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Svmmary

The single-parameter theory proposed by Whitehead and Beavers (1961)
for the analysis of incompressible flows through constant-area turbo-machines
has been extended in this paper to allow for the compressibility of the working
fluid and for changes in the area of the turbo-machine. The assumption is made
that at any axial position the density profile belongs to a fixed family of
curves governed by a parameter u , and the axial-velocity profile at the same
point belongs to another family of profiles governed by p and a second
parameter X\ .

The analysis is performed at a single radius, called the design
radius, and from the values of A and p along this radius the full velocity
and density variations may be found. The equations of motion are reduced to a
second-order linear differential equation for A , the solution of which is
then used in conjunction with the assumption of isentropic flow to yield the
value of u .,

The problem can only be solved using an electronic computer, and
details are given of a programme which can be used on the EDSAC 2 computer of
the Cambridge University Mathematical Laboratory to analyse the flow through
any axial turbo-machine, Results obtained from this programme have been
compared with existing theoretical and experimental results, and it is suggested
that these comparisons establish that the theory is sufficiently accurate for
design and performance calculations
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1+ Introduction

Many theories have been proposed for the design and performance
predictions of axial-flow compressors and turbines. However, as stated by
Howell (1963), most of these theories, although being mathematically accurate,
are lengthy and complicated and are thus rarely referred to by practical
turbo-machinery designers. A theoretical approach to the design of turbo-machines
is required which is both suitably simple and easy to use, and at the same time
possesses the accuracy required for design purposes. The criteria by which such
a theory should be judged have been given in the paper by Whitehead and Beavers
(1961), which presents an introduction to a method of predicting the flow
through axial turbo-machines which it is thought will be of considerable value
in design applications.

The development of a suitable theory is most readily accomplished in
a sequential manner. First, the problem of predicting the flow through a given
turbo-machine is attempted, the problem being reduced to the simplest possible
form by considering the incompressible flow through a machine of constant
annulus area. The theory is then improved as it is extended to allow for the
important effects of compressibility and varying hub and tip radii, and then it
is further refined as the effects of blade thickness, blade taper and radial
blade forces are incorporated. Finally, having thus evolved a theory for the
estimation of flows through existing machines, it can with confadence be
transposed to a form suitable for design purposes. This paper 1is concerned with
the second stage in the development of the single-parameter theory proposed by
Whitehead and Beavers, namely the introduction into the analysis of
compressibility of the working fluid and taper of the hub and tip radii.

Existing theories in various stages of development have been
summarized in the paper by Whitehead and Beavers and by Horlock (1962). The
most accurate solution for compressible flow through machines with tapered walls
is the numerical solution of the full equations of motion, derived by Wu (1952.a).
The theory presented in this paper has been corpared with Wu's calculations for
both incompressible and compressible flows through a single-stage constant-area
compressor (Wu, 1953) and through a single-stage constant-area turbine (Wu,1952.b),
and also for the compressible flow through a seven-stage compressor with a
tapering hub radius (Wu, 1953).

The method of solution in which it is assumed that the streamlines in a
plane containing the axis of the machine vary periodically with a wavelength
equal to the axial length of a stage has been used by Wu and Wolfenstean (1950)
and Schnittger (1954) for compressible flow through turbo-machines with tapered
walls, This oscillatory motion of the streamlines in multi-stage machines has
been observed by Whitehead and Beavers for the restricted case of incompressible
flow through a constant-area compressor, and by Bammert (1961) for the more
general flow problem. This last author obtained solutions for the axial
velocities in the gaps just behind all the blade rows by dropping the derivatives
in the axial direction from the Buler equation of motion expressed for the radiasl
direction,

The actuator-disc method of solution, which involves replacing each
blade row by an infinitesimally thin disc across which there is a sudden change
in the tangential velocity and static pressure, has been extensively studied for
incompressible flows in constant-area turbo-machines, and a selection of papers
is included in the Bibliography. Lewis (1960) has extended the theory for flow
through conical turbo-machines and Horlock (1958) and Hawthorne and Ringrose (1962)

have/
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have applied actuator-disc theory to the compressible flow through congtant-area
turbo-machines. As yet the theory cannot be applied to solve the problem of
compressible flow through a general multi-stage turbo-machine,

Approximate methods of solution in which the equations of motion are
satisfied exactly at one radius only and are reduced to a single differential
equation in terms of a dimensionless parameter have been proposed by Whitehead
and Beavers (1961), Howell (1963) and Mellor (4962). A1l three of these papers
gonsider the problem of incompressible flow through a constant-area
turbo-machine, and in each case the parameter involved i1s a non-dimensicnal
slope of the axial-velocity profile at any cross-section. Whitehead and
Beavers assumed that the axial-velocity profile at any axial position belongs
to a family of profiles governed by the single parameter A , and the
equations of motion were satrsfied exactly at a design radius defined as the
root mean square of the hub and tip radii. At the same time Mellor, working
independently, also assumed that the axial-velocity profiles belong to a
family of curves and he derived a differential equation at a design radius
which was so chosen that the equation could be solved analytically. Howell
also made a similar assumption abovt the axial-velocity profiles and used as
the design radius the mean of the hub and tip radii. Both Mellor and Howell
made assumptions which enagbled the differential equations to be solved exactly,
whereas Whitehead and Beavers obtained a more general solution in the form of
a programme for use on a high-speed digital computer.

The original single-parameter theory has been greatly modified in
this paper to allow for variations in density of the working medium and
variations in annulus area of the turbo-machine. The inc¢lusion of the density
as a variable necessitates a modificabtion to the definition of the parameter A,
plus the introduction of a second.parameter U defined as the dimensionless
slope of the density profile at the design radius, where the assumption has
been made that the density profile belongs to a single-parameter family of
curves. The result of these modifications 1s that the agsumed varistion of
axial velocity with radius belongs to a family of curves governed by the two
parameters A and W , thus considerably increasing the range of allowed
profiles. The equations of motion are again satisfied exactly at a single
design radius, defined as the root mean square of the hub and taip radii at
any axial position. Isentropic flow is assumed and all blade losses are
neglected, The problem is reduced to a single second~-order linear differential
eguation for A , which can only be solved by means of an electronic computer,
Details are gaiven in Section 8 of a programme which exists for use on the
EDSAC 2 computer of the Cambridge University Mathematical Laboratory, and which
can be used to analyse the flow through any variable-area turbo-machine.
Examples of the way in which this progremme may be used are given in Sections
9 to 15, which also serve as comparisons of the parameter=-theory results with
exasting experimental and theoretical results. The assumptions made, and the
method of solution employed, require that the flow within a machine be always
subsonic. GConsequently it has not been possible to compare parameter-theory
calculations with the compressible actuator-disc calculations of Hawthorne and
Ringrose (1962), in which the flow is in part supersonic.

2. Notation

The notation used is illustrated in Figures 1, 2, 3 and L,

Co-ordinate/



Co-ordinate system and velocities

] < D KW K
1

radial co-ordainate

axial co-ordinate

tangential co-ordinate
radial component of velocity
axial component of velocity

tangential component of velocity

(reneral Notation

QT e e
|

axial chord of blade or axial length of gap
constant defined by equation (59)

scaling factor defined by equation (86)

constant defined by equation (55) expressed at inlet to a gap
constant defined in equation (31)

specific heat at constant pressure

static-pressure gradient

radial gradient of relative stagnation temperature
hub radius

constant defined by equation (67)

gas constant

mass-flow rate

Mach number relative to a blade row

axial component of Mach number

static pressure

stagnation pressure

2 + h? %
design radius = I—:-——-——:l
2
tip radius

static temperature

stagnation temperature relative to a blade row
gas angle relative to a blade row

=z Tan a

ratio of specific heats

(2 - n®
variable defined as ——m ———
32R?

slope of/
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R
A = slope of { p V) profile at the design radius = —_ (pV) :L
=R

PR
R %
PR T g

i = slope of density profile at the design radius

p - density
¥ = stream function defined by equations (10) and (14)
- angular velocity of rotor

Suffices
R = conditions at design radius
S ~ stagnation conditions
o = conditions at entry to the turbo-machine
1l - conditions at entry to a rotor row
2 = conditions at exit from a rotor row
3 = conditions at entry to a stator row
Y4 - conditions at exit from a stator row

Primed numbers refer to conditions in the gaps at the points corresponding
to the above numbers.

3. Approximations

Most of the approximations made in this paper will be introduced in
the relevant sections. However, it is thought to be convenient to present, at
this point, a complete list of the approximations which will be made.

(a) The flow is assumed to be rotationally symmetriec and non-turbulent,
and the gas is assumed to be inviscid. This neglectsall blade
grid effects such as wakes and secondary flows, and also all
boundary-layer effects so that the streamlines at the hub and tip
radii follow exactly the shape of the turbo-machine at those radii.

(b) It is assumed that each blade row can be replaced by & large number
of infinitely thin blades having the same axial chord as the actual
blades. The outlet angle of these blades is the gas outlet angle,
but the inlet angle is the gas inlet angle determined by the
conditions at exit from the previous blade row.

(o) It is assumed that the radial displacement of the streamlines from
the position they would have under uniform flow conditions is small,

(d) The variation of density with radius is assumed to be of the form of
a one-dimensional parameter family of curves. Likewise the radial
variation of the product ( pV ) is assumed to be of the form of a
one-dimensional parameter family of curves. Hence the radial
variation of axial velocity is governed by a family of curves which
depend on two parameters.

(e)/
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(e) The equations of motion will be satisfied exactly at one radius
only, called the design radius. Away from the design radius the
equations of motion will not be satisfied exactly. Howmever,
since the axial-velocity profile and its radial derivative are
correctly determined at the design radius, as are the density

., profile and its associated radial derivative, it is possible to
draw the complete axial-velocity and density profiles with little
error.

(f) It is assumed that the blades exert no radial force on the gas.

(g) It is assumed that the gas flows through each row of blades on a
path such that the tangent of the relative air angle varies
linearly from the leading to the trailing edge of the blades.
This assumption is exact for a row of infinitely thin untwisted
blades designed on a parabolic centre~line working at zero
incidence,

It is not essential to the theory that this last assumption be made
in the given form. The theory can readily be medified to allow
for any given variation in the tangent of the relative air angle
through a blade passage. However the linear variation has been
chosen because it combines simplicity with a good approximation
to the actual variation through the centre of a blade passage.

(h) Within an axial gap 1t will be assumed that the circulation along
the design-radius streamline 1s constant.

(i) Within a blade passage or gap it will be assumed that the hub and
tip radii vary linearly from the inlet to the outlet of the
section, This means that the flare in compressors and turbines
is achieved by having discontinuities in the slopes of %the hub
and tip radii at the leading and trailing edges of the blade rows.

(j) Withan a blade row 1t is assumed that the stagnation temperature
relative to that blade row 1s constant along a streamline,

(k) It is assumed that the flow 1s isentropic throughout the
turbo-machine. This neglects any change in the enthalpy caused
by blade losses.

(1) 1t is assumed that the radial component of velocity at the design
radius is small compared with the axial and tangential components.

L. Basic Theory
4.1 Assumed Profiles

In the single-parameter theory for the flow of an incompressible
fluid through a constant area turbo-machine (Whitehead and Beavers 1961) the

fundamental/
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fundamental approximation was made that the distribution of axial velocity with
radius could be represented by the family of profiles

vV = VR|:1 +g<£~ -1)]. ver (1)

The introduction of compressibility into the analysis necessitates a modification
to the profiles defined by equation (1) in order to allow for the radial
variation of density. This is achieved by assuming that the radial distribution
of the axial mass-flow rate per unit area belongs to a family of profiles of the
type defined by equation (1). Hence the fundamental approximation now becomes

ool 3 (5 )]

and the differentiation of this equation in the radial direction yields the
def'inition of A , which is

R d
- _.<pv)] : E)
PﬁvR r r=R

In order to solve the equations of motion it will be found necessary
to know how the density at any axial point varies with radius, and it is
oonvenient at this juncture to specify this variation. Consequently a second
fundamental approximgtion has to be made, which involves the introduction into
the analysis of a second dimensionless parameter. It will be assumed that at
any axial position within the turbo-machine the radial variation of density is
governed by the family of profiles.

R oD I

where pn 1is proportional to the radial density gradient at the radius R, and is
defined by

R dp
}_], = e [ —_— - L (5)
Pr dr _mr=R
The assumed density profiles are shown in Figure 5.

Equations (3) and (5) can be combined to give the slope of the
axial-velocity profiile at the radius R, and this is

v

R d
..._,[—_ = l-u. LN (6)
VR ar _ir=R

Equations/
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Equations (2) and (4) show that the assumed axial-velocity profiles belong
to a family of curves governed by the two parameters A and ¢ , and

‘expressed by the equation
1 2
+ —R-a
vV = T .

L5 (3]

The assumed axial-velocity profiles for various values of A and pu are
shown in Figure 6., Equations (2) and (i) are not the only profiles which
can be used. They have been chosen to maintain slgebraic simplicity and
because they give profiles close to those normally obtained in practice.

o>

Since restricted ranges of both axial-velocity and density
profiles have been chosen, it will be possible to satisfy the equations of
motion exactly at one radius only., This radius will be termed the design
radius and denoted by R, and it 1s defined as the root mean squere of the
hub and tip radii, so that

£+ 1
Rn = ——— - X (?)
2
The mass~flow rate through the machine is given by
+
m — / zltrvp.dr [}
h
and using equation (2) this can be expressed as

t
n = 2KERVQ[ [}'+-%i< %; - %)dr R
h

which can be reduced to

m = ﬂPRvR(ta - hn) een (8)
by application of equation (7).
Equation (8) gives the important result that the expression for the
mass-flow rate is independent of A and p o+ The assumed axial-velocity and

density profiles, and the definition of the design radius, have been chosen
to this end.

42/
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L2 The Continuity Equation

For axisymmetric flow, the continuity equation is

? (pr0) + = (prT) = O
— () + —(pT) = O . ces (9)

Thus, a stream function V¥ can be defined so that

oy
;— = =- [JI‘v L (10)
r
oy
-a—x = PI‘U . see (11)

If the assumed profile for oV given by equation (2) is now
substituted into equation {10), there results

oy AR
-é; = _PRer[1 +—£<§? "1)] .

This equation can now be integrated in the radial direction between the hub
radius and a radius r to give

P - At - PR -
B L T

If equation (12) is now differentiated with respect to x, and the expression
for ay/d9x given by equation (11) substituted into the result, an equation
for the radial velocity at any radius r is obtained in the form

ay, o - B 3 rpg¥ph 1 = b r‘-h"> J
= —_— = — v _— - - see
. ax[PR R( 2 ):' ax[ 2 ( LB 2 (13)

To obtain an expression for awh/éx , it is noted that

ox ox ar 3x ’ ees (14)

and by substituting equations (10)and (11) into this equation there follows
at once the result

o¥, dh
— = p U h=-pVh-— . .
ox h'h 13 . « (15)

However, at the hub radius, since the flow must be parallel to the surface,
dh

dx

5~ |7

so/
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so that equation (15) becomes

awh

ax

This result may be obtained at once from the assumption that the streamline
at the hub radius remains on the hub at all times.

= 0 eee {16)

Using this result, equation (13) can be written in the form

prU:-f a( ) pRVh> r_<pV?t pR’\h vx h4_f>:l o

2 3x ax 2 8R” ax LR® 2

If this equation 1s now differentiated with respect to x and the result
expressed at the design radius, the following equation is obtained after
simplification

RE_;;(PU):L: [;( 2 I:(t2 _:;);PRVRK] (PRV )Rf_ +V, o ax< ;>_)"_pll;z_:_( a;)l—:nn . (18)

Using equation (8), this can be written as

1

{a(PU)] {a:czl:(ejz?njx:l+2i<f1h)R:_?:+(1? ¥ )ox 6x> (62 h’)féd")L )

Equation (19) expresses [a(pU)/bx] at the design radius as a function
of A and the known geometry of the compressor or turbine, and is thus in
a sultable form for use with the equation of motion in the radial direction,
which will also be expressed in terms of the same variables,

443 The Basic Differential Equation for A,

Neglecting any radial force exerted by or on the blades, the
equation of motion in the radial direction for axi-symmetric flow is

3y oU w 1 %
U— 4+ Veoam = = = &= e (20)
or ox r p or

Since both the density and velocity variations have been limxted to fixed
sets of profiles, equation (20) will only be exactly true at the design
radaus as defined by equation (7). Thus at the design radius, this

equation becomes
ORI Ry R
Since a(EU):L aU) + U —) ] ees (22)

R
equation (21) can be written in the form

ELEE e e

PR

R 1 3]
where g = —E— (—-E!) + j)] R ees (24)
Vg Leg N Ty or/p

In/
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In general the radial velocity at the design radius will be smell so that
the term UB(&U/%r)R can be neglected, and then g can be thought of as
a dimensionless radial static-pressure gradient at the design radius.

Now equation {17) expressed at the design radius can be written

d — (B* -~ 1) PV 3R
= -‘;;; o ] + PRE R-g-; .

as

RppUp

Using equations (7) and (8), an expression for the radial component

of velocity, can be obtained in the form

(¢ - 1) 2
"PRR[B ': 3211:‘1 : ] ’ ;’:%:E] ' vee (25)

R

UR’

Substituting equation (25) into equation (23) gives

n (F-1p-y R 4 L,
(27 - LG4 6a) Eme )

R

Then the elimination of Il[a(pUL/ax] from equations (19) and (26) yields
the equation

B~ (8- 1) 10p o (8- 12 :
G5 sl e e, e

1 w3 3 10p - R -
Eeml G ez eD)) e el
(- 1*) v dx +# - n? ox p ox ¥~ B b

Now, define a variable m such that

(P-* N
no= : ees (28
32 1 (28)
Substituting this definition into equation (2) gives
pY »- R?
—m = 1 -+ 16!‘[ .
PRVR B-n?
Thus, at the tip radlus,ﬁw@ﬁyR = 1+ 8n
and at the hub radius, pvy@R¥h=
i 1
so that separation occurs at the hub or tip radius when 5 = + —
' 8

Returning/
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Returning to the main analysis, since equation (27) has been derived
for a fixed radius, it is dependent on x only, and hence the partial
derivatives may be replaced by total derivatives. Introducing the variable T,
equation (27) then becomes

3 32 Repme :
:_; i (19%2 2 ) (ig-?)ﬂn i (t"a:l- ) [G)R_ ¢ ‘%(R%)]

i
a , 1 S B P vee (29)
NI
dx \¥*- 1*/ ax paRt’-h’

This is the basic differential equation to be solved. However,
before a solution can be obtained it is necessary to lmow how the various
quantities appearing in this equation vary with the co-ordinate distance x.
The hub, tip and design radius at any point will all be known from the
geometry of the turbo-machine under analysis, and the quantity (W/V)R

will also be known as this depends upon the blade geometry. It therefore
remains to cbtain expressions for the variations with x of pR(1/b.6p/bx)R

and g. This will be done in section 4.5, but preceding this the assumed
variations of hub and tip radii waill be discussed.

hoi Hub and Casing Profiles

To samplify the arithmetic it will be assumed that both the hub
and tip radii change in a linear fashion within any blade row or duct. This
assumption will, usually, be exact, as the mechanical difficulties encountered
in the manufacture of the individual blades are such that only rarely are
compressor or turbine blades made with hub and tip variataons which are other
than linear. This means that the hub and casing profiles of a turbo-machine
each consist of a series of straight lines which may or may not have
discontinuities 1n slope at the leading and trailing edges of the blade rows.
Typical hub and casing shapes can be seen in Figures 1, 14, 28(a), 28(b),
47 and 52,

Since the hub and tip radii vary linearly within any blade row,
dh/dx and dt/dx are both constant within that row. Then from equation (7)

4ar 1 dt
Rem = —| t—4+ h—
dx 2 dx
and a

209 &G

Thus it can be seen that at any point within a blade row or gap the term R.dR/dx
depends upon the values of the hub and tip radii at that point, whereas the
term d(RdR/ﬁx)/ﬂx is the same at all points waithin the given section,

ees (30)

4.5 The Density Variation

In order to find how the density, and hence (1/p.dg/dx)R
and g, varies with axaal distance through a blade row or gap, it 1s necessary

to/
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to meke further assumptions about the nature of the flow. Consequently,

it will be assumed that,

(i) the stagnation temperature relative to a blade row is constant
along a streamline; and

(ii) the flow is isentropic.

The second of these assumptions implies that the flow obeys the law

T = cpy—1 ’ sre (31 )

where C is a constant for any given blade row or gap between adjacent blade
rows, and has the same value for all blade rows and gaps. This follows since
across any interface between a blade row and gap both the static temperature
and the density must be continuous, so that ¢ must also be continuous,.

Now, relative to the blade row under consideration, the energy

equation for a perfect gas expressed at the design radius may be written
as

CT = GT+-- 1+ &),

P8 cou (32)
where T, is the stagnation temperature relative to the blade row and Jc
is the tangent of the relative gas angle a« at any point. Combining
equation:n?B) (31) and (32) there results

T (1 +

w o, 2Us) e (33)
P R oo s
2cpca€(1:°-h)

which is the equation governing the wvariation of within any blade

passage or duct, Since the values of all the quantities appearing in
equation (33) except Py will be known at any axial positiom, this
equation can be solved numerically to give the value of the density at

the design radius for that chosen axial position. Some notes on the
method used for solving equation (33) are given in the Appendix. For

the purposes of calculating the variation in densgity within a blade
passage or gap it will be assumed that the relative stagnation temperature
is constant along the design radius. This will have an insignificant
effect on the solution of equation (33) since the radial displacement of
the design-radius streamline is very small,

To calculate {1/, .3p/ax) , equation (33) is differentiated
with respect to x, Since Es’ m and § are constants, this gives

[c(y + et - 2'.1'393,:'(1 Bp> 2 5 ljé_t _%_53% o ooe (34)

R G (P h=)= For)  (1+6)

Using/
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Using equations (7), (31) and (32), this equation can be written in the form

oAy RA [((ta_h) e )

(y—1)GPT p Ox4 (y-‘l)CT (4 HgoR)
Now, let the axial Mach nunber at the design radius be denoted by Mx’ and the

Mach number relstive to the blade row at the design radius be M,
Then

vQ
¥ = R
X ('Y - 1)Cpt tee (36)

and.

o= WU+ A) .

eee (37)
Using these definitions, equation (35) becomes
1 ae ¥ 2& hEB Pr i
(p'ax> R (e #¥) (1+&) ] ree (58)

R
This equation gives the required variation of (1/b ap/Bx)R in terms of
the relative Mach number and quantities which are functions of the geometry
of the turbo-machine being analysed. The relative Mach number can be
obtained by combining equations (7), (31) (36) and (37) to give

# (1 + &)
(- 1P (y - 1)c gp Y+ : e+ (39)

The final quantity required tc mske the solving of equation (29)
possible is the value of the static-pressure gradient, g, along the axial
direction. However, as the static-pressure gradient will vary along the
machine in a manner that cannot readily be evaluated, it is convenient to
express it in terms of the radial gradient of the relative stagnation
temperature, the variation of which can be calculated. Before this is
done the relationship between p and g will be derived.

M =

The equation of state for a perfect gas is

p = EpT , veo (10)

where K is the gas constant for the particuler gas being used. By
eliminating the static temperature, T, from equations (31) and (40), and
differentiating along the radial dlrectlon, there results

1 9p Y 30

p or p or
1 /R dp
- !.l. - —(———) sea (l|-1)
Y \p ér

R

Hence,/
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Hence, since b =
and
g =
(neglecting the UdU/dr term in
equation (41) can be expressed as
38 -

7 -

i/i‘i)

R

eos (41)
9p

P or
M

. »
PR ( ar)n

equation (2#))

oo (12)

To relate g to the radial gradient of relative stagnation temperature,
equation (32) is specified at a general point in the co-ordinate system,
differentiated in the radial direction and the result then expressed at the

design radius.

aT

7 o
CI’K —

(),

ar

If these steps are performed the following equation is obtained:

)R(n )+ ﬁ——)\f‘ .

(13)

Equations (31) and (40) can be d;fferentlated and combined to give

oT

% (%),

(

1 9p

p or

%’

and this can then be substituted, together with equation (6), into equation (43)

to produce the equation
R.C , oT

. ap .
() - ety (5) - -
'VB ar R Rﬂﬂ. ar L Y (l*)_‘_)
R R R
Hence, using the expression for pu given in equatio (42) this equation
becomes a5
g=e x(m-ﬁi) RO\ 33 /R
1 - ee (45)
RCP ams
where G = —= __.> eeo (L6
vy \or /R (46)

This expression for the static-pressure gradient can now be substituted into
equation (29) to produce the general equation governing the flow in a blade

passage or in the gaps between the blade rows., The resultant general equation
is 2 p2
32n @& B(1+ &)
s Laswmmlen) =5]
dx (= 1) ax 1 -0
1 WA? d dRr dR ?
s e (L) 2, @
(1-M°)(t”-h") (t*- 1n?) V/5 dx N dx dx \pdx/r
dh
mﬁi( - >]
(£ - 1) '

It/
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It only remains now to find how the gradient of relative stagnation
temperature varies through a blade row or gap and equation (47) can be solved.
To derive the required variation consider two planes, an axial distance Ax
apart, within any one blade row or gap, as shown in Figure L4, Consider now
the neighbouring streamlines, AB and CD, which are always close to the design
radius, and which intersect the two planes in points A and C, B and D
respectively, where A and D lie on the design radius. The points A and C are
at radii R1 and R1-8R respectively, and like-wise the points B and D are at
radii RZ + 6R2 and R.. Then since there can be no flow across these h

2
streamlines,

i

T, po, (B - (2, - 531)2] 'JtVRBpRal:(Ra con ) oK |

H

VRJ.pRa.RzaRi vRa pRsRa 8Rn

At the design radius,

constant ses (48)

VﬁpRgsR

Hence, since Ts has been assumed constant along a streamline,

aTS
—— Ev P R .
( dr ) R'E

R
& From the definition of G given by equation (46)
RCp
G o -VT VRDRR .

Thus, using equation (8),

¢ « p%B?(t? - hn*) . cee (49)

Hence, if the value of G is known at inlet to a blade row or duct, the
value at any other axial station within that same blade row or duct can be found
from equation (49).

A1l the information necessary for solving equation (47) has now been
derived. In Sections 5, 6 and 7 details of the methods employed for obtaining
solutions in annular ducts, isolated blade rows and multi-stage machines will be
presented. However, before considering these particuler solutions of equation
(47) it will be shown how the value of m at any axial position within a turbo-
machine can be used to predict the radiasl displacement of the design-radius
streamline at that position,

4.6 The Displacement of the 'Design-Radius' Streamline

Referring to Figure 4, the stream function ¢ at the point A is given
by equation (12) as

VB{pR: 2 2 R:-—h: R:—h:
by -V, = - R - b +7\( - ):I,
2 : LR? 2

1

where the subscript 1 refers to plane 1.

By/
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By making use of equations (7), (8) and (28) this equation can be written as

n
= ~=(X_
‘I“A q’hi - x (4 .n.l.) * wee (50)
Similarly, at the point D
v ~ (Lo
'q,( - — - — _—‘n .
0 e R 2 e (1)

Subtracting equation (50) from equation {51) gives
m
‘l‘o"‘JTAz;(T!g"ﬂi)*’#’ha“"m -

Now, the streamline at the hub radius will always remain at the hub radius since

all boundary-layer effects have been neglected, Hence wh: = wh’ . This
result could also have been deduced from the equation
oy oy
(a\p)‘h= (-—) 6x+<-—> ér ,
. dx /h or /h
together with equation (14) written in the form
ay 3y, oh
— = - s ¢ — 3
( ax:>h, ( ar )h ax
since B¢h/bx = 0 from equation (16).
m
Consequently, Vo=V, = — (n, -m) & cee (52)
=
However, at the plane 2, equation (10) can be written as
¥p~¥p = - Vp PpRR, T oeee (53)
and since A and B lie on the same streamline, y, = ¥ » 8o that equation (53)

be comes

Equating this equation to equation (52) and using equation (8), gives

(f = 1)
By = —————— . (n,-n),
R,
where 6R2 is the radisl displacement from the design radius at plane 2 of the

streamline which was coincident with the design radius at plane 1. Thus, if the
plane 1 is taken well upstream of the turbo-machine where the flow is uniform and

there/
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there is no radial displacement of the streamlines, the value of m at this
point being denoted by m, , then at any axial point in the turbo-machine the
radial displacement from the design radius of the streamline which originally
coincided with the design rsadius is given by

(* - 1)

R = —, - .
R - (n-n) eee (54)

5« Flow in an Annular Duct

The first part of this section will be concerned with the solution of
equation (47) in a general variable-area duct. This will therefore include the
method of solving this equation in the annular gaps between adjacent rows of
blades in a multi-stage turbo-machine., In the second part of this section the
solutions of equation {(47) in the annular ducts which form the inlet and exit
of a compressor or turbine will be considered, and it will be shown how the
solutions in these two components can be used as boundary conditions for the
complete solution of equation (47) in a multi-stage compressor or turbine,

5«1 General Variable-Ares Duct

For flow in an annular duct the criterion which must be satisfied is
that the circulation along a streamline is constant. Hence, along a streamline,

Wr = constant
sae (55)
or BVr = constant
Now, whereas in a blade row the variation of (aﬁ/ar)R in the axial

direction is specified, in a duct the variation cannot be so specified and
the terms involving (aﬁ/ or)y  must be eliminated from equation (47) before
a solution can be obtained.

Referring to Figure L, which shows an elementary section of duct, 1
and 2 are two radial planes distance Ax apart. The design radius cuts
plane 1 in A and plane 2 in D, and the streamline through point A cuts the
plane 2 in B, Likewise the streamline through D cuts plene 41 in the point C.
CA = é‘:RJI and DB = 6R2. Then at the plane 2,

3
(Wr)B = (WI‘)D + ;—- (Wr)D .BRD ’ soa (56)
and at the plane 1
d
(Wr)c = (Wr)A - a_r (Wr)A' 6R1 . e (57)

Since A and B lie on the same streamline, from equation (55),
(wr)A = (Wr)B .

Similarly C and D also lie on the same streamline, and so

(Wr)c = (Wr)D .

Hence,/
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Hence, using these results, equations (56) and (57) can be combined to give
for any two adjacent streamlines

o o
— (Wr) 8. = — (Wr) &R .
ar D% or )A 1 ees (58)

But, from equation (48),

v

Ra Pra B ﬁR =

'RQPRQR 6R

so that, by combining this equation with equation (58),

neet [ar (Wr):, = CONSTANT = A . vee (59)

Expanding equation {59), and inserting the expression for (WR) (av/or)
given by equation (6), leads to the result R

By R , 38
1-p+1+-—-(-—->:l=.a.
PRR B or /R

Using the expression given by equation (42) for p , this equation becomes

of
0 (=) = aepg - A-Oet-en)
/R
and this can now be substituted into equation (45) to give
. - G-M1 + ) - Ao B + (M + 1 - )
1 -

Ther ef ore 6
3 : L N ] O
Pr ﬁ; (€0)

1 - M

X

Noting that (g\R = ﬁR for the flow in a duct, and substituting equation (60)
into equation (§9 }, the general equation governing the flow in a duct can be

obtained in the form

#n 1 dp dn 32n dR . ® R®
F G
& p ox /R dx (t* -p*)® ax 1-M"
... (61)

Ap BB -fM 4, @ d ( )
) (t‘-h)[ . 1-M§c = a( ;>*<%a—i {+4(t°-h’) REJ

The equations governing the variation of density, equations (33) and
(38), have also to be modified for flow in a duct, since they both contain fr

explicitly. In a duct ﬁR is not a simple function of axial distence, as it is

&Tﬁ‘
&T&

in a blade passage, but because of the condition of constant ciroulation along a
streamline BR at any axial position depends upon the value of PR at that

position.

Bquation (33)/
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Equation (33) is

Pgﬂ —Tip’+ w0 ) = 0

c 26 02 (- 1 ¥

In order to keep the equation for the density at the design radius as simple as
possible, an approximation will be made at this point concerning the streamline
displacement, It will be assumed for the purpose of calculating the value of the
density at the design radius that the radial displacement of the design-radius

streamline is small so that equation (55) may be assumed to hold at the design
radius.

From equation (55), BV R = constant = B .

Substituting this into equation (33) gives the equation for the variation of
the density at the design radius within an annular duct:

T ¥ o
Y+ 3 3
-l —- * =0 ,
PR R[: c 2 G ] 26 O (- 1F)° oo (62)

By differentiating this equation in the axial direction, and using equations
(8) and (36), there results

dt dh
(.1.32:) = E; [:2<t5; -Iﬂﬁé)-+f§;R.EE.:]
R - dx

p Ox (£ -n*) R?

ese (63)

Having obtained p, from equation (62), AR can be found from equations (8)
and (55), and this can then be used in equatvion (63) to calculate the value

of (1/p2p/ax) -

Eguations (61), (62) and (63) are the relevant equations for flow in
an annular duct. At any point on the design radius the velue of the density is
calculated from equation (62), and this value is then used in equation (63) to
give (1/p.dp/dx)p  at that point. Finally equation (61) cen be solved using
these two results and the known geometry of the duct.

For the special case of flow in a duct having constant hub and tip

radii, equations (62) and (63) show that Pp is constant and (1/p*3p/dx)g=0 -
Hence the problem is reduced to solving the differential equation

&n 32.8° o ApRE, - & = M
- - = 0 - e
ax* (P -n)¥P - M;) (£ -p*)(1 - M;) (64)

52 Flow at Inlet to a Compressor or Turbine

It will be assumed that the flow at inlet to a turbo-machine displays
the characteristies of flow in a constant-area duct. This is equivalent to
placing directly upstream of the first blade row a section of duct which has
constant hub and tip radii equal to the values at the leading edge of this blade
row, as shown in Figures 1 and 52.

Denoting/
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Denoting the values of all quantities at the leading edge of the
first blade row by the subscript o, M, 1is the solution of the general
equation (47) written as

dn RREE(+ 4N 6 - Rﬁn(%%lt_% (1-) )
W Ewya-w) | G-ee-w) 0 e ()

where £ in this equation is the tangent of the air angle relative to space
at inlet to the first blade row, i.e., ﬂR is the tangent of the absolute air
angle into the first blade row: (38/or), = is the corresponding radial gradient
of @ at the design radius. Except in"some special cases both ﬁR and aﬁ/ar)R
at inlet to the first blade row will be zero.

Introducing now constants k_  and 1 equation (65) can be
. o] ol
expressed in the form

&n
i i P oen (66)
where
€ - -¥
¥ o= o 0) ( O) ee (67)
° 2 (1 + 4)
and

(8, - ) o () - 41 - ) |
Teu 32 B2(1 + &) )

The solution of equation (66) is

... (68)

_ x/ko
m=-mn_) = (n-m_Je ,
and it is seen that Nou is the value of m far upstream of thke first blade
I'OWe

Tt is convenient to express the solution of equation (66) in the form

@), - 5 ©

since this result can be used as a boundary condition at entry to the first
blade row for the solution in a multi-stage turbo-machine. By writing
equation (£9) in the form shown, the boundary condition at entry to a turbo-
machine has been transferred from a boundery condition expressed far upstream
of the machine to one at the leading edge of the first blade row, which is more
suitable for the numerical method used to solve the genersl flow equation,

Before/
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Before m,, and k. can be evaluated, and before the sclution for a
multistage machine can proceeg, 1t is necessary to know the values of p, V, p, T
and M_ at inlet to the machine (station o). Let the ambient stagnation pressure
and temperature be denoted by p and T  respectively., Then, at the design
radius, for isentropic flow 80 50

v (1+8)
Ro Ro
TSRo = TRo + 2C '
P
no= ﬂvRopRo(t% - H%)
Mg ‘fﬁ.o
xo Ppo = KpROT.Ro ’

(v = 1), T,

where the subscript ©  again refers to conditiors at entry to the turbo-machine.
These equations can be re-arranged to give the following expressions:

y+i

mwC_T o~ y-1 -z
2 _SRo = r—}-{g— T+— M;o(1 + ﬁ’Ro):I 2 Y"J‘ ] e (70)
“PsRo(fz B h%) y =1 2
L i by~ 1 ’ vee (71)
Ver - z
cp sRo [1 + 2—2-1 M:coﬁ + ﬁ;{o)] g
7 1
_Ro _ , , eee (72)
Tsro [1 = 1,0+ ﬁ;o)]
P 1
Ro = v ees (73)
PaRo [1 + I (e ﬁ?{o)}

Hence M__ can be found from equation (70) and substituted into equations (71),

(72) end (73) to give the velocity, static temperature and static pressure at the
station o, the density following from the perfect gas law.

503 Flow at Exit from a Compressor or Turbine

Corresponding to the assumption made at inlet to a turbo-machine that
the flow behaves like the flow in a constant-area duct, at exit it will also be
assumed that the flow behaves in this manner., Consequently it will be imagined
that the hub and tip radii are constant after the trailing edge of the final blade
row. It is not essential that the hub and tip radii should remain constant
immediately after the final blade row; it is only necessary that the turbo-
machine should eventually be terminated with a duct of constant hub and $ip
radii.

Since/
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Ld » - 2
Since PR 1s constant in a duct of constant area, vﬁf;BR and M will
also be constant, so that equation (6L) can be written as *

&n ‘
o " T e see (78
where
. Bomra-e
© 352 B i
- L (e A (B 1)
=d 32 B,

The subscript e denotes conditions at the exit plane, i.e., the plane where the
turbo-machine joins the hypothetical constant-area exit duct,

The solution of equation (7,) is
-x
(m=mng) = (ng-m gl /e

Thus mn,3 1is the value 7 would have far downstream of the final
blade row of the turbo-machine, This equation can be written as

1
&y = —
= — M, -nyg)
(axe k] e ldl 2 «ss (75)
and this represents the boundary condition at the exit plane for the solution in

a multi~gtage turbine or compressor. The method of using the boundary conditions
expressed by equation (69) and (75) will be indicated in Section 8,

The results obtained in this seoction may be compared with the solutions
of Hawthorne and Ringrose (1962) for the compressible flow in constant-area ducts.
These solutions have exponential decays of the types given by equations (69) and
(?5), consisting of a series of terms each having a different value of k.
Hawthorne and Ringrose show that the k's are given by the equation

h +
Ipn (E) Jp+a (E)

n\ £
pr1<E:) Yp+¢<£>
Comparing these solutions with those obtained by Bragg and Hawthorne (1950) for
incompressible flows in annular ducts it will be observed that the value of k for
incompressible flow is multiplied by the factor V1 - M; on the introduction of
compressi bility effects.s This effect will also be obsérved by comparing the
expressions for k given in this section with the expressions derived for k by

Whitehead and Beavers (1961) for incompressible flow in constant-area turbo-
machines,

6./
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6. Flow in a Blade Passage

The equation governing the flow through a row of blades is equation (47),
which has been derived without considering any specific type of blade row, and is
therefore true for both stator and rotor rows. The only term in this equation
which depends upon the type of blade row under consideration is (W/v)§ .
Reforring to Figure 3,

for a rotor row (E)g = (@ - ﬁ)z eer (76a)
vV )e 7~ R
R

2
and for a stator row (lv) ﬁ; s eee (76Db)

v
R

where 1 is the angular velocity of the rotore Thus any analysis applied to
equation (1,.7) for the blade passage of a rotor row will also apply for the blade
passage of a stator row if I is put equal to zero, The remsinder of this
secbtion will therefore be devoted to the flow through a single row of rotor
bl&deSe

In order to solve equation (47) at any point within a blade row the
velue of B, and of (38/or)y  at that point must be known. Within an annular

duct these gquantities were determined from the condition that the circulation
alorg a streamline must be constant. However, within a blade passage this
condition no lorger applies since the variation of By through the passage is

fixed by the blade profile geometry. The value of [:?R at any point could be

obtained from en analysis of the pressure distribution round the cascade blade,
but this is not practicable and so an assumption sbout the variation of 'BR

through a blade row has to be made. In this analysis it has been assumed that £
at the design radius varies linearly with x from the leading to the trailing
edge of the blade. Consequently, By and (aﬁ/ar)R are given by

X
a

i} ), - e [ 2] ]

This assumption is very close for the central streamlines in a blade passage, and
is exact for a row of infinitely thin blades working at zero incidence and
having a parabolic centre~line at the design radius.

P = Fpy + (Bpam Fp,)

eee (77)

All the information necessary for obtaining the value of M at any
axial position within a blade row has now been set up. The solution is performed by
first deriving the value of the density from equation (33), and then this result,
together with equations (30}, (38), (76) and (77), can be substituted into
equation (47), to yield a differential equation of the type

&n dn
G;-g@m;_gumz=g&) (78)
where f, (x), fz(x) and fj(x) are functions of x only. Equation (78) requires

two boundary conditions. For a single isolated blade row these boundary
conditions are furnished by equations (69) and (75), whereas for a multi-stage

turbo-machine/
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turbo-machine the boundary conditions at the leading and trailing edges of any
one blade row depend upon the flow conditions in the two adjacent gaps or blads
rows. In this case equations (69) and (75) provide the boundary conditions
which must be satisfied at inlet to and exit from the turbo-machine., The method
used for solving equation (47) in a multi-stage turbo-machine will be discussed
in sections 7 and 8,

7 Flow in a Multi-gstage Turbo-machine

In sections 5 and 6 it has been shown how equation (47) may be solved
in annular ducts and in individual blade rows. Since a compressor or turbine
consists of alternate rows of stator blades and rotor blades separated by small
axial gaps, the solution for m in such a machine consists of solving equation (47)
in each of the blade rows and gaps in turn. In order to show how the solution is
continued through the successive blade rows and gaps of a turbo-machine, consider a
small section of a compressor consisting of a rotor row followed by a gap which is
followed then by a stator row, as shown in Figure 3, In this figure the primed
(") numbers represent conditions on the gap side of an interface between a gap
and a blade row, and the unprimed numbers represent conditions on the blade row
gide of the same interface.

On passing from a blade row into a gap, or from a gap intc a blade row,
the hub and tip radii must be continucous, and hence the design radius will be

continuous, although there need not necessarily be continuity of %ﬁ s %ﬁ and

%%. Also, at an interface the density, static tempefature and static-pressure
gradient (g) must be the same in both the gap and the blade row, and hence it
follows from the first of these conditions that | must be continuous at the
interface. In addition the axial and tangential components of veloeity will be
contimious across an interface, so that the values of A and pu at inlet to any
section are equal to the corresponding values of these quantities at exit from

the preceding section. Finally, since there will, in general, be discontinuities
in the gradients of the hub and tip radii at the interfaces, there will be
corresponding discontinuities in the gradients of the sireamlines at these radii,
Across an interface where the hub and tip radii change it will only be possible

to have one streamline with a continuous gradient, and it will be assumed that this
is the design-radius streamline,

At any axiel position, the design-radius streamline will have been
displaced radially through a small distance OR, so that it is at a radius R + 6R,
where B8R is given by equation (54). Thus, from equation (17) the radial velocity
on this streamline is given by

(® + 8R)? bV 1B 3 v
(R + 8R)py gUp op = - ——— - 2 (PRVR>+ 2 (.}_E._) - @R+ 63)4__< PR R)”)
+OR K4 2 3x ax\ 2 ax\ &r?

3 v 3 Va,K B
+ (R + 8R)*— (———pR R)> +—[—-—PR L (-—-— --—)] .
ax & ax 2 LB 2

Using/
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Using equation (8), and neglecting all second-order terms in &R and sbove, this
equation can be simplified to

R -—
— 9
: m (1 53){‘3 (‘l:.‘2 h)?\. ax 2 a( 1 )

n dn R—S—iﬁ
PRotR RaSR T {dx Ty h’ [ (t’ h’) - h’:H .

This can be wratten as

or

dR

m & R R &R 3 4 -1
PR+6RUR+6R = —ﬂ?{;‘b 2 _h9+ (‘t’ - hﬂ)ﬂ s;( R "‘)} . ere (79)

Thus equation {79) implies that, across an interface between a gap and a blade
row, dR

n R R® SR 3 -1
—_ + . ...( ) = CONTINUOUS . eee (80)
ax ¢ -r (#* -KH)P® ax\ R

This result could also have been obtained from the condition that the
slope of the design-radius streamline is everywhere continuous, for this implies
that

d
—_ (R + 6R> is continuous.
ox

Hence using equation (514)

d (¢ -w)n-n)
—|( R + ] is continuous.
0x R
&R £ -1 & RSR 3 A -1
Thus l:_ o——— gy — o —— - (—-—>:| 1s continuous,
ax R ax (£ -1) oax R

which is the same condition as equation (80) because h, ¥ and R are everywhere
continuous. The final term in equation (80) will normally be very small, so that

by comparing this equation with the expression for UR given by equation 125) it is

seen that UR will be very nearly contimuous across an interface.

The two conditions, namely the continuity of 7 and equation (80),
enable n and dn/dx at inlet to any blade row or gap to be found from the
values of these quantities at exit from the preceding gap or blade row. These
inlet values provide the two boundary conditions necessary for a unique solution
of equation (147) to be determined. It therefore follows that if the values
of m and dn/dx are known at inlet to a turbo-machine their values at every
other point on the design radius can be found,

It should be noted here that although m and A are contimuous from

one component of a variable-area turbo-machine to the next, dn/dx and @/dx
are not, so that curves of m and A will have discontinuities in gradient at

the/
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the various interfaces. This is a result of the assumed geometry for the
turbo-machine, in which the hub and tip radii are allowed to have changes in
slope at each interface. m and X\ will only have continuous gradients when the
gradients of the hub and tip radai are the same on both sides of an interface.
However, in general, for small changes in the slopes of the turbo-machine

walls there will only be small changes in the gradients of n and A .

Having shown how m and dn/dx are determined at inlet to any
section of a turbo-machine it now remains to show how the various gquantities
which form the coefficients in equation (47) are determined at inlet to
that section. In this context a section is any blade row or gap in the
machine,

Consider first the terms BR and (aﬁ/Br)R . The values of these

guantities at inlet to a section are calculated from the values of the
corresponding terms gt exit from the previous section by applying the
condition of continuity of tangential velocity. Since £ 1is the tangent
of the relative gas angle at any point, it follows that at any radius r the
whirl velocity W is given by

eea (81)

W {fir = gV for a rotor row

1]

w

BV for a stator row or gap. veo (82)

Hence, referring to Figure 3, equations (80) and (81) can be used to yield the
following expressions for the values of ;9R at inlet to the various sections.

For the gap-rotor row interface (interface 1)
ﬁm = - ﬁR.; b — 000(833.)

and for the rotor row-gap interface (interface 2)

ﬁRQ 1 = - ﬁRg f o— . 000(85b)
Va
Lakewise, for the stator row-gap interfaces,
ﬁ%b = ﬁ%ﬁ' ’ ﬁhg = ﬁhﬁ' ’ s+ (830)

Expressions for the values of (aﬁybr)R at inlet can be obtained by
differentiating the above relationships in the radial direction. For example,
at an interface between a gap and a rotor row, the value of (aﬁ/br)R at
inlet to the rotor row is given by

Q
5 5
<a_lj)m - (Tf)m' * ;(1 T M) )

Also/
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Also, across a stator row-gap interface it follows from the expressions for BR

that the value of (aﬁ/ar)R is constant, Consequently the required values of ;SR
angd. (aﬁVBr)R can be found at inlet to any blade row or gap.

Consider next the change in the relative stagnation temperature TS

across an interface. On passing from a gap into a stator row, or vice-versa,
there will be no change in the value of the relative stagnation temperature,
However, for any interface involving a rotor row there will be a sudden change in
this quantity, but this change can readily be calculated.

Ecuatior (32) at the interface 1 of Figure 3 gives

vli

1
T,e = T, +I 1+ %1') for the gap
b
v
T, = T, +— (1 + ﬁ%; ) for the rotor row.
2CP

As the static temperature is continuous across an interface these two equations
can be combined to give

T, = Ty +§g<ﬁ;{4 -ﬁ“m,> . ere (84)

Ecuation (84) expresses the relative sbtagnation temperature in a rotor row in
terms of the relative stagnation temperature in the gap preceding the rotor row
and the known relative gas angles at the interface between the gap and the rotor
row. A similar equation can be found for the interface 2 of Figure 3. This is

V3

Tear = Ty +H_<b%a' _BGRJ )

2C
P

Returning to equation (47) it is seen that the orly quantity which
remains to be determined across an interface is the radial gradient of the
relative stagnation temperature, denoited by G. Across an interface composed
of a gap and a stator row G will be constant, but across any interface having
a rotor row as one of the components there will be a sudden change in the value
of G. This change in G can be found by applying the condition of constant
redial static-pressure gradient at the interface. Thus at the interface 1 of
Figure 3, equation (45) gives for the two constituents

Gy -l(1+ﬁ°,)-&ﬁ”(%)
g = N ” Re RAOT /Ryt for the gap
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and g

for the rotor row.
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Hence G at inlet to the rotor row is given in terms of G at exit from the gap by
the equation
1 - M

G, = YTJE.[GE' -N(+ A - Riﬁkl'@é)l{i‘:l +7~1(1+ﬁ§1) + R,@Fi@—g>&... (85)

A similar equation exists for the interface formed by the trailing edge of a
rotor row and the following gap,.

The above results thus show how the form of equation (47) in any
section of a turbo-machine is related to the form of the equation in the preceding
section. Hence, once a solution for m has been found at inlet to the machine,
it is possible to obtain a solution at every other point along the design radius.
The numericel method of solving equation (47) will be described in Section 8.

In the foregoing analysis it has been assumed that the individual blade
rows are always separated by axial gaps. This condition is not essential to the
analysis, which will still hold if the gaps are omitted. Thas follows because
aoross en interface involving a gap and a stator row G, T,» By and(aﬁv%r)R

are all continuous, so that the conditions derived for the transference of the
solution across a rotor row-gap interface are unchanged when the gap is replaced
by a stator row. Consequently, if so desired, the gap between the blade rows may
be omitted and the turbo-machine analysed as a succession of rotor and stator
rows. This solution will differ slightly from that obtained by including the
gaps, the magnitude of the difference depending upon the relative axial lengths
of the blade rows and the neglected gaps.

8. The Numerical Method of Solution

In general it 1s not possible to derive an exact analytical solution of
equation (47) in either a blade row or a gap. Consequently a numerical method of
solving this equation must be employed, and this can only be conveniently done
using an electronic computer. For any turbo-machine equation (47) has to be
solved in the individual blade rows and gaps in turn, and the complete solutions
have to satisfy given boundary conditions at the two ends of the machine. The
easiest method of obtaining the solution which satisfies these two boundary
conditions depends upon the linearity condition of equation (47). This equation
is a linear differential equation in mn for both blade rows and gaps. Thus,
if m, dis any solution of the equation and v, is any other solution,
then bni + (1-b) is also a solution, where b is any constant. Hence, if
two indrvidual solutions which satisfy the boundary condition at inlet are
continued through the machine these solutions may be scaled at exit so that the
resultant solution satisfies the boundary condition at that point, This will
yield the value of the constant b, which can then be used to obtain the true
solution at every point within the turbo-machine., This is the method used in
the programme wraitten for the EDSAC 2 computer of the Cembridge University
Mathematical Laboratory. A short description of the techniques used in this
programme will now be given.

Two initial guesses are made for the value of n at inlet to the
turbo-machine, and from these imxtial guesses two entirely separate solutions
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are obtained simultaneously in each succeeding blade row and gap. For any
blade row or gap the inlet conditions are first derived from the exit conditions
of the previous component, as described in Section 7. The component under
consideration is then divided into & large number of small axial elements,

and a Runge-Kutta-Gill numerical method is used to advance the solution from
one element to the next. However, before this Runge-Kutta=Gill process can be
used at any point, the values at this point of t, h, R, ﬁ , (aﬁyar)R’

G, pgs» Vs ¥ and (1/p- dp/ox), must all be known. The f:l.rs'b six of these
quantities can readily be obtained by the methods described in the foregoing

sections. Vp, M, and (1/p- ap/%x) all depend upon ©0p at that point, which

itself is obtained by solving equation (33).

On reaching the exat from the turbo-machine neither of the two
solutions will, in general, satisfy the boundary condition at that point, which
is given by equatlon (75) as

1
dy
&), 7 g oo SELE

However the two solutions can now be scaled so that the resultant solution does
satisfy equation (75). The scaling factor b 1s obtained in the following manner,

Denoting the two solutions by the subscripts 1 and 2, it follows from equation (75)
that

%?C)e:."' (1 - b) (gg)ea ) -;“;I:bﬂa +Q- b)na " Mg T (- b)n”d‘a:l

Hence, this equation gives

1

1_(710064-71 ) -k, <%> . -ee (86)
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This scaling factor b can then be used to scale the two original solutions at
every point within the machine to yield the true solution of equation (47).

It is a property of equation (47) that any solution which is not the
exact solution will diverge very rapidly, so that after a few stages of a
multi-stage machine the numerical value of 1 becomes exceedingly large and
even on a computer accuracy begins to be lost. Hence a method has been
incorporated in the computer programme which prevents the two individual
gsolutions from becoming large and at the same time maskes them both tend towards
the true solution. This is achieved by testing the values of A and A
at the exit from each blade row and gap, and if either of these two values is
numerically greater than ten, the solutions are stopped. Both solutions up to
that point are then scaled in the manner described above in such a way that the
velues of A, and Ay at the point where the solutions were stopped are
+1 and -1 respectively, and the solutions are then restarted. This repeated
gcaling of the solutions in a multi-stage machine has the result that in the
earlier stages both solutions approach more and more closely the final exact
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solution, This is what would be expected, since the boundary condition
governing the flow at exit from the machine has a decreasing influence on
going forward towards the middle of the machine, and likewise, the boundary
condition governing the flow at inlet has a decreasing influence on going from
the inlet towards the middle of the machine, Consequently as the solutions
approach the last few stages of a machine their values in the first few stages
have both become close to the true solution in that region.

To enable the solution to proceed it is necessary to provide the
computer with certain information about the compressor or turbine under analysis.
This information is provided in blocks, arranged so that there 1s first a block
of general information about the machine, followed by small blocks of data for
each individual blade row and gap, these blocks of data being arranged in the
order the blade rows and gaps appear in the machine. The general information
block must provide the following quantities:

Mass flow rate (m)

Inlet stagnation pressure (Pso)

Inlet stagnation temperature (Tso)

Inlet hub radius (ho)

Inlet tip radius (to)

Inlet stagnation-temperature gradient (GO)
Ratio of specific heats (y)

Gas constant (K)

Speed of rotor in R.P.M., (N)

Two initial guesses for A

The number of steps per section to be used in the
Runge-Kutta~Gill process, and how often values
are to be printed out.

A, and (aﬁ/ar)R at inlet.
Each individual data block must then provide the following information:

The axial length of the section.
The inlet and outlet hub and tip radii.
The outlet values of £, and (aﬁyhr)R .

The output from the machine occurs in blocks corresponding to the

blocks of data provided. Each block of output is in the form of a table of results,

these results being given at various axial positions within the section for which
the block applies. Output values are provided under the following headings:

Axial distance of the position from the front of the section.
The design radius.

The radial position of the design-radius streamline,
The density at the design radius.

The sxial velocity at the desipgn radius.

L.
.A- -
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In addition the axial component of the Mach number is given at every interface
between adjacent sections,i.e., between every block of ocutput,.

The computer programme has been written so that it can be used for
any axial-flow turbo-machine, which can either include or neglect the gaps
between the blade rows. It can also be used for the flow in converging and
diverging ducts and nozzles, if these are regarded as sets of small axial gaps
following one another. An example of the use of the programme to analyse the
flow in a converging-diverging nozzle is given in Section 14.

The remaining sections of this paper will now be devoted to comparisons
of results obtained using the EDSAC 2 computer programme with existing theoretical
and experimental results,

9« Flow through a Single-stage Compressor — Comparison with Wu

The parameter theory has been used to calculate the flow through a
single-stage compressor of constant hub and tip radii, and the derived results
have been compared with the theoretical results of Wu (1953) for the same
compressor operating under the same conditions. The products of these
investigations are shown in Figures 7 to 13. The compressor analysed is shown
in Figure 7 and consisted of a row of inlet guide vanes, a row of rotor blades
and a stator blade row, each blade row having a hub-to-tip ratio of 0.6
and an aspect ratio, based on the axial length, of 2,67, The axial length of
the gaps separating therblade rows was equal to one-third the axial chord of
a blade. The value of ~/t at the design radius was 0.82462, Both incompressible
and compressible flows through this compressor have been studied and the results
compared with Wu's calculations. For all calculations the ratio of inlet
velocity to rotor tip speed was taken to be 0.7378, and for the compressible
calculations the ratio of inlet dersity to inlet stagnation density was
made equal to 0.8578, with an inlet Mach number of 0.567.

In order to obtain solutions Wu had first to specify the axial rate of
change of the quantity Wr on the mean stream surface, and from this he obtained
solutions for the axial velocity at all points within the compressor. The gas
angles obtained by Wu have been used in the parameter—theory calculations for both
the incompressible and compressible flows. The variations of A and p for both
types of flow are shown in Figures 8 and 9, and the graph of the slope of the
axial-velocity profile at the design radius is given in Figure 10, It will be
seen for the compressible flow calculations that whereas the plot of N has a
continuous gradient at all interfaces, the graph of the slope of the axial-velocity
profile has discontinuities in gradient at the interfaces, even though the machine
has constant hub and tip radii. These discontinuities are caused by the
discontinuities in the gradient of u at the interfaces.

The values of the axial velocities determined by means of the parameter
theory have been compared with Wu's calculations at I'/*I:. ratios of 0.6, 0.8 and 1.0,
and these comparisons are shown in Figure 11 for the incompressible flow and
Figure 12 for the compressible flow, Figure 13 compares the density variations
obtained by the two methods at the same three radius ratios. In all these figures
it will be observed that the parameter-theory calculations agree very closely with
those of Wu. This would be expected in the neighbourhood of the design radius,
where the parameter theory is made to satisf¥ the equations of motion exactly.
The close agreement at both the hub radius (*/t = 0.6) and the tip radius (*/t =1.0)
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would indicate that the assumed form of the chosen profiles is acceptable over
a much greater proportion of the blade length than merely within the immediate
vicinity of the design radius.

The displacement of the design-radius streamline in compressible flow
is shown i% Figure 7, which also shows the streamline pattern calculated by Wu.
The two streamline patterns agree very closely, and this close agreement combined
with the very close agreement of the axialwvelocity and density variations at
the design radius justifies the assumption that the tangent of the relative gas
angle varies in a linear manner through a blade passage. Finally, by comparing
Figures 41 and 12, it will be observed that the introduction of compressibility
into the calculations has a very marked effect upon the axial velocity, as would
be expected. However, Figure 8 shows that both graphs of A have the same form,
only differing appreciably in the final blade row.

10. Flow through a Seven-stage Compressor

In order to demonstrate some of the ways in which the computer
Programme may be used to investigate the flow through a multistage turbo-machine
under different conditions, and at the same time to obtain solutions which could
be compared with existing results, calculations were performed on the flow
through a seven-stage compressor previously analysed by Wu (1953). The compressor
used for the analysis is shown in Figure 14, having a constant tip radius and a
variable hub radius. The curvature of the hub radius 1s obtained by discontinuities
in the slope of this bounding wall at the majority of the interfaces between the
blade rows and the gaps. The design mass-flow rate was 9,.56 pounds per second
for a rotor tip speed of 815 feet per second. The design ratio of inlet velocity
to rotor tip speed was 0.74433 and the inlet Mach number was arranged to be 0.56.

Four calculations were performed. The first was under 'as-designed!
conditicns; +the second was for the same conditions but with a dimensionless
relative stagnation-temperature gradient, G, at inlet of +1, compared with O for
the 'as-designed' calculation; the third was the same as the second with G
changed to =13 and the final calculation was for a mass-flow rate of 80.00
pounds per second and a dimensiondess relative stagnation-temperature gradient at
inlet of 0. Plots of A through the machine for each of these four calculations
are given in Figure 15. It will be seen that all the curves have discontinuities
in slope at the interfaces where there are discontinuities in the slope of the
hub radius. Whitehead and Beavers (1961) found that for flow in constant-area
turbo-machines the plots of A through the machine were, in general, smooth
oscillating curves., For this compressor having a variable hub radius it will be
observed that the oscillatory nature of the flow is retained, although it is
less obvious than before because of the sudden changes in slope. Normally it is
found that the graphs of A are fairly sensitive to changes in the slope of the
walls of the turbo-machine, the effects becoming more apparent as the Mach
number increases, This is demonstrated in Figure 15, where it will be seen
that all the curves have a slight depression on going through the fifth-stage
rotor row, This is caused by the shape of the hub in this region. On going
through the compressor the slope of the hub always decreases or remains constant
at an interface. However at the trailing edge of the fifth-stage rotor row there
is a slight inerease in the slope in the following gap, thus causing a 'kink' in
the hub profile and the resulting 'ldnk! in the plot of ) .
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» It will be ohserved from Figure 15 that the effect of the radial
gradient of relative stagnation temperature at inlet gradually decreases
through the machine, becoming very small in the final stage but not actually
becoming zero. Decreasing the mass—flow rate has negligible effect on A at
inlet to the machine, but in the later stages causes a large increase in the
magnitude of the variation of h through any blade row, thus having a
corresponding effect on the path of the design-radius streamline, The paths
of the design-radius streamlines for mass-flow rates of 80 and 94.56 pounds
per second and values of G of zero at inlet are shown on Figure 1), Both
paths have an oscillating pattern, although this cannot be seen clearly on the
figure, since the amplitudes of the oscillations are very small compared with
the design radius. These oscillations are such that, relative fo the design
radivs, their displacements are increasing through a stator row and decreasing
through a rotor row. This is the same effect as that observed by Whitehead
and Beavers (1961) for the flow of an incompressible fluid through a ten-stage
constant~area compressor.

Figure 16 gives the variation of u through the machine for the two
mass-flow rates. The introduction of a radial gradient of stagnation
temperature at inlet has the same effect om p as on N , although in this
case the magnitude of the difference is much smaller. A point of interest in
Figure 16 is the large change in u  through the sixth-stage stator and the
seventh~stage rotor and stator rows for the lower mass-flow rate., This implies
that there are large changes in the radial gradient of static pressure through
these blade rows. This is probably caused by the machine changing from
varisble area to constant area at the trailing edge of the seventh-stage rotor
row, with the result that the design-radius streamline is displaced radially
inwards in the vicinity of this point in order to 'ecut off! the cormer.
Likewise all the other streamlines will be displaced radislly inwards, so that
a large gradient of stabtic pressure will be established.

The axial velocities and densities along the design radius for the two
mass-flow rates are given in Figures 17 and 18 respectively. The inlet gradient
of relative stagnation temperature has no effect on the density and axial velocity
at inlet, since these values depend only on the mass-flow rate, the ambient
conditions and the angle at which the flow enters the compressor. It will be
observed that under design conditions the axial velocity increases through the
machine, but that most of this increase arises from the increase in velocity in
the gaps between the blade rows and not in the blade rows themselves. This
increase in the gaps would be anticipated from the theory for subsonic flow in
a converging passage.

Finally, for the design flow rate the axial Mach number changed from
0.567 at inlet to 0.579 at entry to the first rotor row, and dropped to 0,501 at
exit from this blade row. It then increased steadily to 0,605 after the fifth
stage, and finally more rapidly to 0,799 at the leading edge of the final blade
row, falling to 0,690 at exit from the machine. For the reduced mass flow the
axial Mach number was 0,447 at inlet and changed from 0.453 to 0.3%91 through
the first rotor row. Through the remainder of the compressor it varied between
0.35 and 0.39, falling to 0.323 at exit.

Few results were given by Wu, but the design-radius streamline path
predicted by the parameter theory for the design mass-flow rate was compared with
Wu'ls predicted streamline pattern and agreement was very close. For the sake of
clarity, Wu's results hzve not been included on Figure 1l4.
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11. Flow through a Single-stage Turbine - Comparison with Wu

Corresponding to the comparisons made with Wu's calculations for the
flow through e single-stage compressor given in Section 9, the flow through a
single-stage turbine has been analysed and the calculations compared with Wu's
(1952b) calculations for the same turbine, these comparisons being shown in
Figures 19 to 24. The turbine used for the analysis is given in Figure 19, and
consisted of a stator row followed by a rotor row, the blade rows being separated
by a gap of axial length equal to one~third the axial chord of the blade rows.
The turbine had a constant hub-to-tip ratio of 0.6, and both blade rows had
aspect ratios of 2.67. As for the single-stage compressor, solutions for both
compressible and incompressible flows were derived. In all calculations the
ratio of inlet velocity to rotor tip speed was made equal to 0.650, and for the
compressible flow the inlet Mach number was arranged to be 0.308. The ambient
conditions were chosen such that the ratio of inlet density to inlet stagnation
density was 0.95033, and the ratio of the inlet stagnation enthalpy to the
square of the rotor tip speed was 12.546.

Wu obtained solutions by specifying the variation of the angular
morentum per unit mass of gas, Wr, through the blade rows. A linear variation
with axial distance was termed uniform loading, and a non-linear variation with
axial distance was termed non-unmiform loading., Wu performed two sets of
calculations for incompressible flow, one for uniform loading and the other
for non-uniform loading. The gas angles obtained by Wu have been_used in the
parameter theory, and the resultant axial-velocity variations at ~/% ratios
of 0.6, 0.7, 0.8, 0.9 and 1.0 are compared with Wu's results in Figure 22,

It will be observed that the agreement between the parameter-theory results
and Wu's results is not as good as for the compressor calculations shown in
Figure 11. However the methods give reasonably good agreement near the
design radius, but towards the boundaries of the machine, and especially at
the hub, the agreement is rather poor. Nevertheless the agreement is close
enough to justify the use of the parameter theory for axial velocities in the
neighbourhood of the design radius.

For the compressible-flow analysis, the gas angles obtained from Wu's
results were again used in the parameter theory and the resulting solutions were
compared with Wu's calculations for three different norn-uniform loadings, denoted
in Figures 23 and 2} by cases C,”D and E. These two figures show respectively
the axial-velocity and density variations at the same five ratios of ~/t as
used in the incompressible~flow analysis. It will be seen that the densities
agree closely at the leading and trailing edges of the blades, but differ in
the form of their variations within the blade passages. This can be expected,
since the density variataon within a blade passage in the parameter theory
is governed by the assumed variation of the relative gas angle through that
passage. Consequently if Wu's assumed variation for the tangential velocity
within a blade passage yields a relative gas angle variation which differs
appreciably from that assumed in the parameter theory, discrepancies in the
densities within the blade passages would be anticipated,

Figures 20 and 24 show the plots of A and p through the turbine,
and from the latter 1t can be seen that the radial gradient of static pressure at
exit from the turbine 1s almost zero. This agrees closely with the free-yortex
design, since the rotor blade was designed to yield a tangential component of
velocity at exit of zero.
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12, Flow through Conical Ducts - Comparison with Lewis

The parameter theory has been used to predict the flow through
converging and diverging conical ducts, and the results compared with the
experimental and theoretical results obtained by Lewis (1960). Five comparisons
have been made, and these are denoted by Tests Numbers 1 to 5 in Figures 25 to 4b.
These tests show how the parameter theory may be used to predict the flow through
annular ducts in which the hub radius has the value of zero and the flow is
symmetric about the axis, In all fave tests the mean axial velocities were very
low so that Lewis assumed the flow to be incompressible and made his theoretical
predictions accordingly. The parameter-theory calculations were performed
twice for each test, once assuming the flow to be incompressible and the second
time assuming it to be compressible, These calculations showed that for every
test the assumption of incompressibility was justified, the total variation in
density being no greater than one per cent of the inlet stagnation density, with
corresponding velocity differences of one foot per second or less, In making
the compariscn the incompressible calculations have been used, so that the
value of p is always zero and A represents the dimensionless slope of the
axial-velocity profile.

The duct used for the first test is shown in Figure 25. It consisted
of a conical contraction from 14 inches diameter to 10.76 inches diameter, with
a total angle of 20°24', and bounded at both ends by sections of cylindrical
ducte. A for this duct is given in Figure 26, and the path of the design-
radius streamline is shown on Figure 25, where 1t will be noticed that the
streamline 'rounds~off! the corners formed by the sudden changes in the slore
of the actual design radius. In Figure 27 the axial-velccity profiles predicted
by the parameter theory at stations 1 and 2 are compared with the experimental
curves of Lewis at these stabtions, the agreement being very close with a
maximum error of about 2 per cent in the region outside the wall houndary layer.
Also shown on thig figure are the parameter-theory predictions for the axial-
velocity profiles at stations 1A and 2A where the slope of the casing suddenly
changes. Since all the streamlines have the same pattern as the design-radius
streamline, 1t would be expected that at station 1A the axial velocity would
increase towards the outer casing and at station 2A the axial velocity would
decrease towards this casing. These effects are predicted in Figure 27.

Test Nurbers 2 and 3 were conducted on a converging conical duct with a
row of free-vortex nozzle guide vanes positioned mid-way along the duct. Test
Numbers 4 and 5 were carried out with the same blade row and the duct arranged as
a diverging passage. The duct configurations are shown in Figures 28 (a) and
28 (b). The outer casing included angle was 20°24' with a maximum diameter of
1} inches, while the inner casing included angle was 9036 with a maximum diameter
of 6.58 inches. The axial length of the conical section was 9 inches, thus giving
an area ratio of 1.69, and the blade row occupied the middle 1.2 inches of the duct.
For each duct configuration calculations were performed for a uniform inlet
stagnation pressure {Test Numbers 2 and 4) and for a non-uniform inlet stagnation
pressure (Test Numbers 3 and 5).

Plots of % for the two converging duct tests are shown in Figure 29,
where 1t wi1ll be seen that the effects of the inlet stagnation-pressure gradient
becomes small asbout one blade chord downstream of the blades. Figures 30 to 33
apply to Test Number 2, and compare the axial-velocity profiles predicted by the
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parameter theory with Lewis's experimental and theoretical results at stations

1, 2, 3 and 4 of Figure 28(a). Similarly Figures 3l to 37 compare axial-velocity
profiles at the same four stations for Test Number 3. All the comparisons show
good agreement of the parameter-theory predictions with the experimental traverses,

the predictions being at least as good as those obtained using the actuator-disc
theory,

Calculations corresponding to Figures 29 to 37 have been made for the
flow through the diverging conical duct. Figure 38 shows the variations in A
for the uniform and non-uniform inlet stagnation pressures. It will be noticed
in this case that, unlike the converging duct, the effect of the non-uniform
stagnation pressure is maintained through the whole duect. Axial-velocity profiles
heve been compared at stations 1, 2, 3 and 4 of Figure 28(b), and these are
shown in Figures 39 to 42 for Test Number 4 and Figures 43 to 46 for Test Number 5.
For these daverging duct tests the parameter-theory predictions do not agree as
closely with the experimental results as they do in the converging duct tests.
This discrepancy is most marked at station 4, where the experimental results show
a very large boundary layer on the hub wall, The parameter theory is unable to
allow for this effect. As before, the parameter theory appears to give solutions
which are at least as good as the actuator-disc predictions,

13. Flow through a Three-stage Turbine - Corparison with Johnston and Sansome

Johnston and Sansome (1961) performed an experimental investigation on the
flow through a three-stage turbine, shown diagrammatically in Figure 47. The
axial-velocity profiles they obtained were very irregular, and as such made
comparisons with profiles calculated by the parameter theory of very little
significance. Nevertheless these theoretical predictions and comparisons with the
experimental curves are included in this paper, for they help to demonstrate fairly
¢losely some of the limitations by which the parameter theory is controlled.

The turbine had a constant hub drameter of 42.5 inches and a tip diameter
varying from 15.34 inches at inlet to 17.6156 inches at exit. The gaps between all
blade rows was 0.6 inches, and the blades were designed to conform to free-vortex
flow and constant axial velocity through the machine. All gas angles were taken
from the report by Johnston and Sansome, and the machine was assumed to be
operating with inlet stagnation conditions of 225°F and 39.8 pounds per square inch.
Sclutions were derived for mass—flow rates of 19.48 pounds per second and 20,06
pounds per second, the former corresponding to a pressure ratio of approximately
0.37 based on the cbserved performance, and the latter corresponding to the same
pressure ratio based on the estimated performence., The rotor speed was taken to be
6825 to correspond to the value of N/VT used by Johnston and Sansore.

Graphs of A and p for the two mass-flow rates are given in
Figures 48 and 49 respectively, At the trailing edges of the second and third
rotor rows both A and u are very small for the mass-flow rate of 20,06 pounds
per second, thus implying that the axial velocities at these points must be very
nearly constant. This can be seen in Figure 51, which compares the axial velocities
at the trailing edges of the blade rows as predicted by the parameter theory with
the axial velocities observed by Johnston and Sansome at these positions. As would
be anticipated there is no agreement between the experimental and theoretical curves.
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The parameter theory does not even predict constant axial velocity at the

design radius through the machine, but yields instead a steadily decreasing
value, as shown in Figure 50. However it will be cbserved from this figure
that except for the first row of nozzle guide vanes most of the change in

axial velocity takes place within the gaps and not within the blade rows
themselves. Nevertheless if the gaps were made much smaller so that they could
be neglected the same overall decrease in the axial velocity would be observed.
This follows from equation (33) because for any given machine operating under
given flow conditions the density, and hence the axial velocity, at the trailing
edge of a blade is determined by the prescribed gas angle at that point.
Consequently if the gaps were omitted from this machine and the machine were then
run under the same conditions the densities and axial velocities at the blade
trailing edges at the design radius would be the same as those obtained in the
present investigations.

One reason why the predicted axial-velocity variation does not agree
with experimental variation is that the parameter theory assumes an expansion
efficiency of 100 per cent, whereas the turbine was designed assuming an
expansion efficiency of 90 per cent. Thus the parameter theory neglects any
losses that occur during the expansion process, and it is clear that in order to
obtain accurate solutions in diverging flows some means of allowing for such
losses must be incorporated in the theory. However in defence of the parameter
theory it must be remembered that the solutions have been compared with results
from a turbine having excessive losses in the rotor blade rows and hence a very
poor efficiency.

14 Analysis of a Rolls-Royce Two-Stage Low-Pressure Turbine

In order to demonstrate how the computer programme may be used to
investigate the effects of various changes in the flow conditions of a turbine
a Rolls-Royce two-stage low-pressure turbine has been studied. A diagrammatic
representation of the turbine is given in Figure 52. Both nozzle guide vane rows
had constant axial-chord lengths, but the rotor rows dxd not, and it will be seen
in the figure that the shapes of the rotor rows have been approximated by blades
of constant axial chord in order to apply the parameter theory. The'gradients
of the hub and tip radii were constant from the leading edge of the first nozzle
guide vanes to the trailing edge of the second rotor row.

The effect of varying the mass-flow rate was first investigated, and
calculations for six different mass-flow rates were performed. The inlet
stagnation conditions for all six mass-flow rates were 1516.4°F and 98.05 pounds
per square inch, and the gas was assumed to have a mean specific heat of 0.2802
and a ratio of specific heats of 41.4. The rotor speed was 6710 revs. per minute,
and all gas angles were taken from a Rolls-Royce internal report (1959). The
design mass-flow rate was 237.4 pounds per second, and in addition to this,
mass~-flow rates of 200, 220, 230, 236 and 238 pounds per second have been used,
Graphs of X and W for the different mass flows are shown in Figures 53 and 54
respectively, and Figure 55 shows the displacement of the design-radius streamlline
for three of the flow rates.
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It will be observed that for all the mass-flow rates the graphs of
have an oscillatory form so that the usual oscillating motions of the design-radius
streamlines are produced. An interesting feature abouvt Figure 53 is the
inter-section near the trailing edge of the first rotor row of all the curves. The
distribution of the curves in this figure suggests that as the mass-flow rate is
decreased the flow through the second of the two stages is such that it moves
radially outwards towards the tip, the outward radial movement being increased as
the mass~flow rate is decreased. This is verified by the displacement of the
design-radius streamlines shown in Figure 55, where it can be seen that for the
design mass-flow rate the displacement of the streamline is reduced in the second
stage whereas for the lower mass flow the streamline displacement is considerably
increased within the second stage. In addition it wall be observed that the
oscillatory motion of the streamlines 1s more pronounced for the design mass flow
than for the lower mass flows.

Sance the radial gradient of static pressure is proportional to p , it
will be seen from Figure 54 that as the mass-flow rate is increased the static-
pressure gradient at the trailing edges of the blade rows 1s alsc increased, except
for the first-stage rotor row. At the trailing edge of this blade row an increase
in the mass-flow rate causes a decrease in the static-pressure gradient, and for
the higher mass flows the static-pressure gradient falls very rapidly at the
trailing edge and assumes a negative value, This negative value of p at the
rotor trailing edge implies that there is a decrease of static pressure from hub
to tip at this point, and this anversion of the static-pressure gradient has been
observed on traversing behind this blade row (Rolls-Royce internal report, 1961),
The very sudden change in the value of | in the neighbourhood of the trailing
edge is caused by the relative Mach number reaching a value of almost unity, so
that the flow is very nearly choked at this point.

Using the same flow conditions as above two calculations were performed,
one having a uniform axial flow at inlet and the other with a swirling flow at
inlet. These two caleculations were then repeated with the value of the ratio of
the specific heats (Y) changed from 1.4 0 1.333. Figure 56 shows the four
variations of A , and 1t will be observed that the swirl at inlet has negligible
effect on N after the first row of nozzle guide vanes. Also, by comparing
Figures 53 and 56, it will be noticed that keeping the mass-flow rate fixed and
changing the value of y is almost equivalent in this case to keeping the value
of y fixed and adjusting the mass«flow rate. This can also be seen by inspection
of the appropriate curves in Figures 57 and 58, which show the variations of the
axial velocities and densities at the design radius for several of the different
flow rates and conditions,

15. Flow through a Converging-Diversging Nozzle

As g further example of the flexibility of the parameter-theory
programme it was used to investigate the flow of air through a converging-diverging
nozzle of circular cross-section, It was assumed that the converging and daverging
sections were identical, with a maximum diameter of 28 inches and a minimum
diameter at the throat of 12 inches. To produce the necessary curvature of the
walls the nozzle was divided into seventeen sections each of Il inches axial
length, and it was assumed that each section had a linear variation of the outer
wall, Thus in effect the nozzle consisted of seventeen consecutive sections of
conicel duct. The inlet stagnation conditions were taken to be 14.7 pounds per
square inch and 60°F, and a mass-flow rate of 38.44 pounds per second was assumed.
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This gave an axial Mach number at inlet of 0.406 and a maximum axial Mach number
at the throat of 0.897.

A plan of the nozzle is given in Figure 59(a) together with the
predicted displacement of the design-radius streamline. Figure 59(b) shows the
variations of A and W through the nozzle, and from these graphs it can be
deduced that the magnitudes of the radial gradients of static pressure and
velocity are greatly increased at the discontinuities in the slope of the wall,
The mid-points of the first nine gsections of the nozzle were denoted by the
station numbers 1 to 9, and axial-velocity profiles for these nine stations are
given in Figure 60. Since the nozzle is symmetrical, axial-velocity profiles
for the last eight sections correspond to those for the first eight sections.
If it is assumed that the effects of the discontinuities in the wall shape
have negligible effect on the flow at the stations 1 to 9 1t can be seen that
the curvature of the axial-velocity profile changes sign as the curvature of
the wall changes sign. This influences the streamline pattern, such that the
streamlines are displaced towards the axis of the nozzle through that part of
the converging section where the rate of change of cross-sectional area 1s
increasing, and are displaced towards the wall of the nozzle where the rate of
change of area is decreasing, This effect can be seen in Figure 59(a).

For real nozzles in which the cross-sectional area changes smoothly
and continuously, the graphs of A and p would alsoc be smooth, continuous
curves. This can be achieved using the parameter-theory programme by dividing the
nozzle into a very large number of sections such that the changes in slope of the
wall across the interfaces are very small, By considering then the solutions at
the mid-points only of all the individual sections, smooth plots of X and p
may be derived which would be close approximations to the actual curves.

16, Conclusions

The versatility of the original single-parameter theory proposed by
Whitehead and Beavers (1961) has been greatly increased by the allowances made
for compressibility and variable-area effects, but this has been accompanied by
a corresponding increase in the complexity of the analysis. The single-parameter
theory was first envisaged for the incompressible flow through constant-area
turbo-machines because it presented a method of solution which was conceptually
simple, easy to programme for an electronic computer, and yet sufficiently
accurate for design purposes. In extending the theory to include these two extra
effects it has been attempted to adhere to the same criteria as closely as
possible, the object of the analysis being to obtain a general solution of the
flow in the form of a computer programme which could be used to analyse any
axral-flow turbo-machine. This programme now exists for use on the EDSAC 2
computer of the Cambridge University Mathematical Laboratory, and some of the
applications to which the programme may be put have been demonstrated in
sections 9 to 15 of this paper.

Comparisons with the theoretical results of Wu show good agreement for
both compressible and incompressible flows. The agreement is particularly good
over the whole annulus area for the single-stage compressor, but for the single-
stage turbine slight discrepancies in axial velocity and density occur at the
hub and tip radii. The variations of axial velocity and density within a blade
passage do not correspond exactly, even at the design radius, but this would be
expected since these variations depend upon the assumed variation for the gas
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angle through the blade passage. At the trailing edges of the blade rows,
where the gas angles are the same for both methods, the axial velocities
and densities are identical in the neighbourhood of the design radius.

The parameter-theory calculations for the flow of air through
converging and diverging ducts agree closely with the experimental results of
Lewis (1961) and indicate that the theory can be used to give accurate
predictions of this type of flow when boundary-layer effects are not
significant. It has been shown that large boundary-layer effects seriously
reduce the accuracy of both actuator-disc and parameter-theory predictions,
so that the inaccuracies caused by neglecting the presence of boundary layers
are much greater than the inherent errors resulting from the limitation that
the axial velocity and density belong to definite families of profiles.

This suggests that greater accuracy of the theory is not warranted unless
a suitable method of allowing for the boundary layers is introduced.

Some limitations of the parameter theory are demonstrated in the
comparisons of the predictions for the flow in a three-stage turbine with the
experimental results of Johnston and Sansome (1961). These would indicate
that greater accuracy could be obtained by including in the theory a means of
allowing for blade losses and the introduction of some form of expansion
efficiency for diverging flows. However, the experimental axial-velocity
profiles obtained by Johnston and Sansome are such that any theoretical
predaction would be, at the very best, a poor approximation.

The calculations for the seven-~stage compressor show how the
oscillatory form for the variation of A , observed by Whitehead and Beavers
(1961) for the flow through a model ten-stage compressor, 1s still maintained
although the definition of A has been slightly modified. Likewise, thse
pericdic form of the design-radius streamline observed in that paper and
assumed hy several authors has been shown to exist in compressible flow through
a turbo-machine of non-constant area. These results have also been demonstrated
for the flow through a two-stage turbine, which has been included to show how
the computer programme may be used to investigate the effects produced by
varying various operating conditions and parameters.,

Further extensions now being made to the theory include a method of
allowing for the thickness of the blades. Existing turbo-machines have blades
which occupy a substantial proportion of the annulus area, so that appreciable
errors in the density and axaial velocity within a blade passage could be caused
by neglecting this area occupied by the blades. By including an allowance for
blade thickness the assumption that a blade row consists of an infinite
number of blades of zero thickness can be omitted and machines with a finite
number of real blades may be analysed. Finally 1t is proposed to write a
computer programme for the modified theory in such a way that 1t can readily be
translated for use on other high-speed digital computers.
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APPENDIX

The Solution of the Density Bquation

The density at any axial point within a blade row or gap is a solution
of the equation

- TS . o (1 +ﬁ§) o
2 Sl =0 .
A 20.Cor (- 12 ) (33)
This equation may be written as
= oYM _ a8 -
f(pR) = PRM Agp +B = 0, e (33.1)

where A and B are given by

T
=
c

] e (33.2)
? (4 )

2C.Cyn® (13- 1*)?

Since Ts is constant within a blade row or gap, A is a constant, but B depends

upon the values of f£_, t and h at any point.

The function f(gR) has a maximum point at PR = 0, a minimum point

1/y= 1yt
at Pp =l:2A/&+{} and a point of inflexion at Pr =|:?A/y(y+1iJ

Its form is shown in Figure 61, and it is seen that there are two positive real
roots.

At the minimum point,

2A 2T
pﬁ-l — -—

y + 1 cly + 1)

. TS ) y + 1
T 2
Ts y -1

But -_ = 1+ Ma ’

T 2

so that Mn =1,
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Consider now the greater of the roots. (2 in Figure 60). Then, since Py
is less than unity and y —1 1s less than unity,

2A
o’ >
Rz y + 1
2Ts
A P Y™t >
Ra G(y + 1)
T 2
& — >
Ts y + 1
y + 1 y -1
> 1+ M
2 2
. M < 1

The root at 2 corresponds to subsonic flow.
Similarly, it can be shown that the root at 1 corresponds to supersonic flow.

Now since B changes but A remains constant on passing through a blade
row or gap, this is equivalent to displacing the whole curve vertically. It
can thus be seen that a critical case occurs when the curve is such that minimum
point falls on the PR - axis. At this point the flow will change from
subsonic to supersonic, or vice-versa, and B will have 1ts maximum possible
value for that blade-row or gap.

A Newton-Ralphson process has been used to solve equation (53). For
this particular problem this process can be expressed by the following statement:-
if PR1 is any approximation to the true value of Pr at any peint, a better
a rox1mat10n is given b

PP PR(i+1) g ¥

YPpy ~ APpy " B

(V+1)P§i = ZAPRi

PR(141)

This method will break down when the denominator of the above expression becomes

zero. This ocecurs when RK = 24/y + 1 which 1s the condition for unity
Mach number.

_Thlsemeth s56lution, coupled with the assumptions made about the
machine and’blade=geok3@ 7, imposes a limitation upon the uses of the exasting
computer programme. Itgh@s been assumed that within a blade row or gap,
dh/dx, dt/dx, -and - aﬁ/ax, always have constant signs. Consequently the
function B in equatlon (53 1)~always increases or decreases continuously from
the beginning to the end of .any section, with the result that the Mach number
at the design radius can;never be greater than unity. Thus the computer

programme can only be-used for flows which are subsonic throughout at the design
radius.

D L2616/ 1/Wt 61 KL 9/65 XL & CL






%y,

|

| yvd

: LLLL //,//4 e
DESIGN, | i
I2ADIU5| It 1T + —{ = S 1 P N _;._._
—— OI 'l 212 s 4)4 |

l nR] L nd L

| AN

| [ 1GV |cAaP] 1R CAPL 19 __

|

|

FIG. ). TYPICAL SYSTEM UNDER ANALYSIS




A r\___,__W u
r-
__._,z—v
SOA8Y S
N, ya e
xX

FIG 2.

THE CO-ORDINATE SYSTEM




DIRECTION OF

ROTOR ROTATION
————
2
Zr
GAP
5r
3
STATOR
4
41

& - GAS ANGLE RELATIVE TO BLADE
ALL ANGLES SHOWN POSITIVE

FIG3. NOTATION FOR GAS ANGLES




PLANE. V.

PLANE 2
= J—
‘;_'/ = 622* |

AT ]

6?,1' /
I ¢
t| Q| E,'&Q. Qz Qz'f‘bEz tz
hy
. hl

Fig.4. DISPLACEMENT OF STREAMLINES NEAR

THE DESIGN RADIUS




%, = 1+ 4 (1]

25

%,
20

FI1G.5 ASS5UMED DENSITY PROFILES




b
2 ¢
b
c d
10 p 10
0 1 1 F‘/Q i o 1 ] r/E 1
0 c4 08 2 1 0 04 08 12 IG
30
y
Vg
20 a A=-10
b A=-05
C A= 0
d Az4+05
| e Ao +1:0

O L

. R

o) C4 o)) 2 16

Fia. 6

ASSUMED AXIAL-VELOCITY PROFILES




RADIUS

TIP RADIUS

o)
&

092

o)
&

LLE LS L LS

VI IOV IIIIIIIIIIIIIIIIII I IV II 4

- WU
— PARAMETER THEORY
— — DESIGN RADIUS

e ——— e
— — e, )

e — e — ]

;e — e .
et T g——

L o b —— — e — — ]

068

= — e —— —
——

e m — —— e —
—— i - -

GV

ROTOR

— — —
e e i ——— ———

STATOR

AR AR TR R O I O OO O OO NS

| 1

]

0 008 o)

024 032

040 048 056

AXIAL DISTANCE

TIP RADIUS

FIG7 WU SINGLE-STAGE COMPRESS0R ~ DISPLACEMENT

OF DESIGN-RADIUS STKEAMLINE




. |

COMPRESSIBLE
~=- INCOMPRESSIBLE

\-...._‘
\-4
GV ROTOR STATOR
] i | 1
o O o2 03 o4 05 06
AXIAL DISTANCE
TIP RADIUS

FIG. 8. WU SINGLE-STAGE COMPRESSOR - VARIATION OF A




ot

O-10F

0Q9+

0-08f

0-O7}

ofo cly

005

O Q4

0 03

002

OOl

1.G.V. L] - ROTOR STATOR
i |

o O o2 03 0.4 0-5 06
AXIAL DISTANCE
TIP RADWUS

FIG.9. WU SINGLE-STAGE COMPRESSOR - VARIATION OF At




0

"0 |
—~ —— COMPRESSIBLE
,Q ~—— INCOMPRESSIBLE
<
~ 02}
W
-~
@
&
o -0:3f
>
-
L
5 0
W 4ar
>
-
pS
X 05
w
o
(Y
O O-6-
-
)

07|

0.8

LG V. ROTOR STATOR
o Ol 02 03 o4 05
AXIAL DISTANCE
TIP RADIUS

oG

FIG 10. WU SINGLE-STAGE COMPRESS0R  VARIATION OF

2LOPE OF AXIAL-VELOCITY PROFILE (A -4)




AXIAL VELOCITY

080

ROTOR TIP SPEED

——- WU
————— —— PARAMETER
o7of == THEORY
“"- %\ e -]

0-60-

501 Y-
050 e 1-O

b GV ROTOR STATOR

0-40
Q8o

Q10

O~ Y.08

t
o 1.G.V. ROTOR STATOR

o010 £:00
0 1oV, ROTOR STATOR .
o ol o2 03 o4 o5 o6
AXIAL DISTANCE
TP RADIUS

FIGII. WU SINGLE-STAGE COMPRESSOR AXIAL VELOCITIES

IN_INCOMPRESSIBLE FLOW




ROTOR TIP SPEED

AXIAL VELOCITY

08

V =
t i O
\
070F T —— | -=-WuU
~ —— PARAMETER
THEORY
ofel 2
N\
AN
N
osol- T K== ==
LoV ROTOR STATOR
Q40
080 v oa
I i N
e T )
\Y
o0
AN
N
N
(o Zre o N I
| G.V ROTOR STATOR

050
090 m

- O G

-
o) 801 - = ‘/\\_l fo -
— — = et \\
__.-—":’—-::. \
Y
OTOF
N
~
\"'-.
0G0 I.C:.V.I IZOTOF 5TATO? ™= |
(@] (o] 02 03 o4 o5 (e 1r}
AXIAL DISTANCE
TIP RADIUS

FIG 12 WU SINGLE-STAGE COMPRESSOR AXIAL VELOCITIES
IN COMPRESSIBLE FLOW




LOCAL DENSITY
INLET STAGNATION DENSITY

-—=- WU E =0
| —— PARAMETER .
1 THEORY ~Sol R
//
s
~
.
&
o9
— ;m__h
oa
GV ROTOR STATOR
2
r — 0
o o8
I l — ] —— ]
o9l
08
(N RY ROTOR STATOR
-2
¥ .0
oy 06
I" B e e — 1
10r
/4
(4
ot S 4
09
08 ‘ -_-I_ I ! 1 )
o 01 02 03 o4 o5 06

AXIAL DISTANCE

TIP RADIUS

FIG.13. WU SINGLE-STAGE COMPRESSOR - DENSITY VARIATIONS

IN COMPRESS|BLE FLOW







1OF
| T~<
~a
\
+Q 5F \\_\ /\
~ b~
\ ’-
'--.--....,___ — / \__\ \// \
~ 4
O \\\ e, } /\\
\ \\ /]y/ /
-0 \&ﬁg TS
~.
\—-—
\ \\\‘p
\\.__
-1-OF — \\\
— ~
\ X '\,_\ L
\- I b e s
\ - /\ \ \'-..___._
" 5' > B Ry \--_.._-—-
\ \
- \ i m ) —y "'--.\\ 1"'-..‘___-
~ 1] . S\ N7
'2'0_ \--/—--
I -m:= 945Gibjsec G =0
2.5 O - m = 9450 Ibsec. G, =+I
- M= 9% 56 lojsec Gy =
IV-m= 800 Ib/ﬁec CIL =0
-5.0._
| GV LR 15 2R 25 R 35 4R 49 5@ 55
[ 1 | | 1L | ] ] | 1 1 ] 1 ) t
@ Ol 02 03 o4 o5 06 o7 08 o9 I-O I % 4 IS G |7

FIG

15, WU SEVEN~STAGE COMPRESS0R

AXIAL DISTANCE

TIP RADIUS

- VARIATION OF A FOR VARIOUS MA55-FLOW RATES




INCHES

COMPRESS0OR RADIUS

12

ANV N NNNN NN NN NNNNNY

S L L L L L ///é///////// //6/// S S S S S LSSl L
.G V. e 15 2% a5 p14 45 55 R 1|65 [[TR]] TS
—._:___-—1'1=-""-==—:
——/_’.:—’;__—-..-_- -
— " ) T &«\

DESIGN RADIUS
—.— DESIGN=RADIUS STREAMLINE : M=945G Ibjsec Gi=0
———- DESIGN—RADIUS STREAMLINE' M=80 00 Ibjsec G =0

L 1 I | 1 1 1 1 1 I ! ) I 1 1 L 1 L L
O Ol oy o3 o4 o5 O-G o7 o8& ors) 1-O il i2 I3 |-4 b5 G 17 -8
AXIAL DISTANCE
TIP RADIUS

FiG. 14 WU SEVEN-STAGE COMPRESS0R - DISPLACEMENT OF

DESIGN ~RADIUS STREAMLINE




20

08

06

—— M *92 56 lbpec. G,=0
m =5000 Ib/bec- G(_'O

04
)
+02 gt
e 4
T - - /- l.“‘ d
- \\___a") —— \.,,__’ AR e ” N Y PR \\ . \ A
_______ — 4._ __,__...__________-’4:’-.._’ %’ -— \‘-—// - "y
0 -+ \i‘—"‘ - I | \ -
'
-02
GV 174 15 2R 25 3R 35 ar 45 SR 95 R G5 TR |75
] 1 1 i | 1 1 1 1 i 1 1 A | | 1 1 1 !
o Q-2 03 o4 0.5 oG o7 o8 o9 -0 i 12 -3 -4 5 G 7 8

FIG. .J6. WU SEVEN-STAGE COMPRESS50R - VARIATION dF A




0O,

000 /
N m = 94 5G Ip/eec /
‘g\goo— —-————m=z 80.00 lb/eec _/
S |/
5500- /
s |/
£
%m_ /J
. GOOH P
= P — e
LW )
O
Y N _+T=TA
> Fo— ________ — -\ A F \\
—I \\ j -_-” — o
. ~ P R e "/\__._ "./\____/
; e I —— - — e e — — —
c(

400

300

200- )GV IR {5 R 25 3R 35 AR 45 5 55 || GR || &5 |7TR||75

L i 1 ] ] ] | ] 1 l f — ) 1 | I [ 1 )
o O 02 02 Q4 o5 o7 o-é o9 1-O )\ )2 I3 -4 5 (G 17 I-&
AX!AL DISTANCE
TIP RADIUS

FIG 17 WU SEVEN-STAGE COMPRESSOR - VARIATION OF AXIAL VELOC!TY AT THE DESIGN KADIUS




030

028r

Oy
022

T

UBIC FT.

1

Q 020

018

1

Clo

1

T

e — — — —

—— M =94-56 ibjsec

m = 80.00 Ibfsec

DENSITY AT DESIGN RADIUS LB/

OOOOOQO
O R R R L 5 5 &

— g

R

1

1

25

| ap

| 1

4R

45

55

oR

R

FIG. 18 WU SEVEN-STAGE COMPRESSOR - VARIATION IN DENS]TY AT THE DESIGN RADIUS

o7

ca

i
09 I-O [
AXIAL DISTANCE
TP RADIUS

+
t







TP

O WLLLLLLLLLL LSS LLLLLLLL L L L

09}
RADIUS

TIP RADIUS o
08+
oTh

STATOR ROTOR
06 ™= .W'K‘TW\H TSR0 2NN NRR NN
{ [ 1 1 } |
-0l o +01 02 03 04
AXIAL DISTANCE
TIP RADIUS

FIG19 WU SINGLE-STAGE TURBINE - DISPLACEMENT OF
DESIGN-RADIUS STREAMLINE IN INCOMPRESSIBLE
FLOW




0410

+0 05

005

-C 10

1

015

..0,20._

025

040

STATOR

{

A INCOMPRESSIBLE

/. COMPREZAIBLE

ROTOR

L

O

i I
02 03 o4
AXIAL DISTANCE
TP RADIUS

FIG20. WU SINGLE-STAGE TURBINE - VARIATION OF A\




040

035

030

025k

020

o5

+0 05

005

T

STATOR ROTOR

| | | 1

o Ol 02 03 o4
AXIAL DISTANCE
TIP RADIVS

FIG.21. WU SINGLE-STAGE TURBINE ~VARIATION OF AL

r

-0 10

—




AXIAL VELOCITY

ROTOR TP SPEED

075

065

0-55

0-70

oJce

070

060

70

060

080

070

0-60

FIG 22

— ——— WU-UNIFORM LOADING

i=

T
"

T~

s

mi<

WU - NON UNIFORM LOADING
PARAMETER THEORY

09

=i i i
NN
St el
————p B = e —
L = S
R SN N
/ A
ST
/ /"‘ \
b Vs ‘\
|/ \>~ T
-—..‘_.q‘- ""'-..._/ ’ \ — —
/ N T
1 5TATO.2 QOTOEL. ]
0 (o ]]| 02 o3 04
AXIAL DISTANCE
TIP RADIUS
WU SINGLE -9TAGE TURBINE AXIAL=VELQCITY

VARIATIONS IN INCOMPRESSIBLE FLOW




AXIAL VELOCITY
ROTOR TIP SPEED

09
06
o7
06
09
oY
o7
06
09
08
07
06
o
o8
o7
06

I
10
09
08
o7
0G

05

T

T

T

i
[1]

- -

N Lo
rE'—— ==

L.
£ 09

—— e —

ot

STATOR

ROTOR

]

012 03
AXIAL glﬁTANCE
1P RADIU

FIG 23 WU SINGLE-STAGE TURBINE AXIAL=VELOCITY VARIATIONS

04

—-— WU-CASEC

WU-CASE D
WU-CASE E
PARAMETER
THEORY

IN COMPRESSIBLE FLOW




LOCAL DENSITY

- N
N
sk
oat \\\
¢_
E =0
o-GL
Or
N
LN
\'-
o a} ha
s |,
Q £=09
4 allr ey
a
Z 1-0¢
?_ ...... ~== — — WU-CASEC
< 09 ‘\\ ----- WU-CASE D
3 \ ’ ——— WU-CASEE
E 08 S~ =
® foa > SN, —— PARAMETER
- == ~
" ol LE THEORY
Z
1 Or
08
F° o2
RN N
OG-
ROTOR
1Or
O8r
;?”")—\ o
r'd
V4
[/
0‘6" 1 1 1 i
0 O 02 0% 04
AXIAL DISTANCE
TIP RADIUS
FIG.24 WU SINGLE-STAGE TURBINE - DENSITY VARIATIONS IN

_COMPRESSIBLE FLOW



INCHES

INCHES

FIG25 LEWIS FLOW IN CONICAL DUCTS
TEST Nol. DUCT CONFIGURATION

| 1A 2A Z
| ! | ]
&+ ] | | |l
DD D II PPV I V4 I// } |
|
[ I
| _
oF : l |
5 S l |
| —— | |
4 | — I
| | 1 l
| | | |
Sl } | —-— DESIGN RADIUS | ]
| Il DESIGN-RADIUS STREAMLINE | |
‘ i I !
ol I T ] L
| | ¢ T
| | |
I | l |
2+ | | | -
| I | |
| | | |
A1 | | -
| |
| I SRR LY
G | | \ l 1
| | | |
ANNN NN NNV l l
n | | , -
& ! | | |
| i i \ { L {1 |
Q 2 4 o é 0 12 4 IG



I
10

.CONICAL, DUCT

|
2

0 &+
O 2
Q08
+0 Q4

0
-004 -
-0:-08 I

-0nr
O Gt

INCHES

FLOW IN CONICAL DUCTS

LEWI1S,
TEST Nol.

6

FIG.2

VARIATION OF A




AXIAL VELOCITY FT/oEC

180

% ) T

120 -

&0

/ N
I .

!

|

!

I

!

!

b

|

GO

A S

| L 1
OIO 08 06 04 02 O 02 04 OG 08 10

RADIUS
TIP RADIUS

/ PARAMETER THEORY-ZA
PARAMETER THEORY-2

\\
* - _ == LEWI5-2

100:_,__7,___4 _______ h__n_____%--l_swrs-l

— PARAMETER THEORY-|

PARAMETER THEORY-1A

Elg27. LEWIS. FLOW IN CONICAL DUCTS

TEST Nol AXIAL-VELOCITY PROFILES




!
I

%#&I

———n
———

AT
N7 //////f/’//

|
CONICAL DUCT :BLADEq CONICAL DUCT

; ROW|

S

Y

l
!
|
l
l
|
//////,T’//////////
]
L
o
L
| )

FIG 28 (@) CONVERGING DUCT TESTS 2 AND 3

2 3 4
| |

| |

|

L, .,
#!W

i
|
I
| |
i |
I
|
I
I

///J(////M

|

|

| |

| TV V777
77777 |

Wm ;777|

| | CONICAL DUCT |BLADE CONICAL DUCT

1 | ROW |

i
.

FIG28(p). DIVERG NG DUCT TESTS 4 ANDDS

LEWIS FLOW N CON CAL DU(CTH
DUCT CONFIGJRATIONS FOR TESTS 2,3,4 AND 5




04¢f

\ \
+02

-0.2 + UNIFORM FLOW
AT INLET
-O,A -
06
ONUNIFOZM FLOW
AT INLET
_Oa \
1QF

CONICAL DUCT  |BLADE| CONICAL DUCT
1 1 ROW l

0 2 4 G 8 10
AXIAL DISTANCE INCHES

FIG.29, LEWIS. FLOW IN A CONVERGING DUCT
VARIATION OF N IN TEST Nos. 2 AND 3




or or
ok ol
i 50 @ 50}
0 L
S~
= I STATION 2
- -~ LEWIS EXPERIMENT
> N > R
40 £ 49 ——  PARAMETER THEORY
3 STATION | 3
" ¥
> 30f ~, 3of
<
S s
p, -
20 20+
o+ o
O i | 1 L O 1 | ] L
o 02 o4 06 08 0 0 02 o4 06 08 o
¢-h v-h
Eh E-h
FIG 30 FIG 3}

LEWIS FLOW INA CONVERGING DUCT. AXIAL=VELOCITY PROFILES
TEST No 2 UNIFORM FLOW AT INLET




80r
— P,
—— -
7O T —— A
GO}
9
uof o
£ ~
=50 & og- L~
: :
O ¢ /
O 40 3 801 /
_i o /
S STATION 2 > ;
.l U {
= 30 ~—— LEWIS EXPERIMENT <cof !
L.q —
PARAMETER THEORY < STATION 4
20F 40F ~~— LEWIS EXPERIMENT
— — LEWIS PREDICTED
—— PARAMETER THEORY
(0] o 20
O 1 | | 1 o 1 i 1 1
& 02 o4 06 08 o) 0) 02 o4 0G os
. FIG 32 FIG 33 £

LEWIS  FLOW IN A CONVERGING DUCT AXIAL-VELOCITY PROFILES
TEST No2. UNIFORM FLOW AT INLET




80r
70k
Q60
[¥1]
O
=~
[
.50
=
W)
Q
-
$40
- |
< STATION |
>
<20k 0 LEWI® EXPERIMENT
—-— LEWIS THEORY
——  PARAMETER THEORY
20t
ok
O 1 | | 1
o 02 04 06 08
£ FIG 34

70
U GO
wl
iy
S~
t_
w
> B0}
E
J
o]
a
> 40
-
< STATION 2
=
< aol =~ LEWI® EXPERIMENT
— PARAMETER THEORY
20 .
10+
O 1 | | 1
0 03 o4 00 o0& o
FIG 35 =

LEWI15S FLOW IN A CONVERGING DUCT

AXIAL-VELOCITY PROFILES

TEST Nod NON-UNIFORM FLOW AT INLET




AXIAL VELOCITY FT/%EC

aor i00r
/
GO &0t /
!
N |
Q {
50 (o] ,'
i > |
Ly i
J |
40+ C o}
w
> |
I
< |
30 % s0f-
STATION 3 STATION
20+ —~== LEWIS EXPERIMENT A0 —-—-— LEWI!S EXPERIMENT
— — ACTUATOR-DISC THEORY — — ACTUATOR-DISC THEORY
~——— PARAMETER THEORY —— PARAMETER THEQRY
1o 301
O 1 ] l 1 20 1 1 l 1
. 02 O-Ar " 06 08 10 o o2 04 " 06 08 10
t-h FIG 36 FIG 37 -h

LEW!IS.  FLOW INA CONVERGING DUCT  AXIAL=VELOCITY PROFILES
TEST No 3 NON - UNIFORM FLOW AT INLET




03 ™ i
A
Q2F
+0| UNIFORM FLOW
AT INLET
0
NONUNIFORM FLOW
AT INLET
BLADE
CONICALDUECT | ROW | CONICAL DUCT |
o 2 4 G 8 (v}

AXIAL DISTANCE INCHES

FIG.38. LEWIS. FLOW IN A DIVERGING DUCT
VARIATION OF A IN TEST Nos.4 AND S




J20-

) 5 8

AXIAL VELOCITY FT/3eC

&
O

STATION |

==—- LEWI!S EXPERIMENT

—— PARAMETER THEORY

s 1

:

G
O
T

AXIAL VELOCITY FT/5EC
&

B
O
T

STATION 2

-——- LEWIS EXPERIMENT
——— PARAMETER THEORY

06 o0&
r-h
E-h

FIG 39

LEWIS. FLOW IN A DIVERGING DUCT. AXIAL-VELOCITY PROFILES

TEST No.4.

UNIFORM

FLOW AT INLET




AX|AL VELOCITY FT/5EC

S0 90
N
"__‘_/___A-—-
&or - 7 \ a0t
P \\ . ’g-":"-/ \
/ - \
/ \ P
/ - - e
nr | TO+ -/ :
O / A
3 ’ i
GoF eof 1’ |
>
- /
Y] ,’
SoF S sof ;
[
> /
:(, {
w0k STATION 3 = 40F ,’ STATION 4
L. o
--—— LEWIS EXPERIMENT [ —e— LEWI5 EXPERIMENT
— — LEWIS THEORY ll — — LEWI!S THEORY
©r —— PARAMETER THEORY or —— PARAMETER THEORY
/
]
20— 20"“ ”
!
JO . 1 1 1 1 D 1 | L ]
o 02 04— 0G 08 'O &) 02 ol oG 08 (o

rh FIG 4l FIG 42 vh
LEWIS. FLOW IN A DIVERGING DUCT  AXIAL-VELOCITY PROFILES
TEST No 4 UNIFORM FLOW AT INLET




00, 100
HUJQO 90
0 9]
= 0
2 £
&0 w80
z >
o E
o ¥}
_| 70— O 70
@ ]
,> >
-~ -
< <
§60~ 3((60-
STATION | STATION 2
50k - -—- LEWIS EXPERIMENT 50l , ———- LEWI® EXPERIMENT
—-— LEWI5 THEORY — — LEWIS THEORY
—— PARAMETER THEQORY —— PARAMETER THEQRY
40F 40k
1 ! L I l i I i
3% oz oz, 0G 08 T 02 0z 06 08 o
R FIG 43 FlG.44 Eon

LEWIS FLOW IN A DIVERGING DUCT. AXIAL-VELOCITY PROFILES
TEST No S NON-UNIFORM FLOW AT INLET




&0r

FT/5EC
&
S S S

AXIAL YELOCITY

8

STATION 3

LEWiIS EXPERIMENT
— — LEWIS THEORY
—— PARAMETER THEORY

20
[ | ] | fe) ] 1 { l
02 04 0G 08 o o 02 04 06 o8
v-h +h
E-h E-h
FIG 45 FLG. 46
LEWIS. FLOW IN A DIVERGING DUCT. AXIAL-VELOCITY PROFILES

"/ SEC
8 3 8 3

AXIAL VELOCITY FT,

W
O

STATION 4

LEWIS EXPERIMENT
LEWIS5 THEORY
—— PARAMETER THEORY

TEST No 5.

NON-UNIFORM FLOW AT INLET




- INCHES

TURBINE RADIUS

TP LA
- %ﬂ#%
SIS LS L /Z%“
-
pesiaN |
R ] RADIUS
_\ AANN AN NNTRNRSISTT NS NN %\\}\\\\\ AN AN AN N RN
HUB
5 faap| 1R lcaPl 26 |cap| 20 lcap| 35 |cap| 2p
L. 1 1 1 1 i | 1 I
o t 2 3 4 5 A 7 &
AXIAL DISTANCE - INCHES
FIG.4T JOHNSTON AND SANSOME EXPERIMENTAL THREE-STAGE TURBINE

TURBINE CONFIGURATION




O3 15 2 25 22 a5 3p

Q-4
\ I { ——=—— M = 20 OG Ib/sec.
/ — — M =19 :48 Ibjsec
O 3+ /
I
/
7
02' /J
I
» ~ ’\
+Olir / J f‘!‘\ //
/ \\ / A\ A v
ALV LR AT
W \\. \ </ >
O B \ "r‘
\ N\ /7
\ VS
-0 \ v 'II \\ //
\\\' /’I W
\ '/
-02t NA
L | L | 1 i 1 1 1 |
(@] i 2 3 4 5 G 7 8 )

AXIAL DISTANCE - INCHES
FIG48 JOHNSTON AND SANSOME EXPERIMENTAL THREE-STAGE TURBINE

VARIATION OF A




030r

025

# P

m = 200G Ib/sec
| — — M= 19 48 ibfsec
-~ | "-—l
\\ l “
\. ‘
020- A \
) :
| \
oI5

\
\ = —\
Vo
1 f
0 lor : I

+0{?§- \ : \/
ARVEEAY \

; /
\Q/"-""J =t
0 08- 1S 1R % 2R 3 3
| | | 1 1 1 ] i J }
O | 2 3 4 5 G 7 & 9
AXIAL DISTANCE - INCHES
F1G.49 JOHNSTON AND 5ANSOME EXPERIMENTAL THREE-STAGE TURBINE
VARIATION OF U




AXIAL VELOCITY AT DESIGN RADIUS FT/8EC

35 |
\\.I-I//I.. .\\\//l S
\\ / I\/ R \A //
7/ - . /..l\\ N
\\ / B '/
&8ﬁ \|\ /. / /.l\\//
* ~
/.\/. //l!.l\\ﬁ
~
L ~
..I..I../ /...l
MS.I .I/ ——
™.
e

200

———== M = 20 06 Ibjsec.

—— M= 1948 Ibjsec
150 -
ool 15 (R 25 2R 35 3R

L t 1 1 ] 1 1 i 1 j
o | 2 3 4 S @) 7 é 9
AXIAL DISTANCE - INCHES
FI1G.50. JOHNSTON AND SANSOME  EXPERIMENTAL THREE-STAGE TURBINE

VARIATION OF AXIAL VELOCITY AT THE DESIGN RADIUS

e 1T WAX

Ll =1



[
B 7.5} STATOR | EXIT | 4 75 | ROTORI. EXIT | -
5 1
Z |
b | (i
g 70r Il 4 70 F .
ul -I I
z I |
o &5 A I - 5 r |
2 |
r { = |1 | | 1 !
06 o8 0.l 12 06 o 0 2
——  EXPERIMENT
——— THEORY M =20-06 Ibfsec
— —  THEORY m= 948 Ib/sec N
STATOR 3 | |
EXIT |
) | ROTOR 2 EXIT _ -
g &0 80 |
U l
4
= l
- -
£ 151 7% F |
o
< I
o I
S |
2 70 70 .
0 |
S !
F I
G5 65 l -
|
I ] P
06 o8 06 08 o 12

FIG.5.. JOHNSTON AND

AXIAL VELOCITY

I
-5 | STATOR2 EXIT 1rs
70 470
63 165
0G 12
a5 |HROTORS 4 a5
EXIT
&0 - 180
75 T 175
70 170
65 I 165
0-G 2

UPSTREAM MEAN AXIAL VELOCITY

SANSOME EXPERIMENTAL THREE-STAGE TURBINE

AXIAL=VELOCITY PROFILES







INCHES
& J

TURBINE RADIIS
)

N

AN
——— ACTUAL ROTOR BLADE SHAPE

%
_%é
I 7

DES\GN RADIUS

|
|
| ‘1
|
|
\

l
|
l
E H:JB 177777777777|%‘777777777 &7

ILPlE‘O‘TOE! | LP2NGV | fLpP2 rOTOR |

l
|
l
|
f ! \ 1 1 ! 1 L )
o] | 2 3 4 5 G T fal

AXIAL DISTANCE INCHES

E1G.52. ROLLS-ROYCE TWO-5TAGE TURBINE

TURBINE CONFIGURATION




08

o7

ofe)

05

04

03

02

+01

F1G.53. ROLLS-ROYCE TWO-STAGE TURBINE

LPI NGV L P1 ROTOR LP2 NGV LP2 ROTOR
| 1 l 1 1 l 1
o ! 3 4 5 ) 7 8
AXIAL DISTANCE INCHES

VARIATION OF A FOR VARIOUS MASS-FLOW RATES




—=— M =238 O'lyjsec

---= m = 230G Olbjsec
L — —m =220 Olbkee
M
1 —— M =200 Olbfsec
LoF |
~. ‘l
|
Q&

!
OG-

i
\ |
\ o,
[ ll‘ ’:l \“ \
— ¥\ k
+02F

;_-.-ﬁ"l—'_
L
- -

-0,2_

LPI NGV L P1 ROTOR LP2 NGV LP2 ROTOR
i 1 l 1 1 1 H i S |
0 I 1 3 4 5 G 7 &

AXIAL DISTANCE INCHES

FIG.54. ROLLS-ROYCE TWO-STAGE TURBINE

VARIATION OF M FOR VARIOUS MASS-FLOW RATES




20_
—— DESIGN RADIUS SN
———— STREAMLINE FOR M =237 4 Ip/sec
O . ~ STREAMLINE FORM =220 O Ibjsec >
— — STREAMLINE FOR M = 200 O lb/sec TP
18 \>>>5>>>\>>
N>
nl7r
1]
T
[ @]
AN BN
|G- _f:
g /--/_'.//- e
2 e o
2 -:/’
o 5l _?__;_,_.__-ﬁ“
w 2 s
Z =._._-_‘_,’_._-,-—"‘-"‘/
‘Q —_—
o
Flar
1D
N
12k l
| I | ﬁN
1F |
| | HUB “\
| - L - N
I LPl NGV . JLPIROTORI | LP2 NGV | ILP2 ROTOR |
1 | 1 | | | | i 1
0 o [ 2 3 4 ) G 7 A

AXIAL DISTANCE INCHES

FIGSS ROLLS-ROYCE TWO-STACE TURBINE

DISPLACEMENT OF DESIGN-RADIUS STREAMLINE




08

07

027

05

04

03

CURVES A
¥=14
—— UNIFORM FLOW AT INLET
— — OWIRL AT INLET
CURVES B
¥=)%33
—— UNIFORM FLOW AT INLET
---- SWIRL AT INLET

/7
(

02
Ol } \
&
@] \*—
-0 |F LPI NQV LPl ROTOR LP2 NGV L P2 ROTOR
! ! ! ! ) l i L !
O | 2 3 4 S €] 7 é

AXIAL DISTANCE INCHES

FIG 56 ROLLS-ROYCE TWO-5TAGE TURBINE

VARIATION OF A FOR VARIOUS FLOW CONDITIONS




900+

%aoa- m(lb
N 237,
>
7S700-
2
O
-
oY,
4 =
260 \
b - _._f"\_\
g R4 |
U !
>500F 270
=
b S~
§ 200 0
> 00~
- |
«
%
———- Y:l-4@ SWIRL AT INLET
— — ¥ 2 1.335:NO SWIRL AT INLET
200}
Do_
LPL NGV LPI QOTOR LP2 NGV LP2 ROTOR
1 | L ] i 1 1 1
° 5 | 2 3 y 5 o 7 3

AXIAL DISTANCE INCHES

FIGST. ROLLS-ROYCE TwWO-3TAGE TURBINE
AXIAL VELOCITY AT THE DESIGN RADIUS




T

LB/CUF

DENB3ITY AT DESIGN RADIUS

OL?JF
eRyig \
Ot
/o
/\__1/_‘\ m(u;O@Oco)
\ ]
2374
Q08 \
AN
| 220
H
007
| —
006G ———— Y =4 NOSWIRL AT INLET |
——=—- ¥=la aWICLAT INLET
— —  ¥=1333 NOAWIRL AT INLET 2374
05
LPY NGV LP! ROTOR LP2. NGV LP2 ROTOR
OOA,L— 1 ! 1 i L 1 1 i
| 2 3 4 5 G 7 8

AXIAL DISTANCE INCHES

FIG 58 RQOLLS-ROYCE TwO-3TAGE TURBINE
DENSITY AT THE DESIGN RADIUS




STATION No
Gr | 2 3 4 5 & 1 & 9
' i
|
|
|

-—- DESIGN RADIUS

—— DESIGN-RADIUS
STREAMLINE

F1G.59.) DISPLACEMENT OF DESIGN-RADIUS STREAMLINE

1 1 1

L7} 33 20 18 56 ol
AXIAL DISTANCE  INCHES

1 1

O
(»L—
&

F1G.59(h) VARIATION OF N\ AND A

FLOW THROUGH A CONVERGING-DIVERCING NOZZLE




FT/5EC

AXIAL VELOCITY

1000 -

STATION No
\/ 9
300 ]
800 ——— e T 8
700+ _
elo o _
— — 7
500 1 1
400} /_\ 1 e
3001 ]
2001 / \ _
/ \ 4
0of T 7
o) ] ] 1 ! t { | t i i [ I i
4 12 10 8 G 4 2 0O 2 4 G & 0 12 W4
RADIUS INCHES

F1G.60. FLOW THROUGH A CONVERGING-DIVERGING NOZZLE
AXIAL=VELOCITY PROFILES




F1G 6l. THE DENSITY EQUATION

s



AJR.Cu C.Pe Noo 755

Jamary, 1963
A PARAMETER THEORY FOR THE COMPRESSIBLE FLOW 533.695.5:
THROUGH VARIABLE-ARFA TURBO~MACHINES 533.6,011.34

Beavers, GJ.S.

The single—parameter theory proposed by Whitehead and Beavers (A.R.C.
R#M 3335, 1961) for the analysis of incampressible flows through
constant-area turbo-machines is extended to allow for the compres—
sibi1ity of the working fluld and for changes in the area of the turbo-
machine. It is assumed that at any axial position, the density profile
telongs to a fixed family of curves governed by a parameter U, and the
axial-velocity profile at the same point belongs to another family of
profiles governed by u and a second parameter A. The problem can only
be solved using an electronic computer, and a programme for the EDSAC2
computer of Cambridge University Mathematical Laboratory is described.
Results from this programme have been compared with existing theoretical
and experimental results and this comparison shows that the theory is
sufficiently accurate for design and performance calculations,
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be solved using an electronlic computer, and a programme for the EDSAC2
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constant-area turbo-machines Is extended to allow for the compres-
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