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SUMMARY 

The effect of body flexibility on the flutter of a body with aft wings 
is investigated, The missile is in free supersonic flight and the wings are 
assumed rigid in torsion. It is found that flutter oan ooour either between 
wing bending and the rigid body modes, or between wing bending and the 
fundamental bending mode of the body, depending on body stiffness. If the 
latter form of flutter is possible (as it usually is in praotioe) a higher 
wing stiffness is required for its avoidance. A olose approximation to the 
quaternary flutter solution in this case is given by the appropriate binary 
calculation. The flutter is fairly sensitive to parameters that affect the 
static margin (Mach number and o.g. position) and also to structural damping. 
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1 INTRODUCTION 

It is known that a body with aft wings (or fins) can suffer from body 
freedom flutter, i.e. an unstable oscillation involving pitch, heave and wing 
bending. The present investigation was carried out to see whether flexibility 
of the body had a major effect on the flutter. The writers expected that it 
might do so since body bending could replace pitch and heave, and because of 

i the higher frequency involved, a higher wing stiffness for flutter prevention 
would be required. This result was in faot borne out by the oaloulations. 

The basic oalculation inoluded four modes, (1) heave, (2) pitch, (3) body 
bending and (4) wing bending. The parameters varied were (1) Mach number (using 
piston theory on the wing) and (2) o.g. position, and the results are presented 
in graphic form, plotting the wing bending stiffness against body bending 
stiffness for a given oritical speed. The calculations were later extended to 
inolude the effect of one overtone body mode; this extra mcde was not important 
for the configuration selected. 

2 MODES OF DEFORMATION AND STRUCTURAL ASSUMPTIONS 

It is known that olassioal body freedom flutter of bodies with aft wings 
is possible with the three degrees of freedom, heave, pitoh and wing bending. 
The intention in this paper is to investigate the change inthis basic body 
freedom flutter when body bending is also included. The first part of the 
investigation was carried out by representing body bending by one degree of 
freedom. 

The missile considered is shown in Fig.1:. In view of the general nature 
of the investigation it was decided to assume a uniform ma88 distribution from 
nose to tail, the wing being included with the aft part of the body; there will 
obviously be departures from this in practice but not, it is thought, of a 
serious nature. The body stiffness distribution was also assumed uniform and 
on the wing the mass per unit area was assumed uniform. The numerioal values of 
these assumed ma88 distributions are given later in Table 2 on Page 8, but it is 
apparent that the assumption of uniform overall mass distribution from nose to 
tail implies that the mass per unit length of the body alone falls near the tail, 
and in fact at the extreme tail it has fallen to about 89$ of the value ahead of 
the wing. The c.g. was thus at a distance *4from the nose where 8 is the total 
length of the body, and this point is taken a8 the origin of coordinates in the 
analysis which follows. The rigid modes, heave and pitch about the c.g. are 
defined by 

where s is vertical displacement 

*The term missile is appropriate to the type of planform selected, although this 
wa8 not based on any specific missile, military or otherwise. 
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x is the distance of a point aft of the c.g. 

q, is the generalised coordinate of heave 

q, is the generalised coordinate of pitch. 

Since the mass and structural distributions are assumed uniform over the 
whole length of the weapon, the bending modes of the body will be symmetrio or 
antisymmetrio about the origin, and aw one bending mode will therefore contain 
either even powers of 5 or odd powers of E but not both. The fundamental mode, 
which it is desired to represent in the first place, will be symmetric about 

-the origin and so will contain only even powers of 5. The end conditions of 

zero bending moment are satisfied by a28 -tending to zero at the nose and tail. 
de2 

The symmetric body bending mode is therefore defined by 

where I+, is the generalised ooordinate of body bending. 

It is also assumed that the curvature of this bending mode continues outwards 
along the wing span, giving wing camber deformation entirely dependent on body 
bending. It is likely that this assumption is not true in praotioe, but the 
body curvature at the ends of the body is small and there will therefore be 
little oamber effeot to include in the calculations. In addition, the wings 
are highly tapered, and this reduoes the likelihood of there being any important 
camber ohange associated with wing bending. 

The assumption that the wing bending is parabolic spanwise is made. This 
mode implies that the ratio of the bending moment to bending rigidity tends to 
a finite quantity at the wing tips since the curvature does not fall to eero. 
This is quite possible with pointed tips. The wing bending mode is therefore 
defined by 

where Q = Y 
.e 

y is the spanwise coordinate 

s, is the generalised coordinate of wing bending. 
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The complete deformation of the missile is thus defimd by 

The structural stiffnesses were not evaluated by integration of the strain 
energy sinoe only two modes are involved and the two stiffnesses are unoounled; 
instead the two generalised stiffnesses weretreetedas illdependent variables. 

For the second pert of the investisetion it was decided to inolude the 
body mode of next higher order. 
of E;, end es the end oonditions 

This be&ng mode will contain only odd powers 
of zero bending moment are satisfied by 

-tending to zero at the nose 
x2 

and tail the mode is defined by 

z 
c 

= (g3- I.2 E5;5, q5 

where q5 is the seoond generalised coordinate of body bending. 

As in mode three, the assumption is made that the body curvature continues out- 
wards along the wing span, giving wing camber deformation entirely dependent on 
bodyberding. 

The oomplete deformation of the weapon for the seoond part of the 
investigation is therefore defined by 

e 
e 

= s, + t; q, + (1.5 c2 - E4) q3 + (.z3 - 1.2 c5) qzj + -n* Q4 ' (2) 

Because of the nature of modes 3 end 5, one being symmetric about the origin and 
the other antisymmetrio, there is no elastic coupling between them. There is 
however one additional struoturel stiffness, E 

55’ 
end the ratio between E 

55 end 

“33 
wes caloulated for a uniform beam. 

The inertia ooeffioients were oalouleted from the kinetio energy 
appropriate to the equation for the displacement, e.g. equation (2). The two 
symmetric modes (I end 3) are both orthogonal with each of the antisymmetrio 
modes 2 and 4. It should perhaps be made olesr that the term antisymmetric is 
used in the sense of antisymmetry about the o.g.; all the modes are, of course, 
symmetric in the usual sense of symmetry about a plane noxmalto the wings and 
through the centre-line. 

3 AERODYNAMIC ASSUWl'IONS 

The foroes on the body were assumed negligible exoept over the conical 
nose and over this part of the body slender-body theory was used. The oonioal 
nose extends for 2% of the total longth C and the maximum diameter is 1% of 
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the total length. For the wing itself, second order piston theory (i.e. 
including first order thiokness effects) was used. The maximum chord of the 
wing, sdjaoent to the body, is 0.2&and the leading edge sweepback is 600. 
The wing section is assumed to be a symmetric bioonvex section with a constant 
thickness to chord ratio of 56. 

The Mach numbers considered were 1, 2, 3, 4 and 5 and the altitude 
30,000 ft, although piston theory is olearly inapplicable at M = 1. The aero- 
dynamic stiffness (e.g. lift and pitching moment due to wing incidence) are 
directly proportional to Mach number by piston theory whereas slender body 
theory gives foroes proportional to M2 on the nose. It follows that as Mach 
number Is increased the statio stability of the weapon is reduoed, since the 
c.g. is kept fixed, an& this faot should be kept in mind when oonsideri the 
results. Positive stability is retained up to a Maoh number of about 6 Y /3. 
The static margin at the different Mach numbers is given in Table 1 below. 

Static martins of stability at different Mach numbers 

1 M Static margin ($ 8) 

0 43.3 

I 36.5 

2 22.6 

3 15.8 

4 10.3 

5 5.85 _ 

4 SOLUTION OF THE FLUTTEX EOUATIONS 

The equations are written in the form 

[ah*+bX+o+e]q = 0 (3) 

where a is the square matrix of inertia coeffioients 

b is the square matrix of aerodynamic damping ooeffioients 

o is the square matrix of aerodynamic stiffness coefficients 

e is the diagonal matrix of structural stiffness coefficients 

q is the column of generalised ooordinates. 
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- -AT The motion is of the form q = qe , where 

Thus in the oritioal flutter condition 

where w is the flutter frequency (rad/seo) 

e is the body length (ft) 

Vs is the speed of sound (ft/seo). 

The basic oaloulations assumed the data given below in Table 2. 

TABLE 2 

Assumed aeometw of body 

Symbol/ Significance Value 

8 length of body 25 ft 

2Rma* 
body diameter 2.5 ft 

A wing sweep (leading edge) 60' 

cO 
wing root chord 5 f-t 

0.g. aft of nose 12.5 f-t 

% mass per unit length of weapon 9.528 slugs/ft 

b mass per unitarea of wing 0.1842 slugs/ft2 

P air density at 30,000 ft 0.009 x 10-3 slugs/fG 

Y ratio of spooifio heats 1 A 

I 

These data led to the flutter coefficients given in Table 3 in the Appendix 
for the first caloulation in fcur degrees of freedom appropriate to equation (1). 
It may be noted that h is based on a fixed speed so that the forward speed 
occurs directly in the aerodynamic coefficients whioh are funotions of Mach 
number. 

The struotural stiffness matrix contains only two non-zero elements which 
represent the bending stiffness of the body and the wing. They are made non- 
dimensional by use of the speed of sound and are defined by 
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x2= 
p v’, t3 

E 
Y" 44 

x IO6 

P f e3 1 

(4) 

where E33 and El& are the dimensional stiffnesses based on the strain energy in 

a displaoement of the type given by equation (I); i.e. the strain energy V is 
related to the ooeffioients by the equation 

2V = EJ3 q; + EG 42 . 

In the expression for y the faotor of 9C6 is introduced so that the 
numerical values of x and y shall be more nearly of the same order. 

The method of solution was to expand the flutter determinant (i.e. the 
determinant of the square matrix in equation (3)) in terms of M, A, x and y. 
The chosen value of M was then substituted and the resulting polynomial in ?. 
split into two parts consisting of the even snd odd powers of A respectively. 
Sinoc in the flutter condition h is pure imaginary these two polynomials oould 
be equated separately to zero to give a pair of linear bivariate equations in 
x and y for every ohosen value of h. Thus a curve of y against x could be 
plotted for each Mach number. 

5 RESULTS AND CONCLUSIONS 

5.1 The basio oaloulation 

Solution of the flutter equations for the four basic degrees of freedom 
leads to the curve shown in Fig.2. Here y is plotted against x and the numbers 
alongside the curve refer to the appropriate value of the non-dimensional 
frequency w8/vs (= X/i). The particular oase plotted in Fig.2 is for M = 4 

from the expansion of the determinant given as equation (Al) in the Appendix 
in terms of Maoh number, via equation (A2) 
(M q 4) has been substituted. 

in which the appropriate Mach number 

For large values of x, approximating to the oase of a rigid body we find 
the wall known body freedom flutter in which instability ooours at the chosen 
Mach number for values of y less than the asymptotic value (1.135 in this case). 
For smaller values of y (i.e. for very low wing bending stiffness) instability 
would already have occurred at a lower Mach number. In addition to this there 
occurs a large oval area of instability starting near the origin and extending 
well into the positive quadrant before finally running off to the left and 
forming the negative asymptote of the body freedom flutter. This implies that 
for body stiffnesses in the range given by 0 < x < 1.2 a very much larger value 
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of y (wing stiffness) is needed to eliminate flutter. The two ends of the 
curve for 'h + 0 can be deduced from equation (A2). One solution is olearly 

y = 0 from the coefficient of h2, and then the coefficient of 1 3 shows that the 
curve tends to the point (-0.669, 0); from this point the instability extends to 
infinity in both direotions along the x-axis corresponding to the fact that 
below this axis (y negative) there is no aerodynamic stiffness ani a negative 
structural stiffness in the wing bending freedom. The other solution for h + 0 

is given by x = 0.098, also from the coefficient of X2 in equation (A2). In 

this ease the ooeffioient of X3 shows that the Curve tends to the point (0.098, 
0.603) and again at this point the instability suddenly extends to infinity 
(shown by the dotted line in Fig.2) in both directions parallel to the y-axis: in 
other words this is the limiting value of x (body stiffness) below which a 
divergent instability exists. 

To give an idea of the physical meaning of the scales of x and y, it is 
simplest to think in terms of the relevant natural frequencies, i.e. 

a IOAYX c.p.s. J 

"4 = 

E 2.39 qy c.p.s. . 

(6) 

Of these, w3 is the natural frequency of the body in bending when clamped at 

its o.g., and w 
4 

is the natural frequency of the wing clamped at the root.. 

The ourves for all five Mach numbers are given in Fig.3, and it may be 
seen that the area of Anstability increases progressively with Mach number. 
To clear the oval area for M = 5, for example, 
15") that 

requires (with a margin of about 

either x > 1.6 

or y > 48 
(8) 

i.e. 
"3 

> 13 0.p.s. 

(9) 
w 

4 
> 10 0.p.s. . 

i 

The similarity in the requirements for these two frequenoies suggests that the 
oval area is caused by a frequency ooincidenoe. The most likely explanation is 
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that the normal mode associated with body bending and the rigid body freedoms 
combines with wing bending to give binary flutter; the combination bas some 
similarities with torsion and flexure in a conventional wing. 

This, binary caloulation was now carried out. The coefficients of the 
binary equations are given in Table 4 of the Appendix. The structural stiffness ' 
of the normal mode is directly proportionalto x and so the graph of y against 
x takes the well-known elliptic form (see Ref.l). The quadratic nature of the 
equation in x and y after eliminating h arises as follows. Let the expansion . 

of the determinant be 

h I p, k + p, X3 + p2 X2 + p3 x+p4 l 

Then p, and p, are independent of x and y; p2 and p3 are linear in x and y 

and p4 oontsins the produot xy. It follows from equating the odd powers of h to 

ecro that X2 is linear in x and y, and hence the equation 

p, h4 + p2 X2 + p4 q 0 

yields a quadratio in x and y that turns out to be an ellipse, and since the 
oonstant term in the equation in x and y is very small, the ellipse passes close 
to the origin. The agreement between the normal mode binary oaloulation*, and 
the oval part of the quaternary solution is quite striking as can be seen from 
Fig.2. Part of the ellipse for negative values of x relates to negative values 

of X2. 

The values of x and y bounding the binary ellipse with a I$ margin are, 
for a Maoh number of 4, 

x = 1.274 

Y = 15.15 

compared with the quaternary values of 1.257, and 14.55, respeotively. The 
comparison in terms of frequenoy is 

; 
3 

= 10.1 (of. 11.7 O.P.S.) 

"4 = 9.30 (of. 9.12 0.p.s.) 

qThis description is used to distinguish the calculation from any possible 
binaries taken directly from the larger matrices of flutter coefficients. 'Ihat 
has been done, however, is simply to normalise the first of the two modes with 
respect to pitch and heave; the two constituent modes in the binary osloulation 
are not orthogonal to each other. 

- 11 - 



where u+, ;4 are the natural frequencies of the two modes in the binary 

oalculation. Since the frequency ; 
3 

relates to a body mode that is normal 

with respect to pitch and heave it is considerably higher than w 3 . 

5.2 The effect of an extra b&v mode 

An extra body mode, corresponding to overtone bending as given in 
Section 2 was now included. Solutions to the complete quinary oalculation 
were not obtained. Instead the normal mode ternary was formed by first 
oaloulating the two normal modes from the two body freedoms and the two body 
bending modes, and then transforming the quinary by an appropriate matrix 
multiplication. The coefficients of this ternary are given in Table 5 in the 
Appendix and the two normal modes are shown in Fig.4. In fact it was found 
that the additional mode had little affect of the flutter solutions, and Flg.5 
shows a plot of the oval obtained from this ternary caloulation compared with 
the normal mode binary for the same case (M = 5). The reason for this is 
probably that the second body mode has a mode in the region of the wing. 

5.3 Variation of ohvsical oarameters 

The variations made were of o.g. position, body mass and structural 
damping. The c.g. positionwas varied by keeping the total mass constant and 
also the moment of inertia about the o.g. Four c.g. positions were taken, 
given by 5 = -0.04; -0.02; 0; 0.02 for M = 5. For each oase the ellipse 
corresponding to the normal mode binary was c@oulated and the four ourves are 
shown on Fig.6 with the quaternary ovals for & = 0 and -0.04 for comparison. 
The effeot of this variation is to inorease the size of the ellipse as the o.g. 
is moved aft, i.e. as the statio margin is reduced. A rather curious result 
was obtained by varying the o.g. position by adding a concent_rated mass at the 
nose of the missile. This mass was ohosen tc give a o.g. of 5. = -0.04, but the 
resulting ellipse is muoh larger than that for c = -0.04 at oonstant overall 
mass and pitching inertia. It is therefore dangerous to generalise about the 
effect of o.g. position in a partioularmissile when it is not clear what body 
parameters are kept constant during the variation. 

In view of this result the effect of separately changing the body mass was 
investigated. It was found that a reduotion in body mass at a particular value 
of x = 0.14 increased the range of instability in terms of y. This result is 
shown in Fig.7, but it oan be seen from Fig.6 that it has little general 
significanoe on the size of the ellipse. The small value of x was chosen as 
being fairly typioal of current practice. 

The same value of x was used to investigate the range of flutter in terms 
of y as struotural damping was inoreased from zero. The results are shown in 
Fig.8. It oan be seen that the damping in the body mode has a powerful effect 
but that the damping in the wing in unimportant. 

A check on this result is given by the comparatively slow rate of growth 
of the unstable oscillations within the quaternary oval. Fig.9 shows the 
quaternary for ivi = 1, but in addition to the critioal boundary corresponding to 
pure imaginary values of A, two points are plotted for a presoribed rate of 
growth equivalent to -1% critical damping, in fact 
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A = K3 (0.01 + i) . (12) 

In a very violent flutter the two points would be oloser to the boundary 
than those shown in Fig.9. 

5.4 Conclusions 

For a missile with aft wings (or fins) at supersonio speeds, flutter 
involving wing bending is possible either with the rigid body freedoms, or with 
the fundamental body bending mode. Prevention of the latter type of flutter by 
providing adequate wing stiffness is likely to be the overriding requirement in 
praotioe beoause the body stiffness is likely to be within the range of the 
quaternary oval- as shown in Fig.2. In as much as the oval arises through a 
frequenoy ooinoidenoe, it might be thought that the overtone body bending 
would demand an even higher wing bending stiffness; for the configuration used 
in the oaloulations, however, this was not so because of the aft nodal line, 
and the overtone mode had an insignifioant effect. There may well be other 
oonfigurations, of course, where higher wing stiffness would be needed to aVOid 

flutter with an overtone mode. Reduction of static margin, either by inoreasing 
Mach number or by aft shift of o.g., inoreases the area of instability. In the 
case of o.g. shift, however, this is only true if the body mass and pitching 
inertia are maintained constant. It is perhaps unwise to attempt to relate the 
siae of the ovals directly with static margin, since the result probably depends 
on how the margin is varied. The flutter is fairly sensitive to structural 
damping in the body. 

. 

, 

a 

t9 

a = 

b' 

0 

e 

9 

Ql 

q2 

p3 

SYMBOLS 

is the square matrix of aerodynamic inertia coefficients 

is the square matrix of struotural inertia ooeffioients 

G + 5, the square matrix of inertia coefficients 

is the square matrix of aerodynamic damping ooeffioients 

is the square matrix of serodynsmio stiffness ooeffioients 

is the diagonal matrix of structural stiffness ooeffioients 

is the oolumn of generalised coordinates 

is the generalised coordinate of heave 

is the generalised coordinate of pitch 

is the generalised coordinate of body bending 
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SYMBOLS (contcl.) 

% 
is the generalised coordinate of wing bending 

95 is the 2nd generalised ooordinate of body bending 

w is the flutter frequency (rad/seo) 

c is the body length (ft) 

v8 is the speed of sound (ft/seo) 

A=' y in the critioal flutter condition (in general the motion is of the 
8 
form ehT where z = Vs t/b) 

e is vertical displacement 

EC is the distance of the c.g. aft of the datum 

2Rmax is the diameter of body 

A is the wing sweep (leading edge) 

co is the wing root chord 

ma 
is mass per un<t length of body 

cb, is mass per unit area of wng 

P is air density at 30,000 ft 

Y is ratio of speoific heats 

v is strain energy 

x=k 
p v; 2 

non-dimensional bending stiffness of body 

y = .$n on-dimensional bending stiffness of wing 
. 

8 

w r is the natural frequenoy of the rth mode 

; r is the natural frequency of the corresponding normalised m&e. 
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APPENDIX 1 

THE FLUTTEF. EQUATION ANL! NUWRICAL COEFFICIEDTS 

The expanded form of the flutter equation is given in equation (Al) below. 

The motion is of the form e AT where 7 is proportional to time, and the Mach 

i number M, and the two stlffneises x and y are retained as variables in the 
equation. For a particular missile x and y would be fixed and for each value 
of M there would be various solutions for h corresponding to the various 
stability roots. For the purposes of this paper, however, it is much more 
convenient to seleot values of A and hi end to solve for x and y, as explained 
in the main text. 

0 = X818.5057468] 

+ X7[2.1i976694+ 0.00658227Mj 

+ h0161585~ + 0.23947519M- 0.05102687M2+ 54.62217957x+ 3.86400452yj 

+ h5~0.00000326+ O.O5742770M- 0.01198157M2 - 0.00000179hi3 

t (13.45327683 t o.cwj495M) x+ (o.omwo5t o.oo2@3ua) yj 

+ h4{(o.oO0326- O.O0055lM- 0.107388M2+ 0.003295M3) Mm-2 

+ (0.06520413+0.44630536~- 0.115553W2) x 

t(O.oooo,328to.2030631M-0.02314961M2) Y + 24.48572114~1 

t h3j(0.00454- 0.25912M- 0.00622M2) M210-3 

+ (0.00000117t0.10485429M- 0.02760308M2-0.00000056M3) x 

t(O.l323- 0.8422Mt0.0007M2) M~l0-~ 

t(0.21641257t0.021~012M) lry] 

+ k2[(0.01844- 0.90431M+0.0Q85M2) M2yif3 

+ (o.oOOo0474t0.34328437M-0.05~47437~2) XY] (Al ) 

Some of the properties of this equation can be more clearly seen after 
substitution for M, and the result for M I: 4 recluoea to 
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Appendix 1 

o = a8[8.5057457j 

+ ,7[2.~460960] 

+ x6~o.,576293+ 54.6221796~+3.8640045y] 

. 

+ ~5~0.0378943+13.6498167x+0.0678~8~y] 

+ a41- 0.0603677+0.00157538x+ 0.44~87~9~+ 24.4e57212d 

+ k'j- o.o149162o-o.O222661x-O.CQ1252967y+o.3o2573o4~~ 

+ x21- 0.05378002y+O.5495522~] W) 

Tables 3, 4 and 5 give the numerical values of' the flutter coefficients 
for various oases described in the main text. In Table 3 the matrices of the 
different types of coefficient are given separately, whereas Tables 4 and 5 eaoh 
oonsist of the complete flutter matrix for the normal mode binary ad ternary 
respectively, although in Table 4 the Mach number is left variable. 
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TABLE 3 

Flutter coefficients in l+ denrees of freedom 

a = the aercdynamio contribution to the total inertia coefficients 

10-3..5235988 
_- 

= -0.18j2596 0.0889145 0 

-0.1832596 0.0649262 -0.0318247 0 

0.0889145 -0.0318247 0.0157318 0 

0 0 0 cl _. 

Q = the structural ocntributicn to the total inertia cceffiaients 
- 
17 .I 40779773 0 

0 i.428398284 

4.928337747 0 

0.42527244 
I- 

0.19562532 

asa+& 

'17.14~303371a -0.18325y6.10-3 

-o.la32596.10-3 1.4284632102 

1.9284266615 -O.O318247.1O-3 

0.42527244 o.l9562532 
- 

1.928337747 

0 

0.374742087 

O.l1607143 

_. 

0.42527244. 

o.19562532 

o.ii607r43 
2.26811953 

- 

b = the aerodynamic damping coefficients 

- _ 

-_ 

-, 

I .9284266615 

-o.031a247.10-3 

0.4252724% 

0.19562532 

0.3747578188 o.ll607143 

0.11607143 2.26811953 

-1 

(0.0461880214 ; (0.0200148094 ; (0.011423530 : 0.10264~0 - 

I 
tmo7a539a~6hI) : -0.0019557637~) : +0.42~a50a.i0-3~) ) 

_ 
:b;020&48d94 

___ _ _ __-. __-__. ------ ------ -- 
: (0.008775724 I (o.oQ50482a49 ~(0.0472144 

-0.0030029613M)~ +~.0006021655M) : 

1 

-o.3068yy6.m-3ta) ,-0.164224.10-3~i) 

(iblG2-j5iYi , (O.&J5&3~84; : (0.0029191367 ~(0.0280140 

+0.CC113350070M) '-0.0004508294M) ' 

-0I10-26400- 

+o.0696282.10-3M) -: +161034.io-~~~ _ 2 - _ - - _ _ - - - - - - - - - - - - 1 

;(0.0472144 I (0.02aoiw I 0.547413: 
I 

'-0.164224.10-3~): -0.1610j4.10-3M) ! 
- - 

I I 

_- 

-_ 

__ 
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c = the aerodynaaio stiffness coeffioients 

-b : (0.0461880214~ : (0.04448~33026~ I 0 -1 
I 
f +o.O078539816M2) ’ -0 0063205630M2) / __------.-- 

0 
I-‘--. _. - -,-_-- -- 

’ (0.0200148094M , (0.019366943M , 0 
, 

-o.003oo296i3~) ' +0.0021637974~~) ’ __-_--._- - ---- 
0 1 (0.0114235294M '-(0~0110845603~ - - j- - 0- - - - 

I +0.0013350070!i?) :-0.~13247763~~) ’ --_---_-_ - ---- - - 

O ; 0.1026400~ 
_( - _ - _ - . 

’ 0.1010916~ ,( I 0 

1 

- 1 
; -o.Yf777.fo-%f2) ’ 

I 

e = the structural stiffness ooeffioients 

- I 

x 
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4 TILE 

Normal mode with wina bendinn (from cwaternarg). 
Binarv flutter calculation 

0 .I 57aQ6lAl x2 0.068229071 x2 

+(0.9334318.10-3 -0.2861794.10-4~) x +(0.0164671908 -0.16103529.10-3M) 

+(O.O060797493M -0.61368159.10-3M2) 

+X 

0.06229071 x2 2.26811953 X2 

+(Q.Q164671yQ8 -0.16103529.10-3~) h to.5474136 A 

+(0.101092405M -0.91777.lci4M2) +Y 
-. 

- 20 - 



L: 

TABLE 5 

2 normal modes and wiw bendinp. (from suinarv). 
Ternarv flutter calculation for M = 5 

- 

0.~57ao637 A2 -o.6007.10-6 x2 

+0.79032796.10-3 A -0.006481 aa5 A 

to .OI 5055308 +o .3696417 

tx 

-0.6oo7.10-6 x2 27.55985 x2 

-0.01348681 A to.66y2ya A 

~0.42822044 +B.63iO5? 

+i420.57 x 

0.06822828 h2 

to.01 5661 a3 x 

t0.50316358 

- 

0.7f355033 ?L2 

-0 .j 8738398 h 

+3.230382 

- 

0.06822828 x2 

to .OI 5661 a3 A 

0.71355033 x2 

-0.4 8738398 x 

2.2681 I 96 ~~ 

to.5474436 A 

+Y 
- 

Prrnted in England for He+ Mapsty’s Stattonery Offxe by 
the Royal Atrcmft Bstablrshment, Pambosough. K.f.60 B.Y. 
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FIG. I. PLAN VIEW OF CONFIGURATION CHOSEN. 
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FlG.2. TYPICAL FLUTTER BOUNDARY (M=4) AND COMPARISON 

WITH A BINARY RESULT. 
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FlG.3. FLUTTER BOUNDARIES FOR 5 MACH NUMBERS. 



I I \ 

-05 

--CO= 45*84& 

I 
-1.0 

FlG.4.THE FIRST TWO NORMAL MODES OF THE BODY. 
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FlG.5. EFFECT OF THE SECOND BODY MODE ON THE 

BINARY FLUTTER BOUNDARY (M=S) 
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FIG.6. EFFECT OF C.G. VARIATIONS ON THE FLUTTER 

BOUNDARIES (M = 5) 
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FIG.8. EFFECT OF STRUCTURAL DAMPING ON THE 

FLUTTER BOUNDARIES (= = 0.14) 
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A.R.C. Cd. No.761 533.6.013.&Z : 

629.19.012674 
AJLC. C.P. Vo.761 ~3.6.013.422 : 

629.19.012.674 

“,U,‘TFX CALcuUTI(Ns OK A BODY WITH AFT WINGS. FLUTTER CALCKA’TIONS ON A BODY WITH AF-I WINGS. 

Bmadbent, E.G. and Hart-ey, E.V. Awwt.. 1%3. Bmdbmt, E.G. and Hartley, E.V. Awl St, ,963. 

ThS effect or body rlexlbillty 0” the rlutwr 0r S body with art 

~hg.3 is investigated. The misslie 1s in me supersonic rlighc end the 

wings em a:-~& rigid l” torsion. It is mm that riutter can OCCUT 

either betRee” wing bend& and the rigid body modes, or between wing 

bending and the fundam” ta1 berSlng mode of the t&y, depending on body 
stlrrmss. Ii the latter r0m 0r riutter Is p0ssibie (a3 IL USU~IIY 1.7 

In pmctlce) S hlgixr wing 8tlrr~3.3 IS required ror Its avo*dSnce. A 

~12~ apprd~3tim t0 the qtmemary riutter 801~ti0~ :n this eat is 

give” by the apprOa1ate binary c~lcul~tio”. lllS rl”ttSr IS rSirly 

~3~3it~ve to parameters that arrect the 3t-d~ mprsin 0w.h -P and 

c.k posltlon! and alao to structural darn- 

The erect or body rlexibility 0” the rhx.tSr or S bcp, with Srt 

wings Is invest lgated. the mls~m is in rl~e supersd~ mght and tb+ 

wings BIP as302d rlgld In t~rslon. it iS round that rlutter can M%UT 

either betwe” wing bendlng and the rlgld body mdes, or betwe” vdng 
bending and Lbe r”Maw”ta1 bending mode tr the body, depending on boPy 

stirrness. Ir the latter form 0r ruttSr 13 pcsslble (as it u~aliy 18 

in mctlce) a h&her wins Stlrrness IS required for its avoidance. A 
~10.~ ~p~xhmim to the qua-y rhnter soiutim Ln this ~833 1s 

give” by the apgm~n‘late binary calculation. The rlutcer 1s ralrly 
sen~ich CO FB-C~~S thet arrect the stStk ma~-gl” okb wr Snd 

c.g. posItion) SIX also to stnctu-a1 damplng. 

- 

A.R.C. C.P. No.761 533.6.013.422 : 

6:1%19.012674 

FLUTTFR CAUULATIDNS ON A BODY WIT?, APT WINGS. 

BEadbent. co. and Hartley, E.V. Aueust, 1963. 

The errect 0r body rkxibiiity 0” the riutter or S body with Sit 
wings ib fnve3tlgat.d. me missm is In he mpersonk night and the 

wings an assumed rigid I” torsion. IL is round that rwtter can WCUT 

e!‘t.I I bFt.wze” wing bending and the rlgld boQ modes, or betwe” wing 
bendlng and the rundamental bending mode cl the bcdy, dependlng on body 

stlrrness. Ir the latter rOI7S Or riUtter iS pSSible (as it ~.WSlly is 
1” Pt'WtkP) S higher aiw StlrrnSSS IS required ror ILS avoidSme. A 

close appmxl~tlo” to thS q”Stw7m-y f!~:ter solution l” this CBSS is 

g.lve” by the appmpr1ace binary calculatlo”. me rutter IS rSfrly 

~cM!IIIw TO ~WSSI%?~S thsC BrrPCt the Static m-in (F& “wr and 

r.C. posltl~) and also to stNct,“‘~l dampi”& 
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