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SUMMARY

Using numerical methods described in a previous paper (Dennis and
Dunwoody, 1964), the stesdy motion of a viscous, incompressible, fluid past
a fixed circular cylinder is investigated over the complete range of Reynolds
numbers. In particular, the limiting solution as the Reynolds number R
becomes large is considered.

The calculated drag coefficient is found to agree reasonably well with
experimental measurements for low Reynolds numbers but starts to become
higher for values of R greater than about 30. For large Reynolds numbers
the theoretical estimate of the pressure drag tends to become constant
while the frictional drag decreases proportionately to the square root of
the Reynolds number, This tendency of the pressure drag greatly to exceed
the frictional dreg for large values of R has already been noted in
experimental work.

Secondly, with regard to the detailed flow patterns, the calculations
show that for Reynolds numbers below R = 5.6 a non-separated flow takes
place past the cylinder. The value R = 5.6 at which the standing vortex
pair first appear behind the cylinder is in good agreement with the exper-
imental estimates of Homann (1936) and Taneda (1956). As the Reynolds
number increases the length of the vortex pair, measured downstream from
the rear generator of the cylinder, increases and at R = 30 it exceeds
the length of the diameter of the cylinder. At R =40 , however, the length
of the vortices has decreased according to the present solution; and it
continues to decrease as the Reynolds number is further increased. It is
pointed out, however, that the description of this feature of the flow, viz.
the behaviour of the vortices as R becomes large, is somewhat tentative
owing to the necessity of limiting the size of the calculations.

At very low Reynolds numbers the calculated solutions agree with the
solution of Oseen's linearised equations. Some aspects of the Oseen linear-
ised solution are discussed in detail in the present paper since it is
found that they do not agree with the previously published results of
Tomotika and Aoi (1950).

Replaces A.R.C.26 10l.
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TNTRODUCTTON

The governing equations applicoble to the present investigation
and the method of numerical solution by which they are solved are essentially
as described by Dennis and Dunwoody (1964) in a previous paper concerned with
steady flow past a flat plate. For steady two-dimensional flow past a circular
cylinder the appropriate coordinates are polar coordinates (r,0). The
dependent variables are the stream function y(r,0) and the scalar vorticity
Z(r,8). The first is defined in terms of the radial and transverse velocity

components (vr,VG) by the equations

_ 1oy _ .9
Vy T30 ° Yo =" %0 ° (1)

Equations (1) setisfy the equation of continuity of the fluid, which is
assumed to be incompressible., The vorticity is expressed in terms of the

velocity components by the equation
ov,

6 \: 1 dv,.
L% *T "r® - (2)

The governing equation for £ is obtained by eliminating the pressure from
the Navier-~Stokes equations of motion. This gives
2 2
(G 1525 - YR -4, o
where v is the coefficient of kinematical viscosity.

Equations (1), (2) and (3) must be solved in conjunction with the
no-slip condition v, =7V = O at the surface of the cylinder, r = a, If
also the flow at large distances from the cylinder is a uniform stream with
velocity U parallel to the positive direction of the x-axis, the appropriate

conditions are that

v, = Ucosd, Vg > =Usind, as r » ., (&)
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Previous theoretical results for the steady motion of 2 viscous fluid
past a circular cylinder may be roughly divided into two categories. Firstly,
there are solutions of Oseen's linearised equetions, valid at low Reynolds
nubers. An approximate solution of Usecn's equations was first given by Tamb
(1911) and subsequently extended by both Bairstow, Cave and Lang (1923) and
Tomotika and Ao1i (1950). This extension has been criticized by Proudman and
Pearson (1957). The objection 1s that Lamb's solution i1s already correct to
the order of approximation necessarily inherent in approximating to the true
equations of motion by Oseen's equations, and that nothing 1s added by obtaining
higher order approximations to the solution of the latter. Kaplun (1957) has
given what 1s considered to be the valid correction to lamb's solution.

A further point about Tomotike and Aoi's solution i1s that it purports
to show that a separated flow, viz. one in whaich a pair of standing eddies 1s
formed behand the cylinder, exists for all values of the Reynolds number,
however small. Thas is in darect conflict with experiment. It 2s known
experimentally that, below a certain critical Reynolds number, no separation
takes place. The actual critical value 1s variously estimated at 3.2 by Nisa
and Porter (1923), 6 by Homann (1936) and 5 by Taneda (1956). Since these values
of the Reynolds number are beyond the range of validity of Oseen theory, no
theoretical confarmation of this result has yet been obtained.

Secondly, there are the approximate numerical solvtions of the full
equations of motion, i.e. the solution of Thom (1929) at R = 10, Thom (1933)
at R = 20, Kawaguti (1953) and Apelt (1961), both at R = 40 and finally Allen
and Southwell (1955) at R = 0, 1, 10, 100 and 1000. Allen and Southwell cover

the largest range of Reynolds numbers but their results have recently been
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criticized by Kawaguti (1959), whose main obgection 1s to the detailed flov
patterns round the cylinder given by these results. Xawaguti suggests that

all the evidence of previous investigations of the problem indicates that the
standing vortex pair behind the cylinder should elongate with increasing Reynmolds
number and that Allen and Southwell's flow patterns at 2 = 100 and 1000 are not
in accordance with this. Yone the less, sllen and Southwell's results are the
only moderately high Reynolds number results that have so far been attempted.

In the present paper, results are obtained for the complete range of
Reynolds numbers from 0.01 up to indefinitely large values. At the lower end of
the scale, wnere the numerical solutions are believed to be extremely accurate,
the obgect is to compare the results of the various theories and deterrine
accurately the Reymolds number at which separation starts to occur. At
intermediate and higher Reymolds number an attempt is made to correlate existing
mumerical results and determine the general features of the flow as R becomes
large.

To reduce the problem to a form comparable with that solved in the case
of the flat plate, we make the transformation

r = aeé, 6 =17 (5)
and introduce the dimensionless quantities defined by the equaticns
o=, (=2, R=22T 6)
where a is the radius of the cylinder. Suppressing primes, equation (3)
becomes

R /70y 3L Oy @
Pe-3(BE-2E) Q

while (1) and (2) together give

V4 e = o, (8)



o

where W= & /3% + & /Jonf.

The boundary conditions v, =V = 0 on the cylinder give rise to

0

the conditions

)
¢ = 5% =0, when ¢ =0 (%a)
while the free stream conditions (4) become
10 12
: 5% > 1, z 5% > 1 ) as £ » w . (9b)
e”siny e’ sinn

By the symmetry of the motion about the x—axis we also obtain
¢ =f =0 whenn = 0, =, (9¢)
It may now be observed that the mathematical problem involved in solving
(7) and (8) is almost identical with that described in the paper by Denmis and
Dunwoody in the case of a flat plate. This paper will subsequently be
referred to as I. The method of numerical analysis used i1s identical and
only those features especrally relating to the case of the circular cylinder

need be mentioned.

DETATILS OF THE SOLUTION FOR 4 CIRCULAR CYLINDER

Equations (7) and (8) are reduced to ordinary differential eguations

by the same substitutions as in I, viz.

sem) = Z £ (¢) sin m (10)
n=1
and Riad
(em) = MY g (daan o, (11)

n=1
Equation (8) 1s reduced to the set of equations

f;l-nzfn-'-rn(é) _—.O, (n‘_‘ 1,2,3,0.‘-0.) (12)



with *,
@) =) g, - I (13)
]
p=1
and, as before,
/IS
jn(é) = i‘j eF('S’n)cos nn 4n. (1%)
[o}

The only essential change 1s therefore in the definition of rn(§), which is
less complicated.

The boundary conditions (9a) give the same initial conditions for che

fn(é), 1e€e
fn(O) = f;(o) =0, (N =1,2,3500000)s (15)
At large dastances, (9b) lead to the conditions
e ) -1, etE ()0 (A1) (16)
so there is a slight difference in a numerical factor from the case of the
flat plate.
If we follow the analysis used in I to determine the form of ¢ at large
distances, it is readily deduced that, as £ - o,
w(Em)~ sinn + X(1 = 1) (17)
The value of the constant K i1s obtained, as in I, from the theorem of Goldstein
(1929).  This gives
K = - Fa - —?;'CD s (18)
where CD is the drag coefficient.
The drag D 1s found by evaluating the integral (31) in I round the

contour of the cylinder. This yields

» 2r
D = -./ (pacos 1 + pvUlsin n)dn , (1
o

\"
~-
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where p and p are the pressure and density and { is non-dimensional. The
part of this integral depending on the viscosity gives the fraictional drag
Df- By symmetiry

i
Dy = —2puU./ { samn 47, (20)
(o]

where { 1s the value at { = 0. Now, as in I, the function F(¢,n) in (11)

is chosen to satisfy the equation

o | 1o
€ = on (21)

and also the condition
F(Osn) = 0.

Hence substituting for §o in the above integral from (11) we obtain

Dp = -uvag1(O)
and the corresponding dimensionless drag coefficient is
D
e
% =3Fs < ® &) #2)

The term 1n (19) involving the pressure likew.se gives the pressure drag Dp, 1.€,

p R
-2a / pocosn dn
0

i
2a /. (%B ) sinn dn,
7N
o o}

on integrating by parts, where the suffix zero again refers to € = 0. If the

D
p

equations of motion are expressed in terms of £ and 7 it 1s easy to show that

/op Y\ _ M(Q&)
\37] o] & % De

Substaituting in the integral and dafferentiating (11) with regard to £, using

the fact that (6F/3§)0= 0 from (21), we obtain

— 1
DP = ﬂvag1(O)



snd hence D

¢ = s - =80, (23)

The ratio of the pressure drag to the frictional drag i1s therefore
-g%(o)/g1(0). It is subsequently found that this ratio tends to unity as R 1s
indefanitely decreased, in agreement with Osecn theory. .hen ¢ becomes large
the ratio increases as R%.

The governing equation (7) for the vorticity is identical with the
corresponding equation for the case of tre flat plate. Using the substitution
(11), the method of treatang it is identically that described in I, viz. it is

reduced to a set of equutions

2

= 0, (n = 1,2,3,.....), (2)+)

where kn,P(é) and all the associated functions are exactly as defined in I.
Mumerical solutions are obtained precisely as before; they are finally
expressed in the form

g,(€) = C,6 (&), (n=1,2,300000) (25)

with
G1(O) = 1. (26)

As for the flat plate, the solutions (25) are supposed to have been
chosen to satisfy a condrtion which ensures that ¢ (£,17) tends to the correct
form (17) for large £. The method of satisfying the condition is as described
an I, although the condition 1tself is modified by a numerical factor on account
of the different numerical factor in the first of (16). A first integral of
(12) is &

', ng -nt - ng
£ s joe rn(t)dt B e ’
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where Bn are all zero by (15). Dividirg each side by ené, letting § » «

and using (16), then

-2 (n=1) | o)
7
0 (m#1). )

Fanally, in terms of the solutions (25), the total drag coefficient is

jo e rn(f) g

]

given by

210
o, = -1 -6, (28)
the two separate terms corresponding to the fractional and pressure drags

respectively.

CALCULATIONS AT LOW REYI'OLDS NULIBERS

In this sectzon the results of calculations for low values of the
Reynolds number are compared with Oseen theory and modifications to this theory.
In effect, the Oseen linearised solution may be obtained by substituting

the outer boundary conditions (9b) Ffor ¢ inte (7), which becomes

Pe oo Lt (oomm X o

= - 2 i - N
4 5 Kcosn 3 sinn an ) .
substituting the expression (11) for {, and waking

F(¢,m) = iﬁegcosn ) (29)

equations (24) for the functions gn(f) become

325\)8 = O.

gu - (n2 +_&;2_
16 n

n

Pundamental solutions which vanash for large £ are

gn(f) = Kn(ﬁ)’
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where Kn is the modifaied Bessel function of the second kind and

B=1,08

- Re .

4

e mey therefore ta'ze the functions Gn(é) in (25) as

Gn(é) = An Kn(ﬁ)
K (/L) (30)

where 4 =110 order to satisfy (26).

This solution 1s valad for large ¢ and is, with minor changes, Lhe
solution at large distances discussed in I. In Oseen theory, however, 1t 1s
assumed to hold for all £. To find the constants An (n =243 4kyeeee) We
substitute 1n the second of the conditions (27), noting that the function :LK&)

1s now the modifaied Bessel function of the fairst kind with argument B, viz.

[ 7
1
In(ﬁ) = -'/ 0054 nn an
o

n

Thais gives the set of simultaneous equations

-2
L}”n,pﬁ‘p = 0, (n=250. (5)
p=l
vihere 1 /.w
A = — (2-n)¢
P k@A) Jo © 1,6 -1, @1 K6 & (2
Triting u = A K (R/Y)

n,p n,p p

then o D denotes the integral in (32). This integral may be evaluated by

H

expressing the integrand as a function of B alone and making use of the result

¢ | ,
ST @ K6 +1, ) K, 6)]

\

= ﬁp-1 [ (p+q+r)1q@3)Kr(ﬁ) + (p-q—r-2)1q+1(ﬁ) Kr+1(ﬁ)}

’
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where p, q and r are any integers. This result is given by Watson (1944.)
for the cylinder functions but it is equally valid for the modified Bessel

functions. By suitable choice of p, q and r it follows that

- =1 X = -
2(n 1)“n,p n—p—1K§-1+In—p<§ In+p—1Kp+1 In+pK:p’ (33)
provided n # 1, whale
P
= kN (1 IK
a=1,

In these formulae the arguments of all the Bessel Functions are R/4.

Since A, = 1, the remainder of the A can be found by solving equations (31).
Without going into detanrl i1t may be shown, by expanding the Bessel functions in
(33) in terms of R, that as R » O the first order solution of (31) is

A, = O®"ogR), (n = 152,3,0000s)s (35)

Now the equation determining the constant C1 which occurs in (25) 1s,

from the first of (27)
e, VA, A = -2
12_/ 1,pp
p=1

In obtaining a fairst approximation to C, we can, by (35), omit all the A

except A1, which is unity, from this equation. Using (34), this gives
RK

AT 9
where the arguments of the Bessel functions are again £3.
The formula (28) for the drag coefficient does not apply to the Oseen
solution. This formula depends wupon the satisfaction of the conditions

F = 0F/0f = O, when £ = O. In the numerical solutions of the full equation
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(7) the function F(£,7) is chosen to satisfy these conditions but, by (29),
the Oseen solution does not. To obtain the drag we must return to the basic
formulae and substitute the details of the Oseen theory. Substituting for §
in (20) it is readily verified that we obtain a frictional drag coefficient

__16xC
Cf = -I'{Z'_‘l z nAnInKn . (37)

n=1

-]

Similarly, the basic formula for the pressure drag is

. 7‘ \
D = 2pvU % sinn dn
P ) % 0

and 1f we substitute for (6§/b§)° we obtain, after some reductions of Bessel

functions, w

Cp = Cp = 20y zgj(ln—1Kh-1 - In+1K5+1)Ah . (38)
n=1
In both these formulae the arguments of the Bessel functions are R/4. Alternatively
a formula for the total drag can be obtained from (18) by determiming a value

for K. Tt is found (cf Dennis and Dunwoody) that this gives

-]

_ 16nC, S
O = s ) Py (59)
n=1

For low Reynolds numbers the terms arising from the summation in (38) are
of highér order than the leading term in Cf. Hence for small. enough R, C§£Cp.
Tomotika and Aoi c¢laim that this result holds exactly for any Reynolds number,
according to Oseen theory. We camnot find such an exact relationship;
moreover, the result (39) for the total drag is not exactly consistent with

that obtained from (37) and (38). If, however, we take the value of C, given
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by (36) and expand all the Bessel functions in terms of R, retaining only

first order terms, wec obtain Lamb's original result

_ Br
> = R(F9-1log R/5) (10)

consistently from either (39) or (37) and (38). This is in agreement with

the general observations made by Proudman and Pearson, viz. that Lamb's formula
is already correct to the order of accuracy involved in approximating to the
exact governing equations by Oseen theory and that there is no virtue in
improving it. On this basis the refinements of Oseen theory given by Bairstow,
Cave and Lang and by Tomotika and Aoi are hardly valid. Keplun has given a
second approximation to Lamb's solution which is based on the exact Mavier-
Stokes equations. This is obtained by matching a solution of Cseen's equations

far enough from the cylinder with an inner solution based on Stokes' theory, If

¢ = (br-logB/8)
Kaplun suggests that the correct development of (40) according to the exact

equations should be w

/T
&x €1+ ) a et
R , n

CD =

) (1)
n=2
and calculates the value d2 = -0.87,

Another aspect of Tomotika and Aoi's soluticn of Oseen's equations is the
description of the detailed flow patterns it gives for very low Reynolds numbers.
According to their calculations a separated flow, with a pair of standing
eddies behind the cylinder, exists for all small values of R, no matter how

small. This contradicts experimental evidence; and one might suppose that

some small enough value of R could be found below which Oseen theory predicts
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a non-separated flow, in accordance with the experimental results.

To consider the question of the formation of the stunding eddies, the
equution of the separated streanline 1s ¢ = O and the angular coordinate of
the point of separation is found by putting ¢ = O in equation {(10) for G
In view of (15) we may replace fn(O) by f;(O) and moreover divide out the
factor sinn, whose vanishing gives the known streamlines 7 = O and 7 = =®.

The result 1s the equation

f:;(o) + 2f§(0)cos n + fg(o)(s - L sir’n) + ... =0, (42)
which 1s valid for any solution in the form (10). In the case of the Oseen
solution obtained in this section, the first order solution for f;(O) is
obtained directly from the differential equations (12) by substituting the
farst order solution for rn(O). The latter 1s easily obtained once the farst
order solution for the constants An has been obtained and, without going into
deta1l, it is found that for n > O

£ ,(0)/£3(0) = O(R"log R)
at least. Also f'1'(0) > 0 and fg(o) <0, as R » O.
Hence for small enough R, according to our solution of Oseen's equations, the
first two terms of (42) dominate and approximately
cos n = -f:(O)/ E(O) >> 1

and no separation takes place. If, as R is increased, a stage 1s reached at
which separation starts to occur, the angle of separation at which it farst
occurs will be given by cos n = 1, i.e. the fluid starts to separate from the

rear generator of the cylinder. The critical value of R will then be that

value which makes

~

S = ng(o):o (13)

n=1
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In the present paper solutions of the exact Cseen equations have been
obtained in two ways, firstly by obtaining accurate numerical solutions of
the equations (31), and secondly by solvang the complete Oseen problem using
nunerical techniques previously desciribed. In the latter case it 1s easily
arranged that the same computer programme which solves the general fn and &,"
equations (12) and (24) shall inc'ude Oseen theory as a special case. By
comparing the two solutions we then obtein some check on the efficiency and
accuracy of the numerical methods. As this checit was being carried out, the
sun S was evaluated. It wvas found that as R > O

S -~ fq(o) > 0,

in accordance with the above, and that S decreases as R increases, becoming
zero at about R = 3. The comparison between tlie two solutions was uniformly

good, e.g. the results at R = 3 are typical. Here it was found from the

i

analytical solution that C1 -2.056, correct to three decimals, while

fq(o) = 1,58, fg(o) = -0.899, fg(o) = 0,065, fi(O) = 0,005,

The corresponding figures from the numerical solution of Oseen's equationsvere
C1 = =2.059 with
£4(0) = 1.587, £3(0) = -0.901, fg(o) = 0.065, fi(O) = 0.005.
In both solutions f;(O) = 0,0002, 1.e. the convergence appears quite good.
These accurate solutions of Oseen's equations are, of course, subject to
Proudman and Fearson's craiticisms. They do, however, predict the existence of
a critical Reynolds number, contrary to Tomotika and Aoi's account of the theory.

The value is about half of the value (R=6) that we obtain from the numerical

solutions of the full Navier-Stokes equations given in table 3 in the following

section.
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In table 1, values of the drag coefficient cclculated by present
methods from the full Navier-Stokes eguations are compared with values
obtained from Lamb's formula (40) and from Kaplun's result (41)
(including only the term in d2). It might, perhaps, have been
expected that slightly better agreement with Kaplun's results would
have been obtained at the very low Reynolds numbers, since our results

are thought to be reasonably accurate here,

CALCULATED RESULTS

Calculated frictional and pressure drag coefficients, together
with the total drag coefficient CD s, are given in table 2. In figure

1, C, is compared with experimental measurements and with previous

D
numerical integrations of the exact Navier-Stokes equations., The
experimental curve (based on measurements carried out at the National
Physical Laboratory and at Gottingen) has been taken directly from
Goldstein (1938) since this curve seems to cover the largest Reymolds
number range. At the lower Reynolds number end of the range, compari-
son is also made with the recent experimental results of Tritton (1959)
in figure 2. Tritton's results for R> 50 are a little lower than

the experimental values in figure 1, although the latter are largely
confirmed by the experiments of Wieselsberger (1921). It will be
noticed that the present theoretical results become increasingly
higher than the observed values as R increases beyond about 30.

As R becomes large the theoretical pressure drag becomes constant

while the frictional drag tends to zero; this tendency has been
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observed in experimental work [Blasius (1913), Thom (1930)].
The theoreticel result for large R can be demonstrated by obtain-
ing a limiting solution of equations (2;) as R » o in the menner
previously described by Dennis and Dunwoody. It was there shown that

by making the transformation £ = 8z, so that (24) become

f gn 62 2 60\-0)
FER “npfp T 0 w5)
5=

the quantity 6 could be chosen in such a way that 8 » O as R = o and

5%k ~ K z
n,p n,p( )

where the K_ p 3Te independent of R. Solutions of (45) can then be
’
found, as 6 » 0, as functions of 2z alone. The necessary choice of &
is to make it satisfy the relation
a -
) RC1 = ¢
and it is then found that in order to satisfy the conditions of type

(27) we must have
-1
c, = ab ,
Here a and ¢ are numerical constants; the constant ¢ may be assigned
and the value of a then depends upon the solutions computed from (45).
In the present case the value ¢ = -21.47 was taken, From the

computed solutions of (45) it was found that

a

-2030; (dg.]/dz)o = -00838 .

Hence

hv B

1
3.05R 2, C, = -0.753R* .

[eg
]

The limit of the frictional drag coefficient is therefore
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noj=

Uf = L.73R
and the limit of the pressure drag coefficient is

2rC, (dg,
% = ™ \m/r = 130 -

Owing to limitations of computer storage space it was found
necessary to restrict the calculations to five terms gn(E) of the
series (11). Expressing these in the form (25), we may calculate
an approximation to the vorticity distribution over the surface of

the cylinder in the form

5
z(o,m) = € 3 Gn(O)sin m . (46)
n=1
Some sets of values of the Gn(O) with the constant C1 are shown for
values of R up to 160 in table 3. Beyond R=160 these constants may
not be very accurate, since their values may be affected by truncation

of the series (11). However, the vorticity distribution is shown

graphically for various Reynolds numbers in figure 3,

At the point of the surface where Z=0 (i.e. the local shearing
stress venishes), the fluid separates from the cylinder. The condition
% = 0 for separation is consistent with (42) since

1 4
f1k0) = -r (0) = -C,G (0).

From (43), the critical value of R is therefore the value which makes

0
S'= =
nGh(O) 0.

n=1
On the basis of the values in table 3 we find that S/ = 0,121 for R= 4
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and 8’ = -0.106 for R = 7. A linear interpolation therefore gives the
critical value as R = 5.6, which is in good agreement with the experi-
mentzl estimates of Taneds and Homann.

One of the interesting features of the present problem is the
guestion of the growth of the standing vortices behind the cylinder
as the Reynolds number increases. In figures L to 10, streamlines are
shown for the flow past the upper half of the cylinder for a range of
Reynolds numbers from 4 to 80; the function tabulated is the dimension-
less stream function ¥’ defined by the first of equations (6). Denoting
the length of the vortex pair by d (as shown in figure 5) it will be
seen that d steadily increases up to R = 30, Its value of about one
diameter at R = 20 is in good agreement with the estimate of Thom., At
R = 33.5 (not shown) d is found to have sbout the same value as at R = 30
but thereafter it decreases, as indicated in figures 9 and 10. At
R = 160 it is not more than 0,.3a and for larger values of R it decreases
still further. In this respect the present solutions for R > 30 are
different from previously published results. At R = 4O Kawaguti finds
d to be almost two diameters of the cylinder end Apelt gives 2,13
diameters, increasing to 2.3 diameters at R = 44, Allen end Southwell's
results suggest that d decreases for higher Reynolds numbers, but hardly
on the scale suggested by the present solutions,

Figure 11 shows graphically the various estimates, theoretical and

experimentel, of the ratio d/2a as a function of R. It must be noted

that the theoreticsl results of Kawaguti and Apelt are in good agreement
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with the experimental estimates of Teneda, who measwed the length of
the stunding vortex vair up to R = 57.7. The significance of this is
difficult to Judge, however, since it is well knowmn that within the
range R = 30 to 50 lhe onset of the Karman vortex street is observed
in the wake. The actual Reynolds number at which the street appears
is variably estimated and seems tc depend considerably upon external
conditions, such as the ratio of the cylinder diameter to the experi-
mental channel width. Since the Karmon vortex street is not a steady
state, it cannot be described by the present equations. It is
therefore not easy to see what the relation between solutions of these
equations and experimental observations should be with regerd to the
growth of the vortices in the criticel region of R at which the street
apnears., The main objection to the present solutions with regard to
their descriotion of the behaviour of the vortices is that only a
limited number (five) of terms have been used in calculating the stream
function. Without further investigation, it is impossible to say what
the effect of includinz further terms would be, so that our conclusions
with regard to this phenomenon must to this extent be tentativex, It
seems, however, rather coincidental that the tendency of d to decreese
starts to occur in the neighbourhood of the critical Reynolds numuer
at which the vortex street appears.

The only comment thet could be made on Apelt and Kawaguti's
numerical solutions is that, compared with the present solutions, the
mesh lengths of the relaxation fields are e little coarse. Kawaguti

works in terms of the variables

*The series for V{ certainly converges more slowly in the wake at
larger distances from the cylinder than 1t does near the cylinder and
this may affect the estimation of the length of the vortices., This
point is under investigation.



X = a/r, Y = 2n/x
and divides the range outside the cylinder (X = 1 to X = 0) into ten
intervals. The row of mesh points next to the cylinder therefore corres-
ponds to the value § = 0.105 and the spacing between mesh points in
the S-coordinate increases with £, To obtain a reasonable solution at
R = LO we found it necessary to take a step h = 0.025 in the &-
coordinate. For higher values of R (and also in the previous calcula-
tions of Dennis and Dunwoody for the flat plate) the step h was
adjusted to ve approximately proportional to R-%. Apelt's mesh length
for R = 40 is even coarser than Kawaguti's, corresponding to a step
h = /20 in the E-coordinate.

The vorticity distribution throughout the flow field is deter-
mined from (11). The form of this distribution near the cylinder is
shown for some representative Reynolds numbers in figures 12-15 .,

As R increases the vorticity tends to become more and more concentrated
into the region near the surface of the cylinder and in the laminar
wake behind the cylinder. ZEven at very high Reynolds numbers it is
found that the effect of the wake is important, leading to a resultant
pressure drag on the cylinder. This may be seen as follows.

>

It was shown in I that as & » o
rn(g) - nC = 2nK/x , (47)
where K is the constent (depending on R) which appears in (17). This
limating form is satisfied automatically by the numerical solutions
on satisfying the initial conditions (15) and the conditions (27);

and it is easily shown, using Oseen theory, that it corresponds to a
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vorticity distribution concentrated into a wake near m = 0 as §
becomes large. Near enough to m = O, equation (11) mey be written

/ 0o

gEsm) = neF(g’“)”\/ ng, (€) .

7

n=1
For any R and large enough & we have, from Oseen theory
gn(E‘) -~ dnKn(p)’ F(Z,n) ~ Bcosn ,

where
1

Since § is large

1
~[E\% B
K_(B) <§’-‘§ o

and hence o
. Bleosn=-1)/m\% _
Z, e \\2&) T] I/ ' ndn . (14-8)
' n=1

The vorticity is therefore exponentially smell everywhere except in
the wake whose boundary is given by

v, = 06% (19)
which ultimately coincides with n = O. Also, by comparing the

governing equation (8) with the trensformed analogue (12), we have

2
rn(g) = 2 /ﬂé sin nm dn .

(A
o]

For large enough £ we may replace the upper limit by 7 1 and write

r (g) - 22%25 []1 &ndn
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and using (48) and (49) it is seen that this leads to the form (47).

The strength of the vorticity in the waike therefore depends
Airectly on the constant C which, by (18), is directly proportional
10 the drag coefficient CD' Thus the tendency of CD to become con-
stunt as R becomes large is associated with an appreciable residual
vorticity in the wake which persists for large R. It is in fact
found from the numerical solutions as R becomes large that the
vorticity (which becomes proportional to R% on the cylinder) falls
very rapidly in the wake near the cylinder but then deceys more
slowly in the wake at larger distances.

The slower decay in the wake at larger distances does not,
however, destroy the concept of the boundary layer thickness & = &
which has been used in computing solutions at higher Reynolds numbers.
Tt has been explained in I that & is a number used to renlace the
upper limit in the integral in (27) in estimating values of the con-
stants associated with the solutions of (24). Although for large
as R » ,C tends to

) .
in
an absolute constant, it has been pointed out in I that/practice we

enough £ the rn(g) must assume the form (47) and

record the functions Rn(g) defined by
rn(g) = -C1Rn(E.n), (n = 1,2,3,cco¢0> -

In effect, therefore, the integral

/6 e (2)a (50)

1
is evaluated in (27). As R » o, Cy = 0(82), so that near & = 0 the

,
Rn(E) are (1) and at £ = & they are J(R 9. The value of & is there-
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adjusted so that the C«R-%) contribution to (50) is insignificant for

g > 8., It is possible that this leads to & small amount of truncation
error at high Reynolds numbers in the present problem. It is certainly
more critical than in the flat plate problem for, although the wake is
similar in both problems, only the frictional drag is present in the

1
case of the flat plate and C_ varies as R 2 as R - oo.

D
The veriation of vorticity over the surface of the cylinder in
the limiting solution as R + o is shown in figure 3 . To some extent
it 18 tentative since, as previously mentioned, it is not known
precisely how the inclusion of further terms gn(E) in the series (11)
would affect the estimation of the Gn(O) in (46). Tt is, however,
certain that it does not agree with Kawaguti's conjecture that as R -» o
the point of separation moves round the cylinder to the angle m = 128.7°
given by Schmieden (1930) according to the discontinudus potential
flow theory. This is impossible since, even at high Reynolds number,
the terms involving G1(0) and G2(O) in (46) dominate the solution and
they are of opposite sign so that & cannot vanish at an angle m > 90°.
Pinally, the pressure distribution over the surface of the
cylinder is shown for various values of R in figure 16, It is obtained
by integrating the appropriate equations of motion firstly along the
axis n = ® from infinity to the surface of the cylinder, and then

around the surface to the point with coordinate m., The result for

the pressure p at station n on the surface is
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The trend of the distribution at R = 4O is similar to the
calculations of Kawaguti and of Apelt, although the numerical values
are somewhat different. The probable reason is that the present
calculated value of the pressure drag at this value of R is higher than
the result given by either of these authors., We cannot be sure of the
reason for this, although it is possible that our result for the
pressure drag is on the high side due to overestimation of the cons-

tant C1.
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R Lamb Kaplun R Rhoni
0.01 3804 372.8 376.5
0.05 100.6 97.1 98.6
0.1 58 4 55.6 56.6
| 0.5 18.6 16.4. 17.1
. >
Table 1 : Comparison of CD for low R
A v [ ]
R c, C, ¢, R c, Cp Cp |
. B S B
0.01 | 188.2 [183.2 |376.5 20 1421 0,910 | 2,33
0.05 49,31 | 49.25] 98.56 {40 1,351 0.640 | 1.99
1 0.1 28.30 | 28.27| 56.57 | 80 1.33| 0451 1.78
L 0.5 8.56 | 8.50| 17.06 [1160 | 1.32| 0.317 | 1.6,
P 5.2 | 5.13] 10.37 . 320 1.31 | 0,222 | 1.53
2 3.45| 3.28| 6.73 | g0 1.31 | 0.157 | 1.47
L 2.38| 2.13| 451 11280 | 1.31| 0.112 | 1.42
7 1.88| 1.56] 3.4 ' 10° | 1,30 | 0.043 | 1.34
| 10 1.69| 1.300 2.99 ' 16° | 1.30| 0,014 | 1,31
Table 2 : Calculated drag coefficients




R ¢,
0.01| -0.2996
0.05| -0.3919
0.1 | -0.4501
0.5 | =0.6764

1 | -0.8165
2 -1.045
L -1.356
7 =1.73h
10 | -2.070
20 | -2.912

4O | =4.077
80 -5.737

160 | -8.073

| Gy (0)'

1.000
1.000
1.000
1.000
1.000
1.000
1.0C0
1,000
1.000
1.000
1.000
1.000
1.000

6,(0) | 6&5(0)| & (0)
-0.008 - -
-0,029 - -
-0,047 - -
-0.149 - -
-0,225 - -
-0,322 | 0.001 | -0.001
-0.442 | 0,005 | -0.002
-0,560 { 0,010 | -0.003
-0.619 | 0.015 | -0,003
-0.719 | 0.0,5 | -0.023
-0.847 | 0.054 | -0.,028
-0.964 | 0,063 | -0.045
-1.036 | 0,068 | =0.05)

-0.001
-0.002 |
-0.005%
-0.013
-0.023
-0.031
-0.036

Table 3 : Vorticlty on cylinder surface

D 31170/1/Wt.60 K4 3/85 XL & CL
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