for fgq =-0.5, 0 = B £ 1.0

» » a2, 8‘
p fo §, § -oy— Haq Hoy As Fy
0.0 0.1484%7634%0 2.1118674 0.6484763 0.3242382 0.3070630 0.09628339 0.0 0.34%10431
0.1 0.295166500 1.6178749 0.5757991 0.2878996 0.355901 0.1699566 0.03315446 0.5967803
0.2 0.406219118 1.3796359 0.5252433 0.2626216 0.3807115 0.2133639 0.05517610 0. 4414088
0.3 0.500323400 1.2262543 0.4864978 0.2432489 0.3967343 0.2434062 0.07100403 0.3313521
0.4 0.583673009 1.1155525 0.4553264 0.2276632 0.4081623 0.2657640 0.08292887 0.2487866
0.5 0.659363833 1.0303663 0.4294538 0.2147269 0.%167972 0.2831663 0.09221528 0.1844306
1.0 0.969229552 0.78096245 0.3441336 0.1720668 0.4406531 0.33354k4 0.1184279 0.0

D 70446/1/Dd125875 K4 68/68 XL/CL
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H,, as a function of (v [voé.) for the solutions near separation when 3 = 0 obtained

by Emmons and Leigh (i1); the broken part of the curve represents interpolation
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