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SUMMARY

The effect of body flexibility on the flutter of a body with aft wings
is investigated., The missile is in free supersonic flight and the wings are
assumed rigid in torsion. It is found that flutter can occur either between
wing bending and the rigid body modes, or between wing bending end the
fundamental bending mode of the body, depending on body stiffness. If the
latter form of flutter is possible (as it usually is in praotice) a higher
wing stiffness is required for its avoidance. A close approximation to the
quaternary flutter solution in this case is given by the appropriate binary
calculation, The flutter is fairly sensitive to parameters that affect the
static margin (Mach number and c.g. position) and also to structural damping.
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1 INTRODUCTION

It is known that a body with aft wings (or fins) can suffer from body
freedom flutter, l.e. an unstable oscillation involving pitch, heave and wing
bending. The present investigation was carried out to see whether flexibility
of the bedy had a major effect on the flutter. The writers expected that it
might do so since body bending could replace pitch and heave, and because of
the higher frequency involved, a higher wing stiffness for flutter prevention
would be required., This result was in faot borne out by the calculations.

The basic ocalculation included four modes, (1) heave, {2) piteh, (3) body
bending and (4) wing berding. The parameters varied were (1) Mach number (using
piston theory on the wing) and (2) c.g. position, and the results are presented
in graphic form, plotting the wing bending stiffness against body bending
stiffness for a given critical speed. The calculations were later extended to
include the effect of one overtone body mode; this extra mode was not importamnt
for the configuration selected.

2 MODES OF DEFORMATION AND STRUCTURAL ASSUMPTIONS

It is known that classical body freedom flutter of bodies with aft wings
is possible with the three degrees of freedom, heave, pitoh and wing bending.
The intention in this paper is to investigate the change in this basic body
freedom flutter when body bending is also included., The first part of the
investigation was carried out by representing body bending by one degree of
freedon.

The missile considered is shown in Fig.1°. 1n view of the general nature
of the investigation it was decided to assume a uniform mass distribution from
nose to tail, the wing being included with the aft part of the body; there will
obviously be departures from this in practice but not, it is thought, of a
serious nature, The body stiffness distribution was also assumed uniform and
on the wing the mass per unit area was assumed uniform. The numerical values of
these assumed mass distributions are given later in Table 2 on Page 8, but it is
apparent that the assumption of uniform overall mass distribution from nose to
tail implies that the mass per unit length of the bedy alone falls near the tail,
and 1n fact at the extreme tail it has fallen to about 8%% of the value ghead of
the wing., The c.g. was thus at a distance & from the nose where £ is the total
length of the body, and this point is taken as the origin of coordinates in the
analysis which follows. The rigid modes, heave and pitch about the c.g. are
defined by

t* UtEY

where z is vertical displacement

*The term missile is appropriate to the type of planform selected, although this
was not based on any specifiic missile, military or otherwise.
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b9
£=2
x 1s the distance of a point af't of the c.g.

q, is the generalised coordinate of heave
4 is the generalised coordinate of pitch.

Since the mass and structural distributions are assumed uniform over the
whole length of the weapon, the bending modes of the body will be symmetric or
antisymmetrio about the origin, and any one bending mode will therefore contain
either even powers of E or odd powers of £ but not both. The fundamental mode,
which it is desired to represent in the first place, will be symmetrioc about
the origin and so will contain only even powers of E. The end corditions of
zero bending moment are satisfied by Q—% tending to zero at the nose and tail.

ok
The symmetric body bending mode is therefore defined by

% = (1¢5E_;2'E»’+) q5

where q3 is the generalised coordinate of body bending.

It is also assumed that the curvature of this bending mode continues outwards
along the wing span, giving wing camber deformation entirely dependent on body
bending., It is likely that this assumption is not true 1n praotice, but the
body curvature et the ends of the body is small and there will therefore be
little ocamber effect to include in the calculations., In addition, the wings

are highly tapered, and this reduces the likelihood of there being any important
camber change assoociated with wing bending.

The assumption that the wing bending is parabolic spanwise is made, This
node implies that the ratio of the bending moment to bending rigidity tends to
a finite quantity at the wing tips sinoe the curvature does not fall to gero.
This is quite possible with pointed tips. The wing bending mode is therefore
defined by

z _ .2
e 5N 9

where m = %

¥ is the spanwise coordinate

q, is the generalised coordinate of wing bending.
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The complete deformation of the missile is thus defined by
2 2
Zooog+Bgt (158 -8 ggernt g . (1)

The structural stiffnesses were not evaluated by integration of the strain
energy since only two modes are involved and the two stiffnesses are uncoupled;
instead the two generalised stiffnesses were treated as independent variables.

For the second part of the investigation it was decided to inolude the
body mode of next higher order. This bending mode will contain only odd powers
of £, and as the end corditions of zero bending moment are satisfied by

2
2-§-tending to zero at the nose and tail the mode is defined by
13

z . 3 5
2= (-1.28) g

where q5 is the second generalised coordinate of body bending.

As in mode three, the assumption is mede that the body curvature continues out-

wards along the wing span, giving wing camber deformation entirely dependent on
body berding.

The oomplete deformation of the weapon for the second part of the
investigation is therefore defined by

Lo ogrEqr (158 -8 g+ (B -128) g+ g (2

Because of the nature of modes 3 and 5, one being symmetric about the origin and
the other antisymmetric, there is no elastic coupling between them, There is
however one additional struoctural atiffnesa, E55, and the ratioc between E55 and

E,. was caloulated for e uniform bean.

33

The inertia coeffloients were caloulated from the kinetio energy
eppropriate to the equation for the displacement, e.g. equation (2). The two
symmetric modes (1 and 3) are both orthogonal with each of the antisymmetrio
modes 2 and 4. Tt should perhaps be made olear that the term antisymmetric is
used in the sense of antisymmetry about the c.g.; all the modes are, of course,

symmetrio in the usual sense of symmetry about a plane normal to the wings and
through the centre-~line.

3 AERODYNAMTC ASSUMPTIONS

The forces on the body were assumed negligible except over the conical
nose and over this part of the body slender-boedy theory was used. The coniocal
nose extends for 20% of the total length £ and the maximum diameter is 10§% of
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the total length. For the wing itself, second order piston theory (i.e.
including first order thickness effects) was used. The maximum chord of the
wing, adjecent to the body, is 0.24 and the leading edge sweepback is 609,
The wing section is assumed to be a symmetric biconvex section with a constani
thickness to chord ratio of 5%.

The Mach numbers considered were 1, 2, 3, 4 and 5 and the altitude
30,000 ft, although piston theory is olearly inapplicable at M = 1. The aero-
dynemic stiffness (e.g. 1ift and pitching moment due to wing incidence) are
directly proportional to Mach number by pilston theory whereas slender body
theory gives forces proportlonal to M2 on the nose. It follows that as Mach
number is increassed the static stability of the weapon is reduced, since the
c.8s is kept fixed, and this faot should be kept in mind when oonsideriﬂ§ the
results. Positive stability is retained up to a Mach number of about 6 2/3,
The static margin at the different Mach numbers is given in Table %1 below.

TABLE 1

Static margins of stability at different Mach numbers

M | Static margin (% &)

43.3
3605
22.6
15.8
10.3
5485

LS I o R &)

b SOLUTION OF THE FLUTTER EOQUATIONS

The equations are written in the form

[a A ebA+ o+ el g = O (3)

where a is the square matrix of inertia coefficients
b is the square matrix of aerodynamic damping coefficients
o is the square matrix of aerodynamic stiffness coefficients
e is the diagonal matrix of structural stiffness coefficients

q is the column of generalised coordinates.



The motion is of the form g = aelt, where

v t
T = _S__ .
£
Thus in the criticel flutter condition
iwé
A=

where w 1is the flutter frequency (rad/seo)
¢ is the body length (£t)

Vs is the speed of sound (ft/sec).

The basic caloulations assumed the data given below in Table 2.
TABLE 2

Assumed geometry of body

Symbol Significance Value
2/ length of body 25 £'%
2Rmax body diameter 2.5 ft
A wing sweep (leading edge) 60°
C0 wing root chord 5 ft
c.2. aft of nose 12.5 ft
my mass per unit length of weapon | 9.528 slugs/ft
My mass per unitarea of wing 0.1842 sluga/fta
p alr density at 30,000 ft 0.889 x 10 slugs/ft
¥ ratio of spcoific heats 1o

These data led to the flutter coefficients given in Table 3 in the Appendix
for the first caloulation in fcur degrees of freedom appropriate to equation (1),
It may be noted that A 1s based on a fixed speed so that the forward speed
occurs directly in the serodynamic coefficients which are functions of Mach
number,

The structural stiffness matrix contains oniy two non-zero elements which
represent the bending stiffness of the body and the wing. They are made non-
dimensional by use of the sneed of sound and are defined by
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. A
p Vs 63
> ()
) E!! % 106
y = 'V’23
PV J

where E33 and Ehh are the dimensional stiffnesses based on the atrain energy in

a displacement of the type given by equation (1); i.e. the strain energy V is
related to the coeffiolents by the equation

2 2
2V = E53 a5 + Ehh 9 - (5)

In the expression for y the factor of 106 is introduced so that the
numerical values of x and y shall be more nearly of the same order.

The method of solution was to expand the flutter determinant (i.e. the
determinant of the square matrix in equation (3)) in terms of M, A, x and y.
The chosen value of M was then substituted and the resulting polynomial in A
split into two parts consisting of the even and odd powers of A respectively,
Sinoe in the flutter condition \ is pure imaginary these two polynomials ocould
be equated separately to zero to give a pair of linear bivariate equations in
x end y for every chosen value of A, Thus a curve of y against x could be
plotted for each Mach number,

5 RESULTS AND CONCLUSIONS

5.1 The basic caloulation

Solution of the flutter equations for the four basic degrees of freedom
leads to the ourve shown in Fig.2, Here y is plotted against x and the numbers
alongside the curve refer to the appropriate value of the non-dimensional
frequency w&/vs (= A/i). The particular ocase plotted in Fig.2 is for M = L4

from the expansion of the determinant given as equation (A1) in the Appendix
in terms of Mach number, vie equation (A2) in which the appropriate Mach number
(M = 4) has been substituted.

For large values of x, approximating to the case of a rigid body we find
the well known body freedom flutter in which instability ooours at the chosen
Mach number for values of y less than the asymptotic value (1.135 in this case).
For smeller values of y (i.e. for very low wing bending stiffness) instability
would already have occurred at a lower Mach number. In eaddition to this there
ooccurs a large oval area of instability starting near the origin and extending
well into the positive quadrant before finally running off to the left and
forming the negative asymptote of the body freedom flutter. This implies that
for body stiffnesses in the range given by 0 < x < 1.2 a very much larger value
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of y (wing stiffness) is needed to eliminate flutter. The two ends of the
curve for A - O can be deduced from equation (42), One solution is olearly

¥y = O from the coefficient of lz, and then the coefficient of 13 shows that the
curve tends to the point (-0.669, 0); from this point the instability extends to
infinity in both directions along the x-axis corresponding to the fact that
below this axis (y negative) there is no aerodynamic stiffness and a negative
structural stiffness in the wing bending freedom., The other solution for A = O

is given by x = 0.098, also from the coefficient of kg in equation (A2)., In

this case the coefficient of RB shows that the curve tends to the point (0u098,
0.603) and again at this point the instability suddenly extends to infinity
(shown by the dotted line in Fig.2) in both direotions parallel to the y-axis: in
other words this is the limiting value of x (body stiffness) below which a
divergent instability existas.

To give an idea of the physical meaning of the scales of x and y, it is
simplest to think in terms of the relevant natural frequencies, i.e.

E v
wy = ’fi = 2|7 = savx
33 N3RS
= 10.’4- fo coPoSo (6)
E v
4l s Y
w = = = 15,1 V;
b \/ A, 1000 & ’ By Y
2 2,39 Yy Cepese (7)

0f these, w3 is the natural frequency of the bedy in bending when c¢lamped at

its c.ge, and mh is the natural frequency of the wing clamped at the root.

The ourves for all five Mach numbers are given in Fig.3, and it may be
secn that the area of instability inereases progressively with Mach number,
To clear the oval area for M = 5, for cxample, reguires (with a margin of about
15%) that

either x > 1.6
(8)
or y > 18
i.e. Wy > 13 cupsB8e
(9)
(ﬂl‘_ > 10 olPlSc .

The similarity in the requirements for these two frequencies suggeats that the
oval ares is caused by a frequency coincidence. The most likely explanation is
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that the normal mode assoclated with body bending and the rigid body freedoms
combines with wing bending to give binary flutter; the combination has some
similarities with torsion and flexure in a conventional wing.

This binary calculaetion was now carried out. The coefficients of the
binary equations are given in Table 4 of the Appendix. The structural stiffness
of the normal mode is directly proportional to x and so the graph of y against
x takes the well-known elliptic form (see Ref.1). The quadratic nature of the

equation in x and y after eliminating A arises as follows. Let the expansion
of the determinant be

2
P 14 + Py 13 + Dy AT+ p3 A+ ph . (10)

[
4]

Then Py and p, are independent of x and y; Po and py are linear in x and y
and Py, contalns the product xy. It follows from equating the odd powers of A to
zero that A is linear in x and y, and hence the equation

A

2
Po M rpp A +p =0 (11)

yields a quadratic in x and y that turns out to be an ellipse, and since the
constant term in the equation in x and y is very small, the ellipse passes close
to the origin, The agreecment between the normal mode binary caleulation¥, and
the oval part of the guaternary solution is quite striking as can be seen from

Fig.2. Part of the e¢llipse for negative values of x relates to negative values

of lz.

The values of x and y bounding the binary ellipse with a 15% margin are,
for a Mach number of &,

X

1.274
15.15

i

¥

compared with the gquaternary values of 1,257, and 14.55, respectively. The
comparison in terms of frequency is

53 = 48,1 (of. 11.7 c.p.s.)
(Bh- = 9030 (Of. 9-12 copusu)

*This deseription is used to distinguish the calculation from any possible
binaries taken directly from thc larger matrices of flutter coefficients. ‘/hat
has been done, however, is simply to normalise the first of the two modes with

respect to pitch and heave; the two constituent modes in the binary calculation
are not orthegonal to each other,
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where &3, éh are the natural frequencies of the two modes in the binary

caloulation. Since the frequency w, relates to a body mode that is normal

3

with respect to pitch and heave it is considerably higher than Wy o

5.2 The effect of an extra body mode

An extra body mode, corresponding to overtone bending as given in
Seotion 2 was now included. Solutions to the complete quinary calculation
were not obtained. Instead the normal mode ternary was formed by first
caloulating the two normal modes from the two body freedoms and the two body
bending modes, and then transforming the quinary by an appropriate matrix
multiplication. The coefficients of this ternary are given in Table 5 in the
Appendix and the two normal modes are shown in Fig.hk. In fact it was found
that the additional mode had little affect of the flutter solutions, and Fig.b5
shows a plot of the oval obtained from this ternary caloulation compared with
the normal mode binary for the same case (M = 5). The reason for this is
probably that the second body mode has a mode in the region of the wing.

5.3 Yariation of physical paremeters

The variations made were of o0.g., position, body mass and structural
damping., The c.g. position was varied by keeping the total mass constant and
also the moment of inertia ebout the c.g. Four c.g. positions were taken,
given by E = -0,04; <0,02; O; 0,02 for M = 5. For each case the ellipse
corresponding to the normal mode binary was caloulated and the four ourves are
shown on Fig.6 with the quaternary ovals for E = O and -0,04 for comparison,
The effect of this variation is to inorease the size of the ellipse as the c.gz.
is moved aft, i.e, as the statioc margin is reduced. A rather curious result
was obtained by varying the c.g. position by adding a concentrated mass at the
nose of the missile, This mass was chosen tc give a o.,g. of £ = -0,04, but the
resulting ellipse is muoh larger than that for E = ~0.,04 at oonstant overall
mass and pitching inertia, It is therefore dangerous to generalise about the
effect of c.g. position in a particularmissile when it is not clear what body
parameters are kept constant during the variatien.

In view of this result the effect of separately changing the body mass was
investigated. It was found that a reduction in body mass at a particular value
of x = 0.14 increased the range of instability in terms of y. This result is
shown in Fig.7, but it can be seen from Fig.,6 that it has little general
significance on the size of the ellipse. The small value of x was chosen as
being fairly typiocal of current practice.

The same value of x was used to investigate the range of flutter in terms
of y as structural damping was increased from zero. The results are shown in
Pig.8. It can be seen that the damping in the body mode has a powerful effect
but that the damping in the wing in unimportant.

A check on this result is given by the comparatively slow rate of growth
of the unstable oscillations within the quaternary oval. Fig.2 shows the
quaternary for M = 1, but in addition to the oritical boundary corresponding to
pure imaginary values of A\, two points are plotted for a presoribed rate of
growth equivalent to -1/ coritical damping, in fact
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A = V0.3 (0.01 + 1) . (12)

In a very violent flutter the two pointa would be closer to the boundary
than those shown in Fig.9.

5.4 Conclusgions

For a missile with aft wings (or fins) at supersonio speeds, flutter
involving wing bending is possible either with the rigid body freedoms, or with
the fundamental body bending mode. Prevention of the latter type of flutter by
providing adequate wing stiffness is likely to be the overriding requirement in
practice beoause the body stiffness is likely to be within the range of the
quaternary oval- as shown in Fig.2., In as much as the oval arises through a
frequency coincidence, it might be thought that the overtone body bending
would demand an even higher wing bending stiffness; for the configuration used
in the ocaloulations, however, this was not so because of the aft nodal line,
and the overtone mode had an insignifioant effect, There may well be other
configurations, of course, where higher wing stiffness would be needed to avoid
flutter with an overtone mode. Reduction of statioc margin, either by inoreasing
Mach number or by aft shift of c.g., inoreases the area of instability. In the
cese of c.g. shift, however, this i1s only true if the body mass and pitching
inertia are maintained constant, It is perhaps unwise to attempt to relate the
size of the ovals directly with static margin, since the result probably deperds
on how the margin is varied. The flutter is fairly sensitive to structural
damping in the bedy.

SYMBOLS
B is the square matrix of aerodynamic inertia coeffiocients
& is the square matrix of struotural inertia coeffioients

a = a+ 8, the square matrix of inertia coefficients

b ' 1s the square matrix of aerodynamic damping coefficients
c is the aquare matrix of asrodynamic stiffness coefficients
e is the diagonal matrix of structural stiffness coefficients

is the column of generalised coordinates

4 is the generalised coordinate of heave
% is the generalised coordinate of pitch

43 is the generalised coordinate of body bending
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SYMBOLS (Contd.)

q, is the generalised coordinate of wing bending
q5 is the 2nd generalised coordinate of body bending

w is the flutter frequency (rad/sec)
2 is the body length (ft)

v is the speed of sound (ft/sec)

l‘—?‘Lg"in the eritical flutter condition (in general the motion is of the
8

form " where T = v, t/e)

>
i

-4 is vertical displacement
EL is the distance of the c¢.g. aft of the datum

2R is the diameter of body
max

A is the wing sweep (leading edge)

c is the wing root chord

is mass per unit length of body
My P

My is mass per unit area of wing
p is air density at 30,000 ft
Y is ratio of specific heats
s is strain energy
E
x = 53 non-dimensional bending stiffness of body
pV_ £
8
B, x 106
y = —&§¥———3—non-dimensional berding stiffness of wing
P V2 ¥
s
w, 1s the natural freguenoy of the rth mode
6r 1s the natural frequency of the corresponding normalised mode.
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APPENDIX 1

THE FLUTTER EQUATION AND NUMERICAL COEFFICIENTS

- The expanded form of the flutter equation is given in equation (A1) below,

The motion is of the form ekT, where © is propertional to time, and the Mech
number M, and the two stiffnesses x and y are retained as variables in the
equation. For a particular missile x and y would be fixed and for each value
of M there would be varicus solutions for A corresponding to the various
stability roots. For the purposes of this paper, however, it is much more
convenient to select values of A and M and to solve for x and y, as explained
in the main text,

0 = ?\8§8.5057!+68]

x7{2.11976694+ 0.00658227M}

+

+

x6{o.01 615851 + 0.2394,7519M - 0.051 0268?M2 + 54.62217957x + 3.86400452y}

22{0.00000326 + 0,05742770M - 0.01198157M2 = 0.000001 794>

+

+ (43.45327683 + 0,049134954) x + (0.05700705 + 0.002698L4M) yi

+

7\“{ (0,000%26 - 0.CO0551M - O.1O7388M2 + 0.003295M3) M10~%
+ (0.06520413 + 044630536 - 0.11555314M°) x

+ (0.00001328 + 0.2030631} - 0,02314961M°) y + 24.4857211kxy}

x3{(o.00451u 0,25912M - O.OO622M2) w10™>

+

+ (0.00000117 + 0,10485429M - 0,02760308M2 - 0.00000056M°) x
+(0.1323-0.8422M + o.ooo7M2) My‘!O-L"

+ (0.21641257 + 0,02154012M) xy}

22{(0.01844 - 090431 + 0,014854°) W2y10™>

+

+ (0.0000047k + 0.34328437M - 0.05147437H%) xy] (1)

Some of the properties of this equation can be more clearly seen after
substitution for M, and the result for M = L reduces to
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Appendix 1

0 = °18.5057457}

)7{2.1&60960}

o+

7810.1576293 + 54.,6221796x + 38640045y}

+

2°{0.,0378943 + 13.6498167x + 006780080y}

-+

)f*{— 0.0603677 + 0.00157538x + 0,L418719y + 24.4857212xy}

+

x3{- 0.01491620 - 0,0222661x - 0,001252967y + 0.3025730kxy }

-+

22{- 0.05378002y + 0,5495522xy] (42)

+

Tables 3, 4 and 5 give the numerical values of the flutter coefficients
for various ocases described in the main text, In Table 3 the matrices of the
different types of coefficient are given separately, whereas Tables 4 and 5 each
consist of the complete flutter matrix for the normal mode binary and ternary
respectively, although in Table 4 the Mach number is left variable.
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TABLE 3

Flutter coefficients in 4 degrees of freedom

a = the aerodynamic contribution to the total inertia coefficients

= 107 I_O-5235988 -0.1832596 0.0889145 ol
-0.1832596 0.061,9262 -0.0318247 0
0.0889145 -0,0318247 0.0157318 0
. 0 0 0 0!
& = the structural ocontribution to the total inertia coefficients
[17.440779773 0 1,92833774L7 0.42527244
0 1.4283%98284 0 0.,19562532
14928337747 0 0.374742087 0.11607143
| 0.425272h 0.19562532 0.11607143 2.26811953
a8 = g. + a.
117.1413033718 -0.1832596.10'3 1.928L.266615 0.4252724) |
-0.1832596.10'3 1,428L4632102 -o.o3182u7.1o'3 0.19562532
1.9284266615 -0.03182&7.10'3 0.3747578188 0.14607143
0.42527241, 0.19562532 0. 11607143 2.26811953 |
b = the aerodynamic damping coeffiocients
_ t —
i (0,0461880244, '(0.0200148094 ' (0.011423530 b 0.1026L00
+o.oo78559816M) L =0. 0019557637M) : +0,4218508,10 M)
(0.0200148091, '(o 00877572k ' (0.00504828L9 I(o 047214,
i
_ |0, po§0029613m) '+o 000602165§M2 _ =0, §o§839§_19'fmz_ :oh1§yggu;19'_mz
(0.0114235294 (o oo50482849 ' (0.0029191367 | {0.0280140
3
|
_ [#0-0013350070H) |, ~0.0004508294M) ©_+0,0696282.107H) , =0.161034410 ™M)
0.1026400 I(0.0472144 b (0.0280140 I 0.5474136
] 1
;-0.16422L.10"3M). -0.161034.10 M)
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¢ = the aerodynamioc stiffness coefficients

|
'
I
'
i
)
'
|
'
i
1
|
]
'

{
(0.0464880214M | (0.0444,883026M

(0.0200148094 | (0,0193665L3M

~0.0030029613#°) | +0,0021637974%) _ _

(0.,0114235295M ' (0.0110845603M
}
+0,0013350070M° ) 1 -0.00132477634%)

0.10264L00M 1 {0.,1010916M
|

\-0.91777.10" %)

e = the structural stiffness coefficients
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TABLE

Normal mode with wing bending (from quaternary).

0.157806444 22
+(0.9334,318.10™

+(0,0060797L93M

0.06229071 12

+(0.0164671908

+{0.101092405M

Binary flutter calculation

-0.2861794.10'4m) A

~0.61368159.10 %)

3

-0.16103529,10 “M) A

-0.91777.10"4%)

-20 =

0.068229071 A2

+(0,0164671908 -0.16103529.10'3M) A

2.26811953 22
+O.5474136 A

+y




TABLE 5

2 normal modes and wing bending (from gquinsry).
Ternary flutter calculation for M = 5

= | 0.15780637 22 0.6007.10°8 22 0.06822828 7\2_1
+0.79032796.107 A -0.006481885 A  +0.01566183 A
+0.015055308 +0,3696417
+X
~0.6007.107° 32 27.55985 A2 0.71355033 2
-0.01348681 A +0.6692518 A ~0.18738398 A
20,4282204% +8.631057

+14,28,57 x
0.06822828 A2 0.71355033 A% 2,2681196 A%
+0.01566183 A -0.18738398 A +0.5474136 A
+0.50316358 +3.230382 +y

Printed in England for Her Majesty's Stationery Office by
the Royal dircraft Bstablishment, Famborough. ¥.T.60 K.4.
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SCALE 35
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FIG.l. PLAN VIEW OF CONFIGURATION CHOSEN.
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FIG.2. TYPICAL FLUTTER BOUNDARY (M=4) AND COMPARISON
WITH A BINARY RESULT.
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FIG.3. FLUTTER BOUNDARIES FOR 5 MACH NUMBERS.
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FIG.4. THE FIRST TWO NORMAL MODES OF THE BODY.
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FIG.5. EFFECT OF THE SECOND BODY MODE ON THE
BINARY FLUTTER BOUNDARY (M=5)
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FIG.6. EFFECT OF C.G. VARIATIONS ON THE FLUTTER
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FIG.8. EFFECT OF STRUCTURAL DAMPING ON THE

FLUTTER BOUNDARIES (x = O-14)
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FIG.9. TYPICAL FLUTTER BOUNDARY SHOWING TWO
POINTS OF KNOWN INSTABILITY (M =1)
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FLUTTER CALCULATIONS OM A BODY WITH AFT WINGS,
Broadbent, E.G. and Hart“ey, E,V, August, 1963,

The effect of body flextbility on the flutter of a body with aft
wings 1s Investigated, The missi{le is In free superscnic flight and the
wings are a:-wmed rigid in torsion, It {s found that flutter can occur
efther between wing bending and the rigid body modes, or between wing
bending and the fundamental bercing mode of the tody, depending on body
stiffness, If the latter form of flutter is possible (as It usually is
in practice) a higher wing stiffness is required for its avoidance, A
close approximation to the quaeternary flutter solutior ‘n this case is
given by the appropriate binary calculation, The flutter is fairly
sensitive to parameters that affect the static mergin (Mach number and
CeBe Position} and also to structural damping,
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FLUTTER CALCULATIONS ON A BODY WITH AFT WINGS,
Broadbent, E,G, and Hartley, E.V. Awnst, 1963,

The eftect of body flexibility cn the flutter of a bery with aft
wings i{s investigated, The missile 15 in free supersonic flight and the
wings are assumed rigid in torsion, It is found that flutter can gecur
either between wing bending and the rlgid body modes, or between wing
bending and the fundementsl bending mode (f the body, depending on body
stiffness, 1If the latter form of flutter Is pcssible (as it usually ls
in practice} a higher wing stiffness 1s required for its aveidance, A
close approximation to the quaternary flutter solution in this case is
glven by the appropriate binary calculation, The flutter is fairly
gensitive to parameters that affect Lhe static margin (Mach number and
CeBe position) arc also to structural damping,
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FLUTTER CALCULATIONS O A BODY WITH AFT WINGS.
Broadbent, E.G. and Hartley, E,V. August, 1963,

The effect of body flexibliity on the flutter of a body with art
wings 1¢ investigated, The missile Is in free supersonic flight and the
wings are assumed rigid In torsion. It Is found that flutter can ogcur
elils1 between wing bending and the rigid body modes, or between wing
bending and the fundamental bending mode cf the body, depending on body
stiftness, If the latter form of flutter 1s pessible (as it usually is
in practice) a higher wing stiffness Is required tor its avoldance, &
close approximation to the quaternary fluiter solution in this case 1s
given by the appropriate binary calculation, The flutter 1s fairly
sengltive to parameters that affect the static margin (Mach number and
Cof+ position) and alsc to structural damping,
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