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A method of limit analysu is given for aircraft fuselage frames 
subjected to lcnown distributions of shear flow and vertical load. It is 
assumed that both axial force and bending moment are significant in causing 
collapse. An approximate method is adopted in most of the work but an 
accurate solution is illustrated for completeness. 

1. Introduction 

Although the method of limit analysis is used extensively in many types 
of structures Its application to aircraft structis is almost unkovm. !ThlS 
is partly due to the fact that aircraft structures tend to be complicated and 
in most cases present knowledge of limit analysis 1s umdequate to deal with the 
problem. In some problems, solutions can be obtained after considerable 
idealisation. The merit of limit analysis in aircraft structural design may 
lie in its use for estimating ratios of dimensions of a structure before an 
elastx method 1s applied. 

!Che method of limit analysis for structures subjected to axial force 
and bending moment has been applied to two-hinged arches by Onat and Mger6. 
Any solution of the problem of fuselage frames by limit analysis is unknown to 
the Author. 

The material of the frame is assumed to be rigid plastic and 
non-hardenmng. In consequence, no deformation results from any load whxh 
cannot cause collapse. At the critical load, plastic deformation starts and 
continues indefinitely without any tither change in load, if changes in 
geometry were neglected. The stress-strain curve for a rigid plast3.c 
non-hardening material is shown in Fig.1 in comparison with that for mild steel. 
In what follows it troll be assumed that the generalised stress-strain curve for 
a rigid plastic material has the same shape as OACX . . . in Flg.1. 

For a rectangular cross section under a bending moment M and an 
axial force N the criterion for yield of the whole cross section can be written 
as (see Appendix and Ref.6); 

m+n' Cl. . . . (1) 

LDr. Jmegwu is now a Research Fellow at Oxford and this paper was written 
whilst he was working at the Fured Wing Stnxtures Department, Bristol 
Aircraft Limlted, Fllton, Bristol. 

Replaces A.R.C.23 293. 
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in absence 
In this expression M, is the limiting value of the bending moment 
of any other force and No is the limiting value of the ax1s.l force 

in absence of any other force; m = Id/&, n = N/N,. It can be shown in 
the manner of Ref.6 that a simpler approximation, on the safe side, is 

m+n<l, . . . (2) 

and. that the deviation of expression (1) from the corresponding relation for 
sectlons other than the rectangular is small. In view of this insensitivity 
which 1s apparent also in combined bendxng and torsionk, it will be assumed 
that Equation (1) applies generally. 

Whenever Equation (I), or in an approximate solution, Equatxm (Z), 
is satisfied at a point in a structure, a plastic hinge is formed at that point, 
If plastic hxnges have formed in suffxient number and configuration to transform 
the structure into a mechanism, unrestricted plastic deformation sets in and the 
structure collapses. Between adjacent pairs of plastic hinges the segments of 
the structure are rigid andtheinequality in (1) or (2) applies. 

The fuselage frame shawn in Fig.Z(a) is made up of two circular arcs 
3-l-3 of centre 0 and radius 13 and o-a-c of centre 0' and radius p' 
rigidly joined to a cross beam c-c. The cross beam subtends an angle of 2 # 
at 0 snd 2$' atO'. For simplxity the segments of the frsme and oposs 
beam are assumed to be each of unif'orm, but not necessarily identical, cross 
section. The cross-sectional dimensions sre smsll compared with any radius. 
The frame is loaded symmetrically about the vertical axis of symmetry by a 
shear flow applied tangentially to the centroid of area of cross section. !The 
intensity of shear flow 1s q per unit circumferential length of upper segment, 
9' for the lower segment; both are given by 

q = Q(0), q' = Gf(8'). 

In Equation (3) F(8) and f(0') are given as non-dimensional fknctions of the 
angles 0 snd 8' measured from the vertical axis of symmetry I - a, and 
90, $3 of !uwwn ratlo, are to be found. The distribution of shear flow is 
symmetrical about the axu 1 - a. In addition to the shear flow there are 
the loads Pi and Pa, of known ratio, acting vertically downmar on the cmss 
beam and the lower segment of the frame respectively. The load Pa is shown 
as a point load in F&Z(a) but could be symmetrically distributed as Pi. 

In determining the locations of plastic hinges points to be taken into 
consideration are rigid joints, points on the axis of symmetry I - a and points 
where the left-hand side of Equation (I.) or (2) is a m-um. The fact that 
each plastic hinge is assumed bordered on either side by rigid material may 
affect the solution. This effect as well as the effect of shear force on the 
yield criterion is neglected. 

2. !&eoxxmof Limit Anal.ysis 

me first fondsmental theorem of limit analysis for a structure under 
the load or group of loads Q will now be given. Of all loads or groups of 
loads 8' which satisfy both the yield criterion and the conditions of 
equilibrium while at the same time generating just enough plastic hinges to 
transform the stnxture into a mechanism, the largest is the actual collapse 
load or group of loads Q (see Ref.l-3). 

!Ikis/ 
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This theorem even in the absence of the second theorem of limit 
analysis is useful in solving many types of problems. Consider for example, 
the structure under the load or group of loads Q', of known ratios. 
Suitable outs are made at appropraate points in the stru&xre and any unknown 
reactions replaced by redundants. The expressions for bending moments and 
other effects of loading can now be written in terms of the redundants and the 
load. The positions of plastic hrnges are assumed with due regard to the 
previous diacuss~ons. The number and configuration of plastic hinges must 
be such as to cause collapse. Equation (I) is used at the plastac hinges to 
obtain a number of equations in the load system and the redundants. In some 
problems the number of unknowns exceed the number of equations obtained in this 
manner, even when a sufficient number of hinges has been formed to reduce the 
structure to a mechanism. The complete set of equations is obtained by 
treating an appmprrate number of unknowns as independent variables to be 
determined to make the load on the structure a matium. In order to check 
conclusively that this maximum load is the actual collapse load it is essential 
to apply the second theorem of limit analysis (op. cit.). Without this check, 
however, the load calculated from the first theorem may in some oases, lie 
below the actual collapse load; It never exceeds the collapse load. A design 
based on the first theorem is therefore conservative. (For a complete 
discussion of this approach, see Ref.5.) 

In each of the problems considered below the number of equations is 
the same as the number of unknowns. However, since the actual magnitudes of 
Id and N are requsred for substitution into Equation (Z), their signs must be 
known. These are determined by trial to make the losd maximum; the actual 
steps are omitted for clarity. 

The structure or part thereof is assumed to collapse by the 
formation of plastic hinges at all or some of the points 1,2,3; a, b, c; and 
e. The different modes of collapse arising from the distribution of plastic 
hinges will be illustrated with numerical examples. In these exsmples the 
shear flow distributaon is specified as sinusoidal: F(C) = sin 8, F 3 f 
in Equation (3). The method is however, applicable to any manner of 
symmetrical shear flow dastribution, and although the frame profile considered 
in the examples is made up of uniform circular arcs, the analysis can be 
adapted to arbitrary profiles with uniform or non-uniform cross sections so 
long as the structure has a vertical axis of symmetry. 

3. Expressions for Forces and Rending Moments 

Consider the segment in Fig.2(b) near the point 1 on the axis of 
symmetry 1 - a subtending an angle C at the centre 0. Let the 
compressive axial force at 1 be & end the clockwise bending moment &. 
Hjnce the shear force at 1 vanishes, the bending moment M, the axial, Vertical 
and horizontal forces N, V end H at 8 are given by 

Id = aa, - sH,(l-cos 0) + P* 
I 

0 
q[l-oos(C-a)]da . . . (4) 

0 

0 

N = -&oos6+P q cos@-a)da . . . (5) 

i 
e 

v = P q sin ada 
Jo 
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i 

0 
H = % - P q cos ada. 

0 

The following substitutions will be found useful: 

..* (7) 

Pq, P’$ PN I P’N’ 
- = u, - = u’, 

NO 

0 = Jr, 0 = Jr’, 

% % % 

. . . (8) 
ld N H % -=m, -=n, -=h -- - t/u'. 
ma, NO No ) N' 

0 

For an arc near the point a subtending an angle 0' at 0 the corresponding 
expressions are 

Mb’ = M, - P’H,(l-00s W) + &PIP, sin 8' 

I 

8' 
+ p" II-cos(ef-a)]da . . . (9) 

0 

8' 
N' = Ha ~0s 8' + +Pasin 0' - p' q'cos(V-a)aa . . . (IO) 

0 

I 

8’ 
V’ = - &PS + p' q'sin orda 

0 
.*. (Ii) 

i 

0’ 
H’ = - Ha + P' q'cos ada . . . (12) 

0 

where Ma is the clockwIse moment and Ha the tensile horizontal force at a. 
The axial force N' is tensile, the vertical force V' is downward and the 
horizontal force H' acts from left to right as in Fig.2(b). 

If the effect of .azal thrust on the cross beem is neglected, the 
bending moment Me at the centre e is 

PSWJ 

Me = $ + MC + (V, + V,)~slm# - xph . . . (13) 

0 

where M and I& are the clockwise moments and V, and VC the vertical 
forces a % 3 am.3 o respectively, p = p(x) is the intensity of load 
distribution where x is measured from the centre of the cross beam. 

If the shear flow distribution is sinusoidal on either segjnent of the 
frame, then Equation (3) becomes 

q = qosin 8, q' = ~.k 8'. . . . (14) 

using/ 
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Using Equations (8) and carrying out the lntegraticns in Equations (4) - (7), 
(9) - (IZ), we have 

m = rni - $&(I-00s e) + $ll(l-cos e - & 0 sin e) .*. (15) 

n = -h,CCs 8 + &, 8 Sin 8 . . . (16) 

Y = &I (e - 4 sin 28) . . . (17) 

h = h, -&Si? 8 . . . (18) 

m’ = m, - $'ha(l-cos et) 

+ v~*(i-cos 8’ - $3fsin 8’ + & Sin 81) . . . (19) 

n’ = haCCS 8' + &'(7+')Su1 8' . . . (20) 

v’ = &‘(el-n-4 sin 281) . . . (21) 

h' = - ha + $Ul Sin' 8' . . . (22) 

Let the Cross beam carry only a ccncentrsted load Pi at e, then Equation (13) 
becomes 

Me Me %B m-2 - = -x- = - = 
MC 

hme 
M M, CB MOB 

. . . (23) 

Where Equations (8) have been used, MOB IS the limiting value of the bending 
moment on the cross beam in absence of q other force, h 

= %&B. 
= QJ4y 

me Resolving vertically for the entire structures, we have 

Pi + Pa = 2(v, + v,) 

= b4Je, - &II q) + .dG(e, - hsin 28,) . . . (24) 

In the foll~dng analyses a frame with a single cell will first be 
considered; this is f'ollcwed by a till consideration of the modes of collapse 
associated with the frame shown in Fig.2(a). 

4. Frame with a Smngle Cell 

Consider the frame with a single cell, Fig.J(a), of uniform CMSS 
section, Fig.j(b), subjected to a sinusoidal shear flew, 
vertical concentrated load Ps at the lowest point 3. 

q = QS~II 8, ma n 
Suppose plastic hinges 

fom at, the point 3 under the load e&i at 1 at the other end of tie vertxcal 
dismeter, then using the approximate Equation (2) at these points, we have 

m,+h, = rns+% q 1. 

Substituting e3 = x into Equations (15) and (16) we fkrther obtain 
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or 
q+h, = m,-2&+2$U+h, = I 

hJP = E = 1, m, = 1-u 

Hence Equations (15) and (16) become 

m = 1 - u(1 + $3 sit-4 0) 

n = &-f3 sin 0 - co8 8) I 
. . . (25) 

TO t~~sf0~ the Sh'UCt~ into a mechanism one more hinge on either side of the 
line I - 3 is necessary. At the point 2 where the plastic hinge forms the 
left-hand side of Equation (2) is maximum equal to unity; here the bending 
moment must, of course, be of opposite sign to those at I and 3. Therefore we 
require 

- (m - n) = - 1 + Ll[l - co9 8 + 4($ + l)f3 sin e] 

. . . (26) 

to be maximum equal to unity. Hence 

a(m - n) P(m - n) 
= o< 

a0 a@ 

using the first of (27) in (26) we have, after simplif~Fng 

. . . (27) 

2 
ecote+1+- = R(B) = 0 

$+I 
. . . (28) 

To solve Equation (28) we first find a close approximation Or by trial, the 
corresponding values of Rr end %lJXJ- = l/x, exe also found. 

A better value of 8 is given by 

e r+l = %-r-x& 

With this value R(O) is again evaluated. The prucess is repeated until R(0) 
is as small as desired. In some instances xr+l 3.8 found not to differ very 
much from & in which case x need not be evaluated more than twice. 

Now if we substitute the value of 0 obtained from Equation (28) 
into Equation (26) and make - (m - n) = 1, then 

2 
u = . . . (29) 

I - ohs 8 + $(tf + i)e .h e 

It is now verified that the inequality in (27) is fulfilled end that the yield 
criterion is not violated anywhere on the frame. It is also essentxxl to 
establish that no other combination of signs of 
(m,, ns) furnishes a higher value of 

(ml, rq), (Q, n,) and 
~1 than that given by Equations (25) - (29). 

Example I/ 
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Example 1 

Now consider a numerical example with the following data: 
No = MO = 0.1633uo, Fig.j(b), P = 70. Then from (8) Jr = 70, 
equation (28) becomes 

0 cot 0 + 1.02816YO = R(B) = 0. 

With the approximate solution Or = ~036 7992 = <i6.7o we have 

s(e) = + 3765.7 x IO-', & = - O-327 336 

0 ?.wl = 0, + 0.327336 x 3765'7 x IO-’ 

= ~03803189 = 116~ 46’ 14.25" 

xr+, = - 0.326666, qt, = - 3.9 x 1o-s 

Finally 8 = 2.03803176 = 116~ 4.6' I&", R(e) = - 0.6 x 10-s 

~1 = 0~0302820 = h,, m, = 0.9697180, m, = - 0.958805 

np = + O-041129. Resolving vertically we have 

%/No = m = O-0951337. 

aS(, - n) 
It is easy to show that at 2, > 0 as required in (27). 

a@ 

5. Modes of Collapse 

In a frame with a single cell as in the last example, the computation 
of the collapse load is straightforward. Evidently the necessary equations 
are obtained by assuming only four plastic hinges. When the frame has two cells 
as in Fig.2(a), the mode of collapse depends on the proportions of the 
different parts of the frame. The modes of collapse considered may be 
classified as follows: 

Mode A. Local collapse of either upper or lower sement alone. 

Mode B. Simultaneous collapse of both upper and lower segments with 
different numbers of plastic hinges and an optional hinge 
on the cross besm. 

Mode C. Simultaneous collapse of both upper and lower segments with 
the ssme number of plastic hinges and an optional hinge on the 
cross beam. 

Mode IL Sinultsmeous collapse of both upper and lower segments with 
the same number of plastic hinges and a necessary hinge 
on the cross beam. 

These modes of collapse illustrated in Fig.4 will now be investigated 
in detail. 

6./ 
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6. Mode A 

In this mode collapse is local and is restricted to either the upper 
segment mth hinges at 1, 2, 3 or the lower segment mth hinges at a, b, c. 
If hmges form at 1 and 3, then usmg Equation (2) with the appropriate 
values of 0 we have 

m: + hi = m,tn, = 1 

% 
-EC= 

$(I - 00s 0, - $03 sine,) +& sine3 

IJ @(I - 008 es) t 1 t cos 8, 

Hence Equations (15) and (I 6) become 

. . . (30) 

m = 1 - 14c + $4(i - ~08 0) - Hi - ~0~ e - go Sin e)] 
. . . (31) 

n = 14 - 4 ~0~ e + &e sin e) 

l%:,,"e ddddional hinges at 2, (n - m) must be max~um at 2 e& equal to 
. 

n-m = - I + &(s + I )e sin 8 - (Jr - Jrt: - @(I - cos e)] . . . (32) 

Hence, if sin 0 # 0, 

0 cot e t 25 - - = R(B) = 0 . . . (33) 
$+I 

2 

' = &(q t i)e Sin e - (JI - *t; - @(I - cos e) 

For alternative hinges a, b, c we use Equatxons (19) and (20) to 
obtain the corresponding expressions: 

metha = m,-nc = 1 

ha @'(I - cos e,) - $(v - i)(e, - t))sin e, 
- = C' = 

$‘(I - cos e,) t I t ~0~ 0, 
. . . (35) 

IJ’ 

- (In +nt) = - I + ull;(~l + i)(et - nlsin 0' - ($1 - Jrt.c - V)(I - 008 et)] 

. . . (36) 

Since - (ml + nl) is nzcdmum equal to unity at b 

Jr' - 1 
(01 - qJcot 8' t 2~1 - = R(W) = 0 . . . (37) 

$1 + 1 

11'/ 
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2 
lI’ = 

4(V + 1x01 - r7)sm 0’ - ($’ - $14’ -&I)(1 _ ccs 0,) 
0.. (38) 

The results of Equation (35) - (38) are valid for small values of 
lj = P,/CI'N;. When R is large the following expressions apply: 

hs -In, = - mc + no = 1 

ha 0' -i-(T) - Qsin Bc 
- = E;' = + . . . (35a) 
0 Jr' - 1 1 - 00s ec 

m'+ n' 1 -1 + b*~ci'(l + 00s et)+ &($I + I)(~ - e')h es- $*&I- I)(I + ccs ev)] 

At the point b (ml + n') is -mum equal to unity; 

(n - 8' jcct et + 
$' - 1 

-24;' = IL(@) = 0 . . . (37a) 
$' + 1 

2 
jl' 22 

.5*(1 + cos et) + $(~r' + I)(V - el)sin 89 - ~r'(~f - I)(I - ccs et) 

. . . (38a) 

Fixample 2 

Let 
The methods described for Mode A are now illustratd by examples. 

e = 2d3, 6' = ti = ec = 43, P = 70, ~~38~ = N~M:, = I. 

Then, $ = JI’ = P = P’ = 70, & = O-4021225. 

(a) For hinges at 1, 2, 3 Equation (33) gives 

0 cot f3 - 0.1675860 = R(e) = 0. 

The solution of this Equation is e = e, = 1.4562154 = 830 26.0998'. 
From Equations (30), (Jl), (341, (17), (18) we have 

IJ = 0.1365534, % 

m, = -0-9075043, % 

n3 = 0~1512945, v, 

(b) For hinges at a, b, 
Equations (35) and (37) give 

&’ 

= 0.0549112, q = 0*94508=, 

= 0.09a+956, ng = o-8487042, 

= 0.1725631, $ = 0~~37037. 

c when I) is small, say n = 0.125, 

= 0~20401906 

(81 - 0-125)cot 81 - O-5637929 = R(V) :: 0. 

!rhe s03ution 0f this Equation is 01 = s =: o-9966834 = 570 6*3451'. 
Hence from Equations (38), (35), (IV) - (22) VIB have 
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P' = 3'2345167, ha = O-6599031, ma = 0.3400969, 

nq, = -0.1746666, q, = -0.8253335, mc = 0.0383336, 

"c = -0.9616662, VC = 0*7911383, h, = 0.5530407. 

(c) For hinges at a 
Equations (35~1 I 

b, c when rl 1s large, say 7 = n/2 
and (37a) give 

4' = 1 *I+6794258 

(" > 
-- 8' cot 8' - I-9501709 = R(@) = 0. 
2 

The solution is 0' = eb = 0.5015312 = 28O 441373'. And from 
Equatxns (3&),(35a), (19) - (22), 

0 = 0.1178510, ha = 0.1729986, ma = -0.8270015, 

zq, = 0~8180150, y, = 0.1819853, mc = -0+8867809, 

“c = 0~1132190, vc = -0.0563688, ho = -0.1288044. 

the more accurate relation of Equation (1) can now be applied to these examples; 
a systematic approach is shown XII a later sectxn. 
from the approximate relation of Equation (2) 

Using the values obtained above 
we can find which segment of the 

ring collapses first if No, NA, q&/q0 are given. Let E denote the ratio of 
the shear flow intensity at o to that at 3, 

q:, sin $5' 
E = Q/q, = . . . (39) 

s, %m $ 

then since p an $b = p' sin #' we have 

s&) = E P’/P. . . . (40) 

Since p’/p isknownsoLs E. In all cur analyses it will be assumed that 
the shear flow dutnbution is nowhere disoontinuous: q. = q, E = 1. 
Suppose MO = No = 0~16331s~ = M;, = N;, E = 1. For the failure of 
the upper segment ve use the frrst of Equations (8), the results of E&ample 2(a) 
and Equation (40): 

1% 0.1365534 x 0.1633 
qJsc = - = 

PCC 70 

= 3.185595 x IO-' = f&/u,. 

For the failure of the lower segment when 17 = 0.125, we use Example 2(b): 

p’N’ 3.2345167 x 0.1633 
SU% =-.2= 

P’U, 70 

= 75.45665 x IO-~ = &so. 



- 11 - 

Since the value of go obtained from the upper is lower than that from the 
lower segment, the former is weaker under this loading and fails first. 
ustead of the value in Example 2(b) we use the value 7 = 

If 

Example 2(o) then 
x/2 in 

p'N' 0 
q&/u0 = - = 

O-117851 x O-1633 

P’Oo 70 

= 2.749295 x I@ = duo. 

In this case the lower segment fails first. In both oases the oross beam IS 
assumed not to collapse. 

7. Mode B 

This mode of collapse is characterised by the formation of five 
plastic hinges on the upper segment and three on the lower or vice versa. This 
happens if at the point of collapse of one segment by forming five plastic 
hinges the other has developed three plastic hinges. For the upper segment 
to form three hinges at 1 and 3 Equation (30) is satisfied and the yield 
criterion must not be violated at (3 given by Equation (33). If the lower 
segment forms three hinges at a and o Equation (35) or (35a) must be 
satisfied and the yield criterion must not be violated at t3' 
(37) or (37a). 

given by Equation 

Example 4 

Consider the problem of Exsmple 2(a) and (c). 

If M, = No = ~.I$ and .M; = N;, = 0~16jju,, then from OUT investigation 
of Mode A for n we find that the lower segment collapses with five 
hinges: 

s& = q&, = 2.749295 x IO-'. 

Investigating the upper segment for collapse with five hinges we have, 

c&q, = q&/u0 = 2*9261@+3 x 10-4. 

!chus, the upper segment cannot collapse with five hinges. If three hinges form 
on the upper segment then 

70 x 2.749295 x 1O-4 

lJ = &No = = 0.12830Oh. 
0.15 

h, = 0.0515925, q = O-9484075, ms = +0*8578477, 

% = 0.1421518, m, = -0.7922188, II, = 0.0869054. 

It, is seen that a hinge does not form at 2. 

8. Mode C 

h this mode the proportions of the structure are such that the Wper 
md the lower segments collapse slrmiltaneouslywith five Plastic hinges each- 
me yield criterion must not be vlolated on the Cross beam. The accurate 
solution using Equation (I) instead of the approxunate relation of Equation (2) * 
is illustrated here. 

If/ 
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If hinges form at 1 and 3 in Fig.Z(a) then 

ml + hi = ma +I$ = 1. 

Hence substituting for 0, fran Equations (15) and (16) we have 

(&qd.n 0,)" - /.l'l~essin e,cos e, - @(I - CO8 es- &pin e,)] 

= (h,Sin es)' + $$(I - CO8 0,) 

u = A +m = p(h ); 

At any angle 0 we have 

2 - m = (he Sin e - h COs 8)' - 1 + e + @(I _ cos 0) 

- 4~41 - cos e - &e Sin e) 

A hinge forms at 2 where 

; (2 - m) = 2 - m - 1 =o 

Hence 
(sue sin e - h, COS @)12h, + c1(1 + 0 cot O)] 

+ Iln4 - &(I -ecote) = R,(e) = 0, 

2 + Jrdl - COS e - @ sin e) - h; - %(I - COS 8) 

- ($fiO sin 0 - hi cos 0)" = %(Q) = 0. 

. . . (42) 

. . . (43) 

To solve these equations we frost obtain an approximate solution as in 
T 

ations 
mm, $4) - The oorrespondmg value of & is then used XII Equation 41) to 

. We are now in a posItion to f&d. 

1 aR, 1 % 
-= -7 -=- ..* (44) 

x, ae x, 1 ah 

Equation (42) is solved in the manner of Equation (33). We now substitute into 
Equation (43) to obtain %. A new value of h, to make X, closer to zero is 

hi - xa%. 

The process of calculating P, solving Equation (42) and evaluating R, is 
repeated until R, is as small as desired. 

me/ 
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The corresponding expressions for the lower segment are ss follow 
(u = ,I for small values of I) and for large values of n, u E - 1): 

hi+ums = ~m,+ng = 1 

/l' = A' +m = @'(ha); 
1 

A' = 
+hs(O, - 7~)si.n ec cos ec - +d[i - COB 8, - $(e, - +in e,] 

Ii!& - V)S~II W 
. . . (45) 

B' = 
(ha Sin 8,)' + u$'ha(l - 009 0,) 

iHe, - d~in W 

At any angle 8' we have 

(II')' - um' = lha CO8 8' - $'(el - 11)Sh @']* - 1 + h; 

+ U$'ha(l - COS 0') - u$'ti'(l - CO8 8' - &@I - o)Sin 0') 

Hence the equations to be satisfied by 8' and ha are 

- ih, CO8 8' - &Id'@ - 71)sin e']~u'('CI' - tl)cot 8' + PI + .?h,] 

+ u$'ha - J-&P~~I - (et - R)COt e'] = R,(W) = 0 

2 - hi + U$'~'ll - 008 8' - &(e' - II) sin 0'1 - #h,(l - cos 01) 

- Iha CO9 8' - $'(e* - rl)Sin e']' = %(ha) = 0 

Example 2 

. . . (46) 

. . . (47) 

suppose P = 70 NA, ma, 5 No = 0. 1633uo, for the upper 
segment and P’ = 65, = 4M, = 0.1167a3aao, net =o 'it: the lower 
segment. Then 0~ = 

70 SF~ es 
arc sin 

65 

= 1.2016602, $ = To,,-, 9' = 5'20. 
segment are given in Exainple Z(a). 

The approximate values for the umber 
Using Equations (35) - (38) we obtain the 

following a$prdxtiLjee+ues for the Lower segment: 

8' = 0.8492920, u' = 0.1725632, h, = 0*0214955, 

q- = -o'%~t~i:k?, +-"b = -0~0408282, m, = 0~9110472, 

e/ 
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0 = 1.4315916, Ll = 0*149ao5a, $ = 0~05946O7, 

4 = 0*99646-U+, m, = -0*99O4072, "a = 0.0979426, 

% = O-9725796, Q, = 0*165%91, h = 0.00328354, 

% = o'18931o1; 

0’ = 0~8403107, ,,' = 0.1806188, ha = Q.o223~6, 

m, = O*yyy5o27, mb = 0.9982657, "b = o.0416455, 

mc = 0.9913196, no = 0.0931649, ho = Q*o56252% 

VC = 0.0781316. 

For the failure of the upper segment 

m 
qduo = 0 = 3.494755 x w4, 

WC 

amI for the failure of the lower segment 

P'N' 0 
qguo = - = 3*2&5131 x 10-d 

P’O-, 

:. 
pq’ 

q&-c = 0 = 3.494756 x lC+' 
EP’“-, 

Since the values of s, obtained from consideration of failure for both 
segments are the same, it follows that both fail simultaneously. 

The bending moment on the cros's beam is given by Equation (23): 

hm, = 16~0134135. 

If the yield criterion is not to be violated on the cross beam and if the effect 
of axial force is ignored, we must have 

MoB 
- = x > 16.0134135. 

MO 

For lower values of h another mode of collapse must be investigated. 

Y./ 
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9. Mode D 

Collapse in this mode takes place by the formation at the same time 
of one hinge on the oross beam and three hinges on each segnent of the ring. 
The hinges are assumed to form at 1, 3, a, o and e in Fig.2(a); the yield 
criterion must not be violated at 2 and b. For hinges at 1 and 3 we need 
Equation (30) and for hinges at a and c we use Equation (35) or (35.a). Since 
X is given we can find q 
now used with Equation (403. 

by putting me = i in Equation (23) which is 

8, = 
Consider the data of Example 5: P = 70, hi, = N, = 0~1633u,, 

2x/3 for the upper segment and P’ = 65, 
0 and in addition h = 12. 

N:, 
rl = Using Equations 

= Wn:, = 0-~16703&~~, 

with Equations (SO), (15) and (17) at 3 and Equations 
8) and (40) to 
35), (19) ana 

o we have 

N, P’ a 
d/v = ; - 

c > 
= l-2056860, 

0 P 

ng = I - 1.lo79648v, v3 = 1.2637039i1, 

mc = 1 - 0.5157438~, = 1 - 0.6218251~, 

VC = 0*4325770~, = O-521 552lJ, 

Hence 

Ame = jsva7872 + 97-9999026~ = 12, 

!-I = O~llQ4206, Ll’ = O-1331325. 

It is easy to show that the yield criterion is not violated. at 2 or b. 

10. Concluding Remarks 

The assumption that the material is rigid plastic is not strictly 
true of any structural material. A material which closely approaches this 
in behaviour is mild steel as shown in Fig.1. For materials without a 
sharp yield point the limiting stress cro to be used in the analysis is 
obtained by consideration of strad among others. 

By comparing Equations (30) - (34) with (41) - (&), it is observed 
that considerable algebraic and numerical work is saved by using the 
approximate Equation (2) instead of (1). The error in the collapse load 
arising from this approximation is small if the values of n are not close 
to + $ when the error may be large. 
desired Equation (1) must be adopted. 

Whenever a high degree of accuracy 1s 

In the analyses it has been assumed that the material of the frame 
remains rigid until the collapse load is reached when it becomes plastic at 
hinge points. Thus the assumption of a sinusoidal distribution of shear flow 
is exact for the frame of &ample 1. For the rest of the examples in which the 
frame has a cross beam the assumption of a sinusoidal shear flow is only an 
approximation. However, the general method of analysis can always be applied 
when the distribution of shear flow is given. 
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The method of 1mi.t analysis may be used to estimate the proportions 
of a structure using a suitable load factor. It is then essential to use 
elastx methods to investigate the effects of heating, creep, fatigue, elastic 
stability and the magnitude of deflections under working load. Nevertheless 
the simplicity of limit analysis compared with formal elastic methods cannot be 
overestimated. 

References/ 
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APPF.NDM 

Prom Fig.5 we obtain the following expressions for the bending 
moment M and the axial force N acting simultaneously on a given rectangular 
cross section at yield: 

M = Qda - Y), N = cob@ - a). 

In simple tension y = 0 and Id = 0, 

N = cobd = No, 

where No &notes the limiting value of the axial force in absence of any 
other force. In simple compression y = d and 

M = 0, N = -uobd = -No. 

When y = d/2 the section is stressed in pure bending 

M = bdsq,/i+ = Y,, N = 0 

where MO denotes the limiting value of the bending moment in the absence of 
any other force. Eliminating between Id and N we have 

Y N a 
-+ - = m+n= = 1. 
MO ( ) No 

For any given cross section MO and No can be found using the 
stress distributions shown in Fig.S(b) and (0). 

AT 



FIG. I 

Strain 

Stress- strain curve for mild steel and ideal material (not to scale) 

(a) Mild st!el: OB’BCDEF, B is upper yield point, 
C latih ,yield point and E ultimate load, 

(b) Elastic plastic material : 0 B’C D G - ----- 

(c) Rigid’ pidLtic material: 0 A B’ C DG--- -- 



FIG. 2 

Fuselage frame 

(‘4 

(a) 



FIGS. 3 L 4 

(4 
b) MO= 0*1633u,., 

No = 0*1633u., 

(a) Frame with a single cell 

(b) Cross section of frame (not to scale) 

FIG. 4. 

Mode A: hinges at I,Z,S, or a, b, c. 
Mode 8: hinges at 1,2,3, a,c. or I,J,a,b,c. 

kde C: hinges at 1,2,3,a,b,c. 
Mode 0: hinges at l,3,a,c,e. 



FIG. 5 

(4 @I (cl 

(a) Rectangular cross section 

(b),(c) Stress distribution for rigid 
plastic material 

(in bending and thrust) 
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