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fluid and for changes in the area of the turbo-machine. The assumption is maae 
that at any axial position the density profile belongs to a fixed family of 
curves governed by a parameter p , and the axial-velocity profile at the ssme 
point belongs to another famjly of profiles governed by p and a second 
parameter h . 

The analysis is performed at a single radius, called the design 
radius, em3 from the values of X and )1 along this radius the full velocity 
and density variations may be found. The equations of motion are reduced to a 
second-order linear differential equation for k , the solution of which is 
then used in conjunction with the assumption of isentropic flow to yield the 
value of p . 

The problem can only be solved using .sn electronic computer, and 
details sre given of a programme which can be used on the EDSAC 2 computer of 
the Cambridge University Mathematical Laboratory to analyse the flow through 
any axial turbo-machine. Results obtained from this programme have been 
oompared with existing theoretical and experimental results, and it is suggested 
that these comparisons establish that the theory is sufficiently accurate for 
design and performance calculations 
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1. Introduction 

Many theories have been proposed for the design and performance 
predictions of axial-flow compressors and turbines. However, as stated by 
Howell (1963), most of these theories, although being mathematically accurate, 
.%.I% lengthy and complicated and sre thus rarely referred to by practical 
turbo-machinery deszgners. A theoretical approach to the design of turbo-machines 
is required which is both suitably simple and easy to use, and at the ssme time 
possesses the accuracy required for design purposes. The criteria by which such 
a theory should be judged have been given in the paper by Wnitehead and Beavers 
(1961), which presents an introduction to a method of predicting the flow 
through axial turbo-machines which it is thought will be of considerable value 
in design applications. 

The development of a suitable theory is most readily accomplished in 
a sequential manner. First, the problem of predicting the flow through a given 
turbo-machine is attempted, the problem being reduced to the simplest possible 
form by considering the incompressible floff through a machine of constant 
annulus area. The theory is then improved as it is extended to allow for the 
important effects of compressibility and varyxng hub and tip ra&l, and then it 
is further reflned as the effects of blade thickness, blade taper and radial 
blade forces are incorporated. Finally, having thus evolved a theory for the 
estlmatlon of flow through existing machines, it can with confidence be 
transposed to a form suitable for design purposes. This paper IS concerned with 
the second stage in the development of the single-parameter theory proposedby 
Whitehead and Beavers, namely the introduction into the analysis of 
compressibility of the working fluid and taper of the hub and tip radii. 

Existing theories in various stages of development have been 
summarised in the paper by Whitehead and Beavers and by Horlock (I 962). 

J 
The 

most accurate solution for compressible flow through machines with tapered walls 
is the numerical solution of the full equations of motion, derived by Wu (1952.a). 
The theory presented in this paper has been corrpared. with Wu's calculations for 
both incompressible and compressible flows through a single-stage constant-area 
compressor (Wu, 1953) and through a single-stage constant-area turbine (Wu,l952.b), 
and also for the compressible flow through a seven-stage compressor with a 
tapering hub radius (Wu, 1953). 

The method of solution in which it is assumed that the streamlines in a 
plane containing the axis of the machine vary periodically with a wavelength 
equal to the axial length of a stage has been used by Wu and Wolfenstan(1950) 
and Schnittger (1954) for compressible flow through turbo-machines with tapered 
walls. This oscillatory motion of the streamlines in multi-stage machines has 
been observedby Whitehead and Beavers for the restricted case of incompressible 
floA- through a constant-area compressor, and by Bammert(1961) for the more 
general flw problem. This last author obtained solutions for the axial 
velocities in the gaps just behind all the blade rows by dropping the derivatives 
in the axial direction from the Euler equation of motion expressed for the radial 
direction. 

The actuator-Z&o method of solution, which involves replacing each 
blade row by an infinitesimally thin disc across which there is a sudden change 
in the tangential velocity and static pressure, has been extensively studied for 
incompressible flows in constant-area turbo-machines, and a selection of papers 
is included in the Bibliography. Lewis (1960) has extended the theory for flow 
through conical turbo-machines and Horlook (1958) and Hawthorne and Ringrose (I 962) 

have/ 
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have applied actuator-disc theory to the oompressible flax through constant-area 
turbo-machines. As yet the theory cannot be applied to solve the problem of 
compressible flow through a general multi-stage turbo-machine. 

Approximate methods of solution in which the equations of motion are 
satisfied exactly at one radius only and are reduced to a single differential 
equation in terms of a dimensionless parameter have been proposed by Whitehead 
and Beavers (1961), Howell (1963) and Mellor (1962). All three of these papers 
consider the problem of incompressible flow through a constant-area 
turbo-machine, and in each case the parameter involved 1s a non-dimensional 
slope of the axial-velocity proflle at any cross-section. Whitehead and 
Beavers assumed that the axial-velocity profile at any axial position belongs 
to a family of profiles governed by the single parameter A , and the 
equations of motion were satzfiecl exactly at a design radius defined as the 
root mean square of the hub and tip radii. At the same time Mellor, workhg 
independently, also assumed that the axial-velocity profiles belong to a 
family of curves and he derived a differential equation at a design radius 
which was so chosen that the equation could be solved analytically. Howell 
also made a sunilar assumption about the axial-velocity proflles and used as 
the design radius the mean of the hub and tip rack&. Both Mellor and Hornell 
made assumptions which enabled the hfferential equations to be solved exactly, 
whereas Whitehead and Beavers obtained a more general solution in the form of 
a programme for use on a high-speed digital computer. 

The original single-parameter theory has been greatly modified in 
this paper to allox for variations in density of the working medium and 
variations in annulus area of the turbo-machine. The inclusion of the density 
as a variable necessitates a modification to the definition of the parameter h , 
plus the introduction of a second.parameter P defined as the dimensionless 
slope of the density profile at the design radius, where the assumption has 
been made that the density proflle belongs to a single-parameter family of 
curves. The result of these modifications IS that the assumed variation of 
axial velocity with radius belongs to a family of curves governed by the two 
parameters 1 and p , thus considerably increasing the range of allowed 
proflles. The equations of motion are again satisfied exactly at a single 
design radius, defined as the root mean square of the hub and tip radii at 
any axial position. Isentropio flow is assurred and all blade losses are 
neglected. The problem is reduced to a single second-order linear differential 
equation for 1 , which can only be solved by means of an electronic computer. 
Details are given m Section 8 of a programme which exists for use on the 
EDSAC 2 computer of the Cambridge University Mathematical. Laboratory, and which 
can be used to analyse the flow through any variable-area turbo-machine. 
Examples of the way in which this programme may be used are given in Sections 
9 to 15, which also serve as oomparuons of the parameter-theory results with 
exlsting experimental and theoretioal results. The assumptions made, and the 
method of solution employed, require that the flow within a machine be always 
subsonic. Consequently it has not been possible to compare parameter-theory 
oalculations with the compressible actuator-disc oalculations of Hawthorne and 
Ringrose (1962), in which the flow is in part supersonic. 

2. Notation 

The notation used is illustrated in Figures 1, 2, 3 and 4. 

Co-ordinate/ 
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Co-ordinate system and velocities 

r - radial co-ordmate 

x - axial co-ordinate 

e - tangential co-ordinate 

U- radial component of velocity 

v- axial component of velocity 

w- tangentxd component of velocity 

a - axial chord of blade or axial length of gap 

A- constant defined by equation (59) 

b - scaling factor defined by equation (86) 

B- constant defined by equation (55) expressed at inlet to a gap 

C- constant defined in equation (31) 

C- 
P 

specific heat at constant pressure 

!3 - static-pressure gradient 

G - radial gradient of relative stagnation temperature 

h - hub radius 

k,- constant defined by equation (67) 

K - gas constant 

m - mass-flow rate 

M- Mach number relative to a blade row 

%- axial component of Mach number 

P- static pressure 

ps- 
stagnation pressure 

R - design radius = [e:h’ls t - tip radius 

T - static temperature 

Ts- 
stagnation temperature relative to a blade row 

a - gas angle relative to a blade row 

j3-= Tsna 

Y- ratio of specific heats 

(ta - h')X 
q- variable defined as 

32R2 
slope of/ 
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X- slope of ( p V ) profile at the design radius 

P- slope of density profile at the design radius t 

P - density 

Jr- stream function defined by equations (10) and (Ii) 

i2- angular velocity of rotor 

Suffices 

R - conditions at design radius 

S- stagnation conditions 

o - conditions at entry to the turbo-machine 

1 - conditions at entry to a rotor row 

2 - conditions at exit from a rotor row 

3- conditions at entry to a stator row 

4- conditions at exit from a stator row 

Primed numbers refer to conditions in the gaps at the points corresponding 
to the above numbers. 

3. Approximations 

Most of the approximations made in this paper will be introduced in 
the relevant sections. However, it is thought to be convenient to present, at 
this point, a complete list of the approximations which will be made. 

(a) The flow is assumed to be rotationally symmetric and non-turbulent, 
and the gas is assumed to be inviscid. This negledssllblade 
grid effects such as wakes and secondary flows, and also all 
boundary-layer effects so that the streemlines at the hub and tip 
radii follow exactly the shape of the turbo-machine at those radii. 

(b) It is assumed that each blade row can be replaced by a large number 
of infinitely thin blades having the ssme axial chord es the actual 
blades. The outlet angle of these blades is the gas outlet angle, 
but the inlet angle is the gas inlet angle determined by the 
conditions at exit from the previous blade row. 

(0) It is assumed that the radial displacement of the streamlines from 
the position they would have under uniform flow conditions is small. 

(a) The variation of density with radius is assumed to be of the form of 
a one-dimensional parameter family of curves. Likewise the r&Sal 
variation of the product ( p V) is assumed to be of the form of a 
one-dimensional parameter family of curves. Hence the radial 
variation of axial velocity is governed by a family of curves which 
&pend on two parameters. 
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(e) The equations of motion will be satisfied exactly at one radius 
only, called the design radius. Away from the design radius the 
equations of motion will not be satisfied exactly. However, 
since the axial-velocity profile end its radial derivative are 
correctly determined at the design radius, as are the density 
profile and its associated ra&al derivative, it is possible to 
draw the complete axial-velocity end density profiles with little 
error. 

(f) It is assumed that the blades exert no radial force on the gas. 

(g) It is assumed that the gas flows through each row of blades on a 
path such that the tangent of the relative sir angle varies 
linearly from the leading to the trailing edge of the blades. 
This assumption is exact for a row of infinitely thin untwisted 
blades designed on a parabolic centre-line working at zero 
incidence. 

It is not essential to the theory that this last assumption be made 
in the given form. The theory can readily be modified to allow 
for any given variation in the tangent of the relative air angle 
through a blade passage. However the linear variation has been 
chosen because it combines simplicity with a good approximation 
to the actual verlation through the centre of a blade passage. 

(h) Withxn an axzxl gap It will be assumed that the circulation along 
the design-ra&us streamline 1s constant. 

(i) Wlthin a blade passage or gap it will be assumed that the hub and 
tip r&ii vary linearly from the inlet to the outlet of the 
section. This means that the flare in compressors and turbines 
is achieved by having disoontinuities in the slopes of the hub 
and tip radii at the leading and trailing edges of the blade rows. 

(j) WIthIn a blade row It is assumed that the stagnation temprature 
relative to that blade row 1s constant along a streamline. 

(k) It is assumed that the flow 1s isentropic throughout the 
turbo-machine. This neglects any change in the enthalpy caused 
by blade losses. 

(1) It is assumed that the ra&al component of velocity at the design 
rsdlus is small compared with the axial and tangential components. 

4. Basic Theory 

4.1 Assumed Profiles 

In the single-parameter theory for the flow of an incompressible 
fluid through a constant area turbo-machine (Whitehead and Beavers 1961) the 

fundamental/ 
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fundamental approximation w&a made that the distribution of axial velocity with 
radius could be representedby the family of profiles 

v = vRp+;(; -I)]. 

The introduction of compressibility into the analysis necessitates a modification 
to the profiles defined by equation (1) in order to allow for the radial 
variation of density. This is achieved by assuming that the radial distribution 
of the axial mass-flow rate per unit area belongs to a family of profiles of the 
type defined by equation (1). Hence the fundamental approximation now becomes 

PV = Pgyg[l+;(; -I)] *** (2) 

and the differentiation of this equation in the radial direction yields the 
definition of )i , which is 

l -a (3) 

In order to solve the equations of motion it will be found necessary 
to know how the density at any axial point varies with radius, and it is 
oonvenient at this juncture to specify this variation. Consequently a seoond 
fundamental approximation has to be made, which involves the introduction into 
the analysis of a second dimensionless parameter. It will be assumed that at 
any axial posltion withm the turbo-machine the radial variation of density is 
governed by the family of profiles. 

P = Pp['+;(;-I)]. 

where p is proportional to the ratialdensity gradient at the radius R, and is 
defined by 

0.. (5) 

The assumed density profiles are shown in Figure 5. 

Equations (3) and (5) can be combined to give the slope of the 
axial-velocity profile at the radius R, end this is 

= h-p. . . . (6) 

Equations/ 
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Equations (2) and (4) show that the assumed axial-velocity profiles belong 
to a family of curves governed by the two parameters h and c1 , and 

‘expressed by the equation 

The assumed &al-velocity profiles for various values of 1 and ~1 sre 
shown in Figure 6. Equations (2) and (4) are not the only profiles which 
can be used. They have been chosen to maintain algebraic simplicity and 
because they give profiles close to those normally obtained in practice. 

Since restrioted ranges of both axial-velocity and density 
profiles have been chosen, it will be possible to satisfy the equations of 
motion exactly at one radius only. This radius will. be termed the design 
radius and denoted by R, and it 1s defined as the root mean square of the 
hub and tip radii, so that 

t?+b 
ap = . . . . (7) 

2 

The mass-flow rate through the machine is given by 

i 

t 
m = 2xrVp.dr , 

h 
and using equation (2) this can be expressed as 

which can be reduced to 

m = ,,VR(tp - ha) 

by applxation of equation (7). 

Equation (8) gives the important result that the expression for the 
mass-flow rate is independent of A and p . The assumed axial-velocity and 
density profiles, snd the definition of the design radius, have been chosen 
to this end. 

4.2/ 
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4.2 The Continuity Equation 

For axisymmetric flow, the continuity equation is 

; (Pa +i(prv) = 0 . 

Thus, a stream function $ can be defined so that 

. . . (9) 

aJr 
-= - p-v . . . (10) 
ar 

w -= pru . 
ax 

If the assumed profile for pV given by equation (2) is now 
substituted into equation (lO),there results 

. . . (11) 

ark 
-= 
ar 

- pRvRrp + ;(g - I)] . 

This equation can now be Integrated in the radial direction between the hub 
radius and a radius r to give 

p-d 
qr - qh = - PRVR 

I 2 >I 
* r.. (12) 

If equation (12) is now differentiated with respect to x, and the expression 
for .3$/8x given by equation (11) substituted into the result, an equation 
for the radial velocity at any radius r is obtsined in the form 

To obtain an expression for a$,/ax , it is noted that 

. . . (14) 

and by substituting equations (1O)and (11) into this equation there follows 
at once the result 

agh ah 
- = phUhh 
ax 

- f’hvhh d, * . . . (15) 

However, at the hub radius, since the flow must be parallel to the surface, 

ah ‘h - =- 
ax ‘h 
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so that equation (15) becomes 

a'h - = 0 
ax 

This result may be obtained at once from the assumption that the streamline 
at the hub radius remains on the hub at all times. 

Using this result, equation (13) can be written in the form 

. . . (16) 

If this equation 1s now differentiated with respect to x and the result 
expressed at the design radius, the following equation is obtained after 
simplification 

Using equation (8), this can be written as 

:=~~a[(~~~~~+2~(~)R~+(e~~)~(~)-(ta-~)~~~ 
Equation (19) expressa; [a(pu)/ax] at the design radius as a function 
of x and the known geometry of the compressor or turbine, and is thus in 
a suitable form for use with the equation of motion in the radial direction, 
which will also be expressed in terms of the same variables. 

. . . (19) 
:B 

4.3 The Basic Differential Equation for h, 

Neglecting any radial force exerted by or on the blades, the 
equation of motion in the radial direction for exi-symmetric flow is 

au au VP la, u- + v- - - = --- . . . . (20) 
ar ax r P ar 

Since both the density and velocity variations have been limIted to fixed 
sets of profiles, equation (20) will only be exactly true at the design 
ra&us as defined by equation (7). Thus at the design radius, this 
equation becomes 

Smce 

equation (21) can be written in the form 

where 

..* (21) 

. . . (22) 

' . . . (23) 

. . . (24) 
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In general the radial velocity at the design radius will be smell. so that 
the term UR(dlJ/k-)R can be neglected, and then g can be thought of as 
a dimensionless radial static-pressure gradient at the design radius. 

Nom equation (17) expressed at the design radius can be written 

Using equations (7) and (8), an expression for UR, the radial component 
of velocity, can be obtained in the form 

aR 
m a (t” - h*)X UR = - - 

L[ 1 "ax 
"pRR x 32 R= +tp-h" R' 1 . . . (25) 

Substituting equation (25) into equation (23) gives 

a m R- [ 1 = 
ax 

R 

Then the elimination of R[a(pU)/dx]R f rom equations (19) and (26) yields 

the equation 
aa 

c L- 

(ta- ha)?, lap a (t"- ha)h 
- 

32Ra -,dx’dx 

=L(:,)r( ) 

1 32 R' I 
. . . (27) 

R 

1 w s 

-9 7 
-g-~~~)]-2~[~]R~+~~[~~~~~ 

Now, define a variable ?I such that 

(t"- ha)?, 
-0 =- -. 

322 

Substituting this definition into equation (2) gives 

PV J?- Ra 
- = 1+16-q 

pRvR 
t?-ha ' 

Thus, at the tip radius,PV/PRvR = I+&1 

and at the hub radius, pv/p&= 1 -h 

. . . (28) 

1 

so that separation occurs at the hub or tip radius when q-z iI- 
8 

Returning/ 
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Returning to the main analysis, since equation (27) has been derived 

for a fixed radius, it is dependent on x only, and hence the partial 
derivatives may be replaced by total derivatwes. Introducing the variable 11, 
equation (27) then becomes 

This is the basic drfferential equation to be solved. However, 
before a solution can be obtained it is necessary to how how the various 
quantities appearing in this equation vary with the co-ordinate distance 
The hub, tip and design radius at any point will all be known from the 
geometry of the turbo-machme under analysts, and the quantity (W/V), 

will also be known as this depends upon the blade geometry. It !he,refoF 

X. 

remains to obtain expressions for the variations with x of pR(l/p.aP/dx& 

and g. Ws will be done in section 4.5, but preceding this the assumed 
variations of hub and tip ra&i wdl be discussed. 

4.4 .Hub and Casing Profiles 

To simplify the arithmetic it will be assumed that both the hub 
snd tip radii change in a linear fashion within any blade row or duct. This 
assumption will, usually, be exact, as the mechanical difficulties encountered 
111 the manufacture of the individual blades are such that only rarely are 
compressor or turbine blades made ~~lt.h hub and tip variations which are other 
than linear. Tlvs means that the hub and casing profiles of a turbo-machine 
each consist of a series of straight lines whwh may or may not have 
discontinuities zn slope at the leading and trailing edges of the blade rows. 
Typical hub and casing shapes can be seen in Figures 1, 14, 28(a), 28(b), 
47 and 52. 

Since the hub and tip radii vary linearly mtkn any blade row, 
dh/dx and dt/dx are both constant within that row. Then from equation (7) 

and 
. . . (30) 

Thus it can be seen that at any pornt pvlthrn a blade row or gap the term R.dR/dx 
depends upon the values of the hub and tip radii at that pout, whereas the 
term d(RdR/dx)/dx is the same at all points mthln the given section. 

4.5 The Density Vanatlon 

In order to find how the density, and hence (l/p.dp/dx), 

and g, varies with -al &stance through a blade row or gap, It 1s necessary 

to/ 



- 15 - 

to make further assumptions about the nature of the flow. Consequently, 
it will be assumed that, 

(i) the stagnation temperature relative to a blade row is constant 
along a streamline; and 

(ii) the flow is isentropic. 

The second of these assumptions implies that the flow obey3 the law 

T = cp, 

where C is a constant for any given blade row or gap between adjacent blade 
rows, and has the same value for all blads row3 and gaps. This fol.l.ow3 since 
across any interface between a blade row and gap both the static temperature 
and the density must be continuous, 30 that C must also be continuous. 

Now, relative to the blade row under consideration, the energy 
equation for 3 perfect gas expressed at the design radius may be written 
a3 

CT 
P3 = CPT+ &(I +q , 

where Ts is the stagnation temperature relative to the blade row 3rd p 
ent 
8), 

of the relative gas angle 
(31) and (32) there results 

0L at any point. Combining 

$(I + $1 
= 2.CDC1$ (t” - d )” 

0 , 

which is the equation governing the variation of 
$. 

within an,y blade 
passage or duct. Since the values of all the quan lties appearing in 
equation (33) except & will be known at any axial position, this 
equation can be solved numerically to give the value of the density at 
the design radius for that chosen axial position. Some notes on the 
method used for solving equation (33) are given in the Appendix. For 
the purposes of calculating the variation in density within a blade 
passage or gap it will be assumed that the relative stagnation temperature 
is constant along the design radius. This will have an insignificant 
effect on the solution of equation (33) since the radial displacement of 
the design-radius streamline is very small.. 

To calculate 
with respect to X. 

(I/ .a~/&) 
!i Ia 

, equation (33) is differentiated 
Since S,man C are constants, this gives 

l ** (32) 

l *- (33) 

m+q 
Cp7'? (t'- kp )" 

usins/ 
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Using equations (7), (31) and (32), this equation can be written in the form 

' dP 
l- 

v”RCl + s,) 
I( > 

v"Rc.l + a'R) 

(y - l)CpT ;dxa = (y - "Cp' 1 *  l -s (35) 

Now, let the axial Mach number at the design radius be denoted by Mx, and the 

Mach number relative to the blade row at the design radius be Y. 
Then 

Ma = hgl + 4) . 

Using these definitions, equation (35) becorpes 

This equation gives the required variation of (l/p ap/a& in terms of 
the relative Mach number and quantities which are functions of the geometry 
of the turbo-machine being analysed. The relative Mach number can be 
obtained by combining equations (7), (31) (36) end (37) to give 

Ma 
$(I +pg) 

= *(ta- h')l(y - l)CpCpRy+' ' 

The final quantity required to make the solving of equation (29) 
possible is the value of the static-pressure gradient, g, along the axial. 
direction. However, as the static-pressure gradient will vary along the 
machine in a manner that oannot readily be evaluated, it is oonvenient to 
express it in terms of the radial gradient of the relative stagnation 
temperature, the variation of which can be calculated. Before this is 
done the relationship between p and g will be derived. 

The equation of state for a perfect gas is 

P = QT Y 

where K is the gas constant for the particular gas being used. By 
eliminating the static temperature, T, from equations (31) end (40), and 
differentiating along the radial direction, there results 

1 ap Y a0 
-- = -- * 
P ar P ar 

l .* (36) 

*** (39) 

1 Rap 
.-a P = - -- 

( > Y Par B 
. . . (41) 

Hence,/ 



- 17 - 

Hence, since 

end M 
g=- 

PR% 
(neglecting the UdU/dr term in equation (2:)) 

equation (41) can be expressed as 

. . . (41) 

To relate g to the radial gradient of relative stagnation temperature, 
equation (32) is specified at a general point in the co-ordinate,system, 
differentiated in the radial direction and the result then expressed at the 
design radius. If these steps are performed the following equation is obtained: 

cppl = cp(~);(+1+‘9’ +(2)2 l . . . (43) 

Equations (31) and (40) can be differentiated and combined to give 

CP(G) = (;:,,I 

and this can then be substitutedrtogether with equation (6), into equation (43) 
to produce the equation 

Hence, using the 
becomes 

where 

63 = 
G - ?.(I + 4, - WR($$R 

1 -!P 

l * *  (4.6) 

This expression for the static-pressure gradient can now be substituted intO 
equation (29) to produce the general equation governing the flow in a blade 
passage or in the gaps between the blade rows. The resultant general equation 
is @n 

-- 

WR&: G 

= (1 - @)(tp- ha) + (ta- ha) 



It only remains now to find how the gradient of relative stagnation 
and equation (47) can be solved. 
planes, an axial distance b;x 

temperature varies through a blade row or gap 
To derive the requiredvariation consider two : 
apart, within any one blade row or gap, as shown in Figure 4. Consider now 
the neighbouring streamlines, AB and CD, which are alww close to the design 
radius, and which intersect the two planes in points A and C, B and D 
respectively, where A and D lie on the design radius. The points A and C are 
at radii R, and R,-6R, respectively, and like-wise the points B and D are at 
radii R2 + 6R2 and R2. Then smce there can be no flow across these . 
streamlines, 
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At the design radius, 

VRpRR6R = constant 

Hence, since Ts has been assumed constant along a streamline, 

aTS ( > - 

ar 
a viper * 

:. From the definition of G ,"iyen by equation (46) 

RC 
G oc -&' VRpRR . 

% 
Thus, using equation (a), 

G OL &R*("" -ha) . 

l * *  (48) 

Hence, if the value of G is known at inlet to a blade row or duct, the 
value at any other axial station within that sme blade row or duct can be found 
from equation (49). 

All the information necessary for solving equation (47) has now been 
derived. In Sections 5, 6 and 7 details of the methods employed for obtaining 
solutions in annular ducts, isolated blade rows and multi-stage machines will be 
presented. However, before considering these particular solutions of equation 
(47) it will be show-n how the value of TJ at any axial position within a turbo- 
machine can be used to predict the radial displacement of the design-radius 
streamline at that position. 

4.6 The Displacement of the 'Design-Radius' Streamline 

Referring to Figure 4, the stream function $ at the point A is given 
by equation (12) as 

where the subscript 1 refers to plane 1. 

BY/ 
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By maldng use of equations (7), (8) and (28) this equation can be written as 

Similarly, at the point D 

$o-Jr, = -f+l.) . 
7x 

Subtracting equation (50) from equation (51) gives 

Now, the streamline at the hub radius will always remain at the hub radius since 
all boundary-layer effects have been neglected. Hence 
result could also have been deduced from the equation 

$hr = qh . This 

together with equation (14) written in the form 

(Z), = -p>,.:, 

since as,/ax = 0 from equation (16). 

Consequently, PO - *A =" (%-74) . 
?L 

However, at the plane 2, equation (10) can be written as 

*.* (52) 

. 0.0 (53) 

ena since A and B lie on the seme streamline, $ = $ 
be comes A 

B , so that equation (53) 

9, - $A = VR&.Rs.SRP . 

Equating this equation to equation (52) and using equation (8), gives 

6Rs = 
($ -h’:) 

% 
- bl,-vil , 

where 6R2 is the radial displacement from the design radius at plane 2 of the 

streamline which was coincident with the design radius at plane 1. Thus, if the 
plane 1 is taken well upstream of the turbo-machine where the flow is uniform and 

there/ 
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there is no radial displacement of the streamlines, the value of TJ at this 
point being denoted by q, , then at any axial point in the turbo-machine the 
radial displacement from the design radius of the streamline which originally 
coincided with the design radius is given by 

(t' -ha) 
6R = 

B 
. bl - rlJ - 0.' (54) 

5. Flow in an Annular Duct 

The first part of this section will be concerned with the solution of 
equation (47) in a general variable-area duct. This will therefore includes the 
method of solving this equation in the annular gaps between adjacent rows of 
bladesin a multi-stage turbo-machine. In the second part of this section the 
solutions of equation (47) in the annular ducts which form the inlet and exit 
of a oompressor or turbine will be considered, and it will be shown how the 
solutions in these two components can be used as boundary conditions for the 
oomplete solution of equation (47) in a multi-stage compressor or turbine. 

5.1 General Variable-Area Duct 

For flow in an annular duct the criterion which must be satisfied is 
that the circulation along a streamline is constant. Hence, along a streamline, 

or 

Wr = constant 

pVr = constant 
-*a (55) 

Now, whereas in a blade row the variation of (a&-), inthe axial 
duct the variation cannot be so specified and 

g$fz ~~v~~gy(a;fir~R must be eliminated from equation (47) before 
a solution can be obtained. 

Referring to Figure 4, which shows an elementary section of duct, 1 
and 2 are two radial planes distance Ax apart. The design radius outs 
plane I in A and plane 2 in D, and the streamline through point A cuts the 
plane 2 in B. Likewise the streamline through D cuts plane 1 in the point C. 
CA = SR, and DB = 6R2. Then at the plans 2, 

(wr), = (wr), + i (Wr&J~ , 

and at the plane 1 

ON, = (Wr)* - i (Wr)A.6Ri . 

Since A and B lie on the same streamline, from equation (55), 

Mr), = (WrlB . 

Similarly C and D also lie on the same streamline, and so 

(Wr), = Mr), . 

Hence,/ 
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Hence, using these results, equations (56) and (57) can be combined to give 
for any two adjacent streamlines 

But, from equation (&3), 

so that, by combining this equation with equation (58), 

& [ i (Wr)] R = CONSTANT = A . 0" (59) 

Expanding equation (59), and inserting the expression for (@,)(dv/ar)R 
given by equation (6), leads to the result 

4 R - h -p+l+- =A. 

blR BR 
Using the expression given by equation (42) for p , this equation becomes 

= WRWR - $ - b + 1 - #$, , 
R 

ana this can now be substituted into eqUatiOn (45) to give 

g = 
G-X(1+&)-ApILR/jk+&(h+l - g$) 

. 
1 -?f 

Therefore 

g 
G - h - ApRWR + $ 

= . 

. . . (60) 

1 -q 

Noting that 
(' 

$ R = 6, for the flow in a duct, and substituting equation (60) 

into equation (;y), the general equation governing the flow in a duct oan be 
obtained in the form 

The equations governing the variation of density, equations (33) 
(38), have also to be modified for flow x.n a duct, since they both contain 

explicitly. In a duct 8, is not a simple function of sxial distance, as 

end 
BR 

it is 

in a blade passage, but because of the condition of constant circulation along a 
streamline BR at any axial position depends upon the value of pR at that 

position. 

Equation (33)/ 
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Equation (33) is 

Tn order to keep the equation for de density at the design radius as simple as 
possible, an approximation will be made at this point concerning the streamline 
displaoement. It will be assumed for the purpose of calculating the value of the 
density at the design radius that the radial displacement. of the design-radius 
streamline is small so that equation (55) may be assumed to hold at the design 
radius. 

From equation (55), PRVRR = constant = B . 

Substituting this into equation (33) gives the equation for the variation of 
the density at the design radius within an annular duct: 

. r- T- P 2 ‘K ‘It Lc 
- + 

2cpCR9 1 2CpC7?(t"- h*)* = 
0 . .a* (62) 

By differentiating this equation in the axial direction, and using equations 
(8) snd (36), there results 

"a, 

1-c (t" -ha) P & -** (63) 

Having obtained pR 
and (55), 

from equation (62), & oan be found from equations (8) 
and this can then be used in equation (63) to calculate the value 

of (vP.aP/wR * 

Equations (61), (62) and (63) are the relevant equations for flow in 
sn annular duct. At any point on the design radius the value of the density is 
calculated from equation (62), and this value is then used in equation (63) to 
give (l/p.ap/ddR at that point. Finally equation (61) can be solved using 
these two results and the known geometry of the duct. 

For the special case of flow in a duct having constant hub and tip 
radii, equations (62) and (63) show that PR is constant and (l/p*dp/a~)~=O * 
Hence the problem is reduced to solving the differential equation 

817 32.R=.~ ApRR@R - "-4% = o 

?(t" -h*)'(l--Mp3-(I? +?)(I-tix) * *** (64) 

5.2 Flow at Inlet to a Compressor or Turbine 

It will be assumed that the flow at inlet to a turbo-machine displays 
the characteristics of flow in a constant-area duct. This is equivalent to 
placing directly upstream of the first blade row a section of duct which has 
constant hub and tip radii equal to the values at the leading edge of this blade 
row, as shown in Figures 1 and 52. 

Denoting/ 
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Denoting the values of all quantities at the leading edge of the 
first blade row by the subscript o, 17, 
equation (47) written as 

is the solution of the general 

@v 32R;(l +$,, -M",) 

s -(i?o-h;)"(l-b$)+ = (1 - "",)("',- h',) 
0 , ..* (65) 

where B R 
in this equation is the tangent of the air angle relative to space 

at inlet to the first blade row, i.e., 
angle into the first blade row: (&9,dr),"R 

is the tangent of the absolute air 
is the corresponding radial 

of B at the design radius. Except in some special oases both BR end 
at inlet to the first blade row will be sero. 

Introducing now constants k. and '1, equation (65) can be 
expressed in the form 

bn 
P - -rl = +lmu 9 

Oil2 . . . (66) 

where 

and 

kp = (~o-q*(‘-Mpo) 
0 

32ppo(l + a’,, 

. . . (67) 

rl = . 
dl 

32 Rg,(l + 4) 

. . . (68) 
The solution of equation (66) is 

(tl - rl,) = (v,- nmu>e *o , 
and it is seen that nl, is the value of TJ far upstream of tke first blade 
row. 

It is convenient to express the solution of equation (66) in the form 

M 
0 

‘h r,) Go = ;;- o- mu ’ 
” 

(69) 

since this result can be used as a boundary condition at entry to the first 
blade row for the solution in a multi-stage turbo-machine. By writing 
equation (69) in the form shown, the boundary condition at entry to a turbo- 
machine has been transferred from a boundary condition expressed far upstream 
of the machine to one at the leading edge of 'the first blade row, which is more 
suitable for the numerical method used to solve the general flora equation. 

Before/ 
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Before %u and k 
8, 

can be evaluated, and before the solution for a 
multistage machine can procee It is necessary to know the values of p, V, P, T 
and M, at inlet to the machine (station o). Let the ambient stagnation Pressure 
and temperature be denoted by Pso and Tso respectively. Then, at the design 
radius, for isentropic flow 

TSRO 

vgRoo + $,I 
= so + 2c 

P 

m = xv RopRo(% - Ip,) 

vg 
““,o = 

Ro 

(Y - ')Cp'fio ' pR0 
= %to%o ' 

where the subscript 0 again refers to oonditiors at entry to the turbo-machine. 
These equations can be re-arranged to give the following expressions: 

s 

Y+l 

y"XO 

npsRo(tpo -hg = VT7 [ ' + 2 

'-' Co(i + $o)]-+ , .*. (70) 

. . . (71) 'Ro = @JFQ 
, 

qzl 
L- 

1 + y-l "a,(' + PRO, $ 
2 1 

TRO 
I 

-= t -.. (72) 
T sRo I + y-l "',,(I + $,I 

2 1 
PRO 

1 
-= . . . (73) 

PSRO 
[ 

1 + y-l ldfxocl + PRO, /Y” 
2 1 

Hence Mxo can be found from equation (70) and substituted into equations (71), 

(72) end (73) to give the velocity, static temperature and static pressure at the 
station o, the density following from the perfect gas law. 

5.3 Flow at Exit from a Compressor or Turw 

Corresponding to the assumption made at inlet to a turbo-machine that 
the flow behaves like the flow in a oonstsnt-area duct, at exit it will also be 
assumed that the flow behaves in this manner. Consequently it will be imagined 
that the hub and tip radii .are constant after the trailing edge of the final blade 
TOW. It is not essential that the hub and tip radii should remain constant 
immediately after the final blade row; it is only necessary that the turbo- 
machine should eventually be terminated with a duct of constant hub and tip 
radii. 

Since/ 
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Since pR is constant in a duct of constant area, V 
also be constant, so that equation (64) aan be written ez 

where 

e - 
32 “‘, 

em3 V& = 
(G,+ p’,“A,,- A@&.&e)(tP,- $1 

32 R’, 

The subscript e denotes conditions at the exit plane, i.e., the plane where the 
turbo-machine joins the hypothetical constant-area exit duct. 

The solution of equation (74) is 

(rl - T),d) = (q, - qad),- xbe 

Thus rl& is the value n would have far downstream of the final 
blade row of the turbo-machine. This equation can be written as 

0 
2 = 1 b-i, 

e 
>ke 

-11,) 9 
m-0 (75) 

and this represents the boundary condition at the exit plane for the solution in 
a multi-stage turbine or compressor. The method of using the boundary conditions 
expressed by equation (69) and (75) will be indicated in Section 8. 

The results obtained in this section msy be compared with the solutions 
of Hawthorne and Ringrose (1962) for the compressible flow in constant-area ducts. 
These solutions have exponential decays of the types given by equations (69) and 
(75)) consisting of a series of terms each having a different value of k. 
Hawthorne and Ringrose show that the k's are given by the equation 

h 
Jpu it 0 t 

Jpcr it 0 = 
Y h PclE 0 

t - 
Yp+% E 0 

Comparing these solutions with those obtained by Bragg and Hawthorne (1950) for 
incompressible flows in annular ducts it will be observed that the value of k for 
incompressible flow is multiplied by the factor V? - bY on the introduction of 
oompres&bility effects. This effect will also be obsehed by comparing the 
expressions for k given in this section with the expressions derived for k by 
Whitehead and Beavers (1961) for incompressible flow in constant-area turbo- 
machines. 
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6. Flow in a Blade Passage 

The equation governing the flow through a row of blades is equation (47), 
which has been derived without considering any specific type of blade row, and is 
therefore true for both stator and rotor rows. The only term in this equation 
which depends upon the type of blade row under consideration is (W/v): . 
Referring to Figure 3, 

for a rotor row (;)i = (t - pR) 

and for * stator row Iv= 

0 v 
=lpR, 

R 

. . . (76a) 

where R is the angular velocity of the rotor. Thus any analysis applied to 
equation (47) for the blade passage of a rotor row will also apply for the blade 
passage of a stator row if n is put equal to zero. The remainder of this 
section will therefore be devoted to the flow through a single row of rotor 
blades. 

In order to solve equation (47) at any point within a blade row the 
velue of 8, ana 0f (ap/ar), at that point must be known. Within an annular 

duct these quantities were determined from the condition that the circulation 
alorg a streamline must be constant. However, within a blade passage this 
condition no locger applies since the variation of pR thznugh the passage is 

fixed by the blade profile geometry. The value of p, at any point could be 

obtained from en analysis of the pressure distribution round the cascade blati, 
but this is not practicable and so an assumption about the variation of p, 

through a blade row has to be made. In this analysis it hes been assumed that /2 
at the design radius varies l~~~srly with x from the leading to the trailing 
edge of the blade. Consequently, 8, and (ap/ar), are given by 

and 
(8, = (@RI + [($)8s- ($1: I 

. . . (77) 

This assumption is very close for the central streamlines in a blade passage, and 
is exact for a row of infinitely thin blades working at zero incidence and 
having a parabolic centre-line at the design radius. 

All the information necessary for obtaining the value of n at any 
axial position within a blade row has now been set up. The solution is performed by 
first deriving the value of the density from equation (33), and then this result, 
together tith equations (30), (38), (76) and (77), can be substltuted into 
equation (47), to yield a differential equation of the type 

*ll -- 
ax? 

f* (xl d” - f,(x).n = fs(x) (78) 
ax 

where f,(x), f2(x) and f3(x) are functions of x only. Equation (78) requires 

two boundary conditions.- For a single isolated blade row these boundary 
conditions are furnished by equations (69) and (75), whereas for a multi-stage 

turbo-machine/ 
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turbo-machine the boundary conditions at the leading and trailing edges of any 
one blade row depend upon the flow conditions in the two adjacent gaps or blade 
rows. In this case equations (69) and (75) provide the boundary conditions 
which must be satisfied at inlet to and exit from the turbo-machine. The method 
used for solving equation (47) in a multi-stage turbo-machine will be discussed 
in sections 7 and 8. 

7. Gw In a Multi-stage Turbo-machine 

In sections 5 and 6 it has been shown how equation (47) may be solved 
in annular ducts and in individual blade rows. Since a compressor or turbine 
consists of alternate rows of stator blades and rotor blades separated by small. 
axial gaps, the solution for q in such a machine consists of solving equation (47) 
in each of the blade rows and gaps in turn. In order to show how the solution is 
continued through the successive blade rows and gaps of a turbo-machine, consider a 
small section of a compressor consisting of a rotor row followed by a gap which is 
followed then by a stator row, as shown in Figure 3. In this figure the primed 
(') numbers represent conditions on the gap side of an interface between a gap 
and a blade row, and the unprimed numbers represent conditions on the blade row 
side of the same interface. 

On passing from a blade row into a gap, or from a gap into a blade row, 
the hub and tip radii must be continuous, and hence the design radius will be 

ah continuous, although there need not necessarily be continuity of ax , dx dt& 

al7 -. Also, at an interface the density, static tempeiature and static-pressure 

gadient (g) must be the same in both the gap and the blade row, and hence it 
follows from the first of these conditions that p must be continuous at the 
interface. In addition the axial and tangential components of velocity will be 
oontinuous across an interface, so that the values of X and p at inlet to any 
section are equsl to the corresponding values of these quantities at exit from 
the preceding section. Finally, since there will, in general, be discontinuities 
in the gradients of the hub and tip radii at the interfaces, there will be 
corresponding disoontinuities in the gradients of the streamlines at these radii. 
Across an interface where the hub and tip radii change it will only be possible 
to have one streamline with a oontinuous gradient, and it will be assumed that this 
is the design-radius streamline. 

At any axial position, the design-ra&us streamline will have been 
displaced radially through a small distance 6R, so that it is at a radius R + SR, 
where 6R is given by equation (54). Thus, from equation (17) the radxl velocity 
on this streamline is given by 

(R + ~R)PR+~RUR+GR = - (R +26R)s . 5 (pRVR)+; r;*) - (R + 6R$$) 

using/ 
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Using equation (8), and neglecting all second-order terms in 6R and above, this 
eauation can be simulified to 

This can be wrItten as 

m &l Rg 

pR+6R"R+6R = z d, + tp -hs + c 
Rasrr ‘(y)]. 

(t’ - d)’ ax 
. . . (79) 

Thus equation (79) implies that, across an interface between a gap and a blade 
row, 

Q Rg R=SR a e-h* 
-+ 

+(tP--hP)P'dX R ( > 
= CONTINUOUS . 

dx ta-h* 
. . . (80) 

This result could also have been obtained from the condition that the 
slope of the design-radius streamline is everywhere contmuous, for this implies 
that 

a 
- 

( ) 
R + 6R is continuous. 

ax 

Hence using equation (.5&) 

(t” - ha ) h - v-1 

I 
is continuous. 

R 

dR e-h* &J 

[ 

R&R 
Thus -+ 

ax R ‘dx+(tp -hp) ax 
. -‘(c ; “) j IS contmuous, 

which is the same condition as equation 80 because h, t and R are everywhere 
oontinuous. The final term in equation I ! 80 will normally be very small so that 
by comparing this equation with the expression for UR given by equation 725) it is 

seen that UR will be very nearly continuous across an interface. 

The two conditions, namely the continuity of TJ and equation (80), 
enable q and &l/&c at inlet to any blade row or gap to be found from the 
values of these quantities at exit from the preceding gap or blade row. These 
inlet values provide the two boundary conditions necessary for a unique solution 
of equation (47) to be determined. It therefore follows that if the values 
of 71 and a/d.x are known at inlet to a turbo-machine their values at every 
other point on the design radius can be found. 

It should be noted here that although rl ma a are oontlnuous from 
one component of a variable-area turbo-machine to the next, &q/d% and aa/ax 
are not, so that curves of TJ and h will have discontinuities in gradient at 

the/ 
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the various interfaces. This is a result of the assumed geometry for the 
turbo-machine, in whxh the hub and tip radii are allowed to have changes in 
slope at each interface. TJ and h will only have continuous gradients when the 
gradients of the hub and tip radxi are the same on both sides of an interface. 
However, in general, for small changes in the slopes of the turbo-machine 
walls there will only be small changes in the gradients of TJ and h . 

Having shcmn how q and drl/dx are determined at inlet to any 
sectlon of a turbo-machine it now remains to show how the various quantities 
which form the coefficients m equation (47) are determined at inlet to 
that section. In this context a section is any blade row or gap in the 
machine. 

Consider first the terms P, and (ap/ar), . The values of these 

quantities at inlet to a section are calculated from the values of the 
corresponding terms at exit from the previous section by applying the 
condition of continuity of tangential velocity. Since p is the tangent 
of the relative gas angle at any point, it follows that at eny radius r the 
whirl velocity W is given by 

W = Rr -@I for a rotor row 

w=pv for a stator row or gap. 

..a (81) 

..a (82) 

Hence, referring to Figure 3, equations (80) and (81) can be used to yield the 
following expressions for the values of p, at inlet to the various sections. 

For the gap-rotor row interface (interface 1) 

and for the rotor row-gap interface (interface 2) 

nrc 

Llkewlse, for the stator row-gap interfaces, 

. ..(83a) 

. ..(83bb) 

Expressions for the values of (ap/ar), at inlet can be obtained by 
differentiating the above relationships in the radial direction. For example, 
at an interface between a gap and a rotor row, the vslue of (+Y/dr), at 
inlet to the rotor row is given by 
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Also, across a stator rm-gap interface it follows from the expressiorfi for 8, 

that the value 0f (ap/ar), is 00nst.3.d. 

=a War), 

Consequently the required values of p, 

can be found at inlet to any blade row or gap. 

Consider next the change in the relative stagnation temperature T 

across an interface. On passing from a gap into a stator row, or vice-versa: 
there will be no change in the value of the relative stagnation temperature. 
However, for any interface involving a rotor row there will be a sudden change in 
this quantity, but this change can readily be calculated. 

Equation, (32) at the interface 1 of Figure 3 gives 

T ,¶I = Ti +;(I +Gl) for the rotor row. 

P 
As the static temperature is continuous across an interface these two equations 
can be combined to give 

-.. 034) 

Equation (84) expresses the relative stagnation temperature in a rotor row in 
terms of the relative stagnation temperature in the gap preceding the rotor row 
and the known relative gas angles at the interface between the gap and the rotor 
row. A su~~lsr equation can be found for the interface 2 of Figure 3. This is 

T 
sp’ - Tss, +$(4&, -?&) . 

P 
Returning to equation (47) it is seen that the orly quantity which 

remains to be determined across an interface is the radial gradient of the 
relative stagnation temperature, denoted by G. Across an interface composed 
of a gap and a stator row G will be constant, but aoross any interface having 
a rotor row as one of the compor.ents there will be a sudden change in the value 
of G. This change in G can be found by applying the condition of constant 
radial static-pressure gradient at the interface. Thus at the interface 1 of 
Figure 3, equation (45) gives for the two constituflnts~ 

and 

1 -% 

Gi - &(I + a,) - R& g 
g = 0 RI for the rotor row. 

1-q 

Hence/ 
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Hence G at Inlet to the rotor row is given in terms of G at exit from the gap by 
the equation 

A similar equation exists for the interface formed by the trailing edge of a 
rotor row and the folloxing gap. 

The above results thus show how the form of equation (47) in sg 
section of a turbo-machine is related to the form of the equation in the preceding 
section. Hence, once a solution for VJ has been found at inlet to the machine, 
it is possible to obtain a solution at every other point along the design radius. 
The numerical method of solving equation (47) will be described in Section 8. 

In the foregoing analysis it has been assumed that the individual blade 
rows are always separated by axial gaps. This condition is not essential to the 
analysis, which will still hold if the gaps are omitted.. This follows because 
across an interface involving a gap and a stator rove G, T 

S’ 
P, ma (w/a=), 

are all continuous, so that the conditions derived for the transference of the 
solution across a rotor row-gap interface are unchanged when the gap is replaced 
by a stator row. Consequently, if so desired, the gap between the blade rows msy 
be omitted and the turbo-machine analysed as a succession of rotor and stator 
rows. This solution will differ slightly from that obtained by including the 
gaps, the magnitude of the difference depending upon the relative axial lengths 
of the blade rows and the neglected gaps. 

8. The Numerical Method of Solution 

In general it 1s not possible to derive an exact analytical solution of 
equation (47) in either a blade row or a gap. Consequently a numerical method of 
solving this equation must be employed, and this can only be conveniently done 
using an electronic computer. For any turbo-machine equation (47) has to be 
solved in the individual blade rows end gaps in turn, and the complete solutions 
have to satisfy given boundary conditions at the two ends of the machine. The 
easiest method of obtaining the solution which satisfies these two boundary 
oonditions depends upon the linearity condition 'of equation (47). This equation 
is a linear differential equation in q for both blade rows and gaps. Thus, 
if TJ~ is any solution of the equation and 
then brlr + (l-b)? . 

q, is any other solution, 
is also a solution, where b is any constant. Hence, if 

two individual so utlons which satisfy the boundary condition at inlet are 
continued through the machine these solutions may be scaled at exit so that the 
resultant solution satisfies the boundary condition at that point. This will 
yield the value of the constant b, which can then be used to obtain the true 
solution at every point within the turbo-machine. This is the method used in 
the programme wrItten for the EDSAC 2 computer of the Csmbridge University 
Mathematical Laboratory. A short description of the techniques used in this 
programme will now be given. 

Two initial guesses are made for the value of rl at inlet to the 
turbo-machine, and from these irutial guesses two entirely separate solutions 
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are obtained simultaneously in each succeeding blade row and gap. For any 
blade row or gap the inlet condition are first derived from the exit conditions 
of the previous component, as described in Section 7. The component under 
consideration is then divided into a large number of small axial elements, 
and a Runge-Kutta-Gill numerical method is used to advance the solution from 
one element to the next. However, before this Runge-Kutta-Gill process can be 
used at any point, the values at this point of t, h, R, fiR, (a@/ar),, 

G, pR, VR, M and (l/p.ap/dx), must all be lolown. The first six of these 

quantities can readily be obtalned by the methods described m the foregoing 
sections. VR, M, and (l/p-ap/ax), all depend upon pR at that point, which 

itself is obtained by solving equation (33). 

On reaching the exit from the turbo-machine neither of the two 
solutions will, in general, satisfy the boundary condition at that point, which 
is given by equation (75) as 

--- (75)bis) 

However the two solutions can now be scaled so that the resultant solution does 
satisfy equation (75). The scaling factor b IS obtained in the following manner. 
Denoting the two solutions by the subscripts 1 and 2, it follows from equation (75) 
that 

am 
bo =ei + (1 -b)g = 

0 
- 2 

ea ke C 
bTlg + (I - bh, - md - (I - b)qd I 

Hence, this equation gives 

1 

kda -q,) -k, $ 
0 es 

This scaling factor b can then be used to scale the two original solutions at 
every point within the machine to yield the true solution of equation (47). 

It is a property of equation (47) that any solution which is not the 
exact solution will diverge very rapidly, so that after a few stages of a 
multi-stage machine the numerical value of q becomes exceedingly large and 
even on a computer accuracy begins to be lost. Hence a method has been 
incorporated in the computer programme which prevents the two individual 
solutions from becoming large and at the same time makes them both tend towards 
the true solution. This is achieved by testing the values of h 
at the exit from each blade row and gap, and if either of these 1 

ana hll 
wo values is 

numerically greater than ten, the solutions are stopped. Both solutions up to 
that point are then scaled in the manner described above in such a way that the 
velues of & and h, at the point where the solutions were stopped are 
+I and -1 respectively, and the solutions are then restarted. This repeated 
scalihg of the solutions in a multi-stage machine has the result that in the 
earlier stages both solutions approach more and more closely the final exact 

solution/ 
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solution. This is what would be expected, since the boundary condition 
governing the flow at exit from the machine has a decreasing influence on 
going forward towards the middle of the machine, and likewise, the boundary 
condition governing the flor at inlet has a decreasing influence on going from 
the inlet towards the middle of the machine. Consequently as the solutions 
approach the last few stages of a machine their values in the first few stages 
have both become close to the true solution in that region. 

To enable the solution to proceed it is necessary to provide the 
computer with certain information about the compressor or turbine under analysis. 
This information is provided In blocks, arranged so that there 1s first a block 
of general information about the machine, followed by small blocks of data for 
each individual blade row and gap, these blocks of data being arranged in the 
order the blade rows and gaps appear in the machine. The general information 
block must provide the following quantities: 

Mass flow rate (m) 

Inlet stagnation pressure (ps,) 

Inlet stagnation temperature (Tso) 

Inlet hub radius (ho) 

Inlet tip radius (to) 

Inlet stagnation-temperature gradient (Go) 

Ratio of specific heats (y) 

Gas constant (K) 

Speed of rotor in R.P.M. (N) 

Two initial guesses for h 

The number of steps per section to be used in the 
Runge-Kutta-Gill process, and how often values 
are to be printed out. 

/jk and (ap/ar), at inlet. 

Each individual data block must then provide the following information: 

The axial length of the section. 

The inlet and outlet hub and tip radii. 

The outlet values of BR and. (a@/ar), . 

The output from the machine occurs in blocks corresponding to the 
blocks of data provided. Each block of output is in the form of a table of results, 
these results being given at various axial positions within the section for which 
the block applies. Output values are provided under the following headings: 

Axial distance of the position from the front of the section. 

The design radius. 

The radial position of the design-radius streamline. 

The density at the design radius. 

The axial velocity at the design radius. 

Il. 
h . 
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In addition the axial component of the Mach number is given at every interface 
between adjacent sections,i.e., between every block of output. 

The computer programme has been written so that it can be used for 
any axial-flow turbo-machine, which can either include or neglect the gaps 
between the blade rows0 It can also be used for the flow in converging and 
diverging ducts and nozzles, if these are regarded as sets of small axial gaps 
follovring one another. An example of the use of the programme to analyse the 
flow in a converging-diverging nozzle is given in Sectior. 14. 

The remaining sectlons of this paper will now be devoted to comparisons 
of results obtained using the EDSAC 2 computer programme with existing theoretical 
and experimental results. 

V. Flow throwh a Single-stage Compressor - Comparison with Wu 

The parameter theory has been used to calculate the flow through a 
single-stage compressor of constant hub and tip radii, and the derived results 
have been compared with the theoretical results of Wu (1953) for the same 
compressor operating under the same conditions. The products of these 
investigations are shown in Figures 7 to 13. The compressor analysed is shown 
in Figure 7 and consisted of a row of inlet guide vanes, a row of rotor blades 
and a stator blade row, each blade row having a hub-to-tip ratio of 0.6 
and an aspect ratio, based on the axial length, of 2.67. The axial length of 
the gaps separating the blade rows was equal to one-third. the axial chord of 
a blade. The value of r/t at the design radius was 0.82462. Both incompressible 
and compressible flows through this compressor have been studied and the results 
compared with Wu's calculations. For all calculations the ratio of inlet 
velocity to rotor tip speed was taken to be 0.7378, and for the compressible 
calculations the ratio of inlet der.sity to inlet stagnation density was 
made equal to 0.8578, with an inlet Mach number of 0.567. 

In order to obtain solutions Wu had first to specify the axial rate of 
change of the quantity Wr on the mean stream surface, and from this he obtained 
solutions for the axial velocity at all points within the compressor. The gas 
angles obtained by Wu have been used in the parameter-theory calculations for both 
the incompressible and compressible flow. The variations of h ana P for both 
types of flow are shown in Figures 8 and 9, and the graph of the slope of the 
axial-velocity profile at the design radius is g$ven in Figure IO. It will be 
seen for the compressible flow calculations that whereas the plot of h has a 
continuous gradient at all interfaces, the graph of the slope of the axial-veloczty 
profile has d&continuities in gradient at the interfaces, even though the machine 
has constant hub and tip radii. These tiscontinuities are causedby the 
discontinuities in the gradient of p at the interfaces. 

The values of the axial velocities determined by means of the parameter 
theory have been compared with Wu's calculations at r/t ratios of 0.6, 0.8 and 1.0, 
and these comparisons are shown in Figure II for the incompressible flor and 
Figure 12 for the compressible flow. Figure 13 compares the density variations 
obtainedby the two methods at the same three radius ratios. In all these f=ures 
it will be observed that the parameter-theory calculations agree very closely with 
those of Wu. This would be expected in the neighbowhood of the design radius, 
where the parameter theory is made to satisfy the equations of motion exactly. 
The close agreement at both the hub ra&us ( /t = 0.6) and the tip radius ( /t = 1.0) 
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would indicate that the assumed form of the chosen profiles is acceptable over 
a much greater proportion of the blade length than merely within the immediate 
vicinity of the design radius. 

The displacement of the design-radius streamline in compressible flow 
is shown it Figure 7, which also shows the streamline pattern calculated by Wu. 
The two streamlIne patterns agree very closely, and this close agreement combined 
with the very close agreement of the axial-velocity and density variations at 
the design radius justifies the assumption that the tangent of the relative gas 
angle varies in a linear manner through a blade passage. Finally, by comparing 
Figures 11 and 12, it will be observed that the introduction of compressibility 
into the calculations has a very marked effect upon the axial velocity, as would 
be expected. However, Figure 8 shows that both graphs of h have the same form, 
only differing appreciably in the final blade row. 

10. Flow through a Seven-stage Compressor 

In order to demonstrate some of the ways In which the computer 
programme msy be used to investigate the flow through a multistage turbo-machine 
under different conditions, and at the same time to obtain solutions which could 
be compared with existing results, calculations were performed on the flow 
through a seven-stage compressor previously analysed by Wu (1953). The compressor 
used for the analysis is shown in Figure 14, having a constant tip radius and a 
vsrxble hub radius. The curvature of the hub radius 1s obtained by discontinuitles 
in the slope of this bounding wall at the majority of the interfaces between the 
blade rows and the gaps. The design mass-flow rate was 94.56 pounds per second 
for a rotor tip speed of 815 feet per second. The design ratio of inlet velocity 
to rotor tip speed was 0.74433 and the inlet Mach number was arranged to be 0.56. 

Four calculations were performed. The first was under 'as-designed' 
conditions; the second was for the same conditions but with a dimensionless 
relative stagnation-temperature gradient, G, at inlet of +I, compared with 0 for 
the 'as-designed' calculation; the third was the same as the second with G 
changed to -1; and the final calculation was for a mass-flow rate of 80.00 
pounds per second and a dimensionless relative stagnation-temperature gradient at 
inlet of 0. Plots of )I through the machine for each of these four calculations 
ere given in Figure 15. It will be seen that all the curves have disoontinuities 
in slope at the interfaces where there are discontinuities in the slope of the 
hub radius. Whitehead and Beavers (1961) found that for flow in constant-area 
turbo-machines the plots of h through the machine were, in general, smooth 
oscillating curves. For this compressor having a variable hub radius it will be 
observed that the oscillatory nature of the flow is retained, although it is 
less obvious than before because of the sudden changes in slope. Normally it is 
found that the graphs of h are fairly sensitive to changes in the slope of the 
walls of the turbo-machine, the effects becoming more apparent as the Mach 
number increases. This is demonstrated in Figure 15, where it will be seen 
that all the curves have .a slight depression on going through the fifth-stage 
rotor row. This is caused by the shape of the hub in this region. On going 
through the compressor the slope of the hub always decreases or remains constant 
at an interface. However at the trailing edge of the fifth-stage rotor row there 
is a slight increase in the slope in the following gap, thus causing a 'kink' in 
the hub profile and the resulting 'kink' in the plot of ), . 
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e It will be observed from Figure 15 that the effect of the radial 
gradient of relative stagnation temperature at inlet gradually decreases 
through the machine, becoming very small in the final stage but not actually 
becoming eero. Decreasing the mass-flow rate has negligible effect on A at 
inlet to the machine, but in the later stages causes a large increase in the 
magnitude of the variation of h through any blade row, thus having a 
corresponding effect on the path of the design-radius streamline. The paths 
of the design-radius streamlines for mass-flow rates of 80 and 94.56 pounds 
per second and values of G of zero at inlet are shown on Figure 14. Both 
paths have an oscillating pattern, although this cannot be seen clearly on the 
figure, since the amplitudes of the oscillations are very small compared with 
the design radius. These oscillations are such that, relative to the design 
radius, their displacements are increasing through a stator row and decreasing 
through a rotor row. This is the same effect as that observed by Whitehead. 
and Beavers (1961) for the flow of an inoompressible fluid thmugh a ten-stage 
constant-area compressor. 

Figure 16 gives the variation of ~1 through the machine for the two 
mass-flow rates. The introduction of a radial gradient of stagnation 
temperature at inlet has the same effect on p as on h , although in this 
case the magnitude of the difference is much smaller. A point of interest in 
Figure 16 is the large change in p through the sixth-stage stator and the 
seventh-stage rotor and stator rows for the lower mass-flow rate. Tliis implies 
that there are large changes in the radial gradient of static pressure through 
these blade rows. This is probably cause& by the machine changing from 
variable area to constant area at the trailing edge of the seventh-stage rotor 
row, with the result that the design-radius streamline is displaced radially 
inwards in the vxinity of this point in order to 'cut off' the corner. 
Likewise all the other streamlines will be displaced ra&dly inwards, so that 
a large gradient of static pressure will be establishes. 

The axial velocities and densities along the design radius for the two 
mass-flow rates are given in Figures 17 and. 18 respectively. The inlet gradient 
of relative stagnation temperature has no effect on the density and axial velocity 
at inlet, since these values depend only on the mass-flow rate, the ambient 
conditions and the angle at which the flow enters the compressor. It will be 
observed that under design conditions the axial velocity increases through the 
machine, but that most of this increase arises from the increase in velocity in 
the gaps between the blade rows and not in the blade rows themselves. This 
increase in the gaps would be anticipated from the theory for subsonic flow in 
a converging passage. 

Finally, for the design flow rate the axial Mach number changed from 
0.567 at inlet to 0.579 at entry to the first rotor row, ana dropped to 0.5M at 
exit from this blade row. It then increased steadily to 0.605 after the fifth 
stage, and finally more rapidly to 0.799 at the leading edge of the final blade 
row, falling to 0.690 at exit from the machine. For the reduced mass flow the 
axial Mach number was 0.447 at inlet and changed from 0.453 to 0.391 through 
the first rotor row. Through the remalder of the compressor it variedbetween 
0.35 and 0.39, falling to 0.323 at exit. 

Few results were given by Wu, but the design-radius streamline path 
predicted by the parameter theory for the design mass-flow rate was compared with 
Wu's predicted. streamline pattern end agreement was very close. For the sake of 
clarity, Wu's results have not been includea on Figure 14. 

Il./ 
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11. Flow through a Single-stage Turbine - Comparxon with Wu 

Corresponding to the comparisons made with Wu's calculations for the 
flow through a smgle-stage compressor given in Section 9, the flow through a 
single-stage turbine has been analysed. and the calculations compared with Wu's 
(1952b) cal cu a ions for the same turbine, 1 t these comparisons being shown in 
Figures 19 to 24. The turbine used for the analysis is given in Figure 19, and 
consisted of a stator row followed by a rotor row, the blade rows being separated 
by a gap of axial length equal to one-third the axial chord of the blade rows* 
The turbine had a constant hub-to-tip ratio of 0.6, end both blade rows had 
aspect ratios of 2.67. As for the single-stage compressor, solutions for both 
compressible and xxompressible flows were derived. In all calculations the 
ratio of inlet velocity to rotor tip speed was made equal to 0.650, ana for the 
compressible flow the inlet Mach number wss arranged to be 0.308. The ambient 
conditions were chosen such that the ratlo of inlet density to inlet stagnation 
density was 0.95033, and the ratlo of' the inlet stagnation enthalpy to the 
square of the rotor tip speed was 12.546. 

Wu obtained solutions by specifying the variation of the angular 
morrentum per unit mass of gas, Wr, through the blade rows. A linear variation 
with axial distance was termed uniform loading, and a non-linear variation with 
axial distance was termea non-unlf0r-m loading. Wu performed two sets of 
calculations for incompressible flow, one for uniform loe&ng and the other 
for non-uniform loading. The gas angles obtained by Wu have been used in the 
parameter theory, and the resultant axial-velocity variations at "/t ratios 
of 0.6, 0.7, 0.8, 0.9 and 1.0 are compared with Wu*s results in Figure 22. 
It will be observed that the agreement between the parameter-theory results 
s.ndWu's results is not as good ss for the compressor calculations shown in 
Figure 11. However the methods give reasonably good agreement near the 
design radius, but towards the boundaries of the machine, ana especially at 
the hub, the agreement is rather poor. Nevertheless the agreement is close 
enough to justify the use of the psraaeter theory for axial velocities in the 
neighbourhood of the design radius. 

For the compressible-flow analysis, the gas angles obtained from Wu's 
results were again use;i in the parameter theory and the resulting solutions were 
compared with Wu's calculations for three different nor.-uniform loadings, denoted 
in Figures 23 an& 2l+ by cases C;D and E. These two figures show respectively 
the axial-velocity ana density variations at the same five ratios of r/t as 
used in the incompressible-flow analysis. It will be seen that the densities 
agree closely at the leading ana trsding edges of the blaaes, but differ in 
the form of their variations within the blade passages. This can be sxpectea, 
since the density variation within a blade passage in the parameter theory 
is governed by the assumed variation of the relative gas angle through that 
passage. Consequently if Wu's assumed variation for the tangential velocity 
within a blade passage yields a relative gas angle variation which differs 
appreciably from that assumed in the parameter theory, discrepancies in the 
densities within the blade passages would be anticipate&. 

Figures 20 ana 21 show the plots of h and p through the turbine, 
and from the latter It can be seen that the radial gradient of static pressure at 
exit from the turbine 1s almost zero. This agrees closely with the free-vortex 
design, since the rotor blade was designed to yield a tangential component of 
velocity at exit of zero. 

12./ 
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12. Flow through Conical Ducts - Corrparlson with Letis 

The parameter theory has been used to predict the flow through 
converging and diverging conu2.l ducts, and the results compared. with the 
experimental and theoretical results obtained by Lewis (1960). Five oorcparisons 
have been made, and these are denoted by Tests Numbers I to 5 in Figures 25 to 46. 
These tests show how the parameter theory may be used to predict the flow through 
annular ducts in which the hub radius has the value of eero and the flow is 
symmetric about the axis. In all five tests the mean axial velocities were very 
low so that Lewis assumed the flow to be incompressible and made his theoretical 
predxtions accordingly. The parameter-theory calculations were performed 
tvnce for each test, once assuming the flax to be incompressible and the second 
time assuming it to be compressible. These calculations showed that for every 
test the assumption of incompressibility was justified, the total variation in 
clensxty being no greater than one per cent of the inlet stagnation densxty, with 
corresponding velocity differences of one foot per second or less. In making 
the comparison the incompressible calculations have been used, so that the 
value of p is always zero and h represents the dimensionless slope of the 
axial-velocity profile. 

The duct usea for the first test is shown in Figure 25. It consisted 
of a conical contraction from 14 inches diameter to 10.76 inches diameter, with 
a total angle of 200241, and bounded at both ends by sections of cylindrical 
duct. h for thx duct is given in Figure 26, and the path of the design- 
radius streamline is shown on Fqure 25, where It will be noticed that the 
streamline 'rounds-off' the corners formed by the sudden changes in the slope 
of the actual design radius. In Figure 27 the axial-velocity profiles predicted 
by the parameter theory at stations I and 2 are compared with the experimental 
cumes of Lewis at these stations, the agreement being very close mth a 
maximum error of about 2 per cent in the region outside the wall boundary layer. 
Also shown on this figure are the parameter-theory predictions for the axial- 
velocity profiles at stations IA and 28 where the slope of the casing suddenly 
changes. Since all the streamlines have the same pattern as the design-radxs 
stresmllne, It would be expected that at statIon IA the axial velocity would 
increase towards the outer casing and at station 2A the axial velocity would 
decrease towards this casmg. These effects are predicted m Figure 27. 

Test Nurrbers 2 and 3 were conducted on a convergmg conical duct with a 
row of free-vortex nozzle guide vanes posItioned ml&way along the duct. Test 
i%;nbers 4 and 5 were carried out with the same blade row and the duct arranged as 
a diverging passage. The duct configuratlons are shown inFigures 28 (a) and 
28 (b). The outer casing included angle was 2002!+' with a maxlmun diameter of 
ll+ inches, whde the inner casxng included angle was 90361 with a maxImum diameter 
of 6.58 inches. The axial length of the conical section was 9 inches, thus giving 
an area ratio of 1.69, and the blade row occupied the middle 1.2 Inches of the duct. 
For each duct configuration calculations were performed for a uniform inlet 
stagnation pressure (Test Numbers 2 and 4) and for a non-uniform inlet stagnation 
pressure (Test Numbers 3 and 5). 

Plots of h for the two converging duct tests are shown in Figure 29, 
where It ~111 be seen that the effects of the inlet stagnation-pressure gradient 
becomes small about one blade chord downstream of the blades. Figures 30 to 33 
apply to Test Number 2, and compare the axial-velocity profiles predicted by the 
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parameter theory with Lewis's experimental and theoretical results at stations 
I, 2, 3 and 4 of Figure 28(a). Similarly Figures 34 to 37 compare axial-velocity 
proflles at the same four stations for Test Number 3. All the comparisons show 
good agreement of the parameter-theory predictions with the experimental traverses, 
the predictions being at least as good as those obtalned using the actuator-disc 
theory. 

Calculations corresponding to Figures 29 to 37 have been made for the 
flow through the diverging conical duct. Figure 38 shows the variations in h 
for the uniform and non-uniform inlet stagnation pressures. It will be noticed 
in this case that, unlike the converging duct, the effect of the non-uniform 
stagnation pressure is maintalned through the whole duct. Axial-velocity profiles 
hs.ve been compared at statlons I, 2, 3 and 4 of Figure 28(b), and these are 
shown in Figures 39 to 42 for Test Number 4 and Figures 43 to 46 for Test Number 5. 
For these tivergmg duct tests the parameter-theory predictions do not agree as 
closely with the experimental results as they do in the converging duct tests. 
This discrepancy is most marked at station 4, where the experimental results show 
a very large boundary layer on the hub wall. The parameter theory is unable to 
allow for this effect. As before, the parameter theory appears to give solutions 
whloh are at least as good as the actuator-disc prediotions. 

13. Flow thfough a Three-stage Turbine - Comparison with Johnston and Sansome 

Johnston and Sansome (1961) performed an experimental investigation on the 
flow through a three-stage turbine, shown diagrammatically in Figure 47. The 
axial-velocity profiles they obtained were very irregular, and as such made 
comparisons with profiles calculated by the parameter theory of very little 
significance. Nevertheless these theoretical predictions and comparisons with the 
experxnental curves are included in thx paper, for they help to demonstrate fairly 
closely some of the limitations by which the parameter theory is controlled. 

The turbine had a constant hub tismeter of 12.5 inohes ana a tip diameter 
varpng from 15.34 inches at inlet to 17.6156 inches at exit. The gaps between all 
blade rows was 0.6 inches, and the blades were designed to conform to free-vortex 
flax and constant axial velocity through the machine. All gas angles were taken 
from the report by Johnston and Sansome, and the machine was assumed to be 
operating with Inlet stagnation conditions of 225OF and 39.8 pounds per square inch. 
Solutions were derived for mass-flow rates of 19.48 pounds per second ana 20.06 
pounds per second, the former oorresponaing to a pressure ratio of approximately 
0.37 based on the observed performance, and the latter corresponding to the same 
pressure ratio based on the estimatea erformance. 

P 
The rotor speed was taken to be 

6825 to correspond to the value of N/ T used by Johnston and Sansome. 

Graphs of h and ~1 for the two mass-flow rates are given in 
Figures &8 and 49 respectively. At the trailing edges of the second and third 
rotor rows both h and p sre very small for the mass-flow rate of 20.06 pounds 
per second, thus implying that the axial velocities at these points must be very 
nearly constant. This can be seen in Figure 51, which compares the axial velocities 
at the trailing edges of the blade rows as prebcted by the parameter theory with 
the sxial velocities observed by Johnston and Sansome at these positions. As would 
be antxipated there is no agreement between the experimentsl and theoretxoal curves. 
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The parameter theory does not even predict constant axial velocity at the 
design radius through the machine, but yields instead a steadily decreasing 
value, as shown in Figure 50. HoFever it will be observed from this figure 
that except for the first row of nozzle guide vanes most of the change in 
axial velocity takes place within the gaps and not within the blade rcws 
themselves. Nevertheless if the gaps were made much smaller so that they could 
be neglected the ssme overall decrease in the axial velocity would be observed. 
This follow from equation (33) because for ax?y given machine operating under 
given flow conditions the density, and hence the axial velocity, at the trailing 
edge of a blade is determinedby the prescribed gas angle at that point. 
Consequently if the gaps were omitted from this machine and the machine were then 
run under the same conditions the densities and axial velocities at the blade 
trailing edges at the design radius would be the same as those obtained in the 
present investigations. 

One reason why the predicted axial-velocity variation does not agree 
with experimental variation is that the parameter theory assumes an expansion 
efficiency of 100 per cent, whereas the turbine was designed assuming an 
expansion efficiency of 90 per cent. Thus the parameter theory neglects any 
losses that occur during the expansion process, and it is clear that in order to 
obtain accurate solutions in diverging flows some means of allovring for such 
losses must be incorporated in the theory. However in defence of the parameter 
theory it must be remembered that the solutions have been compared with results 
from a turbine having excessive losses in the rotor blade rows and hence a very 
poor efficiency. 

14. Analysis of a Rolls-Royce Two-Stage Low-Pressure Turbine 

In order to demonstrate how the computer programme may be used to 
investigate the effects of various changes in the flow conditions of a turbine 
a Rolls-Royce two-stage lcx-pressure turbine has been studied. A diagrammatic 
representation of the turbine is given in Figure 52. Both nozzle guide vane rcws 
had constant axial-chord lengths, but the rotor rows dd not, and it will be seen 
in the figure that the shapes of the rotor rows have been approtimatedby blades 
of constant axial chord in order to apply the parameter theory. The‘gradients 
of the hub and tip radii were constant from the leating edge of the first nozzle 
guide vanes to the trailing cage of the second rotor row. 

The effect of varying the mass-flow rate was first investigated, end 
calculations for six different mass-flow rates were performed. The inlet 
stagnatIon oonditicns for all six mass-flow rates were 1516.4OF and 98.05 POUndS 

per square inch, and the gas was assumed to have .a mean specific heat of 0.2802 
and a ratlo of specific heats of 1.4. The rotor speed was 6710 revs. per minute, 
and all gas angles were taken from a Rolls-Royce internal report (1959). The 
design mass-flow rate was 237.4 pounds per second, and in addition to this, 
mass-flow rates of 200, 220, 230, 236 and 238 pounds per second have been used. 
Graphs of h and )1 for the different mass flows ere shown in Figures 53 and 54 
respectively, and Figure 55 shows the displacement of the design-radius streemllne 
for three of the flow rates. 
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It will be observed that for all the mass-flop; rates the graphs of A 
have an oscillatory form so that the usual oscdlating motions of the design-radius 
streamlines are produced. An interesting feature about Figure 53 is the 
inter-section near the trailing edge of the first rotor row of all the curves. The 
distribution of the curves in this figure suggests that as the mass-flax rate is 
decreased the flow through the second of the two stages is such that it moves 
radially outwards towards the tip, the outward radial movement being increased as 
the mass-flow rate is decreased. This is verified by the displacement of the 
design-radius streamlInes shown in Figure 55, where it can be seen that for the 
design mass-flow rate the displacement of the streamline is reduced in the second 
stage whereas for the lower mass flow the streamline displacement is oonsiderably 
increased within the second stage. In addition it wdl be observed that the 
oscillatory motion of the streamlines 1s more pronounced for the design mass flow 
than for the lower mass flows. 

SI.nce the radial gradient of statlo pressure is proportional to p , it 
will be seen from Figure 54 that as the mass-flow rate is increased the static- 
pressure gradient at the trailing edges of the blade rows 1s also increased., except 
for the first-stage rotor row. At the trailing edge of this blade row an increase 
in the mass-flow rate causes a decrease in the static-pressure gradient, and for 
the higher mass flows the static-pressure gradient falls very rapidly at the 
trailing edge and assumes a negative value. This negative value of p at the 
rotor trailing edge implies that there is a decrease of static pressure from hub 
to tip at this point, and this Inversion of the static-pressure gradient has been 
observed on traversing behind this blade row (Rolls-Royce internal report, 1961). 
The very sudden change in the value of P in the neighbourhood of the trailing 
edge is caused by the relative Mach number reaching a value of almost unity, so 
that the flow is very nearly choked at this point. 

Using the same flow conditions as above two calculations were performed, 
one having a uniform axial flow at inlet and the other with a swirling flow at 
inlet. These two calculations were then repeated with the value of the ratio of 
the specific heats (y) changed from 1.4 to I ,333. Figure 56 shows the four 
variations of h , and It will be observed that the swirl at inlet has negligible 
effect on h after the first row of nozzle guide vanes. Also, by comparing 
Figures 53 and 56, it will be noticed that keeping the mass-flow rate fixed and 
changing the value of y is almost equivalent in this case to keeping the value 
of y fixed and adjusting the mass-flow rate. This can also be seen by inspection 
of the appropriate curves in Figures 57 and 58, which show the variations of the 
axial velocities and densltles at the design radius for several of the different 
flovF rates and conditions. 

15. Flow through a Converging-Diverging Nozzle 

As a further example of the flexibility of the parameter-theory 
programme it was used to investigate the flovr of air through a converging-diverging 
nozzle of orrculsr cross-section. It was assumed that the convergIng and diverging 
sections were identical, with a maximum diameter of 28 inches and a minimum 
diameter at the throat of 12 inches. To produce the necessary curvature of the 
walls the nozzle was divided. into seventeen sections each of 4 inches axial 
length, and it was assumed that each section had a linear variation of the outer 
wall. Thus in effect the nozzle consisted of seventeen consecutive seotions of 
conical duct. The inlet stagnation conditions were taken to be 14.7 pounds per 
square inch and 60°F, and a mass-flow rate of 38.44 pour& per second was assumed. 
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This gave an axial Mach number at inlet of 0.106 and a maximum axial Mach number 
at the throat of 0.897. 

A plan of the nozzle is given in Figure 59(a) together with the 
predicted displacement of the design-radius streamline. Figure 59(b) shows the 
varxtions of h and p through the nozzle, and from these graphs it can be 
deduced that the magnitudes of the radial gradients of static pressure and 
velocity are greatly Increased. at the discontinuitles in the slope of the wall. 
The mid-points of the first nine sectlons of the nozzle were denoted by the 
station numbers 1 to 9, and axial-velocity profiles for these nine stations are 
given in Figure 60. Since the nozzle is symmetrical, axial-velocity profiles 
for the last eight sections correspond to those for the first eight sections. 
If it is assumed that the effects of the discontlnuities in the wall shape 
have negligible effect on the flow at the stations 1 to 9 It can be seen that 
the curvature of the axial-velocity profile changes sign as the curvature of 
the wall changes sign. This Influences the streamline pattern, such that the 
streamlines are displaced towards the axis of the nozzle through that part of 
the converging section where the rate of change of cross-sectional area IS 
increasing, and are dxplaoed. towards the wall of the nozzle where the rate of 
change of area is decreasing. This effect can be seen in Figure 59(a). 

For real nozzles in which the cross-sectional area changes smoothly 
and continuously, the graphs of A and @ wouldalso be smooth, continuous 
curves. This can be achieved using the parameter-theory programme by dividing the 
nozzle into a very large number of sections such that the changes in slope of the 
wall across the interfaces are very small. By considering then the solutions at 
the mid-pomts only of all the individual sections, smooth plots of h and p 
may be derived which would be close approximations to the actual curves. 

16. Conclusions 

The versatility of the original single-parameter theory proposed by 
mitehead and. Beavers (1961) has been greatly increased by the allowances made 
for compressibility and variable-area effects, but this has been accompanied by 
a corresponding increase in the complexity of the analysis. The single-parameter 
theory was first envisaged for the incompresslble flow through constant-area 
turbo-machines because it presented a method of solution which was conceptually 
simple, easy to programme for an electronic computer, and yet sufficiently 
accurate for design purposes. In extending the theory to include these two extra 
effects it has been attempted to adhere to the same criteria as closely as 
possible, the object of the analysis being to obtain a general solution of the 
flow in the form of a computer programme which could be used to analyse any 
axial-flow turbo-machine. This programme now exists for use on the EDSAC 2 
computer of the Csmbridge University Mathematical Laboratory, and some of the 
applications to which the programme may be put have been demonstrated in 
sections 9 to 15 of this paper. 

Comparisons with the theoretxd results of Wu show good agreement for 
both compressible and incompressible flows. The agreement is particularly good 
over the whole annulus area for the single-stage compressor, but for the single- 
stage turbine slight discrepancies in axial velocity and density occur at the 
hub and tip radii. The variations of axial velocity and density within a blade 
passage do not correspond exactly, even at the design radius, but this would be 
expected since these variations depend upon the assumed variation for the gas 
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angle through the blade passage. At the trailing edges of the blade rows, 
where the gas angles are the same for both methods, the axial velocities 
and densities are identical in the neighbourhood of the design radius. 

The parameter-theory calculations for the flow of air through 
oonvergxng and &verging ducts agree closely with the experimental results of 
Lewis (1961) and indicate that the theory can be used to give accurate 
predictions of this type of flow when boundary-layer effects are not 
significant. It has been shown that large boundary-layer effects seriously 
reduce the accuracy of both actuator-disc and parameter-theory predictions, 
so that the inaccuracies caused by neglecting the presence of boundary layers 
are much greater than the inherent errors resulting from the limitation that 
the axial velocity and density belong to definite families of profdes. 
This suggests that greater accuracy of the theory is not warranted unless 
a suitable method of allowing for the boundary layers is introduced. 

Some limitations of the parameter theory are demonstrated in the 
comparisons of the predictions for the flovr in a three-stage turbine with the 
experimental results of Johnston and Sansome (1961). These would indioate 
that greater accuraoy could be obtained by including in the theory a means of 
allowing for blade losses and the introduction of some form of expansion 
efficiency for diverging flows. However, the experimental axial-velocity 
profiles obtained by Johnston and Sansome are such that any theoretical 
pretiotion would be, at the very best, a poor approximation. 

The calculations for the seven-stage compressor show how the 
oscillatory form for the variation of h , observed. by Whitehead and Beavers 
(1961) for the flow through a model ten-stage compressor, 1s still maintained 
although the definition of h has been slightly modified.. LIkewise, the 
periodio form of the design-radius streamline observed in that paper and 
assumed by seversl authors has been shown to exist in compressible flow through 
a turbo-machine of non-constant area. These results have slso been demonstrated 
for the flow through a two-stage turbine, which has been included to show hoE 
the computer programme may be used to investigate the effects produced by 
varying various operating conditions and parameters. 

Further extensions now being made to the theory include a method of 
allowing for the thickness of the blades. Existing turbo-machines have blades 
which occupy a substantial proportion of the annulus area, so that appreciable 
errors in the density and axial velocity within a blade passage could be caused 
by neglecting this area occupied by the blades. By including an alloxanoe for 
blade thickness the assumption that a blade row consists of an inflnite 
number of blades of zero thichess can be omitted and machines with a finite 
number of real blades may be analysed. Finally It is proposed to wrote .a 
computer programme for the modified theory in such a way that It can readily be 
translated for use on other high-speed digital computers. 
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APPENDIX 

The Solution of the Density Equation 

The density at any axial point within a blade row or gap is a solution 
of the equation 

T 

pi* 
-“pa + 

*(I + $1 

C R 2C.Cp73(tp- ha)' 
= 0 . 

This equation may be written as 

f(p,) = p;* -A&+ B = 0 , 

where A and B are given by 

T 
A=2 

C 

B = 
m’( +a’R, 

2C.Cp7?(ta- ha)' 

*** (33) 

--* (33.1) 

3 . . . (33.2) 

Since Ts is constant within a blade row or gap, A is a constant, but B depends 

upon the values of &, t and h at any point. 

The function f($) has a maximum point at $ = 0, a minimum point 

[ I 

i/Y-r 
at pR = 2A./y+l and a point of inflexion at pR = [wY(Y+lq i/y2 

Its form is shown in Figure 61, and it is seen that there are two positive real 
roots. 

At the minimum point, 

q” = 5 = 2Ts 
C(Y + 1) 

T Y+l 
2 A=-. 

T 2 

But 

so that k? = 1. 

T Y -1 
2 = l+- 2. 
T 2 

Consider/ 
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Consider now the greater of the roots. (2 in Figure 60). Then, since pR 
is less than urxty and y -1 IS less than unity, 

2A 
Y-1 

ha ' - 
Y+l 

:. PJ1 ' 
2TS 

NY + 1) 

T 2 
:. - >- 

TS Y+l 

Y+l Y -1 
:. - > l+- b? 

2 2 

a-. Ma <I 

The root at 2 corresponds to subscnx flow. 
Similarly, it, can be shown that the root at 1 corresponds to supersonic flow. 

Now sxnce B changes but A remains constant on passing through a blade 
rcw or gap, this is equivalent to displacing the whole curve vertically. It 
can thus be seen that a crltxsl case cccurs when the curve is such that minimum 
point falls on the PR - axis. At this point the flow will change from 
subsonic to supersonic, or vloe-versa, and B will have Its maximum possible 
value for that blade-row or gap. 

A Newton-Ralphson process has been used to solve equation (33). For 
this particular problem this process can be expressed by the following statement:- 
if pRi is any approximation to the true value of pR at any point, a better 
approximation PR(~~) is given by 

YPRi 
ycl - “pii - B 

pR(i+i) = 
(Y+I)P~i - 2APRi 

This method will break down when the denominator of the above expression becomes 
zero. Thus cccurs when ~2;~ = 2A/y + 1 which 1s the condition for unity 
Mach number. _ 

3 . ..s-p+-z, _ 
‘: T~,~~~~h~d~~~~~~.9lution, coupled with the assumptions made about the 

machiYne and-:L?&"~~-&~6~?5~~ imposes a limitation upon the uses of the existing 
computer prog'i.snime'Z '%t$i&3 been assumed that withln a blade row or gap, 
WW dt& -ajlp-d~$?&~~always have constant signs. Consequently the 
function B in eq$a$&% &3'jtl )-,alw&ys increases or de&eases continuously from 
the beginning to the‘~'$dTf-Iany section, with the result that the Mach number 
at the design radius cm&&eirer be greater than unity. Thus the computer 
programme can only be&e&for flows which are subsonic throughout at the design 
radius. 
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A.R.C. C.P. NO. 755 
JamIalY, 1963 
A PARAtIETER THEORY FOR ‘“% CCMPRF%XBLE FIDw 533.695.5: 
T”RLXlGH VARIABLE-APE4 ‘ITNW-WCHINLS 533.6.011.34 
Beavers, G.S. 
The slngle-wramstertioryproposed by Whitebead and Beavem WLC. 
WI 3335, 1961) for the analysis of lnccwmsslble Ilo= through 
cmstantarea tuI‘bo-nx&lnes is extended to allow 101’ the compms- 
siblllty of the woI,clng fluid and Ior clranges in the aPea Of tie ~“IW,- 
machine. It is assumed that at any axial posltlon. the density profile 
k~longs to a fixed family of curves governed by a pamueter v, and ti 
~~ia~velociw prorile at the same point belongs to another raw of 
pmrlles gowmed by in and a second parawter X. The problem can mJy 
be solved Using an el~CtIYx,lC Computer, and a pmglamme for the EDsAC2 
computer of Cambridge Unlvenlty FWhenatiCal IaboratorY is described. 
Results iran this prowwIne have been conpared with exlstlng theoretical 
ati experlmer,tal results anl thls ocqarlscg shans that the theory is 
surrlclently a~ouate r0r design and perl01~~~ ealculatiul9. 
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