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SUMMARY

A method of limit analysis is given for aircraft fuselage frames
subjected to known distributions of shear flow and vertical load. It is
assumed that both axial force and bending moment are significant in causing
collapse. An approximate method is adopted in most of the work but an
accurate solution is illustrated for completeness.

1. Introduction

Although the method of limit analysis is used extensively in many types
of structures 1ts application to aircraft structures is almost unkown. This
is partly due to the fact that aircraft structures tend to be complicated and
in most cases present knowledge of limit analysis 1s 1nadequate to deal with the
problem. In some problems, solutions can be obtained after considerable
idealasation, The merit of limit analysis in aircraft structural design may
lie in its use for estimating ratios of dimensions of a structure before an
elastic method 1s applied.

The method of limit analysis for structures subjected to axial force
and bending moment has been applied to two-hinged arches by Onat and Prager6.
Any solution of the problem of fuselage frames by limit analysis is unknown to
the Author,

The material of the frame is assumed to be rigid plastic and
non-hardening. In consequence, no deformation results from any load which
cannot cause collapse. At the critical load, plastic deformation starts and
continues indefinitely without any further change in load, if changes in
geometry were neglected. The stress-strain curve for a rigid plastic
non-hardening material is shown in Fig.1 in comparison with that for mild steel.
In what follows it wrll be assumed that the generalised stress-strain curve for
a rigid plastic material has the same shape as OACDG ... in Fag.i.

For a rectangular crogs section under a bending moment M and an
axial force N the criterion for yield of the whole cross section can be written

as (see Appendix and Ref.6);

M N \?
—+(———) = m+na<1. e (1)
M, N

(o]

In/
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In this expression M, is the limiting value of the bending moment
in absence of any other force and Ny is the limiting value of the axial force
in absence of any other force; m = M/M,, n = N/N,. It can be shown in
the manner of Ref.6 that a simpler approximation, on the safe side, is

m+n<i, oo (2)

and that the deviation of expression (1) from the corresponding relation for
sections other than the rectangular is small, In view of this insensitivity
which 1s apparent also in combined bending and torsionk, it will be assumed
that Equation (1) applies generally.

Whenever Equation (1), or in an approximate solution, Equation (2),
is satisfied at a point in a structure, a plastic hinge is formed at that point.
If plastic hinges have formed in sufficient number and configuration to transform
the structure into a mechanism, unrestricted plastic deformation sets in and the
structure collapses. Between adjacent pairs of plastic hinges the segments of
the structure are rigid and the inequality in (1) or (2) applies.

The fuselage frame shown in Fig.2(a) is made up of two circular arcs
3-1-3 of centre 0O and radius p and c-a-c of centre (0' and radius p'
rigidly joined to a cross beam c-c. The cross beam subtends an angle of 2 ¢
at O and 2 ¢' at 0'., For simplicity the segments of the frame and cross
beam are assumed to be each of uniform, but not necessarily identical, cross
section. The cross-sectional dimensions are small compared with any radius.
The freme is loaded symmetrically about the vertical axis of symmetry by a
shear flow applied tangentially to the centroid of area of cross gection. The
intensity of sghear flow 18 q per unit circumferential length of upper segment,
q' for the lower segment; both are given by

q = 9oF(8), q' = qif(d") )

In Equation (3) F(68) and f(0') are given as non-dimensional functions of the
angles © and ©' measured from the vertical axis of symmetry 1 - a, and

dps Qs Of known ratio, are to be found. The distribution of shear flow is
symmetrical about the axis 1 - a. In addifion to the shear flow there are

the loads P, and P,, of known ratio, acting vertically downward on the cross
beam and the lower segment of the frame respectively, The load P, is shown
as a point load in Fig, 2(a) but could be symmetrically distributed as P,

In determining the locations of plastic hinges points to be taken into
consideration are rigid joints, points on the axis of symmetry 1 - a and points
where the left-hand side of Equation (1) or (2) is a maximm. The fact that
each plastic hinge is assumed bordered on either side by rigid material may
affect the solution. This effect as well as the effect of shear force on the
yield criterion is neglected.

2. Theorem of Limit Analysis

The first fundsmental theorem of limit analyeis for a structure under
the load or group of loads @ will now be given. Of all loads or groups of
loads Q' which satisfy both the yield criterion and the conditions of
equilibrium while at the same time generating just enough pleastic hinges to
transform the structure into a mechenism, the largest is the actual collapse
load or group of loads Q {see Ref,1-3).

This/
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This theorem even in the absence of the second theorem of limit
analysis is useful in solving many types of problems. Consider for example,
the structure under the load or group of loads Q', of known ratios,

Suitable cuts are made at appropriate points in the structure and any unknown
reactions replaced by redundanta, The expressions for bending moments and
other effects of loading can now be written in terms of the redundants and the
load. The positions of plastic hinges are assumed with due regard to the
previous discussions, The number and configuration of plastic hinges must

be such as to cause collapse. Equation (1) is used at the plastic hinges to
obtain a number of equations in the load syatem and the redundants, In some
problems the number of unknowns exceed the number of equations obtained in thie
manner, even when a sufficient number of hinges has been formed to reduce the
structure to a mechanism. The complete set of equations is obtained by
treating an appropriate number of unknowns as independent variables to be
determined to make the load on the structure a maximum. In order to check
conclusively that this maximum load is the actual collapse load it is essential
to apply the second theorem of limit snalysis (op. cit. ). Without this check,
however, the load celculated from the first theorem may in some cases, lie
below the actusl collapse load; 1t never exceeds the collapse load, A design
based on the first theorem ia therefore conservative. (For a complete
discussion of this approach, see Ref.5.)

In sach of the problems counsidered below the number of equations is
the same as the number of unknowns,  However, since the actual magnitudes of
M and N are required for substitution into Equation (2), their signs must be
known., These are determined by trial to make the losd maximum; the actual
steps are omitted for clarity.

The structure or part thereof is assumed to collapse by the
formation of plastic hinges at all or some of the points 1,2,3; a, b, c¢; and
e. The different modes of collapse arising from the distribution of plastic
hinges will be illustrated with numerical examples, In these examples the
shear flow distribution is specified as sinusoidal: F(®) = sin®, F = f
in Equation (3). The method is however, applicable to any marmer of
symmetrical shear flow distribution, and although the frame profile considered
in the examples is made up of uniform circular arcs, the analysis can be
adapted to arbitrary profiles with uniform or non~uniform cross sections so
long as the structure has a vertical axis of symmetry.

3. Expressions for Forces and Bending Moments

Congider the segment in Fig,2(b) near the point 1 on the axis of
symmetry 1 ~ a subtending an angle 6 at the centre 0, Let the
compressive axial force at 1 be H; and the clockwise bending moment M,.
Since the shear force at 1 vanishes, the bending moment M, the axial, vertical
and horizontal forces N, V and H at © are given by

6
M = M, - o (1-cos ) + p’j af{1~cos(6-a)}aa veo ()
o
B
N = - Hycos 6+ pj q cos(@-a)da o (5)
0
3]
v = p[ q sin oda ... (6)
o

H/
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H = H - j q cos ade, eer (7)
o

The following substitutions will be found useful:

Mg e'q] N, PN} "
— = H i = u, — =V, =y,
No N Mo My
V... (8)

M N H Pa
o= om, - = I, ~— = h, — = nu',

N N !
LIO [0} 8] NO J

For an arc near the point a subtending an angle 6! at O the corresponding
expressions are

M' = My - p'Hy(1-cos 8') + Lp'P, sin O'
o1
+ p*’j. {1-cos(0'-a)ida eee (9)
o
gt
N' = Hy cos 6' + 1P, sin ©' - p'j q'cos(0'-a)dax ... (10)
0
at
VvVt = - 3P, + p'j q'sin ada oo (11)
)
6!
B' = -H + p‘j q'cos ada eer (12)
o

where M, is the clockwise moment and H, the fensile horizontal force at a.
The axial force N' is tensile, the vertical force V' is downward and the
horizontal force H' acts from left to right as in Fig.2(b).

If the effect of axial thrust on the cross beam is neglected, the
bending moment M, at the centre e is

psing
Mg = My + M, + (V, + V)osing -f xpdx eee (13)
o

where M_ and M, are the clockwise moments and V, end V, the vertical
forces 8} 3 and c respectively, p = p(x) is the intensity of load
distribution where x 1is measured from the centre of the cross beam,

If the shear flow distribution is sinusoidal on either segment of the
frame, then Equation (3) becomes

Q = gosin 0, q' = g}sin O, eee (14)

Using/
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Using Equations (8) and carrying out the integrations in Equations (4) - (7,
(9) - (12), we have

n = m - Vhy(1-cos 8) + Yu(1-cos 6 - £ & sin O) vee (15)
n = -h,cos © + fu 0 sin 6 ee. (16)
v = 24 (6 - % sin 20) eee (17)
h = h, - fu sin® © oo (18)
m' = my ~ Y'hy(1-cos O')
+ Y'u'(1-cos B - 18'sin O' + In sin o) eee (19)
n' = hycos 8' + 3u'(n=0')s1n 6° ves (20)
vt = Fut(0'en-% sin 20') cee (21)
h' = - hy + u' sin® O ceo (22)

Let the cross beam carry only a concentrated load P, at e, then Equation (13)
becomes

Me Me MoB lme

= ® = = Nne
Mo MoB Mo MoB
M, Ny
Nne = my + mc—"' + (va + vc—_ llf Sin¢ e (23)
M, N

Where Equations (8) have been used, M,g 18 the limiting value of the bending
moment on the cross beam in absence of any other force, A = MoB/Mb’
me = Mg/Mgp. Resolving vertically for the entire structures, we have

Pi + Pﬂ = 2(V-a + Vc)

p,(8; ~ Zein 20,) + p'q!(8, - Isin 26;) oo (24)

In the following analyses a frame with a single cell will first be
considered; this is followed by & full consideration of the modes of collapse
associated with the frame shown in Fig.2(a).

4, Prame with a Single Cell

Consider the frame with a single cell, Fig.3(a)}, of uniform cross
section, Fig,3(b), subjected to a sinusoidal shear flow, q = qg,sin O, and a
vertical concentrated load Pp, et the lowest point 3. Suppose plastic hinges
form at the point 3 under the load and at 1 at the other end of the vertical
dismeter, then using the approximate Equation (2) at these points, we have

Substituting 6, = = into Equations (15) and (16) we further obtain

m +h/



f
=
1
5
E o
2
+
=2
-
n
—t

m + h1
]'1,_/L!=E.=1,m1=1-u

or

Hence Equations (15) and (16) become

m

I

1 = u(1 + Y0 sin 6)

«es (25)

n #(%0 gin 6 - cos 8)

i

To transform the structure into a mechanism one more hinge on either side of the
line 1 - 3 is necessary. At the point 2 where the plastic hinge forms the
left-hand side of Equation (2) is maximum equal to unity; here the bending
moment must, of course, be of opposite sign to those at 1 and 3. Therefore we
require

-{m-mn) = -1+ uf1 -cos B+ 20+ 1)0 sin 6}
ee. (26)
to be maximum equal to unity. Hence
3(m - n) ?(m - n)
- = 0  — se e (27)
20 a6®

Using the first of (27) in (26) we have, after simplifying
2

¥+

To solve Equation (28) we first find & close approximation 6, by trial, the
corresponding values of R, and oRy/88. = 1/%y are also found,

6 cot 6 + 1 + = R(@) = 0 ore (28)

A better value of ©O is given by
Ortg = Op - XEr

With this value R(®) is again evaluated. The process is repeated until R(0)
is a8 small as desired, In some instances ¥, 18 found not to differ very
much from %, in which case 7 need not be evaluated more than twice,

Now if we substitute the value of © obtained from Equation (28)
into Equation (26) and make - (m - n) = 1, then

2

H = L] (29)
1 - cos O+ 5(Y+ 1)0 gin ©

1t is now verified that the inequality in (27) is fulfilled and that the yield
criterion is not violated anywhere on the frame, It is also essential to
establish that no other combination of signs of (mi, n,_), (mg, ng) and

(ma ’ na) furnishes a higher value of u than that given by Equations (25) ~ (29).

Example 1 /



Example 1
Now congsider a numerical example with the following data:
No = My = 0,16330,, Fig.3(b), p = 70. 'Then from (8) ¥ = 70,
equation (28) becomes
0 cot 8 + 1.0281690 = R(B) = 0.
With the approximate solution O, = 2:036 7992 = 116+7° we have
Ry.(6)
O.,, = Op + 0-327336 x 37657 x 10°°

+ 37657 x 10°°, . = - 0327 336

= 2+03803189 = 116° 46" 14= 25"

Xeay = - 00326666, Rpy = - 39 x 107°

Finally ® = 2:03803176 = 116° 46' 14", R(®) = - 0-6 x 10°°
u = 0-0302820 = h,, m, = 09697180, m, = - 0-958805
n, = + 0-041129. Resolving vertically we have

P/Ny = ux = 0-0951337.

8*(m - n)
It is easy to show that at 2, —————— > 0 as required in (27).
36®

5. Modes of Collapse

In a frame with a single cell as in the last example, the computation
of the collapse load is straightforward. Evidently the necessary equations
are obtained by assuming only four plastic hinges. When the frame has two cells
as in Fig.Z(a), the mode of collapse depends on the proportions of the
different parts of the frame. The modes of collapse ccnsidered may be
clasaifiied as follows:

Mode A. Local collapse of either upper or lower segment alone,

Mode B, Simultaneous collapse of both upper and lower segments with
different numbers of plastic hinges and an optional hinge
on the cross beam,

Mode C, Simultaneous collapse of both upper and lower segments with
the same number of plastic hinges and an optional hinge on the
cross beam.

Mode D. Simul taneous collapse of both upper and lower segments with
the same number of plastic hinges and a necessary hinge
on the cross beam.

These modes of collapse illustrated in Fig.4 will now be investigated
in detail.

6./



6. Mode A

In this mode collapse is local and is restricted to either the upper
segment with hinges at 1, 2, 3 or the lower segment with hinges at a, b, c.
If hinges form at 1 and 3, then using Equation (2) with the appropriate
values of 8 we have

m+h = m+n = 1
or
h, ¥(1 - cos 6, - 363 sin 6;) + 20, sin 6,
:— T e ¥(1 - cos B;) + 1 + cos 6, ee (30)

Hence Equations (15) and (16) become

m 1 - u{E + YE(1 ~ cos 8) - ¥(1 ~ cos © - 10 gin 6)]

1l

oo (31)

n u( - € cos 6 + 30 gin 6)

For the additional hinges at 2, (n - m) must be maximum at 2 and equal to
unity. Now

n-m = -1+ p{Z(¥ +1)8 8in 6 - (¥ - Y& -~ EY(1 - cos 6)}} ees (32)
Hence, if sin 8 £ 0,
V-1
¥+ 1

O cot B + 2 -

= R(B) = 0 oo (33)

2
H = e (3}'}-)
F(¥ + 1)0 8in 8 - (¥ - Y& - E)(1 - cos 0)

For alternative hinges a, b, ¢ we use Equations (19) and (20) to
obtain the corresponding expressions:
mg +h, = mg-n, = 1
hg Y'(1 - cos 6,) - F(¥' - 1)(8; - n)sin 6,
B L, v (35)
u' ¥t (1 - cos Bc) + 1 + cos 6,

- (@ +n') = -1+ {2 +1)(0" - n)ein O ~ (Y - Y'E' - E')(1 - cos 0')}

cow (36)
Since - (m' + n') is maximm equal to unity at b
yr -1
(6' - n)cot B! + 2E' - = R(B') = O eee (37)
(AN
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2

uo = ees (38)
%(*' +« 1){0 - n)sin 8" - (Y* - ' - E')(1 - cos 8")

The results of Equation (35) - (38) are valid for small values of

n = P /u'N'. When n is large the following expressions apply:
2 )
h& - ma = = Mg + no = 1
h, vt %(n - 6g)sin 6
——— = E" = + tae (358')
ut A 1 ~ cos B

m'+n' = -1+ gt E'(1 +cos 8)+ (¥ + 1)(n - 0" )sin B'= Y{E'- 1)1 + cos 6')]

At the point b (m' + n') 4is maximum equal to unitys

pto-
(n ~ 0")cot €' + -%' = R®) =0 o+ (372)
AR
2
B'o=
E'(1 + cos 8') + (¥ + 1)(n - Bt)sin 6 — Y1 (' - 1)(1 - cos O1)
eee (38a)
Example 2
The methods desoribed for Mode A are now illusirated by examples.
Let
® = 2x/3, ¢' = p = 0, = %3, p = 70, N /M, = NY/MY = 1.
Then: ¢ = ¢' = p = p' = 70, E = 0+4021225,

(a)l For hinges at 1, 2, 3 Equation (33) gives
8 cot O - 0-1675860 = R(9) = oO.

The solution of this Equation is © = 6, = 1-4562154
From Equations (30), (31), (34), (17), (18) we have

1]

83° 26°0998°.

# = 01365534, h, = 00549112, m, = 039450888,
m = -0-9075043, n, = 0-0924956, m, = O0-8487CL2,
ny = 0-1512945, vy = 0°1725631, h, = 0-0037037.
(b) Por hinges at a, b, ¢ when 7 4is small, say 7 = 0125,

Equations (35) and (37) give
E' = 020401906
(8" - 0-125)cot @' ~ 05637929 = R(6') = O,

The solution of this Bquation is 8' = 0, = 04996683 = 57° 6+3451°,
Hence from Bquations (38), (35), (19) - (22) we have

ut/
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p' = 342345167, h, = 046599031, m, = 0-3,00969,
m, = -0*1746666, n, = -08253335, m, = 0-0383336,
ng = ~0:9616662, v, = 07911383, h, = 0-5530407.
(c) For hinges at a, b, ¢ when 7 1s large, say " = =n/2
Equations (3535 and (37&) give
E' = 1:46794258
pid
(-- 6" )cot 6! - 1:9501709 = R(®') = oO.
2
The solution is ©' = Op = 0+5015312 = 28° L44+1373°, And from
Equations (38a), (35a), (19) - (22),
g = 01178510, h, = 0-1729986, m; = -0-8270015,
m, = 08180150, 0y, = 0+1819853, m, = ~0+8867809,

i

n., = 01132190, v

i

o ~0+0563688, h, = -0+1288044.

The more accurate relation of Equation (4) can now be applied to these examples}

a systematic approach is shown 1n a later section. Using the values obtained above
from the approximate relation of Equation (2) we can find which segment of the

ring collapses first if N,, N}, qb/qo ere given., Let € denote the ratio of

the shear flow intensity at ¢ +to that at 3,

q, sin ¢'
€ = qc/g = eee (39)
go S1n ¢
then since ¢ sin ¢ = p!' sin ¢' we have
q.c')/q.o = Sp'/p' (XN (l‘.-o)
Since p'/p dis known so 1s e, In all our analyses it will be assumed that
the shear flow distribution is nowhere discontinuous: g, = g, € = 1.
Suppose M, = N, = 016330, = M| = N§, € = 1. TFor the failure of

the upper segment we use the first of Equations (8), the results of Example 2(a)
and Equation (40):

N, 0°1365534 x 0:1633

Payg 70

46/

3185595 x 1074

I
1

at /o,

For the failure of the lower segment when 7 = 0¢125, we use Example 2(b):
LfNé 3+2345167 x 0+1633
1 =
qo/O'O = =
p'oy 70

7545665 x 1074 = a /0.

Since/
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Since the value of ¢, obtained from the upper is lower than that from the
lower segment, the former is weaker under this loading and fails first. If
instead of the value in Example 2(b) we use the value 7 = x/2 in
Example 2(c) then

W'NY  0°117851 x 0-1633

p'T, 70

2:749295 x 107% = q,/o,.

In this case the lower segment fails first. In both cases the cross beam 1s
assumed not to collapse.

?o Mode B

This mode of collapse is characterised by the formation of five
plastic hinges on the upper segment and three on the lower or vice versa. This
happens if at the point of collapse of one segment by forming five plastic
hinges the other has developed three plastic hinges. For the upper segment
to form three hinges at 1 and 3 Equation (30) is satisfied and the yield
criterion must not be viclated at © given by Equation (33). If the lower
segment forms three hinges at a and ¢ Equation (35) or (35a) must be
satisfied and the yield criterion must not be violated at ©' given by Equation
(37) or (37a).

Exsmple &4
Consider the problem of Example 2(a) and (c).

If My = No = 0-150, and Mé = Nj = 0:16330, then from our investigation
of Mode A for n = 7w/ 8 we find that the lower segment collapses with five
hinges:

/oy = 9/0, = 2:749295 x 1074,
Investigating the upper segment for collapse with five hinges we have,
3/ = q}/o, = 2:9269443 x 1074,

Thus, the upper segment cannot collapse with five hinges. If three hinges form
on the upper segment then

70 x 20749295 x 1074

o= Ny = = 01283004
qu/ o 015

h, = 040515925, m, = O0°9484075, m, = +0.8578L77,

n, = 0-1421518, my = -0-7922188, n, = 0-0869054.

Tt is seen that a hinge does not form at 2.

8. Mode C

In this mode the proportions of the structure are su9h t@at the upper
and the lower segments collapse gimultaneously with five plastic hinges each,
The yield criterion must not be violated on the cross beam., The accura‘l.:.e (2)
solution using Equation (1) instead of the approximate relation of Equation .

is illustrated here. If/
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If hinges form at 1 and 3 in Fig.2(a) then

m +h = m+n] = 1.

Hence substituting for 6, from Equations (15) and (16) we have

%uﬁssin 0g)? - ufh,6,sin 65c08 6, - Y(1 - cos 65— 36, sin 6,)}

= (h,8in 683)? + ¥h, (1 - cos 6,)

or

# = A+VA? +B = uh); )

3h, B, 8in 6, cos 8, - ¥ (1 ~ cos 6,- 16, sin 6,) }
A = 4o (41)
(%easj‘n ea)a

(h,sin 6,)® + ¥n, (1 - cos 6,)

(36, 8in 6,)?

At any angle O we have
n* -m = (10 sin 8 - h cos 6)® - 1 + K2 + yh, (1 - cos B)
- Yu(1 - cos B - 30 sin 6)

A hinge forms at 2 where

2
— (@m® -m) = n®  -m~-1 = 0
00
Hence
1u6 sin © ~ h, cos 8){2h, + u(1 + 6 cot 0)]
+ ¥, - 3pp(1 -6 cot 8) = R,(0) = O, eee (42)
2 + Yu(1 - cos 6 - £0 sin 8) - hi - ¥h, (1 - cos ©)
- (31D sin 6 - h, cos 6)® = Rg(h ) = O. eee (43)
To solve these equations we first obtain an approximate solution as in ations

(30) - (34). The corresponding value of h, is then used in Equation 41) to
obtain u. We are now in a position to find

1 R,
A S e ()

X, 28 %q ah:_

Equation (42) is solved in the manner of Equation (33). We now substitute into
Equation (43) to obtain R,. A new value of h, to make R, closer to zero is

hi - XBRS'

The process of calculating u, solving Equation (42) and evaluating R, is
repeated until BR; is as small as desired.

The/
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The corresponding expressions for the lower segment are as follows
(@ = 41 for small values of n eand for large values of 7, u = = 1);

h +un, = um, +n% = 1

u' = A +.1/(A|)2 + B' = H'(ha),' A

R zha(Be - n)ein 85 cos O, - Julf1 - cos 6, - F(6, - n)ain B¢} & )

= [N} l|-5
{2(6c - n)sin 6.}°

(h, sin 8,)% + ul'h, (1 - cos 8,)

{2(8; - n)sin 6,}? J

At any angle ©' we have

B! =

(n')? - um' = [ha cos ©' - $u'(8' - n)sin 6'1® - 1 + 12
+ uf'ha(1 - cos 6') - wf'p' (1 - cos B' = H(B' - n)ain 6')
Hence the equations to be satisfied by ©' and h, are

- {hy cos ' -~ Zu*(B' - n)sin O}{u' (B - n)cot O' + u' + 2ha}

+ uyth, - %uw'u'11 - (8" ~ n)eot O'} = Rl(e') = 0 ves (46)
2 - h; +u'u'§1 - cos B - L(0' - 1) sin O'} - i o(1 = cos 6')
~ {ha cos B - Zu'(®" - n)sin '} = Ry(h,) = O ee. (47)
Example 5
Suppose p = 70, My, = No = 0-16330,, 6, = 2m/3 for the upper
segment and p' = 65, NYy = 4MY = 0-11678380,, n = O for the lower
segment. Then 8 =
70 sin B,
arc gin —————
65
= 1+2016602, ¥ = ¥' = 520. The approximate values for the upper

segment are given in Example 2(a), Using Bquations (35) - (38) we obtain the
following approximafe values for the lower segment:

6' = 008492290, ' = 041725632, h, = 0+0214855,
m, = -0°9594719, .m, = -0-0408282, mg = 0-9110472,
ng - =-—0-0889450, he ‘=raQr 0535637, Ve = O-O746561.

From these the accurate&aolutlon 1B :carried out. The following results are
obtained by means of an»electronlc’computer-

6/



-1y -

O = 14315916, pu = 041498058, h, = 0-059%607,
m o= 0996464k, my = -0:9904072, n, = 00979426,
m, = 09725796, n; = 0°1655891, h, = 0°00328354,
v, = 0°189310%;

and
B' = 0°8403107, u' = 0-1806188, h; = 0-0223006,
my = 049995027, m = 0°9982657, m, = 0+O416455,

B, = 09913196, n,
ve = 0°0781316.

I

0:0931649, h, = 00562520,

For the failure of the upper segment

uNO

4o/0p = — = 3-494755 x 1074,
pUg
eptq,

Q}fo, = = 3°245130 x 107%;
PTo

and for the failure of the lower segment

H'N}
/oy = = 3245131 x 1074
ptoy,
an
S WL = 3494756 x 1074
e0'0y

Since the values of g, obtained from consideration of failure for both
segments are the same, it follows that both fail simultaneously.

The bending moment on the cross beam is given by Equation (23):
Ame = 160134135,

If the yield criterion is not to be violated on the cross beam and if the effect
of axial force is ignored, we must have

MOB

Mo

= A2 16-0134135,

For lower values of A another mode of collapse must be investigated.

9./
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9. Mode D

Collapse in this mode takes place by the formation at the same time
of one hinge on the cross beam and three hinges on each segment of the ring.
The hinges are assumed to form at 1, 3, a, ¢ and e in Fig.2(a); the yield
criterion must not be violated at 2 and b, For hinges at 1 and 3 we need
Equation (30) and for hinges at a and ¢ we use Equation (35) or (35a). Since
A 1is given we can find g, by putting my, = 1 in Equation (23) which is
now used with Equation (403.

Example 6
Consider the date of Example 5: P = 70, M, = N, = 016330,
0, = 2r/3 for the upper segment and p' = 65, Ny, = LML = 0-11678380,,
n = O and in addition A = 12. Using Equations Es) and (40) together
with Equations (30), (15) and (17) at 3 and Equations (35), (19) and %21) at
o we have
N p' \?
W o= i(——) = 12056860,
N! P
)
m, = 1 - 1-1079648y, v, = 1-26370394,
mg = 1 - 05157438y, = 1 -~ 0-62182514,
vg = 0:43257701, = 0+521552¢,
Hence
Amg = 11787872 + 97°9999826u = 12,
U o= 01404206, ' = 0+1331325,

It is easy to show that the yield criterion is not violated at 2 or b.

10. Concluding Remarks

The assumption that the material is rigid plastic is not strictly
true of any structural meterial. A material which closely approaches this
in behaviour is mild steel as shown in Fig.1. For materials without a
sharp yield point the limiting stress o, to be used in the analysis is
obtained by consideration of strair among others.

By comparing Equations (30) - (34) with (41) - (44), it is observed
that considerable algebralc and numerical work is saved by using the
approximate Equation (2) instead of (1). The error in the collapse load
arising from this approximation is small if the values of n are not close
to * L when the error may be large. Whenever a high degree of accuracy is

desired Equation (1) must be adopted.

In the analyses it has been assumed that the material of the frame
remains rigid until the collapse load is reached when it becomes plastic at
hinge points. Thus the assumption of a sinusoidal distribution of shear flow
is exact for the frame of Example 1. For the rest of the examples in which the
frame has a cross beam the assumption of a sinusoidal shear flow is only an
approximation. However, the general method of analysis can always be applied
when the distribution of shear flow is given.

The /
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The method of lamit analysis may be used to estimate the proportions
of a structure using a suitable load factor. It is then essential to use
elastic methods to investigate the effects of heating, creep, fatigue, elastic
stability and the magnitude of deflections under working load. Nevertheless
the simplicity of limit analysis compared with formal elastic methods cannot be
overestimated.
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APPENDTX
From Fig.5 we obtain the following expressions for the bending

moment M and the axial force N acting simultaneously on a given rectangular
cross section at yield:

M = ogby(d -y), N = ogbla- 2y).
In simple tension y = O and M = O,
N = ospd = N,

where N, denotes the limiting value of the axial force in absence of any
other force. In simple compression y = d and

M = O, N - - o‘o.bd = - Noo
When y = d/2 +the section is stressed in pure bending
M

'bd?O'o/h- = MO’ N = 0

where M, denotes the limiting value of the bending moment in the absence of
any other force. Eliminating between M and N we have

M N ?
— ( ——-) = m+n® = 1,
M, Ng

For any given cross section M, end N, can be found using the
stress distributions shown in Fig.5(b) and (o).

AT
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Mode A: hinges at 1,2,3, or a,b,c.

Mode B: hinges at 1,2,3, a,c. or I, 3, a,b,c.
Mode C: hinges at 1,2,3,q,b,c.

Mode D: hinges at [,3,q,c,e.
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