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SUMMARY

The linearised theory is applied to a particular family of
sweptback wings with cranked maxamum thickness lines, and the drag
of one member is analysed and compared with several other wings

whose soluticns are well known,

The indications are that one can approximate to the variation
of drag with Mach number by combining curves of certain delta and

"chevron" wings.
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1 Introduction

4 considerable amount of theoretical data 1s available on the
supersonlc pressure drag at zero incidence of wangs with straight
maximun thickness lines but very little as known of the effect of
"eranking” the maximum thickness line at a certain station along the
span, In this paper the linearised theory is applaed to a swepthback
wing having a constant chord inboard section and a tapercd scction
outboard, and cranked in such a manner that the whole leading cdge is
straight, and the outboard trailing edge is perperdicular to the free
stream (Fig.l), The problem has been kept as simple as possible by
considering a double wedge section with the maximum thickness at 50%
chord, and the investigation has been restricted to the case where
the Mach cones from thc apex lie in front of the lcading cdge (i.c. a
"subsonic" leading edge). A further restriction is that the Mach
coneg from the disturbances set up at each erank do not cross the
oppesate half of thewing. The expressions obtained are evaluated for
a particular wing with the inboard and outboard maximum thickness
lines swept back 60° and approximately 40° respectively, and for this
wing the pressure drag has becn estimated for the Mach number range
M= 1,090 to M = 2,

2 Fundamental Analysis

The drag has been estimated by following the method used by

Puckettl’2. The wing is replaced by suitable source distributions
which satisfy the fundamental linearised perturbation potential
equation

by (l'M2)+¢yy+¢zz'~=0

and also satisfy the boundary conditaons for the wing.

The wang in Fig.l 1s considered to be replaced by the following
source distributions, the strengths being dhosen so that the boundery
conditions are automatically satisfied (See Refs.l and 3)

Source dastribution Source strength
AGG! + 1
b
BHH'! o g
7
CFP! + g
7c
EHG and B'H'G! -2\ 1%

where A is the semi-angle of the double wedge section, which, for
thin sections, is equal to the thickmess/chord ratio, %, and U is
the free stream velocity. For the sakc of gimplicity distributaicns
EHG and E'H'G' have been broken down into distrabutions EGF, E'G'F'

of strength -2\ ¥ , end EHF, E'H'F' of strength +23 3
. i

Assuming the existence of only small perturbations we can find
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the pressure coeffaclent C

Y
the free stream darection; thus to a first approxamation Cp = - %5 .

2%
If ¢ dis known, u = ¢, may be found, and CP = - TJE .

Now the drag ancrerent due to a source dastribution acting on
an area A is given by

AOD=-Sl- cpsine;dAt’-‘:-é./;psz
A A
By |
=-]: ""'_on.;dA (1)
s U
A

where S s the wing plan area and Z is-the slope of the elementary
area d4 in the free stream direction, and 1s assumed small,

Then O = I ACy over the whole surface of the wing.

There are two types of source distribution to be considered,
namely the symmetrical triangular distributions AGG', BHH' and CFF!,
and traangular distributions with one side parallel to the free stream
direction, such as EGF or EHF. Since 'we are considering only the
case where the wing has a "subsonic" leading edge, the symmetrical
distributions w1ll have "subsonic" leading edges, but the "one-sided"
distributions may have either "supersonic" or "subsonic" leading edges
depending on-whether the Mech cone from I lies behind or ahead of G.

These cases are considered in detaal in Ref.3, If g 7% is the source

strength of the uniform distribution c’onsidered, ¢ for different
zones 18 glven by the equations below,

(2) Symmetrical triangular distribution (Fig.Z2a)

(2a)

2
2 EU -1 fn -1
yp = = ———= cosh™1 S (2b)
%B \/nz-l ¢ -1

in terms of u the perturbation velocity in

o

)

-)

(43



gb) Tgiangular distribution with a side parallel to the free stream
Fig.2b).

(i) "Subsonic" leading edge

-1 pl-
b = - el cosh L _nf-g (32)
%B \/n-1 n(1l-o)
2
‘o = = 55U ogp-l n=0_ (3b)
7B \/n-1 n(c -1)
2
¢x3 = ___E U C(Z)E*‘.h-:L sk Sl (3c)
7B \/n2-—l n(O +l)
(1i) "Supersonic" leading edge
EU 1 .1 o
¢y = - 0 - cos™t TR (ba)
B J1-n? n(1-0)
1
EU
P = = — (b)
B (1-n?
. 2
¢X3=--€—E__;cosl&- (4e)
B \/l-n2 n(1+0)
where
B =\/M2—1
n = k/B
k = tangent of the sweptback angle of the leading edge of the

source distribution®

qQ
B}

the rey parameter = k |y/x|, the modulus being taken in order
that ¢ shall aiways be a positive quantity

X,y are streamwmse end normal cartesian co-ordinates (respcctively)
in the plane of the wing, measured relative to an origan at
the apex of the source distribution concerned,

The subscrapts 1, 2, 3 refer to the zones defined in Fig.2.

¥ Since the sweepback angle of the leading edges of the source distri-
butions AGG', BHH', CFF' arec all equal to the swcepback angle of the
leading edge of the wang, the symbol k will bc used also for the
tangent of this particular anglc.,

_5_



Since we are considering a wing symmetrical in planform about
its centreline, and of symmetrical section and at zero ancidence, it
is necessary to find the drag of only one surface of one half wing and
multiply the answer by four to get the total drag, Equation (1) may
then be replaced by

bop =% [~ Fra (5)

where A is now restricted to areas on one quarter of the wing surface.
Accordingly the distributions AGG', BHH', CFF' will be referred to as
AGD, BHD, CFD respectively,

3 Evaluation of drag increments

3,1 Drag due to symmetrical source distrabutions

Consider first the drag increments due to the three symmetrical
source distrabutions AGD, BHD and CFD (Fag.l).

The general expressions for drag increment are giaven by substi-
tuting equations (2) anto (5), and since the wing area

2
g =< i
k \l-a

where ¢ is the root chord and a = (Fig.1), we get

B8

ll

eELk (ea) L ool 0% 4 ()

ACh,y

xB ¢ (1+a) 1h@—l leg?
A
and
£ - - 2
LGy = bk (1-a) 1 . cosh™T /Rl oa (6b)
AB o2 (1+a) \/ 2 2
A c nc-1 c =1

Knewing the values of &, £ we follow the method of conical
fields and choose our areas of integration so that they can be ex-
pressed in terms of a single variable, the ray parameter, o. It is
then possible to evaluate the drag increments., These waill be obtained
in the following sections,

3,11 Source distrabution AGD (£ = +A = +7)

The source distribution AGD affects the area of wing AGFC (Fag.l),
in which the slope of area AGEB is +X\ and the slope of area BEGFC is
- to the free stream. Thesc areas can be suitably divided into

LGEB = AGE + AFD
and BEGFC = AGF - 4GE + AFC - AEB
-6 -



.whichy; 1t will be seen, all have their apices at A,

Using the notation throughout that [XJDV(XYZ) represents the drag
of the area XYZ due to the source distribution with apex at V, we have

ACp, (AGEB) = ACp, (AGE), + ACp, (AEB)

and
Atp, (BEGFC) =A0p, (AGF) - ACp, (AGE) + ACp, (AFC) - ACp, (AEB)

(a) Area AGEB (Z = 4\ = +71)
(1) AreaAGE (£ = +X = 41)

The drag increment is gven by equation (6a) in which dA has
the value

c2 (1—2)2 do

dA = —
e (l-a)2 (1-0'%)

where dA 1s the elementary area dA; in Fag.’a and b 1s defaned in
the same figure, It will be seen that when b = 0, dA refers to

a triangular area with one side lying on GF and when b=1 the side
lies on GE. Expressing the drag an its general form for the areas
AGE and AGF we have

o=p ( b2
-5 - 2
ACp = 855 2 Z_’,2 f 2 ‘ 1 cosh-l n -& do ,
B (l-a}) > n2_1 (l _0-%)2 1"0'2

the integration beang performed between appropriate limits, and b
heang grven a surtable value for each area, '

It will be, seen later thut a more general expression can be
obtained whach will cover the incremental drag for the area BHF
due to the source distribution D, and this expression is

N

‘ o= (r - D)2 5
ACD = —8%— __,._2 e 5 cosh™ "02 do
B (1-a%) »/nz-l (1L -0 2) l-o
O=0 2

Al

where r is defined in Fig,l as the ratio %I_J .

We wraite tﬁis as



o=p

Ky = —2E  E(r,b) (7)
7B (1-2%) o=u .
where '
b
(r =22 | 2_g2
E(r,b) = 2 1 cosh~l [D°=07 4o,
né-1 (1 -¢ %)2 1- o2

Evaluating® when b = 0 and b = 1 gives

"0- .-| o
o cosh™ -1 ~I-1-——--~-- +\]n -1 san o

n2 -1 1~ 0'

n{1-c)- \&2--0*2—10“ fn

n(l-c)- \/nz—o‘ 20 Jn2-1

_(J_-q-cr) J 2= -*1‘ *
n(1+0)~ Vne o 2s0Jn2= 1]

(8a)

{

= log

o)

and —_
-1 2 2
2 cosh™ - "
B(r,1) 2(r-%) Vvi1l- 0‘2 - log n{1-0)- Yne- P \/nz—l
n{l-c)- n2eo?40 [ n2-1

2
n<-=1 1 e~
(1-3)

n(1+0)- \/n2 02-0'\/1-1'7.1

~

1 log

n{1l+c)~ Jn2 0‘2+0'J né=1

for 1<n < 2

e}
| n{l=3) = [n?c2
+ either -lt\/_ﬂ_z.:];_ tan=1 2’ ¢

- 2 [
13 cr\}/1~(-;—’)2

2 [ n°-1 i ) \f(

or - |=————— log for n>2 1
2 (l—-- -yp?-c?ico (_

8b) J

* If in E(r,b) and all the following functions the substitution
0 =n 81n € is made, the functions after a first integration by parts,

all reduce to expressions of the form/ o which are dealt with
A48 s1n 9§

in Ref,5,
-8 -



For the area ACE we integrate with respect to o between the

limi'ts AE (0'=2—a and AG (o = 1).
l+a

Henee (7) will gave

. 8 72 :
aon, (GE) = —B _5(1,2) (9)
B (1-a%) 2a
l4a
1
where E(L,1) g 081 be evaluated from 6(b).
l+a

(ii) Area ABB €= = +q;)

Again we use _equation (6a) but da is given by

2
ap = —S 30 (d4 is the elementary area dA,.inFig.3a)
8k (1-0)¢
Substituting we get
28
2T2 1 l+a 5 2
AODA (AEB) = -4 2 cosh™l /B =0 da
7B (l+a) -1 1-02 (1-0)2
; o
2a_
2 lsa '
=2 1ma) 1(n) ‘ : (10)
7B (1l+a) 0
where
y 2
I{n) = N N £ - a
n==1 1= 02 (1“6)2
and 1s evaluated to be
i / 72
cosh™ -
I(n) = 1 J 1 0‘2 n2-0‘2
Jn2-1 { (1~g) 2(1-0) Jn2

n{1+0)= \/ 0'2—0'\/_ -1
1+c‘ Jn2 02+0‘\/—_—ij

(11)

, . 201, }nLl-G)- I nPegéeo D-—l’ +El o

n(1-0) [n2-Bs ¢ Ju2ol]

-9



(b) Area BEGFC { = =\ = -1)

(i) Areas AGF = 4GE = AEB (g = =\ = =1) ' <
Applying equations (7) and (10), and substituting the appropriate
limits for ¢, we have

fes

1 1
2
AC, (AGF ~ AGE - AEB) = - 8¢ E(1,0)| + —&  ®(1,1)

A K xB (1-a%) a 7B (1-a%) 5a
Tsa

' 28,

2

+ 2 (1-a) I(n) 1ia (12)

®B (l+a) 0-

. (i1) Area AFC (Z = -A = -1)

Equation {6a) is once again used but dA is gaven by ;
= & 47 (d& as the elementary area d.A3 in Fig,3a) %
2 (1-0)2
- 2 2,
e AGh (4¥C) = - 8" (1-a) 1(n) (13)
A B (1l+a) 0

Summing up, the drag increment due to source distrabution AGD is given
by the sum of (9), (10), (12) and (13)

2a 8 1 1

. 2 —
L7 {leg lya , 2
. « ACp, =+ I(n) - 2I(n) | = E(1,0) | +28(1,1)
A 7B (1+a) 0 0 1-a)2 a Da
' l+a J
(14)

3.12 Source distribution BHD (& = =2A = -21)

There are two cases 40 be considered here, viz. when the Mach
wave from B lies ahead of E ahd when it cuts EG.

Case (a): Mach wave from B not cutting EG

The area to be considered, BJGFC, can be divided into BHFC and
BJGH. : '



I

w1

(1) Area BHFC (£ = -\ = -)
This area can be diviaded into BFC and BHF.

For BFC the drag increment is the same as that for AEB due to
the source distribution AGD except for a factor of 2 arisang from the
increase in the magnitude of £.

2a
2 1
Lt 1l-a +8a
.8, A 0 e
1.6 Oy, (BFC) = 1o I(n)

(15a)

For the area BHF the equation (fa) is used with d4 given by

c@ (r - %)2 a0

(d4 is the elementary area da) in Fag.3a).
2%k (1-a)¢ (1 o 132.)2 '

This leads to the general expression for the drag increment
given by equation (7), and substituting we obtain

1
2
A (BHF) = _167% E(r,0) (15b)
s 7B (1-a°) 2a_
lya

E - for the area BHFC we find the drag increment by adding (15a) and
15b)

2a ‘ 1
2r T 2
A0p, (BHFC) = %— i—'—:‘ I(n)|**® & _1_6.__2._. E(r,0)| , (16)
" 7B {1l-a 2a
0 ( ) lea

(ii) Area BJGH (% = +\= 47 over BJGE and & = -\ = ~g over EGH)

Since the area BJGH 1s outside the boundary of the source distri-
butaon, equation (6b) must be used and d4 is given by

da = (17)

(d4 is the elementary area dA, in Fig.3a).

Substituting equation (17) into (6b) gives for OCp the general

o5k (r-2)2 ,c:osh":L }%‘“_J.:
AOD = 8E¢ 2 g =l do,

2 Zz.
=B (l-a n°=1 T b2
( )Gza \[ (1 2)

form

- 11 =



or if we let

then
(e
oy = =225 o(s,0)
xB (1-a%) .
where r and b have appropriate wvalues, T(r,b) has been evaluated

for b = 0, 1 and 2 and has the following values

2 - S
2 - - -
F(r,0) L ¢ cosh 1jn-l + \/1;2-1 sint &
Jo?a °

n(c-1)+ y/nz—GQ-O‘\ n2-l} $log n{c+l)- \/I’IZ—U'E-JL/HZ-]- l

n(c-1)+ \/n2-0‘2+0' nz—l‘ n(o+1)=J n?= o240y n-1}|

|
J

H]

+

naf
-
[o]

i+]

(18a)

—

2 |2 cosn™l [B 1 5
(r-2) gé-1 & log nfo+1)=- \/n2-c 2-0;[n2-1
n(o'+l)-\[;1_2—:<_3—2“+0‘ an—l

H
+
wif he

F(r,1)

nig-1)+ an- Eme jnz-l

nf-1)+ \/nz—déw\[nz—-l

n{€~1) + ﬂ‘@—o‘z -0 [n-1
log 2 for n> 2

2
I21‘) ~1 n (9'5 -1) +Jn2-o—2 +o Jn2-l

n (% - 1) + Jn°-o?
o [1- &2

- 12 -

-3 log

- gither 2

for 1< n <2

(18b)

Y]



&?

(L =%

2 — .
cosh-1 /ni~l 2
(r-1)? y 02-1 2 n°= o
F(r,2) = - -—
Vn-1 0-1)

P

(e-1) { n2-1

N (n®+1) log n(c-1)+ \[n2~ 02-G‘Jn2-l
2 [ f
(n "'1) n(0'—1)+ n2-0'2+0' n2--l

(g +1)= J 0 g0 Jn°=1

n(o+l)- jn2~0'2+0' Jng-l

(18c)

- log

For the area BJGE, &L = +A = +1 -

AoDB (BJGE) = AcDB (BJG + BGE)

n

H f

. 1672

e A (BJGE) = - + P(r,1 (19a)
ODE : %8 (1-a2) =

F(r,2)

i
r
For the area EGH, £ = ~A = -7

ACDE (BeH) = Ao (BGH - BGE)

i
¥ - Fr,1)
1

o6y (s0) = —25° | (r,0) ()

xB {1-a%)

IS )

Sumning up, ACpy 1s given by the sum of equations (16), (19a) and (19b)

28
2 = 1 n 1
. 477 (lea 1 L =
« s ACp 2 oy 2 | E([,0 - F(r,2){ + F(r,0) ¥
— (l+a)1( Y (,)_23_ (,)_1_ (r,0)
0 l+a r 1
1
- 2(r,1){¥ (20)
1

- 13 -



Case (b): Mach wave from B cutting EG

In this case ACpy (BJG) = 0. Otherwise the value of ACpy is

given by the ssme expressions as for case (a), except that % ig replaced
" i

by n.
. o) .g?.'_ 1 1’1~
. . AQDB 4T (1-a I(n) l+a 4 E(r,0) + F(r,0)
7B (1+a) -
0 (1-a) R b
l+a
‘In
- 2F(r,1) L f21]

3.13 Source dastrabution CFD (& = +\ = +7)

Again there are two cases to be considered, namely when the Mach
cone form € lies ahead of E and when it lies behaind E (see Fig.h).

Case {(a) Mach cone from € lying behind E

The drag contribution is given by equation (éb) and the value
of dA by (17), wath r replaced by a,

We thus have the general formula

. o=
AGy = ___5_5_5_4_5_ F(r,b)
‘t 7@) (l-‘a ) 0":“
(i) The Mach cone from C cuts EG
For the area CNGF (4 = -\ = =1)
1 n
AC CNGF) = = ——"tt—_ |F(a,0 +Fla,l
Do ( ) =B (l-a2) ( ’ ) ( » ) (22)
i1 1
a
For the area NMG (2 = +A = +1) . ‘
A0, (MME) = AG, (CM: - CNG)
n n
' &
= ‘—"é—z_ F(a,2) 1" F(a-al) 1 (23)
B (l-—a ) E E

-1l -



Hence for this case ACp, = the sum of equations (22) and (23)

n n 1
. 2 ’ a
. . A%C = _ﬁ.—_— F(a,Z) 1 - ZF(a,l) 1 - F(a,o) * (2"4‘)
&B (1-a°) 3 B 1 :

)

(11) The Mach cone from C cuts FG

For this case

5% pia0)| (25)
xB (1-a2) '

Achz..

Case (b) The Mach cone from C lses ahead of E

The relevant arca CLGF may be divided into two areas CKGF and
CLK.

(1) Area CKGF

ACp. (CKGF) 15 the sme as that given in equation (24) except that
n is repgaced by the value of o for EC, i.e. 2a/(3a-1).

(ii) Area CIK
Now CLK = CQE + QLKE.
(iia) Area CQE (£ = =\ = =1)

It may be noticed that the areas CQE and CLK are similar fmd have

the same boundary values for ¢ (viz. ¢ = nalong CQL and ¢ = il along
CEK), end that the area CQE 1s one quarter of the area CIK.
n
L et Q) = - —2r 5(a,2)| (26)
C ‘7B (1-a%) a
2a-1
(11b) Area QIKE (4 = +\ = +1)
n n
872 . 2'L2
A0p (QLKE) = . F(a,2)| 24 = =————==Fa,2)| 25
7B (1-a) Bam1 7B (1-a%) 3a=l
n
6’L’2
- a2, (27)
1-
7B (1-a%) o1

- 15 -



Hence in the case when the Mach cone from C lies ahead of &,
Aqgc is given by the equivalent of equation (24) plus equations (26)
and”(27)

ity

2a 2a
2 £ -
0, = e |2R(a,2)] 57 - 4 (a,1) [P :
c 2 &
7B (1-a“) 1 1
a a
1 n
- 2P(a,0)| ® + F(a,2)
1 2z
3a~1
Za
. 1‘_,52 n n 3a...l
. aoDC = W(a,2)| - ¥(a,2) - 4F(a,l)
wad | T
4
L
- 2R(a,0)[® ' (28)
1 .

Summng up, 1f the Mach cone from ( lies ahead of E, ACpg
is given by (28); if the Mach cone cuts EG, ACp is given by (24);
and if the Mach cone cuts FG Op, 1s given by (25).

.2 Drag due to "one-gided" source distributions
£

The source distraibution EGH can be made up of two source
dastributions, EGF of sirength ¥ = ~2A = -21 and BHF of strength
E= +2\ = +27.

Two cases have to be considered, namely when the Mach cone fraom
E 1lies shead of B¢ and when the Mach cone lies behind EG (see Fag.5).
The calculations will be restricted in that the Mach cone from E is
assumed not to cross the surface of the other half wing, 4 further
limitation already mentioned is that the Mach cone from A 18 always
ahead of the wing leading edge,  Thus the source distribution EHF
is always of the "subsonic" leading c¢dge type, while EGF may be either
"subsonic" or "supersonie".

The general expressions for the drag zncrement dus to this form ]
of triangular source distribution are found by substituting equations
(3) and (4) into (5). The substitution leads to the following set
of equations, the suffices 1, 2 and 3 representing the zoncs of
mnfliuence which are defined in Faig,2, *



.}

-

(a) "Subsonic" leading edge.

‘ k
ACD]_ = 88¢& (1-a 21 1 cosh 1 e dA (298.)
73 (L+a) o2 n12~l n,(1-9,)
g k n, -
a6, = 855 (1a) 1 L cosh~l L1 gy (29b)
7B (L+a) c n.2-1 14 {oy-1)
8 EZ (1-a) X1 n %o
AQD3 = = 2, = cosh™ == 4 {29¢)
. P ~ .
B (l+a) < \/nlc_l | n,(7,+1)
(b)  "Supersonic".leading edge. .
* 2
-5} K 0 -n
8p, = 88¢% (1-s) _ R P s N O Y (30a)
7B (L+a) c {1_nl2 nl(l—ci)
AGH, = 8855 (1a) B2 _a (30b)
2 B (l+a) o® ﬂl_nlz
884 (1-a) p o ~
_ da (30c)

80 =

7B (leg) //1_' n“l“ n, (1+9)

In the above equations, kl and nq refer to the source dastri-

bution considered and not the wing leading edge, and oy 28 always a
positive gquantity.

The elementary areas (see das and &A7 in Fag. jb) arc given by
the following. . a

In zones 1 and 2 (Pig.2)

dA = dhg = g of (12B)" 40y (31s)
B (g - o1 2)*
and in zone 3 (Fig.2)
2
A = dAy = g g do: (51b)
T T (geope

- 17 -



where g = ky/k and k) 1s the tangent of the sweepback angle of the
leading edge of the source distrabution congidered and k is the
tangent of the sweepback angle of the leading edge of the wing.

Let Ey refer to the source distrabution EHF, and Ep refer to
EGF.

3.21 Source distribution FHF (& = +2\ = +27)

() Area FHF (£ = =\ = —-1)

Putting b =

0, g =21 an (3la) and substituting in (29a) we get
for this area the general expression

2 (1-a) f
"B (1+a \/n_lTl

I

ACDEl

coshl ! a-l ao
1(1-99)

For EHF nj; = n and the value of AGDEI (EHF) is the same as the general
value; i.e.

1
2o, (RF) = L2 Q) g (g (32)
1 T.B (l+a) 0
where
- 2
Hl(n) = 1 cosh™l n-0 3¢
Jn2—1 n(1-¢)
' 2
e —d ¢ cosh™t D=9 Zul sin~1 2
1~ 1
2. n(1-9)

- log n(l-o‘)- n '—'02- / -1 (33)
n(l-c)-Vn -0‘2+0'Jn2-1 )

(b) Area ERGH

This area may be divaded anto EGH and ERG, the value of dA for
each being as in (3la), wath b =

0 for EGH and b = 2 for FERG. The
- 18 - ;
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drag is found from equation {25b).

<)

(i) Area BCH (4 = -A = -1)

1 - 2 2
MGy (BGH) = - (1-3) cosh~l B=9 4o
E1 ]_ =
7B (l+a) né-1 n{o-1)
1
2
¢2 (1l-a)
= H2
7B (1+a) 1
where :
1 -1 n2—0"
Hz(n) = cosh™t B =.. 4¢
fo 1™
n-1 n(o-1)
A
-1 né- f 3
R o cosh™t ( ) +~\n2 1 sin~t 7
' n2-1 T
+ log n(c-l)+\ﬁn2-62-an2—l
n(o-1)+ n?- %+ o \ng-l
(i1) Area ERG (Z = +h = +7)
n .,
- \ 2 - -3 2
BOpg (BRG) '= 22 (1-a) £ -cosh™ B7=7_ 4g¢
m8 (1+a) J  [1271 (g0)2 (o~1)n
2
vhere g =
Let
- 2
» J(n,g) = £ L cosh™!t n°0 4o
n2-1 (g)? (o-1)n

.

- 19 -
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Then

-1 _n=-c¢ -0 SO
cosh™
. af-l -l) \/n2-0‘2 v

(0-1) [n2-1 (1f12-1)(<I ~1) '

J(n,l) = -

AR B n(s-1)+ [i2-Poofr2a| (36)
(n2-l)3/ n(o-1) \/n —0'2+6f 2.1

B0py, (2RG) = 2 (1-a) J(n,l)[1 (37)
7B (l+a) 2

k)

It will be notaced that when EG is "supersonic" the drag increment
given by equations (34) and (37) wall not hold, since equation (37)
will not exast, and equation (34) wall become

)

AoD (o) = - 22 (=) g (38) .
7B (l+a) 1 )

(¢) Area EFS (or EFU) (4 = ~A= -7)-

The drag increment is given by equation (29¢) in which dA 1s
given by (31b).

The general expression 1s

2
AQ)EI (EFS) = (1 a) cosh™t X0 45

WB (l+a «/ /_2 1 (g+0‘)2 + n(o+1)

For the case cfans:uiered, g= 1.

Let

K(n,g) = | —&— cosh™L n2+g ao,
jnZ_l (g+o‘)'2 n{oc+1)

- 20 -
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Then

2
h-l n+o -
1 o8 n20_+1; \fnz-—oz
K(n,l) = —_ - ( -+
- o+l)
J né-1 ) ©@+1) n2-1

2_ .2 2
" log n(o‘+l)-\ln -g —C'Jn -1 (39)
(n2-l) n(o+l)- \ln2—0‘2+0'\/n2-l
' by, (EFS) = - 2 L) 1)lrl (40)
" ODEl ~ @B (L+a) ¢ 0

3.22 Source distribution EGF (& = -2\ = -27)

For source distribution EGF, g has the value %, and n, in
equations (29) and (30) equals 3n.

Case (a) EG "subsonic" i.e. n> 2

When EG is "subsonic" equations (29) are used for the drag
increment, an conjunction waith the clementary areas given by (31)

. 1
o2
ACpy, (EGF) = Mﬁl(ﬁ) (41)
2 ®B (l+a) 2
0 n
2
ACp, (PRG) = - 22 ALma) 5B 4 (42)
g2 0 7B (1l+a) 1
and : |
2 n
| 27 -
' agy, (EFs) = =G, B (43)
E2 B (l+a) 0



where

* @)% - o
co:—:.h"1 2
n
1 5 (0-1)
J(%: %)— — - 2
o - L
wi(E) -1 (- 2)
2
2 2 2
g(o--w (g) <o ~ofi@)® -1
- 2 log

and

Case (b) EG "supersonic"

o

Moo

2
—
(¢+1) / @)

i,e, n< 2

(45)

Eguations (30) are used an this case for the drag increment in
conjunction with the elementary areas given by (31)

- 22 =
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-

N,

-)

ACDE2

where

and

E 1
2 ‘2
(gpr) = 22 {1-a) = [ "ot
2 | n
t 2

p h
- 27 i~-a L(E, 55) 2
B (l+a) 0
. C - (2)2
L('g, 1) = L -4 - cos™t 2 deo
1- (@)° 2 47
2
2
1 n -
- v [1-(5) st B -
n 2
1-(=)

2 2
n } n
5 (1-¢) - (5) -0
-2 tan-l . -
2
o [1- (2
[1-@)
2
84 (1-a) k area EQT

80g, B = ) & e
o , 6

area pGT

It

*

.. AODEQ (EGT)

]
n
!
'_l
1
W
=
Fan)
el
p—

- 23 -
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where

(49)

since g = &,

I
: 2 2
T -
.. bop  (ero) = 2 Llm) yen o (50)
Ep %B (1+a) 0
where

: _— )
N(n,g) = | =& — cos™ Zin a7

’1-n2 n(1+0) (o+g)2

Evaluating for g = & gives

2]

O+ .1:1. N
B @)
0 (o) n(oed)- [(B)Eo?
n 4 1 2 < 2
N(‘é: §)=' = + 2
2 1y . e
1- (g) l+(0‘+é)= o J1l-n
™
2
2 @s1) - /(H) - o°
"1 2 ey S (51)

Summing up for the source distribution EGH (or BHF and EQF),
ACDE is gaven by the following: -

If EG is "subsonic", OCp, 15 made up of the sum of (32), (34),
(37), (40), (51), (42) and (43).
If EG is "supersonic", ACpg is given by the sum of (32), (38),

(40), (46), (48) ana (50).
- 2l -
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The total drag coefficaenlt 1s found by adding the drag ancrements,

+ thus
C'DPressure = ACDA * ACDB * AODC *'ADDE'
4 Application o a particular ‘wing

4.1 Bvaluation

The formulac derived in para.3? were applied to a particular
wing in order to determine numerically the varaation of pressure
drag coefficient wath Mach number. [For the calculations a wan
was chosen an which ihe sweepleck of the anboard scction was 60° and
the parameler o = 0.4, Thas gave k = V3, r = 0.7 and the sweepback
angle of thc outboard maxmum thickness line equal to 40.9°,

- The various functions appearing in para.3 are shown tabulsted
in Table 1 for a range of Mach numbers between M = 1,090 and M = 2,
the lower limit being that Mach number at which the lach cones from
E and E' passed through the points F' and F respectively (Fag.l).

Itso happens that . at M = 1 090 for the selected value of a, the
Mach cone from C passes behlnd E and E', and hence for the range of
Mach number considered it was not necessary to calculate any of the
Za
Ja=l
Al M = 2 the Mach concs from the apex lie along the lecading edge.
Referring to Table I, at will be seen that the functions are tabulated
for n havang the value 1.429., This corresponds to the sach number
at vhich the Mach cone from T passes through ¢ and @' {viz. at

= 1.572), The correspondang valuc of n for the Mach cone from
c to puss through G end G' is n= 2.5 (W = 1.217),

functions in whach one limt 15 ¢ = in section 3,13 casc (b).

Fi1g.6 shows the theoretical drag curve For the vang plotted
againgt Mach number. As thc Mach number decreascs to M = 1,090
the drag cosfficicnt bogins to inerease fairly rapidly. Thas
increasc is probably duc to the delta-like pianform of the outboard
portion of the wing, the drag of a delta tending to infanity as M
tends to 1, according to thce lincar theory. Boetween M = 1 and
M ='1.090 there will be interfurconce betwien the two Halves of the
wing, the cifcet of which has not becn calculated., - At M = 1,323
when the Mach lianes arc parallcl to EG and E'G' a kink occurs, A
further kink occurs when the Mach lincs from B pass through G and G'
at M = 1.572, although there are no straipht lincs of discontinuity
in slope between B and the wing tips. Onc would imaginc thercfore
that therc would be a tendcncy for a kink to occur when the Mach
lines from C pass through G and G' (i.c. at M = 1.217). Howcver
Pag.6 shows that for thc partaicular wing selected the tendency has
been entarely suppressed. Since the analysas has been made only
for thc casc of a subsonic lcading edge, no colculations werc
possible above a Mech number of 2, As, however, at thas Mach
number the dMoch lanes sre parellcl to the gencral swoeepbock cexasting
over the i1nboard seclion oi»the wang, the drag cocfficient is
expected to decrease rather more rapadly .t higher Mach numbers,
causing a slight kink at M =

L.2 Comparason with the drag of other wings

In Figs.74 and 7B are plotted the drag curves of several wings
of double wedge aeroforl section but dirferent planforms, for comparison
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with that of the particular wang considered above. The drag of
wings No.2 and L4 were derived from graphs given by H,Multhopp and
M.Winter in an unpublished paper, using a_method essentially
equivalent to thst of Puckett and Stevartl:2, and the drag of wings
No. 3 and 5 were obtained from Refs.) and 2 respectively. The
deravation of curve No.6 will be discussed later.

Fig,7A 1s intended to show the difference which exists between
the drag of the particular crankcd wing evaluated above (wing No.l)
and two other well knovm types of wing, Wing No.2 1s an arrowhead
formed by replacing the cranked trailing edge and maxamum thickness
ilwnes by straight lines from the root to the tips, The maximum
thickness aveepback angle 1s 50,59, corresponding to the lines BG and
BG' an Faig.l. The "chevron" planform (¥ing No.3) has the same plan
arca as vwang No.l, and the same chord and sweepback angle as 1ts
inboard section., From Fig.7A it 1s seen that comparcd wath curves
2 tnd 3 the drag coefficient of wing 1 varics very little beiween
M = 1.090 and M = 2, the mean value being roughly 2,8t2, Wings No.Z
and 3 both have lower drag than wing No.l at low supersonic Mach
numbers and this 1s atirzbuted to the fact that wings No.2 and 3
have no lines of discontinuity in slope perpendicular to the free
stream, For M > 1.5 the arrowhcad waing has values of Cp which are
congrderably higher than those for the cranked wang, indicating
that the regions downstream of CG and CG' on wing'l have a beneficial
effect in reducing drag at these Mach numbers. It wall be secen that
replacing the wing by & chevron of roughly similar shape and 600
+ sweepback angle does not gave very good agreement with wing No,l

for the case sclected, which shdws that the tap effect on wing No.l
18 fairly large. ‘ :

It may be concluded that il a cranked wing of the type examined
1s reéplaced by a roughly simlar chevron or arrowhead wang ain order
to find a simple spproxamation to the pressure drag, very poor
accuracy will in general be obtained, since insufficient allowance
is made for tip effect.

Several other wings and combinations of wings have been
examined in an attempt to find a moderately good simple approximation
to the pressure drag of 'the cranked wing, and the best results obtained
are shown in Fig.78. Wing No.4 15 an arrowhsad with a maxamum thick-
ness sweepback angle of 50,59, and the same span and area (1.0. the
same aspect ratio) as Wing No.l. Comparing Wing No.4 with Wang No.Z,
both of which have the same sweepback of the maximum thaickness lane,
we see that the lower sweepback of the trailing cdge of wing No.kL
results in better agreement'wirth-wing No.l at low supersonic Mach
numbers, than was obtained with wing Wo.,2, -However poor- agreement
1s still obtaincd around ¥ = 1,572, presumably due to the fact that
not sufficicent allovance has been made for the benefaicial effect of
the region behind GG and €G' on Wing Ne.l. In an attempt to.allow
for this beneficial effect, a delta wing (wing No.5) with the
meximum thickness lines swept back 50.50, was examined,'and the drag
shows fairly good agreement with that of wang No.l, The agreement
should amprove as the parameter a (see Fig.l) decreases, exact
agreement being obtained when a = 0, since then the two wings are
identical., It 1s to be anticapated, however, that a delta wing
such 'as wing No,5 will give progressively poorer agreement with a
cranked wing as the value of the parameter a for the latter increases
towards unity. It will over-eslimate tip effects at low supersonic
Mach numbers, and make too much allowance for the beneficial effects
of the regions behand CG and CG' at high Mach numbers,

It was decided, thereforc, to seek a method of catimating, for
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all a, the drag of cranked wangs in terms of the abundani data which
exast on the drag of "“chevron" and arrowhead wings, A method”
suggested 1s to separate the wing into the chevron formed by the
inboard sections (i.e. AWFCF'™' in Fag.l),and the delta formed by

the outboard sections (i.e. WFG and W'F'G' in Fig.l). The drag
coefficients of the chevron and the delta are then evaluated assumaing
them to be aisolated wings, and the drag coefficient of the cranked
wing 18 assumed to be given by a mean, weaghted in the ratio of

their areas, such that

\ - la l-a
CDcranked wing E:; QDchevron + l+a QDdelta

Thias mecthod is obviously exacc for a = O and a = 1, and IFag.78 curve
No.,6 shows that the agrecment for a = 0.4 1s moderately good,

5 Conclusions

The theoretical supersonac pressure drag coeffacient of a
particular wang with a cranked line of maxamum thickness and a
symmetrical double wedge aerofoll section varies very llttle between
Mach numbers 1.09C and 2, the mcan value being roughly 2,812,

Sance the computations were long and tedaious, an attempt was
made to find combanations of wangs or known characterastics whach
would gave fairly closze approximations to the drag, and the following
method appears satisfactory. The cranked wing 1s separated into a
"chevron" wing formed by the inboard sections, and a delta wing
formed by the outboard sections, The drag coefficient of the chevron
and delta are then evaluated on the assumption that they are isplated
wings, and the drag coefficient of the cranked wing is obtained by
taking a mean of those for the chevron and delta wings, weighted in
the ratio of thear plan areas to the plan area of the cranked wing.

If the parameter a defined in Fag.l 1s less than 0.4, a
rapid approximation to the drag coefficrent may be made by replacing
the cranked wing by a delta wiath & double wedge aerofo:rl section, the
sweepback of the maxamum thackness lines being cqual to that of the
lines BG and BG' in Fag.l.
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List of Symbols

parameter defined in Fag.l

()

parameter defined in Fig.3
root chord

drag coefficient

AQDV(XYZ) increment of drag coefficrent due to the influence of the

source distrabution with apex at V on the area XYZ

pressure coeffaicient

ky/k

tangent of the sweepback angle of the leading edge, k referring
to the main wang, and k; being used for those traangular source
dastributions for which it 1s different from the value for the

main wing

Mach number

k

B

ky/B

G

[[Y)

parameter defined in Fig,l

wing plan area

free stream velocity

perturbation velocaty in free stream direction

streamwise and normal cartesian co-ordinates in the plane of
the wing, measured relative to an origin at the apex of a
triangular source distrabution

angle between free siream and wing surface at any point

semi-angle of the double wedge section

strength of source distribution

pi
kL]
thackness/chord ratio of waing 8
perturbation velocity potential
by k"
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TABULATION OF INTEGRATION FUNCTIONS

TABLE |
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M 1985 | 1929|1756 | 1572 { 1528 | 1388 | 1323|1296 | 1217 | 1165 | 1129 | 1104 | 1090
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BT lo1343|0 3097056570 7954|0841 [09818 |1 0481 | 10745 | 11592 |1 2186 |1 2623 12972 |1 316
frf-’g@[:" 07954 |0 8229 |0 8397 |0 8296 |0 8212 |0 77860 7387 Jo 7007 |0 6663 |0 6417
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D [+
(r'-i)*/- 25461 |2 7726 |28287 |2 7317 |2 7088 |2 4703 |2 2672|2 1142 |1 9779 |1 8797
(:_;Izl; 0 5690(10037 |1 2317 |1 3503
r_",z/“ o |o0847|04708]0 6196 |0 6618 |0 7676 |0 8046 |0 8103 [0 8016 |0 7894
o /; o |ooziz |0 042300 05840 0672
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