C.P. No. 807

C.P. No. 807

MINISTRY OF AVIATION
AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Potential Flow through Cascades -
A Comparison between

Exact and Approximate Solutions

By
JP. Gostelow,

University of Liverpool

LONDON: HER MAJESTY'S STATIONERY OFFICE
1965

Price 6s 6d net



C.P. No.807

Potential Flow through Cascades ~ A Comparison between
Exact and Approximate Solutions
- By -
J. P, Gostelow,
University of Liverpool

Communicated by Prof. J, H. Horlock

am eye—. - s - o & —

Replaces A.R.C.25 829






SU.TARY

The transformation method of Merchant and Collart is developed
in order to obltein an exact solution to the potential flow around
a cascele of derived aerofoils. This solution 1s then used as
a2 check on the accuracy of an approximate method, ziven by
Schlichving, for the prediction of the {low 2round the derived
cascade,

1. INTRODUCY TON

This paper 18 primarily concerned with the QEEEEE problem
of the application of potential flow theory to cascacdes, i.€,
that in which a solution to the flow ahout a cascade of given
seometry is required. In _enerzl most of the solutions which
have been riven suffer from the nced for restrictions and
eporoximations ané¢ are of a lengthy nature.

The first solutions to the problem of potential flow in
cascades were for cascades of flat w»nlates and within the
limitations of zero thickuness and comver, anvlyticel solutiions
for liit coefilicient end outlet ansle were obbainedz’B. The
more [eneral problea of thick, ccmbéred serofoils in cascacde, as
used in axial flow compressors and turbines, has proved more
difficult to solve, The solutions proposed foll into the
tvo catagories of (a) transformation methods and (») singularity
me thods .

a) Transformation methods

Howell4 gave a solution, bascd upon a counformal iraunsformation,
end by the use of suiteble insermediate stages trensformed the
cascade of arbisrarily specificd aerofoil profiles inito a circle,

the flow around which could be determined. This metho¢ has been
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extended by Cartcr and Hughes5 and programmed for an electronic
computer by Pollerd and WordsworthG. It was found that
epproximations arose in the transformation to sn exect cirele, with
special difficulty at the point corresponding to the aerofoil
leading edge.

Gar-ick! has also civen a solution to the problem based
upon the Theodorseun conformal transformetions, end this method

of solution has been developcd by Ha118.

b) Singularity methods

¢ s . \ . s 10
SChllChElngg, wnose mechod hes heen mocdified by Mellor

and prosrammed for a low specd digital computer by Pollard and
Wbrdsworth6, d¢istributed sources, sinks and vortices on the

chord line in order to represent ¢ siven acrofoil cascede profile,
This limited the application of the theory to profiles of low
camber, Doubts also arise concerning the counvergence of the
Fourier series used for snecifying the singularity distribucion.

A morc sophisticeted zpproach i1s that due to Wartcnsonll,
who distributed vorticity around the profile, nesulcs from
this method, which 18 being widely uscd by octher workers, may bhe
the most relioble to Catc, although the method seems to fail for
profiles of lov thickness.

In cach of these methods en attempt is made to Hredict 1lift
coef’icicent, outlet angzle anc distribution of prescsure over a
given blade profile; results heve beecn nublished, based upon
onec or other of these methods for many different aerofoil profiles
and blade configurations, However, duc to the possihility of
crror 1n the lengthy computetions, and to the ¢iffering assumptions
macde, discrepancies arc noticeable when two or morc of these

1, L ~ . (
me chods sre applied to the same bla Ce profile®.



During the years 1940-1944 tlerchant end Collar1 produced
an analysis giving a transformation linking the known potential
flow around a series of ovels to thot sround a cascade of
inclined {lat plates. They also gave suggestions for extension
of the theory to a cascade of eerofoil profiles, in an analogous
menner to the theory of isolate¢ Joukousky transform aerofoils.
+his theory has not, to the knowledge of the author, been
extended prior to the work described in the present paper.
‘he assumptions made are those ol conventional potential flow
theory and the accuracy of calculation is limited ouly by the
meeus of counutation available, Thus a stendard has been
provided for comparison vith the aprroximate methods outlined
ahove,

2.  NOTA IOV AND SY'I20LS (See also Mig. 2)

c chord length (distance between extremities of camber line)
CL(c)’ 117t coefficient (based on chord and mean line
CI(m) respecoively.
Cp =P — D1 pressure coefficient
] ?
Eadis ]
[} . .
L =@+ in complex coorcdinates in plane of ovals

J' = m' + in' centre of offset oval
D local pressure ot a poant on the profile
q local velocity on the profile

qg = Up + i% complex velocity in the plene

dy = u, + iv, complex velocity in the z plane

s space bhetwecn blades ( s =2 in this paper)
Uq,Us velocity before and after cascade
Vg1 canber and thickness ordinate in singularity method

2 = X + 1y complex coordinates in cascade plane

ay inlet flow angle

ao outlet flow angle
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B s1ze parsmeter of smaller oval
p! size parametver of larger oval
A\=f+ sin h%p coth¢
v =B + sin th coth B
¢==§ + 1)) complex coordinates in intermediate plane
9] aerofoil stasger angle
e, densivy of {luid
= ~2 » W circulation around each aerofoil
w=gg+ iy complex potential in »Hlaune of ovals

3 YHE TXACT SOLUTION TC THE TTOW THROUGH A DERIVED CASCADE

The »rocedure for evaluacion of the blade profile shape and
cascade conifiguration follows that of lerchent and Collarl.
i) Thenormﬂ?fkvaaazaserles of ovals on the imagirary axis has
becen given by Lamblz.
ii) The normal flow past a series of leminae lying along the
imeginary axis is also known and a transformation can be obhtained
which converts the laminae into the ovels of (i) (Fig. la).
iii) In a similar vay the general floWA round the laminse (which
is ltnown) givés the general flow round the ovals.
iv) A particular case of the general flow round the ovals is that
for which the flow at infinity is inclined to the axis butbt for
which there is no circulation. In this ca e the ovals can
immedietely be transformed into a cascade of flat plates pasrallel

to the direction of flow at infinity (Fig. 1b).

W

“Normal Flow' - flow perpendicular to the ima;inary axis.

>

"General Tlouw" -~ flow with inlet engle and circulation
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v)  Application of this transformation to ovals which are of fset
from the origin produces a cascade of aeroloil shapes, This is
the class of aerofoil for which the profile shape, and subsequently
the aerodynamic characteristics, will be obtained.

The procecure is similar to the usual Joukowsky process for
an 1solated aerofoil and, if the diameter of each oval 1s small
compared with the space, these ovals tend to become circles and
the transormation used becomes the Jcukowsky transformation,
The full analysis 1s given below.

3.1 Derivation of aerofoils

3elel General Flow Pastv a Cascacde of Ovals

The potentiial field due to normal flow of a uniform siream

past a series of uniform doublets lying aloung the imaginary !

plone axis 1s given by Lamblzz—

w=U{ $+ sinh? @cothf; soeso(l)

This rationalises into

7 = Uln + 81nh2 B sinh 2m
coshm - cos 2n

W = U(n _ s1nh? B sin 2n‘}

l cosh 2m - cos2n

where the scireamline Y= 0 marks part of the n = 0 axis and the

closed oval

Sinh2 B sin 2n ceeas(2)
n

cosh 2m cos 2n +

B is now seen to be the length of the semi-major oval axis.
If we cousider a series of laminae distributed alon; the ?
x1s of the g plane with a period of } , the stagnavion points
of the flow around these laminae may be made to correspond
+

to those in the ( nlane, Te can thus »ut {= + B, as the

stagnation joint, in equation (1)
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For simplicity, following Merchant and Coliar, \ and ¥

are deiined as

Il

’}* Q"' Slnh2 ﬁcothﬂ ' 00000(3)

y = 8 + sinh® B coth B ceeoo(8)
The flow around the laminse is given byl,
w=7U cpsh"l(cosh ¥ coshf) vesso(5)
and since, from (1), w = U\ for the ovels
cosh\ = cosh y cosh{ veeoa(B)
This is thus the required transformation connecting the,g plane
ovals and theq plane laminae,

The general flow past the @ plene laminae is known to be

dw _ U sinh% + iy coshc‘_
€ sinh2f + ‘tanh?f
where V is the component of velocity parallel to the77 oxis, and

iv ceaes(T)

there is a circulation 2aW around each lamina.
If transformation (6) 1s applied to the general flow past
the laminae, the followinz equaiion is obtoined:-

ﬁ - sinnZg veera(8)

sinhzii

dw [ (Wcoshx - Vsinh) \
w - iv, = =7 =!U 41
f d ar sinhe\ - sinhzﬁ

This is the general flow past the ¢ plane ovals.

34142 Transformation of ovaels into inclined flat nlates and

cerofoils
Considering the particular case in which WV = 0, V = U tané,

equation (8) becomes

- R, -

itanf sinh)\ !l sinhzﬁi
.12 - i1- 2”{ <. (9)
sinh“A - sinheyi” sinh<{|

d

=

ug - iW =

o
-,

=Ull—
.

Also, consicering the flow past a cescole of inclined flat
plates as shown in Pig. 2,

dw :
E-é- = U(l - 1'tan6) ...09(10)
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Llimination of w in (9) and (10) gives

ds _ eié cos £ _ isindé sinhA L w_g‘inh2 ”(11)
al sinh?A - sinhy | sinh¥_

Hence the transformation connecting the oval and cascade planes
is given by ‘

g = eié(AcasG - isin@ arccosh(sechy cosh))) veose(12)
or, if the true chord is taken as abscissa,

Z =) cosl - isinp arccosh(sech y cosh\) ceeee(13)

which can “e expressed, for ease of computer programming, as

. 2
7 = )cos® - isinf€ in(sech y coshA +/E‘.’_§.1.1.é.’.\.-1 ceese(14)
coskey

The procedure for the derivation of a cascade of aerofolls
is thus to select a suitable set of 2 plane ovals, postulate a
set of larger ovals with offset centres, and apply transformation
(13) to these offset ovals.,

Experience enables the reguired tyse of cascade to be
obtained. For example, B should be around 0.725 to give a
snace-chord retio of unity and B! should be approximately 10%
larger than p to give a maximum thickness of 10% of the chord.
Variat on of camber amd position of maximum thickness i1s obtained
by variation of n' and m' (the coordinates of the offset oval
centre); the proviso is that the transformation singularities
wust be enclosed within the offset ovel, or, for a cusped trailing
edge, lie on this oval. A more detailed explanation of this
procelure is given by Collarl3 and Merchant and Collarl.

There exist two extreme parthicular examples of the
_eneralised method. In the first case the transformation is
applie? to concentric ovals and a cascace of elliptic aerofoils
is produced in the z plane., In the second example (the case
wuncer discussion in this paper) the stagnation point at the

position on the ovals corresponding to the trailing edge 1is
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placed at the trensformation sinzularity, by epplication of
Newton's method for the fetcrmination of roots to equation (2).
This case gives a cascacde of cuspved aeroiolls, Between these two
exvreme csses the deravation of an infinite variety of serofoil
sections 18 possible. Apnlicesions of such a generalisation

w1ll be the subject of a second »neaper.,

3.2,1 The Flow Around the Lerofoils

The rclationship beuvween velocities in tThe H and z planes is

given by
uz—ivz=u -9009(15)
3.2
o |

where subscript z refers to the local velocity on the z plane

. } o ] s
cascade profile, subscript { refers %o the local velocity on thee
plane oval profile,

From equations (9) and (11) the velocity 1n the z plane is

given by _
v+ of futogth o Yolgny) |, _ sinip
ey o= /sinh2\ - sinhe¥ /! sinh®?. (16)
Uz= 2™ m 15 infsinh A 1 _ _ sinh<g Peent
COSH — === = - i - 5
I fsinkeX - sinn2k || ©  sinn?!
To obtain V7, the value of ? at the resr stegnetion noant

in the Q plene is substituted into ecuvation (9)., If the trailing
edge of the profile 1s cusped, then the Kutta condition must be
setisfied., Since dw Qﬂééi end both a and dz become zero
dz dz/d aF av

if vhe stagnation toint is at the point of the cusp, the complex
velocity in the z plane becomes Zinite enld the Kutta condition
is satisfied. If the treiling edge is rouncded then the rear
stesnation joint is 1ndeterminaie and 2 suitehle position must
be chosen.

“hus, from ecuation (9), at the re.r stagnation point

)
W=Vtanh)\%+iU\/1—%;—§‘%2%
At

evoee(l7)
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where the subscript t refers %o trailing edge conditions.
Now tne circulation 1s taken as’"‘= -2pW, giving the following

velues for air angles a; and ap

V-1 _V+W
T tan a2 =

tan al =

Hence

V=7T tan aq + W

and from ecuation (17)

!

2
r ; cosh™y
v =y |tan oy tanhhg +\/Cosh2kt -1
1 - tanh\t
. coshey
v=uU| "o +/cosh?iT -4
1 - tanh)t

pudbsviiubting these values for iV and V into equation (16) we obtain,

(1 + ia)(1 - Ei—”—llgm&)

sinh™ ¢
Fosﬁ,_ isindsinh A WP _ i&gﬁ%ﬁ""(IB)
hZQ

sinhé\ - sin

s

- 2
Loshey LOShY _ 1 \as
E@n alta“hxf+vfosh2ki_ 1 jcosnk  -(tana 1 cosh%{t 1)sinny

where A =i
(1 - tanhX)\/sthAt - sinh®y

Al "
5e q ~! w2 + v,°

U U

ané we define the prcssure coef icient
Cp = P - pl
1
EpUlz
Trom Bernoulli's equation

p + %qu =P + %PU12

therefore
b = D3 q2
Tae s LT Lo
How U =U, cos aq
therefore 2 2
Cp = - Pl =17 - (uZ + VZ_"_) 00820,1 00000(19)
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Tor the potential flow around the ' ovels to be determined,
these ovals musc e relocated with their centres at the points
(0,0), (O,n), (0,2n),..in the f plane,
If ktg = {; - ¢{' , where fr =m' + in!

me \ ; . g
Pt = ft2 + sinh?p! co“ahtqu
o tan aq = L=t and ten =Y ¥
thus V/ osh2
tan a2 = ban al(l * tanh)\ )t 2 coshaXtQ i .0 (20)
1l - tanﬂ\tz *

The complete flow around the relocated B' ovals will be

needed, for use in obtaining the cascadc profile pressure {istribu-

cosh? cosh2
(uanaltanh%u ESEE?§; -1 coshA (tanal ’_EhEQX$ 1)shX

tion; from (8)

uﬁ— in 1+ 1

—_ R O
U (1 - tanh)t)ﬂélnhzk ~ sinh®y ZI

_ sinhp! | ”s

"E sinhzz:J e (22)

In equation (22) all)\'s and E's refer to conditions around

the B! oval relocated and centred at the origin.

* This correswonds to the equation

tan a7 y + 2 tan J e (21)

tan a, =
2
y + 2

of ref. 15 and it can easily be demonsirated that

y 1l + tan hh%z
+2 1-tanh
y xtz
e wan g [ERY2
2
— cosh“A+,,

1 - tanh A,



- 11 -

The next stage 1s the evaluation of the scale factor %%l
Making use of equetion (11) we have
. 42
dz isind sinh A )( sinh g)
—— f—v —— ® 00 00 2
ag (oos v§ nhé\~ sint sinhey, L sinh¢ (23)

Here, as 1n the basic transformation used to determine the
aerofoil profile, the B of the smaller oval 1s employed.

It is now possible to evaluate the %z — IVa of equation (18)
using the right hond side of equation (22) gs the unumerator, and
that of (23) as the denominator. The value of the pressure
coefficient for the corresponding point on the aerofoil surface
is now given by equation (19).

The only remsining aerodyuamic parameter which can be
calculated from potential flow theory is the 1ift coefficient.
this is defined and calculated in two dafiereunt ways below,

both of which are in common usage,

3.3 Lift Coefficients

Iirstly 1t 1s possible lo base the 1lift coefficient on the
chord line of the profile. The advantage of this definition
1s that the resulcing value of 1lift coefficient can be compared
with the value obtained by integration of the pressurec disvtribution

as is shown in T'ig, 6.

(x/c = 1
Cr(c) = Cp a(3)

x/c =0

Thus the 1ift coefficient perpendicular to the chord line is

defined as

= L(L’ to chord)
C - ! 00-00(24')
o) T = o
a1

It may be shown that

CL(c) = 8 cos2a1(tanal - tanas) - ((tanal + tanay) sing + 2cosf)
C

veees(25)
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An alternative definition of the lift coefficient 1s obtained

from a consideration of the 1lift perpendicular to the mean flow

direction.
c
CL(m) = £l veee.(26)
%@cm%
It follows thet
_ 2 cosH C
CL(m) - LC ST 00000(27)

¢£—+ (tana, + tana2)2

4., APPROXTIMATE SOLUTIONS TO IHE FLOW THROUGH A DETIVID CASCDhL

0f the potential flow solutions mentioned in the introduction
the author was only able to use the singularity method of
Schlichting. However, due to the cooperation of Dr. Hall of
Southampton, who used his cxtended Garrick method and th> use by
a team at Rolls-Royce of a modified brtensen-Isay method, a
more comnlete comparison was possible,

These methods for determinations of the potential flow were
applied to the cascace of blades with the profile shown in graph
2c, having the given stagrer, space/chord ratio snd inlet angle,
the object being to determine the outlet angle at downstream
infainity, the 1ift coefficient, and the distribution of pressure
around the blade profile,

This process was carried out by the author using the
Schlichting singularity meichod ¢nd a brief description of the
procedure is siven below. Nesults of the comparison between
vhe analysis and the application of the ahove meuntioned methods
are given in Fig. 4,

In the Schlidhting method, sources, sinks and vortices are
distraibuted alonz the true chord of the blade and the velocity
induced by the sum of these singularities is celculated throughout
the flow regime and added to the free stream velocity. The
magnitude of the singularities 15 chosen so that a fluicd stream-—

T9me ecorreanonds toa eachh Blade nrofile.
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The main assumptions and approximations are as follows:-

i) a distribution of singularities i1s used to match the »nrofile
at a finite number of points,

ii) this number of matching noints is restricted by the stabilaty
of the Fourier series which is used to represent the singularity
distribution®.

iii) the blace profile is split into a camber line amd thickness

distribution; these are considered seperately.

1v) the singularities are distributed along the chord line.

Hence the induced velocicies are calculated on the chord
line and corrected to give the velocity on the profile,
utilising a factor

Ve Vx 1

Vmx  Vmx #Ciif=zyé i'§%§5

given by Riegelsl4.

V) the Hlade profile shape is not introduced in the farm of
(x,y) coordinates but in the form (x,%%) and since the profile
gradients of an arbitrary profile are difficult to measure or
compute with good accuracy it is difficult to avoid small errors
in profile specification.

The calculations were carried out on the Deuce computer for
the given cascade profile of Fig. 2, matching camber aund thickness
gradients at seventcen stations along the chord. The 1ift
coefficient, outlet angle and pressure distribution were obcained,
Provision had been made, in the work of Pollard and Wordsworth,
for integrating the expressions for camber line and thickmess
gradient as finally obtained, to zive the actual "integrated"
profile around which the flow had been found. This integrated
profile proved to be slightly different from the given profile, as

shown in Pig. 3a.
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The entire calculation using the singularaity method vas
carried out independently severel times in atbtcupbts Lo improve the
profile matching., The final pressure distraidbution wos found to
vary only slightly with change in integrated nrofile. The curves
shown in TFigs. 3a and 4 arec for the integrated profile nearest to
the requaired one.

5. CO.ICIUSIONS

1 has been programmed for

The analysis of Merchant and Collar
an électronic computer in order to obtain a cascade of aeroloil
profiles; +this analysis has been extended in order to calculate
Tully the potential flow around the se profiles, It was also
found posgsible to determine the variation of outlet angle,
theoretical 1ift coefficient and prescure distrinution over a wide
range of inlet angles. As a check on the accuracy of the
calculations the theoretical 1ift coefficient was compared with
the value of 1ift coefficient obtained by planimeter integration
of pressure distribution, the results being shown in ¥ig. 6.

Good agreement was obtained, as was to be expected since no
assumptions other than those of potenuvial flow theory werc made

and the only limitations on the accuracy were those of the computing
equipment (viz. 7 decamal places, allowance having been made

for rounding off errors). The results of the calculations

are presented both grapaically and in the form of tables for

x/c, ¥/c and Cp, thus facilitating a check on the accuracy of
other, morc general, potential flow solubions.

Comparisons nave been made with the singularity method of
nrediction of potential flow in cascaces, cc developed by
Pollard and Vorésvorth. Difliculties and laimitations of this
method have becen discussed and graphs are presented showing the

difficultics of matciing the profile exactly., The outlet engle,

as predicted by the singularity method, is seen to be in error
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by 0.7 and the pressure distribuiion is seen to be in reasonable
gencral agreement, alinovgh discrepancies occur near the suction
peak.

‘"he results vihich Dr, Hall has provided, based oun the Garrick
methoé&, show an accuracy in outlet angle of almost four decimal
places and excellent agreement in pressurc distribution.

A geuncralisation of the precediny potential flow solution
is to be presented in a further paper in which the possihilities
and limitations of the solution will be explored.
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APPINDIX A.

PROTLTITUARY CALCULALIONS TOR T GIVEN EXAIPIL.

A profile with a stagger & of 37.5° and a space/chord ratio
of 0.9901573-has becn computed and thc results are given below.,

As mentioned in naragraph 3.l.2 a value of B = 0.725 was
chosen as the parameter for the basic oval. Trom equation (4)
we obtain

cosh ¥ = 2,91481083.

Examining equation (11) it will be scen that the zeroes

of this equation are given by

sinhX = + cos¢§ sinh v.
Since ¥ and & are known, the values of \ at the positions of the
zeros are determined. Since A\ 1s ¢ function only of 3 for
constant B the two velucs of 8 can be obtaincd.

For the example of the text

{1 = +0.632248112 - 0.3512571491

{o = -0.632248112 - 0.3512571491
The negatlive value, Kg, is taken to be the position of the reer
stagnation poaint in the Z plane,

ConsiGering the larger ovols, given by p' = 0.8, these ovals
can be placed anywhere an thc f plane so long as they include
all zeros and infinities. To obtain the limiting case of a
finally transformed acrofoil which has a wusped extremity, the B!
oval is positioned so as to actually pass through the previously
deteruined zcro, In this examplc the B! oval was displaced so
that 1ts centrc was at the point
{’l =m' + in!' = +0,112512215 - 0.06321i.

The procedure was then purely a computation of the aerofoil
profile from equation (14) and subsecuently computation of the
pressure distribution and acrodyrnamic parameters from equations

(12) amAaA (10)
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APPTNDIX B

TIORCANT ANTD COTTA ™ CASCATED NTADT PROIITIT AND PRESSURE DIS MIBUTION

Calculated correct to 7 d.p. on the Tiverpool University
Teuce electionic computers

Arbitraraly selccted parameters:-—

n' = ~0,0632
ag = 53, 5°
Staser angle= 37.5°(Compressor)
g' = 0.8
B = 0.725

Derived narancters

s/c¢ = 0,9901573

m! = +0.112512215
n' and m' arc coordinates of B! = 0.8 oval centre
in 1 = m + in plane. Also tan o, =+ 0,57793012
Refercnce Profile coordinates Cp_

Wumber Basel upon unit chord Cp = i B!
u, 2

N X + iy 2!
1 +0.1840367 +0,0949930 ~0.7329363
2 +0.6500792 +0.0889340 +0.0219360
5 +0,5685042 +0.1010401 -0.0941639
4 +0,5211449 +0.,1062824 ~0,1659479
5 +0,4030553 +0.1130286 ~-0.3597584
6 +0,3231776 +0,1117387 -0.4992400
7 +0,2599128 +0,1067143 ~0,6094902
8 +0.2069867 +0.0992816 ~0,6973123
9 +0,1834664 +0.0948774 ~0.7337957
10 +0.1616129 +0.0900909 ~-0.7656136
11 +0,1223507 +0.0795404 -0.8156043
12 +0.0884371 +0.0679148 ~0.8470333
13 +0,0595318 +0.0554474 ~0.8571795
14 +0.0356275 +0.0423583 =0.8368069
15 +0.0170584 +0.0288868 ~0.7538457
16 +0.0046149 +0,0153348 ~0.4766543
17 ~0,000141.4 +0.0021437 +0.4363445
18 +0.0000631 -0.0003936 +0.6827467
19 +0.0059857 -0.0099254 +0,9211494
20 +0.0308941 -0.0192226 +0,.4121105
21 +0,1109821 -0,0193545 +0,2977494
22 +0,1451326 -0.0159400 +0,3248899
24 +0.1653660 -0,0135341 +0.3432965
25 +0,2472125 -0,0025069 +0.,4167019
26 +0,2708527 +0.,0007947 +0.4359517
27 +0,2725677 +0.0010332 +0,4373066
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