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The problem of the inoompesslble potential flow past a 
conventional aerofoil trhioh has an arbitrary distribution of normal velocity 
across its surfaoe is solved by the applioation of conforms1 transform&ion 
to the solution derived for the corresponding problem for the unit circle. 
Several simple worked examples are given. Although it is theoretically 
possible to obtain any desired tangential velooity distribution on an 
aerofoil by the oorroot choice of suction velocity distribution, and this 
use of "sink effect" gives promise of considerable lift increments, it is 
considered that the quantities of suction required to produce such desired 
cf'fects are prohibiiively large for inmediate praotioal use. For suction 
quantities of the order of those at *ioh boundary-layer porous suction is 
designed to act, the effect of the sudion on the main stream potential 
flow is negligible. 
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I* Introduction 

Suction as a boundary-layer control device may be used in two 
nays : by sucking through one or more slots or by sucking continuously thro@h 
a porous portion of the aurfaoe. These methods are baaed on rather different 
principles. Suction at n slot either removes part of the boundary layer 
nt that point and forma a new) thinner, and if the original layer is laminar, 
more stable boundary layer downstream of the slot, or else rcmovvca nmoh 
more fluid than that contained in the boundary layer, thereby nltcring 
the pressure field along the surfaoe for some distance from the.alct. 
Separation of flow is thus delayed, and several suitably spaced slots may 
be used to suck away parts of tho upstream boundary layer as it tends to 
thioken and separate from the surface, On the other hand, distributed 
suction, instead of allowing the boundary lnyer to approach a condition 
near to separation before removing all or part of it, aims to maintain a 
favourable velocity profile through the boundary layor, which is kept thin 
aii the time. Distributed, or porous, sudion also has a otnbiliaing effect 
on the whole boundary layer. A oonsiderable amount of theoretioal'work 
has been done on the solution of the boundary-layer equations for flow past 
a porous surface through which there is a continuous norms1 velocity, and 
it is assumed throughout this work that the velocity distribution outside 
the boundary layer is that oaloulated on potcntinl theory for an impermeable 
surface of similar shape. That is, it is assumed that surface auction, 
of the scale envisaged in boundary-layer distribution auotion work, does 
not affect the potential flow past that surfaoo. The question of the 
validity of this assumption led to the investigation belo\'. 

We are concerned with investigating the potential flow past an 
aerofoil of conventional ahape which has an arbitrary distribution of 
suction on its surface. By "conventional 'I we mean not specially designed 
for uac with suction. A very thorough dLaousaion of aerofoils designed 
to incorpornto aurf'ace auction has been given by Profcsaor So Goldsteinl~ 
The words "arbitrary distribution" oover the oases of "overall" 
distributed auction, where the entire aerofoil is oonstrudsd of porous 
nnterinl, distributed suction localised over a given poroas region of the 
aerofoil surface, single and multi-slot au&ion. In particular we want 
to know the tangential velocity distribution on the aerofoil when the 
audion, or inward normal, velocity distribution is known, and wo 3130 
enquire tlhat auction distribution is necessary to produce a prescribed 
tangential velocity distribution on the acrofoll at a given insidencc. We 
are interested, too, in the effect of surface suction on the theoretical 
lift and drsg on the aerofoile The problem is tackled by considering the 
corresponding problem for the unit circle, the solution for the flow 
past the nerofoil being obtained from the conformal. transformstion of the 
circle into the aerof'oil. 

Section 2 deala exclusively with the case of a porous cirole under 
certain conditions of surface suotion, The most general potential flow 
round the oircle is solved in the oases yzrhen either the normnl,or the 
tangential velocity on the circle is specified, formulae being given for. 
the oomplex potential, complex velocity, surface velocity distributions 
and the lift and drag on the circle. 

In section 3, the transformation to the aerofoil is dia-ussed 
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Soveral simple examples of distributed auotidn and one of slot 
suotion applied to a symmetrical Joukomki aerofoil are given in section 46 
The results are illustrated in the diagrms. 

In the Appendix, the Blasius theorem for the force on a closed 
curve is extended to the case IThen the curve is not necessarily a 
streaKLine. 

2* The Potential Ploo Psst the Unit Circle rjith Arbitrary Surface 
Suction II- 

2.1 Statment of the problem 

Consider the unit circle in a unifom stresm of "perfect" fluid 
of velocity U in a dircotion parallel to the negstivc real axis of 
4 = r eie) , with either the normal or tangential velocity distribution 
on the circle prescribed. It is required to find the oorqlex potential 
'Pi(z) = Qti$ of the flop past the circle, such that 

(1) W(z) is analytic for 121 >I , 

either (2a) = r(e) , is given, 

or = da) , 1s given, 

avi 1 
(3) -- -3 -uto - 

0 

as z+w . 
de Z 

In p~articular ne mnnt the unknown velocity distribution on the circle in 
term of the given one. The problem is stated above for the main stream 
at zero incidence, but the solution to the case of non-zero incidence can 
easily be deduced from the solution to this problem. 

Put 

w(z) = -Uz + w,(z) ) w, = 9, + a$, . 

Then W,(z) nust satisfy 

(1) W,(z) is analytic for (21 >I , 

either (2a) = f(e) + U cos a , 
z-4 

(1) 

or (Zb) = g(B) - U sin 0 , 
r=l 

(3)/ 
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(3) !I+ 1 3s 

0 

z-+w. 
z 

Having enuncded the problem for the flow past the circle, we 
shall oonsider separately tho oases when the suction i.e., inward normal, 
and tangential velocity distributions are specified, since although the 
methods of solution at zero inoirlencc are precisely similar, the extensions 
to general incidence are different, 

2.2 Solution for prescribed suction velocity distribution 

2.2.1 Zero incidence 

Consider the function 

Then P(z) is onnlytic in 1.~1 >I , is finite at infinity and has its 
real part knorn on the unit circle. In fact 

[Re(P(z))]r=, = ;: = 
0 

r(e) + u 003 0 = r,(e) , say. -42) 

l=l 

Hence, 9 ov~%d f(Q) is absolutely integrable, ne have, by Poisson's 
integral 

P(z) - ‘(co) = ,‘- 4 f,(t) ----- at ) 121 >I , 
xi,c z-t 

There t E &-c , G denotes the unit circle rind the integrsl is tsken 
round C in the positive nensc. q(t) or fl('C) will be used to 
denote the value of f, on C as the context requires. Xorewer, 

1 7( 
p(w) p L 4 p(t) ---- at = - 

2xic t I 
f,(T) fa + iK , (3) 

2x 4 

where X is an srbitrsry constnnt, since [I~(P(z))]~; is unknovm. 
Thus 

P(s) 0 iK + :- 
7x I f,(t) 

2% I 
f,(T) d-c + - ---at, IZl>? . 

?ri 4 
c- 

z-t 

Hence/ 
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Honoe 

9 iI< 1 5% 1 -f-l(t) 
SW-., 2 I- + -L 

i 
fl(2) az + - --I-c at , 121 >I , 

dz 2 .2KZ 4 * xi c 44 

and, negglectimg an mbitrary constant, 

I n 
w,(z) = iKlogz+-loge 

27% I 
f,(") dt 

-7c 

1 
* -- 

f 

z-t at 

ri c 

f,(t) log --- - , iZ{>l , 

0 
z t- 

Using (1) ana (3) and the relation 

1 0 + 1 7( 
W(z) = -u z*- $ ix log z - - log z . 

I 
f(T) dz 

z 2x 
-7c 



The equation for V(z) holds also for Ik/ = I , 
‘I f(T) 

but in oquntion (5) 

I 
---,- dT becomes divergent when z = efe , To find the tangential 

-a 2-01~ 

velocity distribution on the oircle, consider 

%,hcre P dcnotcn that the Cauohy principal’value of the integral is to be 
taken. Hence ’ 

‘34, 
mm- ,i ) 

1 57 

a0 = 
-Kt--P 

1 
f,(T) cot & (9 - T) dZ , 

r-1 
2x 

, -1T 

and since 

vo have by (1) and (3) 

I 7( 

E(Q) = 2U sin c) -1~ t -- P 
2X 1 

f(T) cot $(e - Z)dZ, -x<e<n, 

-51 

l>here g(0) denotes the tangentzal. velocity distribution on the orrole 
induced at zero incidenoe by the outward nor-r.& velocity distribution f’(e). 

2.2.2 General incidence 

(i) The suction distribution, when once chosen, nrust remain the same 
with respect to the olrolc whatever the direction of the incident stream. 
We cuy now generalise the above results to the ease then the direction of 
the uniform atre=~~ is at an angle a to the negative real axis. 

I 



z = r ,iQ = ,,ia , Q(Q). = P(Q - a) = f(e) . 

Since f(e) has period 2% ) then 

Thus, neglecting the constant term m have 

1 7c 
W,(z) = - u + ilc log z - - log z f(Th 

2x 

1 
7r 

t- / f(z) log (z - eiT)dz, Izl>l , I.... (6) 
?( 

4 

and it follows that 

1 
'7, 

g,(e) = 2U sin (0 t a) - K t -- P 
I 

f(7) cot + (0 - +lT, - x<e (Z . 
2x ..?I 

Since IC is the coefficient of I log z in the expression for W,(z) , 
we see that -2tiC is the positive ciroulation in the flow, 

The above thecry holds provided f(e) is absolutely integrable. 
Hence the auction dmtribution msy be ohosen non-zero over just a portion 
of the circle - the ease of “localised” suction - and the results still 
apPlY* Thus suppose VC defme 

f(Q 1 s<O<b , 

0 else:dlere . 

Then/ 
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Then 

1 
e,(e) = 2U sin (0 + a) - IZ + --P 

v 
f(T) cot & (e - Z)& ) - x<e<?I , 

2x 8 
. 

But 

b 
P f(T) oot + (0 *- +vc q - 2 {f(b) log 1 sin +.(e - b)l 

b ' 
- f(a) log 1 sin 6 (0 - s)I) + 2 

. . J 

af 
log [ sin & (0 - 2) 1 -- + dT l 

d-c 
a 

Hence unless f(a) x 0 ) f(b) L: 0 , the tangentinl'velocity be&mea 
logarithmically infinite ut !3 = a , 13 = b , the end points of the 
auction region. So, when the suction distribution is non-zero only in 
the range a<Q6b, , it mast satisfy the conditions 

f(a) = a. , f(b) = 0 , 

Tlhich make f(Q) continuous, in order that the tangential velocity renains 
finite every--here. 

(ii) The extent of the auction region is quite srbitmry. Suppose 
then, that we define 

and that as.&-+0 , 
L 

[- f(T)]dz tends to s finltc limit m , . 
P- 

SSY. Consider , 

w 
I = 

i 
f(T) h% (z - eiT) - log (z - &)] dz , (ZJ > 1 . ' 

P-E 

Since log (s - ei7) is continuous at -c q p , there exiata a Positive 

E’ 3 E’ (E) , such that 

Hence/ 
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Henoe I--#0 as E-0 , since l,T 1 f ( Z)dT is bounded. Thus 

P-E 

P+E 
lim 

i 
f(z) log (2 - eiz)dz = - m log (2 - eiP) , 

E-40 p-c 
, 

and therefore from (6), as ~30 

e-iu 
wu(z)4 - u zeia + ---- + z log z $ ,"_ log z - "log (z - eiP) ) IZI >I . 

( ) z 2% 5? 

. ..*.(y) 

As z3eie , this equation still holds except at Q P p , and it 
follovs that, ns ~40 , 

III m I m 1 
+ -- + mm m " - -mmemm , 

x (z-eip) 
1111 8 , . . . ..(lO) 

Z 2% z 

g,(0)+2U sin (e + a) - K - -f cot+(e-p), -x<e<?T. 
2% 

. . . ..(I11 

Equations (y), (IO), (11) are the expressions for the complex potential, 
complex velocity and tangential velocity on,the oirole respectively for 
the florr of e uniform stream U at incidence a past the unit oircle with 
a sink of strength m at the point E = e@ , the positive circulation 
in the flow being - 2xK . We may therefore conclude that ns the size of 
the porous suction region about a given point tends to zero, the con&tions 
approach those due to a single slut of appropriate sink strength at that 
point. However, the conditions represented, by these equations may be s goCd 
approximation to the existing state of affairs when porous suction is 
applied over a sufficiently small region. 

If there are &era1 separate sinks, of strengths mn , at points 
on the cirole where z = ,iPn - the idealisation of "multi-slot" suction - 
then lt may easily be shown that:- 

e-ic4 
W,(z) = - U zeia 

( ) 

1 
+ ---- t iK log z + - 

2 
Cm&* log z - log (z - eiPel)],lzl 21 

x n 

g,(Q) = 2U sin (0 t a) - II - L C s 00t 3 (13 - Pn) r " x<Q6n. 
2% n 

2.3/ 
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2.3 Solution for Prescribed Tangential Velocity Distribution 

2.3.1 Zero incidence 

Cgnsider the function 

dW, 
PO(z) = iz --- 

az 

Then P,(z) is analytic in 121 >I , is finite at infinity and has its 
real part know on the unit circle. In fact 

“$1 a+1 
= --- + ir --- , 

ae ar 

R&'o(d~r=, = = g(O) - U sin 0 = g,(U) , say, 
I=1 

there g(U) is assumed to be absolutely integrable. Then by n preois~ly 
sim&ar argument to that in 2.2.1, and using the relations 

, P&) = ;; 

x 

1 
$,(T)dT + iIco , . . . . . (12) , 

-x 

n 

1 

Sri 
sin7log(e-ei7)dc = ---, 

z -X 

i[ 
P 1 ain T cot 3 (0 - z)dz q - 2x COB 0 , 

-x 

\,here K, Is an arbitrary constant, we find that for the main stream U 
in the direction of the negative real axis. 

i 7T I” 
1 

g(z) lo& (z - ei=bc , 121 )I # . . . ..(13) 
9I -7C 
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If f(9) and. g(G) are the normal an6 tangential velocity 
distributions on the circle in a particular case, the complex potentiols 

' of the ocrresponding fl.cv~s past the circle when either is prescribed should, 
of course, be the same. Thus, equation (13) may be derived from (4) as 
follows. Consider 

lZl>l ? from (4) 

Since PO(w) = iP(w) , -de have from (3) and (12) 

1 5T 1 
?I 

K 

-I< = -- 6, (‘C)dz = - .dZ)dT = , say, 2x 2% 1 ;; 

“X 

x 7 
Q 

- K, = rn 2, 1 f,(z)ac = - J- 1 f(z)da = -- , say, 
*?I ..x 2% ~ 2x 

where K = 
i 

g(‘c)dz = - 27xK is the positive circulation in the 
-I 7( 

flow, as we previously noted, and Q = - 
1 

f(z)& = - 2x9, is 

4 

the total flux of liquid into the oircle per unit time. Thus, using (14) 

1 
I\ 

- 2U 00s $z + K, - -- P s(z) cot 4 ($ - T)dT 
2x 

‘-77 J 

x log (2 - e'~)d# . 

Now 
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The problem of the inoompressible potential flow past a 
oonventional aerofoil whioh has an arbitrary distnbutlon of normal velocity 
across its surfaoe is solved by the appliostion of confcu-mal transformation 
to the solution derived for the oorresponaing problem for the unit circle. 
Several siraple worked examples sre given. Althcugh it is theoretically 
possible to obtain any desired tangential velooity distribution on an 
aerofoil by the correct choioe of suction velocity distribution, and this 
use of “sink effect” gives promise of considerable lift increments, It is 
considered that the quantities of suction required to produce such desired 
effects are prohibiU.vely large for immediate practical use. For suction 
quantities of the order of those at v.hioh boundary-layer porous suction is 
designed to act, the effect of the suction on the main stream potential 
flow is negligible. 
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1. Introduotion 

Suction as a bwndary-layer control device may be used in two 
ways : by sucking through one or more slots or by sucking continuously through 
a porous portion of the surfaoe. These methods are baaed on rather different 
principles. Suction at a slot either romoves part of the boundary layer 
nt that point and forms a new, thinner, and if the original layer is laminar, 
rmre stable boundary layer dolwstream of the slot, or else romovos amoh 
mz-e fluid than that contained in the boundary layer, thereby nltcring 
the pressure field along the surfaoe for some distance from the slot. 
Separation of flow in thus delayed, and several suitably spaced slots ray 
be used to suck away parts of thz upstream boundary layer as It tends to 
thicken and separate from tne surface. On the other hand, distributed 
suction, instead of allowing the boundary layer to approach a condition 
near to separation before removing all or part of it, aims to maintain a 
favourable velocity profile through the boundary lnycr, vhioh is ke$ thin 
all the time. Distributed, or porous, suction also has a stabilising effect 
on the whole boundary layer. A considerable amount of theoretical xork 
has been done on the solution of the boundary-layer equations for flow past 
a porous surface tlirough which there is a continuous normal velocity, and 
it is assumed throughout this work that the velocity distribution outside 
the boundary layer is that caloulated on potcntinl theory for an impermeable 
surface of similar shape. That is, it is assumed that surface suction, 
of the scale envisaged in boundary-layer distribution suotion work, does 
not affect the potential flow past that surface, The question of the 
validity of this assumption led to the investigation belo!!. 

We are concerned with investigating the potential flow past an 
aerofoil of oonventional shape >vhich has an arbitrary distribution of 
suction on its surface. By "conventional 'I if2 mean not specially designed 
for use with suction. A very thorough diooussion of aerofoils designed 
to incorporate ourfacc suction has been given by Professor S. Goldstein'* 
The words "arbitrary distribution" cover the cases of "overall" 
distributed suction, +a.re the entire aerofoil is oonstrudsd of porous 
material, distributed suction localised over a given porous region of the 
aerofoil surface, single and multi-slot suotion, In partioular we want 
to knoir the tangential velocity distribution on the nerofoil when the 
sudion, or inward normal, velocity distribution is know, and Ire also 
enquire ;*hat suotion distribution is neocssary to produce a prescribed 
tangential velocity distribution on the norofoil at a given inoidencc. We 
are interested, too, in the offeot of surface suction on the theoretical 
lift and drag on the nerofoila The problem 1s tackled by considering the 
corresponding problem for the unit circle, the solution for the Mow 
past the aerofoil being obtained from the conforms1 transformation of the 
oirole into the oerofoil. 

Section 2 denls exclusively with the case of a porous oirole under 
certain conditions of surface suotion. The most general potential flow 
round the circle is solved in the cases y-hen either the normal or the 
tangential velocity on the circle is specified, formulae being given for 
the complex potential, complex velocity, surface velocity distributions 
and the lift and drag on the cirole. 

In section 3, the transformation to the aerofoil is drsaussed 
and the flea round the nerofoil deduced. The K&ta-Joukowki condition of 
smootii flov off the trailing edge is satisfied, Gth a discussion of its 
offLots on the surface velocities and the lift and drag on the nerofoAl. 

Several/ 
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Several simple examples of distributed suotidn and one of slot 
suction applied to a symmetrical Joulcoviski aerofoil are given in section 4. 
The results are illustrated in the cllagrams. 

In the Appendix, the Blasius theorem for the force on a closed 
curve is extended to the case when the curve LS not necessarily a 
stresmline. 

2r The Potential Flow Past the Unit Cirole rlith Arbitrnry Surfaoe 
Suction -- 

2.1 Statement of the problem 

Consider the unit circle in a uniforrl stream of "perfect" fluid 
of velocity U in a direction parallel to the negative real axis of 
4 = r de) , vrith either the normel or tangentialvelooity distribution 
on the cwole prescribed. It is requred to find the complex potential 
Nz) = Q+iJ, of the flow past the circle, such that 

(1) W(z) is analytic for izl >I , 

either (2a) " 
(') 

3 f(0) , is given, 
ar rzl 

or = g(Q) , IS given, 

as z-&x. 

In particular r-(e r-?ant the unknown velocity distrlbutlon on the circle in 
tams of the given one. The problem is stat4 above for the msin stream 
at zero Incidence, but the solution to the case of non-zero incidence can 
easily be deduced from the solution to this problem. 

Put 

w(z) = - Uz + W,(z) , W, = +, + i+, . 

Then W,(z) must satisfy 

(1) W,(z) is analytic for Jzl >I , 

either (2s) = f(O) + U DOS I3 , 
r=l 

or (Zb) = g(B) -U sin 0 , 
r=l 

(1) 

(3Y 
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Having cnuncmted the problem for the flflo~ past the circle, we 
shall oonsider separately the cases when the suction i.e., inward normal, 
and tangential velocity distributions are specified, since although the 
mthods of solution at zero incidence are precisely smilar, the extensions 
to general incidence are dif'ferentr 

2.2 Solution for prescribed suction velocity distribution 

2.2.1 Zero incidence 

Consider the function 

aw, a+1 +I p(z) s z --- 3 r --- - i --- , 
dZ ar a0 

Then P(z) is onalytio in 121 >I , is finite at infinity and has its 
real part know on the unit circle, In fact 

b(+))lra, = i: 0 = f(Q) t u 003 0 q fj (e) , say. l *ta 
I=1 

Hence, 
? ovidcd f(0) is aboolutely integrable, we have, bypoisson's 

integral 

P(z) -l(W) = ‘- 
4 

r,(t) ----- at , JZj>l ) 
xi,c 2 -t 

Tthere t E ,iz , 0 denotes the unit &role and the integral is taken 
round C in the positive senser q(t) or f+(2) will be used to 
denote the value of f, on C as the context requires. Idorewer, 

P(ca) = 1- 4 p(t) --- 
1 'x 

& = - 
2ni c' t I 

f,(T) a-c + iK , (3) 
2X -n 

tihere IC is an arbitrary constant, since [Im(P(z))lr=, is unknown. 
Thus 

P(z) I iK t J- 

x 1 
f,(7) a--c t - 

f,(t) 
---- at , (z(>l . 



and, neglecting an arbitrary constant, 

I x 
w,(z) = iIc log z + - l"og e 

2x I 
f,(Z) dT 

VC 

I 
+ -- 

xi 4 
z-t at 

f,(t) log - -, IzI>i , 
C 0 z t- 

or 

I 
WI(Z) = iIc log z - -- log z 

2% / 
f,(z) fit3 

-x 

1 x +- I f,(T) log (z - eiT)&T, IZI >I . 
* -X 

Using (1) and (3) and the relation 

7i 

i 

il 
oos'Clog(z-eiqh = -- , 

-?T Z 

1 1 ?t 
W(z) = -u z+- ( 1 + jJc log z - -- log z 

Z 2% I 
f(z) a 

-x 

I x 
+- 

I 
f(z) log (z - eiT)az, lZl>l t . . . ..(I+) 

?T "?I 

The/ 
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The equation for W(z) holds also for IzI = 1 , but in equation (5) 

T f(T) 

I 
----I dc beoomes divergent when z I eie . To find the tangential 

-7c z-l+ 

velocity distribution on the circle, consider 

there P denotes that the Cauchy principal value of the integral is to be 
taken. Hence 

a4 0 
CT 

mm- 3 -K+I-P 
ae I=1 2X i 

q(2) cot 3 (e - 2) dT , 

-?i 

and since 

T 

P 
,i 

00s T cot $ (0 - 7)dZ = 2% sin 0 

IJO have by (1) and (3) 

I 7l 

de) = 2u sin e - b + -- P 
i 

f(T) cot 4 (0 - T)dz, - x<e<n, 
2n -7c 

vdhere g(0) denotes the tnngentlal. velocity distribution on the oirole 
induced at zero incidenoc by the outwrd normal velocity distribution f(e). 

2.2.2 General incidence 

(i) The suction distribution, when once ohosen, must remain the same 
with respect to the clrclo whatever the direction of the incident stream. 
We may now generalise the above results to the ease &en the direction of 
the uniform stream is at an angle a to the negative real axis. 

Taking the positive real axis of 2 opposite to the direction 
of the incident atream, l;d.;'c have from (4) 

w(2) = + tic log Z " ,1- log z @ (T)dT 
2X 

1 
+- CD(z) log (Z - eiz)dz, IZI>l , 

?I -It 
where/ 
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Since f(0) has period 271 , then 

Thus, neglecting the constant term tm have 

.-La 

( > 

1 x 
W,(z) = - u zeia + ---- + ilc log z - - log z 

1 
f(-cMT 

Z 2x 

1 
7x 

+- 
I 

f ( 2) log (z - eqa'c ) Iz~>I, '..... (6) 
. 

1 
?I 

P,(@) = 2U sin (0 + a) - K + -- P f(7) cot * (e - da7 , - x<e <z . 
2x i -x 

. . . . . (a) 

Since IC is the coef'fioient of i log e in the expreosion for W,(z) , 
we see that -2xIC is the positive circulation in the flow. - 

The above theory holds provided f(0) is absolutely integrable. 
Hence the suction distribution may be chosen non-zero over just a portion 
of the circle - the oaae of "localised" suction - and the results still 
QPlY* Thus suppose we define 

w 

0 1 

f(e 1 a<e<b ) 
"- = 
ar hl 0 elneahere . 

Then/ 
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Then 

6,(Q) = 2U sin (9 + a) - IC t i- P 
P 

f(7) cot 4 (e - z)az , - n<e <x . 
2?r a 

But 

\ b 

FJ 
1 

f(Z) cot 3 (e *s Z)dTG q - 2 {f(b) log 1 sin * (0 - b)l 

b 

i 

af 
- f(a) log 1 sin & (0 - s)Il + 2 log 1 sin 3 (0 - 2;, 1 -- . dT * 

aI7 
a 

Hcncc unless f(n) = 0 , f(b) = 0 , the tangential velocity becomes 
logarithdcally infinite ut 0 = a , 0 = b , the end points of the 
suction region. So, when the suction distribution is non-zero only in 
the range a<Q6b , it must satisfy the conditions 

f(a) = 0. , f(b) q 0 , 

nhioh make f(0) continuous, in order that the tangential velocity remains 
finite ewryxrherc. 

(ii) The extent of the suction region is quite arbitmry. Suppose 
then, that we define 

and that as c--$0 , [- f(2)]& tends to a finite limit m , 
P- 

say, Consider 

w 
I = i f(T) [log (2 - eiT) - log (2 - eiP)] d-c j 121) 1 . 

P-E 

Since log (s - ei7) is continuous at T = P, there exists a positive 
E' = ~1 (E) , such that 

Hence/ 
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PCC 
Hence I-30 as z-i0 , since I i f ( &lz 

I 
1.8 bounded. !&us 

P-E 

P+E 
lim I f(z) log (2 - aiz)&c = - m log (z - eig) , 

c--$0 f-j-c 

and therefore from (6), as E--JO 

W-(z)--J-U (eeiat~~~~+j.Klogz+~logz-~log(z-eiP), (z\>l. 
si Lb 

\ Z/ 2% 

As z-+eig , this equation still holds except 
follo,,s that, as ~-30 , 

. . ...(y) 

at 0 5 p , and it 

awa ewia iK m 1 m 1 
--4-u ,ia _ ____ 
az ( ) 

-Me--^ 
Z2 

f -- + mm v I - 
n (z-eip) ' 

lzl >I # . . . ..(lO) 
Z 2z z 

ga(0)+2U sin (e ta) -K - f- cot$(e-p), -x<e<x. 
2% 

. . ...(n) 

Equations (y), (IO), (11) sre the expressions for the complex potential, 
complex velocity and tangential velocity on the circle respectively for 
the flow of a uniform stream U at incidence a past the unit cirole Ibth 
a sink of strength m at the point z = e@ , the positive ciroulation 
in the flow being - 2xK . We may therefore conclude that as the size of 
the porous suction region about a given point tends to zero, the aonditiona 
approeoh those due to a single slot of appropriate sink strength at that 
point. However, the conditions represented by these equations may be a good 
approximation to the existing state of affairs when porous suction is 
applied over a sufficiently small region. 

If there are several separate sinks, of strengths mn , at points 
on the circle where z = eign - the idealisation of "multi-slot" sudion - 
then it may easily be shown that:- 

W,(z) = - U zeia 
.-ia 

( ) 
t --- t u log z t 

Z 
f C,mJ+log z - log (z - eiP")],lzI >I 

gate) = 2U sin (0 t a) - II - J- C, mn 00t & (e - Pn) ) - x<e<n . 
2% 

2.3/ 
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2.3 Solution for Prescribed Tangential Velocity Distribution 

2.3,l Zero incidence 

Cp6id.er the function 

dwl "$1 a% P,(z) = iz --- a --- + ir --- . 
az ae ar 

Then P,(z) is analytic in IsI >I , is finite at infinity and has its 
real part knoxin on the unit circle. In fact 

Re[Pc(s)] 
r=l = s(e) - U sin f3 = g,(0) , sny, 

X-1 

There g(Q) is assumed to be absolutely integrable. Then by a precisely 
nidlar argument to that in 2.2.1, and using the relations 

, 
+ UC0 9 . . . . . (12) 

n 

P 
1 

sin T cot 3 (0 - z)dz = - 2% co8 0 , 
4 

dvsre K, is an arbitrary constant, we find that for the main stream U 
in the direction of the negative real axis 

5. n 

If(z) q - U + K, log e + -- log I, s(zh 
277 -7I 

5. n 
“- 

i 
g(z) log (2 - e9a-c , 121 )q # . . . ..(I31 

n 4 

aw 
- = IzI>f , 
& 

1 
51 

f(0) = - ,TJ CO8 e + K, - -- I- 
J 

B(T) cat & (0 - ThT , - x<04n 

2X -II . . . ..(14) 
l$here f(e) denotes the normal velocity distribution required to produce 
the given tnngen;ial velocity distribution g(B) . 

If/ 
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If f(Q) and g(0) are the normal an6 tangential velocity 
distributions on the circle in s particular case, the complex potentials 
of the oorresponding flows past the circle when either is pescribed should, ' 
of course, be the same. Thus, equation (13) may be dorived from (4) ae 
follow. Consider 

lZl>l , from (4) 

1 R 
1 

51 

+ iK log 2 - -- log z f(l7)dz + - f(T) log (z - eiz)dz. 
2% ‘I( 

-?I 

Since PO(w) = iP(w) , lie have from (3) and (12) 

iihore K I 
l 

fz('ch% = - 2x1~ is the positive ciraulstion in the 
-, x 

flow, as we previously noted, and Q = - 
1 

f(z)& = - 2nKo is 
-a 

the total flux of liquid into the oirole per unit time, Thus, using (14) 
r 

1 

( ) 

i 
-Uz+- - R, log z - - log z i g(7)az 

z 2% 
..A 

1 
II 

- 2U 00s $J + K, - -- P 
i 

ix(T) cot a ($ - &T 
2s 

-II 1 x log (2 - ei+)d+ . 
7c 

i 

II 
00s r$ log (z - eQ)I)a+ = ” . , 

z 
-7X 

?F 

/ 

log (z - ei+)clt#t = 2xlogz ) 

-, 
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whence 

w(z) = - U 
i 

+ Ko log 1. - -- log a 
2% 

1[ 
1 

1 
dz)d’c - - J(z) , ..(i5) 

7l 1% 

1 x 

1 i" 

P(T) p s*t as = e- log (a - 5) . "---- -w. 
2x -n ( )I a.?, s = ey 

C s-t s 

1 K 
z -cm 

2% 1 
g(7) [2ni (- log 2 + log (2 - eiz))J dr t 

-iT 

?[ 
= - i log 2 

1 
g(T)dz + i 

--II 

Substituting in (15) ne find 

This also holda for 1~1 = 1 , and 

f 

n 

1 
g:T) log (z - &)dt . 

-7t 

i n 
5 + -- log 2 

1 
.d 'Gh= 

2x -7t 

30 we have equation (13). 

2.3.2 General mcidenoe 

Unlike the suction distribution, which mst be the same for all 
&m&ions of the main stream, the tangential velocity distribution must be 
prcscrlbed for one given incidence. Thx then defines the suotlon distribution, 
obviously of the "overall" type, for a11 incidence. Thus let the required 
tangential velocity distribution be &,,(0) Then the angle of incidenoe 
is a0 *I Substitutmg in (13) 

z, = rei@o q Zcia~ 
, Tao (0,) = ho (0, - a,) = Pa0 (8) , 
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we hmc 

w(zJ = - u z, - ‘- 

( ) 

i 
II. 

2, 
+ ISo log z, + - log z 

2x 0 1 
Ta, (da7 

-1[. 

so that, neglecting an additional constant term, 

e ia, 

ciao q - u zeiaO _ ____ ( ) + IS0 log z + :- log z 

Z 2x i &Lo (7) dT 
-< 

i x 
mm 

1 
gao (z) log (2 " eqa7 , IZI >I . 

71 -7C 

It follow that 

f(e) = - 2U cds (0 + a,))+ K, - I- I? 
lc 

1 
&, ('C) cot $ (0 - d.)dZ, 

2x -n 
- x<36n. . . . ..(16) 

This therefore gives the suction distribution, all round the circle, r&ich 
must be applied if the tangential velocity distribution on the circle 
is to be g,,(O) at incidence a0 . l'his sudlon distribution must txxf 
remain the same for all angles of incidence, and hence the flow for 
general inoidence in this case, is obtained by substitutln 
equations (6), (7), (8). It can be checked from (8) that 

(16 into 
ial 

does in fact equal ho,,(e) as prescribed. 
ce la = a0 

We may note here thnt although the above method is necessary to 
obtain the complete solution to the flow, the relations between the normal 
and tangential velocities on the circle oould have been deduced at the 
outset, since fj and -gl ere the real and imsglnary parts, on the circle, 

aw, 
of the fundion z --- , dish is analytic outside the circle, and hence 

az 
they may be expanded in conjugate Fourier series. 

2.4 Summary of the solution 

Sinoe tha arbitrary oonstants in the solution hsve non been 
identified, and the equivalence of the solution for prescribed suction and 
tsngentisl velocity distributions demonstrated, we msy for convenience 
sunmsrisc the solution in its simplest form. The following formulae apply 
when the uniform stresm U is in a direction at an angle a $0 the 
negative real axis, and there is a positive oiroulation K in the flow. 

2.4.1/ 
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2.4.1 Distributed suckon 

(i) Overnll suction 

If' the outmrd norm1 vcloclty distribution on the circle f(O) 
is defined in the rongc - x(0 (n , then 

Va(z) = 
( iK - Q) 

- -..--I--- log z * _ 
2x 

f(T) log (z - eqaz. 

-x 

,. IZI>l , 

dW 
2 = ( iK-Q) 1 1 

- -------- , . + - 
dz 2% z x -?t 

g,(e) = 2U sin (0 + a) + -t. + '- F(O) ) - x<e6 'i, 
2x 2% 

where 

x 

F(B) = P 
1 

f(T) cot 5 (0 - T)dT . 
-71 

. . . ..(I71 

1z 1>1> 
. . . ..(lE%) 

. . . ..(19) 

. . . ..(20) 

. . . ..(21) 

Moreover, if f(O) 1s such thnt 

Q 
f(O) = - 2u 00s (0 + ao) - -- --'-G (e), 

2x 2% ao 
- x<96x,' 

. . . ..(22) 

?i 

G,(O) q P 
i 

ga('c) cot ; (0 " z)az , . . . ..(23) 

then .gao(0) is the tnngentlnl velocity dx.trLbution on the olrole at 
inoldence a, . 

(ii)/ 
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(ii) -ised suctiep 

If f(Q) is non-zero only in the range a(@(b , then 
cquntiona (17) to (21) still hold, but In oldor thnt ga(0) is not 
infinite at 0 = a or e = b it ia necessmy thnt 

f(a) q 0 , f(b) = 0 . . . . . . (24) 

2.4.2 Slot suction 

If there <are N sinks of strengths nxo placed nt points 
0 = &, , n = 1 . . . . N , on the circle, then 

l&(Z) = - u eeia 
,-ia c > i.K 1 N 

+ me-- - -- leg z + - 
z 2x 

,T 2, $4 log z - lo!3 (2 - ei9], 

IZI >I # . . . ..(*I 

awu 
“-- = 
dz 

, 1z;1>b 
. . . ..(26) 

H 
e,(@) = 2U sin (0 + a) + - - cot $ (0 - IQ , - 7i< 86X. 

2x 
. . . ..(27) 

In this cnsc 

Q c" Inno Z 
ll=l 

. . . ..(28) 

2.5 Lift nnd drw on the cmcle 

In the Appendix, fcmmlae arc derivdl for findmg the force on 
n closed ounw C which is not a streamline. These may be spplied to 
the onsc Ihen C is the unit oirclt under th6 above conditions of 
surfnce suction. 
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If q ,X are the nlgnltude and direction respectively of the velocity 
vector, then 

r,hence 

l ...* (29) 

Since in this case X = - + 6~ then when C LB the unit oircle 
2 

equation (i) of the Appendix becomes 

Nov,, on the unit circle 

z 3 .i.Q , 

1 
z=- l 

2 

**a** (30) 

Bhere 

X-1Y 1 -$ip 'J(z) az , 
C 

NOT/, for 1~1’1 , f'rom (18) for distributed suction, 

where 

b = 
0 

- Ueia , 

b, = - ;; (in - Q> , 

b2 
= Ue-ia . 

Hence/ 



Hence 

diia 
0 

Z ‘x f(T)eiT 
mm- 

a.? 1 

= 6, z2 + $2 + b’ - - 

z' = - O x I 

““‘r’ da * 

z - elT 
z -ii 

vhere 

b2 = ueia = _ b 
0 

co = - Ueia = . b2 . 
Hence, for Izi>l . 

T(z) = bl b* ' 
+ -- e -- + - 

Z z2 x 

from which me ate that T(z) is analytio for 1 z ]>I and is finite at 
xSinity. Thus, since T(z) is continuous on C , by Couchy's theorem 
the unit circle runy be deformed into a aircle C, of large rndlun R , 
so that 

X-1Y = -$ip 
! 

T(z) d.z . 

GR 

For large z , 

Bl 
T(z) = .Bp + -- + l . . . , . . . . . (32) 

z 

since for lnrge e 

1 1 eiz 
--m-s-- x 
z-e SC 

- + 7 + l -‘* ’ Z 

B 0 = boii2 = - bi 

= 2 b,ij, . 

Hence/ 
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Hence 

= - 3 ip iRcie do = npB,t 

Letting R+a,, we have 

X-,iY = npB, = 2xpbob, D - pu eia (1H t Q) ) . ..(33) 

whence 

x = ,OU~sina- pUQcosa, 

Y = pUK cos a + pU Q sin a. 

Thus the lift L and the drag D on the circle, +dC.ch me normal. and 
parallel to the znoident stream respectively, m-e given by 

L = putt, 

D = pUQ. 

The results for L and D are exnotly the same vtien equntion 
av,'a 

(26) for multi-slot suotion is taken for --- , with Q @ven by (28). 
cl2 

We therefore deduce that for any incoqpresslble putentid flow 
post a circle, the lift 1s proportkonal to the circulation and the drag 
is proportionnl 'co the total flux per umt time into the oircler 

3. The Potentlnl Flmr Past an Acrofoil nith Arbitrary Surface Suction 

3.1 Transformation IYom the unit circle 

By Riemmm’s theorem, the space outside an aerofoil can be 
confon;mlly represented on the outside of the unit cirole by a UniquC 
analytic function l;(z) , There .z and r; are complex v@ables m the 

planes of the circle and aerofoil respectively, so that --+I as 
az 

Z-j-J. The trannformtion is of the form 

t: = z + 3 + 2 + .,. 
z2 

, 
z 

at; "1 2a2 
-- a 1 - -- c w-c - ,,* , 
dZ z2 ZJ 

. . . . . (34) 
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kere, in gene=al, n,, , n2 , . . . are complex numbers. For an nerofoil 
with a sharp trniling edge, the point in the Z-plane corresponding to the 
trailing edge lies on the circle. lie &all take this point to bc 
z = ei(- x + ")* 

If we denote by W'(r;) the oomplex potentwl of the flow past 
the nerofoil oorrespondlng t& the l'lo~ W&(z) past the circle, then 

where z(c) is the inverse of &(z) . The complex velooity in the 
aerofoil plane is 

If we put 

e.... (36) 

then from (35) w have 

qfc-i+l = q e-% ueiv , 

where qf , $’ represent the nagnitude and direction respeotively of 
the volooity vector in the flow past the aerofoil. Henceforth, primes 
riill be used exclusively to denote quantities in the flow in the aerofoil 
plane thus 

9' 3 M q , 

$1 = q-v. *a... (37) 

Thene relations hold at oorrespondlng points everywhere outside and on the 
circle and the oerofod, though the transformattlon has n singularity at 
z = ei(- x + E) whioh corresponds to the trailing edge, nhere 14 is 
infinite. Now, on' the olrcle, 

XXI on the aerofoll 

Acre ds is the element of length along the nerofoil, and 8’ is the 
angle between the outnard normal to the surface and the positive renl axi.sr 
Hence, from (36), on the aerofoil we have 

ae = Ii, as ) 

8 = O’t v. 
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If we denote the outward normal vclocitics nnd the tangential velocities 
in the positive direction, at corresponding points on the circle and 
nerofoil by f , f' ; g , g' respectively, then on the circle 

nrg (f - ig) = - t/a+ 0 , 

and on the aerofoll 

arg(f'-ig') = -$'+O'. 

Thus, using (37) 2nd (38) 

=% (f' - ig') = arg (f - ig) , 

1 hence 

Also, on the circle 

and on the aerofoil 

f g 
-m = m.. , 
f’ e’ 

q = (f2 + g2$ ) 

I.... (39) 

9’ = (f.12 + g'2)$ ) 

the positive square root being taken in each case, From (37) and (39) we 
thon have 

f' = hkf , E' = I!ii , 

IIence, the solution for the rflo~ past the nerofo1.l oan be obtained from the 
solution in the circle plane from the relations 
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r;hioh hold outside and on the nerofoil, except at the trailing edge, end 
morscver the normal and tangential velocities, f’ rind g’ , on the 
aerofoil itself ‘are given in terms of f and g at the corresponding 
points on the cirolc, by 

f’ = 1IT , g’ = icg , 

on the circle. 

as 
Ed : -- 

I I al; 

3.2 Lift nnd drag on the serofoil 

We may apply the relations derived in the Appendix for the 
force on a closed Curve C which is not a streamline, to the case rhcn ’ 
C IS the aerofoil Cl . I? Xl , Yl rcprescnt the forces on the 
aerofoil parallel to the real and imaginary axes of c , respcotively, 
then from equations (ii) and (iii) of the Appendix 

where 

f’ 
@’ = - tan” - . 

se’ 

We may change the integral round the acrofoil Cl into one round the 
unit circle C . From (39), 

f 
11’ :: p = - tan” - , 

E 

and also 

so that 

“da 
--- = q e 49 q - rq e 40 e-4 9 
dz 

Hence/ 
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Hence, from (Zy), (jO), 

X' - iY 

= -&ip d dz T(e) -- az , 
if! al; 

as 
Since T(e) -- is en nnnlytio functmn of 2; 

ar; 
in Iz1 >I , and is 

continuous on C except et z = ei(- :i + c) by considering the 
Couchy prmcipal value of the integral we my d&orm the contour into 
the large circle C& so that 

1 
az 

X’ -1Y’ = - $ ip T(z) . -- l az . 

Cl 
ac 

Prom (34) for large z 

az 
Ol -- = 1 + - + . . . . , 

a 22 

whence, uei;in& (32), 

Letting R-jw , we ace fkom (33) that, 

X’ - i Y’ :: apB, = X-iY, 

Thus/ 
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Thus the force on the aercfcil is exactly the same as the force on the Thus the force on the aercfcil is exactly the same as the force on the 
unit circle, for corresponding flows, and hence the lift L' unit circle, for corresponding flows, and hence the lift L' and the and the 
drag D' drag D' on the nercfoil ore given by on the nercfoil ore given by 

L’ = pu1c e L, ..*.. (40) 

D' = pUQ = D. . . . I. (!+I ) 

Hcwever, if Q' represents the total flux per unit time into the nerofoil, 
then . I 

Q’ = - f'dS=- Mf--r- ff@=Q. 

C’ 
! 

de 
N ! 

a C 

We therefore ccnolude that far any incompressible potential flow round 
any nerofoil, the lift is proportional to the circulnticn and the drag 
is proportionalto the total flux per unit time into the aercfcil. 

3.3 Satisfaction of the Kutta-Joulcc>rski trailing-edge ccnditmn 

It is ncll-known that in order that the velocity at the 
trailing edge of an aercfcil is finzte, the corresponding point on the 
circle must be a stagnation point of the flow round the circle. This 
condition imposes restrictions on the permissible suction and tangential 
velocity distributions which may be chosen on the circle, and enables the 
crbitrary constants in the solution to bc determined. Purther, it makes 
it pcssitile to calculate the change in lift and drag due to suction from 
the corresponding flow round an mpermeable aerofcil. 

3.3.1 Conditions on the surface volccsties 

If the stagnation point on the circle is at e = ei(- K + E) , 
then we must always hnve 

f (- x cE) = 0 8 l ..** (42) 

gc(-X+6) = 0, fcrall a , l **** (43) 

(i) Suppose the suction distribution is prescribed. Then it must 
satisfy (42) &rch gives a restriction on the pcssiblo porous suction 
distributions about the point ci(- 5 + E) on the circle which may give 
rise to a corresponding porous suction distribution on the acmfoil, 
and also indicates that in the case of slot suction there must not be a 
slot placed at this point. If f(- z + E) P 0 , the corresponding flow 
round the acrofcil has no physical significance. Ncrecver, the 
tangential velocity g,(0) which is produced by the prescribed f(0) 
must satisfy (43) fcr all a , and thus condition determines uniquely 
the circulation necessary to give the re uired stagnation point. Thus 
for distributed suction we have from (19 7 

K = 4x u Sin (u + E) - E‘(- R + E) , . . . . . (44.) 

qp) = 2U[sin (0 + u) + sin (u + E)] + '- [F(0) - P(- m + a)], - x<o<x , 
2% 

whilst/ 



nhilst for slot auction, from (27) 

N 
K = 4sr U sin (a + E) + C mn tan 4 ( Pn - E) , 

n=l 

ga(0) = 2U[sin'(t? + a) + sin (cc + E)] - I- 
c 

c" III [cot 4 (0 - p,) 
2% nzl n 

- tan 2 (Pn - El] 3 P - x<B6x. 
For any type of surface suct&, we may therefore write 

K = 4x U sin (o, t E) t k , l **** (45) 

where for distributed suction 

k = -F(- x t&) = - P 
L s 

r(z) cot + (8 - Z)dT 1 e = -m.E ’ -71 
and for slot suction 

N 
k= G 

n=l 
r.rn tan S (p, - E) . 

Substltutlon of the nbove wlue of K in the expresslona for the complex 
ptentlal and complex velocity gives the flow round the oirole lrhloh, 
under the given condltlons, has s stagnation point at e q ei(- 7( + E). 
This is the only flon dich when trensformed gives s physically possible flow 
past the nerofoil. It is spparcnt thnt the incident main stream and the 
suction dlstnbutlon provide independent contributions to the flow, 

Thus for the cnse of prescribed suction distribution on the 
circle, &ether porous nr slot suction, the suction velocity must be zero 
at the point corresponding to the trailing e&e of the aerofoil, whilst 
for suction localised between n<86b , we must hsve, also, f(a) = 0 , 
f(b) i: 0 . The olrdlatzon is determined uniquely, but the total sudlon 
quantzty Q may be chosen srbrtrsrily. 

(ii) A prescribed tnngential velocity distribution g,,,(e) at 
inoldence a, fixes the auction distribution uniquely. We must have that 

eaO (-XtE) 3 0, 

and since also f(- x t E) = 0 , then from (22) 

Q = 4x U cos (a t E) - Gao (- x t E) , 

r(e) = - 2u[oos (9 t a,) t 00s (a, t El-J _ '- 
2X 

[Gao(Q) - G,, (- sx + E)] , 

- %<8677. 

The/ 
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,?hc auction distribution is obviously of the overall type. Satisfnction ,?hc auction distribution is obviously of the overall type. Satisfnction 
of condition (43) for all a then gives the circulation K , ns in of condition (43) for all a then gives the circulation K , ns in 
(4.4) above. (4.4) above. 

Hems for the case of prescribed tangentin volooity distribution Hems for the case of prescribed tnngentinl volooity distribution 
on the circle at a given incidence, this velocity must be zero at the on the circle at a given incidence, this velocity must be zero at the 
point corresponding to the trniliug edge. point corresponding to the trniliug edge. llhe overall suction distribution llhe overall suction distribution 
is then fixed and the total suction quantity and cmculation are uniquely is then fixed and the total suction quantity and cmculation are uniquely 
determined. determined. 

3.3.2 Chnuges in lift and drag due to suotion -- 

Since the previously arbitrary constants in the flow have now 
been not otily identified but detemmed uniquely, ne my calculate the 
chs~es in lift and drag on a suction oerofoil fron one without suction. 
I~OLI (40), (41), (45) i-ie have for the theordioal lift and drsg on a 
suction oerofoil:- 

L = PUK = 4xpU2 sin (CL + E) + pUk , 

D = pun.. 

NOT. the lift Li and the drsg Di, for a sirilnr-shaped inpemenble 
nerofoil m the aam unlfom strew, m+e given by 

Li = &LX pU2 sin (a + E) , 

Di = 0 

and hence the changes AL and AD in the lift and drag due to suotion are 

AL 5: pW , 

AD = p UCJ , 

Thus, theoretioally, the use of suction gives proruse of a considerable 
lift increase over the if.rpemeablc case, though there is a corresponding 
increase in drag. 

It is convenient here to introduce the non-dinensionnl suotion 
ooeffioient Uq and express the ohanges ACL and A$ in the lift and 
drflg coefficients in term of it. Dsfming 

0,' 
c = -- = : , 

9 UC UC 

and since 

I! D 
CL q ------ t 

$pu% 
CD = 

------ , 

?zPU2C 
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o bemg the chord of the nerofoil, then 

AL k 
ACL = ---- - = 2 - , c . 

$plJ20 I Q ’ 

AD 
AcD = ..----e = 2 . c 

22 PU2C q' 

ACL . k 
--- = - . 
AC, Q 

These relat.tlons enable the lift and drag 
any given cnse of surface suotlon. This 
for the case of a sir&e slot, v&&ah has 
inconclusively, by Snith3. 

4. Exar.lples 

increncnts to be analysed in 
analysis is especially sirqle 
been investigated, rather 

4.1 Choice of surface velocity distributions 

The theory for finding the potential flow round a porous 
aerofoll ydhcn either the tnngentml or norm1 velocity distribution on 
its surfaoc is prescribed holds for aerofoilsobtalned f'ron n olrole by 
a know conform1 transformtion. The problem in the aerofoil plane is 
then reducible to a corresponding pmble~~ for the unit circle, the complete 
solution to ltich is given UI 2.4. Dzffioulties nay be enoountered in 
evaluating annlytionlly sor.le of the Poisson integrals which occur in 
this solution 

ti 
ut r.iethods exist for caloulating these integrals 

nur.~er~onll++~~~ . Thus for any speolfied veloolty distribution on the 
porous oerofoil, the ooqlete solution of the flov nay be deduced. 

We my note here that the pressure field on the aerofoil is 
obtamed, by Bernoulli's theorem, from the dzwtribution of total velocity 
on the surface and not, as in the case of an impermeable aerofoil, from 
the tangontlal velocity distribution alone. If the total velocity 
distribution wre prescribed, we should have an integral equation for 
finding either of the cor.rponent velocities, slnoe if s,,(Q) is the 
given total velocity on the oircle, then 

gow = r2(e) + &go(e) , 
where 

f(D) = - 2u[oos (0 t a,) + 00s (a, t&J] - ;; [Gao(Q) - Gao (- n + dl a 

li;aow = ZlJ[sin (0 + a,) + sin (a0 + E)] + L [F(O) - F(- ‘x + E)] , 
2s 
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1 ?r 2, 

E~ow + --- Cao(B) + P 
4x2 c i 

E,,( '6) oat + (e - T)dT 
3 

= q;p , 
-5 

r;here 

sao(Q) = &GJ[sin (0 = a,) t sin (a0 + E)] - P(- n + E) S 

q&) = l@u[cos (e = ao) + 003 ( a0 + E)] - Gao(- q t E) . 

Thus, if w are interested in obtnining exnotly s certain pressure field 
on the surfnce, thc~detemination of either of the cmponent velocities 
rcqumes the solution of an integral equation of the fern 

2 
y(z) oat $ (x'- z)dz t A(x) 1 t B yqx, t c(x) = 0 . 

Ho-aver, in the csses of slot suction, suction over A am11 loodised 
region, rind slight suction over the iwhole aerofoil, the tangential velocity 
distribution is very nearly equal to the total velocity. In my event, 
knodedge of the pressure distribution is required minly so that an 
cstimte of the position of boundary-layer sepsration my be mde, and 
if the suction velocity is sufficiently large to affect appreciably the 
total velocity, then it seems fessible that it will also be large enough 
to elirrlnnte the possibility of the boundary layer scparatim at all. 

The rmst Llportmt cs3e to work out nould therefore seer, to be 
that of n specified tnwentml velocity distmbutron nt D given incidence. 
Iiofiwer, WC see frorl the theory that the suotion d.istnbution thus 
dafined m3t be of the overall type, and this is n great dranbock became 
of the irmensc practical diffioultws involved in d&-g 3 complete 
ring of porous mteriol nnd smulnting n given, presumably very oorrplicated, 
suction distribution over its surfnoe. It would be better, therefore, 
to npproximtc to the derived overall suction distribution by sane forr.1 
of locnliscd or slot suction. But i,S already possess a general iden of 
the effect of the position of suction on the tangentinl velooity 
distribution - for exorrple, ,je kno:, that to increase the CL-range on n 
low-drng wing the suotion should be npplicd onthe upper surfaoe nesr the 
lcding edge, whilst to reduce the pofile drag on s thdc high rmxinw 
CL nemfoll we require suctlon sone\ghere tom&s the rear of the upper 
surface - 30 that WC cm in my case u&e good guesses es to the position 
of the suction to produce n certain &sired effeat. Hence it appears even 
IlorL convenient to iVorlc out the cmes of suitably-chosen suction distributions 
in preference to the r,lore oomplionted ones derived from giventnngentinl 
velocity distributions. c 

l'he/ 
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The required surface velocities on the aerofoil nr? usunlly 
given as functions of<A , the frnotion of the chord fkon the len&ng 
BQe, nnd nay of oourne be expressed na functions of 8 so thnt the 
corresponding surfnoe velocities on the olrole may be found exactly in 
tams of e , These expressions for f(O) nnd g(0) will undoubtedly 
be ool@ioatod, and here again it is comeniexrt to approximte to the 
oxnot required velocities. One sir.iplifioation is to use the fact thnt in 
general <A varies like 00s 0 . For the simplest possible computation, 
f(0) or g(Q) nay be chosen so that the Poisson integrals may be 
evaluated nnalytioally. 

4.2 List of worked exmples 

We consider the effect of several prescribed suction 
distributions on a 1% thick symmetrical Joukowski aerofoil, derived from 
the unit circle by the trnnsforr~~ation 

T,(e) = 
(1 - sp 

(2 + 6) + -------- , 5 = 0.1 . 
(z + 6) 

Corrputntions are perforned only for specified suction distributions for the 
above mentioned reasons, in any case, the exarq$es aorkcd out are sufficient 
to enable several general conclusions to be dram, (see the postscript to 
the Conclusion). 

The suction distributions considered are the six@cst possible 
which satisfy the required conditions on the circle, being obtained by 
putting 

f(Q 1 = A, + A, 00s 0 + B., sin B , 

aud finding the approprinte vnlues of the constants. Since for a 
symctrical oerofoil a = 0 , the point on the oirole corresiponding to 
the trailing edge is 9 = - x , and the conditions to be satisfied by 
f(0) are therefore f(- X) = 0 nnd f a 5: 0, f(b) = 0 for 
loooliscd suction. We note that since u f 0 is the outwrd normal velocity 
and we are dealing mth suokmg, not bloning, then we must have f(e)<0 
everyiihere. An arbitrary constant is left in the expression for f(Q) to 
enable the total suction quantity Q and the suction coefficient CQ to 
be varied. 

(1) Overall suction 

f(0) 

f(- x) 

The oases oorrputed are as follom:- 

= - Q. [I + 00s Q] , -x<o<x . 

= 0 ; f(O)40 for Q,>O. 

(2) Localised suction 

'I 
[sun (0 - a) - sin (0 - b) - sin (b - a)] 

i_ Q, c---m------------ ---y--c-"----.." , - ~r<a<O<b<x . 
sin (b - a) 

f(b) = ; 
, 
I 0 3 clsewherc . 
L 

Three/ 
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Three different cases arc considered: 

(a) a = o” , b = 90' . Suction applied to that part of the upper 
surfnce of the acrofoil betrieen the leading edge and a point 0.456 of the 
chord frorl It. 

(b) a = 30' , b = 45' . Suction applied to that part of the upper 
surface of the aerofoil between points 0,058 and 0,127 of the chord from the 
leading edge. In thm particular case the strea&ines past the circle are 
also ooqputcd, since originally soxle doubt existed as to whether or not a 
stagnation point always appears domstrem of the porous region in the ease 
of localised suction. It would seem at first szght, by analogy with the 
case of slot suction, that this r?ould be the case. 

(4 a = 12" , b = 18" . Suction applied to that part of the 
upper surfacc of the aorofoil between points 0.009 and 0.021 of the chord 
fron the leading e&e. 

(3) Slot suction 

Single sink of stren&h 11 at 0 = 15" , i.e., at a point on 
the upper surface of the nerofoil 0.015 ,of the chord fror.1 the leading ed.Se. 
This single slot case is chosen for corrparison 111th (2(4). 

The size of C 
8 

pemissible in praotice imposes on the suction 
distribution a lillitatio in size which is treated by putting 

Q 0 = cou, 
so that for suction (1) 

1 x 
i 

27c 

cQ = ;,’ Q. [I + 00s o] ae = -- co , 
c 71 

and for suction (2) , 

1 b 

cQ = ;, J 

Q [sin (0 - a) - sin (e - b) - sin (b - a)] a;, 
-----------__---------------------------- 

0 sin (b - a) 

cos (b - a)) - (b - a) sin (b - a)] 
= -_----------------------------------- co . 

c sin (b - a) 

For suction (3) , 

and is chosen to take the sane values as in suction (2(c)).In the conputation, 
GO 

is adjusted to give suitable ranges for CQ . 
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In oath of the above C~SCS the tnnCentin1 velocity distribution 
round the aerofoil is onloulatcd, the total velocity also being worked out 
Ihere it differs substantially fron the tangential one i.e., for suctions 
(1) and (23). The oalculations are perfomod for several value8 of Co 
and for a = O" , 5O, loo, nhioh, for flop without suction, correspond 
to theoretical lift cocffioients of 0, 0.602, and 1.200 respectively. 
The results are illustrated in the fiSurcs. A table showing the vnlues 
of ACL , the chase in lift coefficient due to the use of suction, is 
Siven. AlSo included are diaSrnm of the strcanlines past the suction 
region on the circle for the case (2 for a = 0 and four values of 
cQ l 

5* Conclusions 

The incorqressible potential flow past an aerofoil h:vinS a 
CiVen distribution of surface suction my be deduced by conComa 
trnnsforrmtion from the correspondi% flor-{ round the unit circle. However, 
not au flows with specific surface velocities on the circle my form the 
basis for flom round the aerofoil. In order that the flow cones smoothly off, 
the trailinS o&e of the aerofoil, it is necessary that the prescribed 
~uUhco velocity on the oirolc muat be zero at the point oorresponding to 
the trailinS o&Se, rlhilst in the case of a specified localised suction 
distribution, the suction velocity must be sore at the end points of the 
cuction region to prwent the tangential velocity becoming infinite there. 

The incident main stream and the suction distribution provide 
indcpcndcnt contributions to the flow, By applying the correct overall 
suction distribution, any given tangential velocity distribution at any 
incidence may be obtained exactly, though if the extent, form and size of 
a localised suction distribution are well-chosen, a Sood approximation 
to any required tnrgentinl velocity distribution may be obtsined. Strictly, 
the tnnSenti.alvelocity distribution does not determine the pressure field 
on the surfnoe, chich controls the separation of tho boundary layer, but 
for 3mall mounts of auction and suction over a mall localised region it 
is sufficiently close to the total velocity to give a good idea of the 
pressure field, v&Li.st for 1arSer suction quantities it seems feasible that 
there nil1 be no tendency for the flow to separate over the suction r&on. 
If the extent of a localised suotion distribution bocomcs infinitesimally 
small ki.lst the total mflux of fluid remains constant, the solution for 
distributed suction reduces to the solution for suction throw$ n single 
slot of appropriate sink strength at the centre of the looalised region. 
The lift on the aerofoil is proportional to the circulation in the flov!, 
and the drag i3 proportional to the total flux per unit time into the 
nerofoil. The satisfaction of the IO&ta-Joukowki troilin.S-edge condition 
determines the mu-ease in lift on a auction aerofoil over a similar 
imp.lpameable one, indicotiw a promise of a oonsiderable lift increment to 
be obtained by using surface suction, thou&h there is 0 corresponding 
increase in drag. 

It appears that for values of C 
8 

at whioh boundary-layer porous 
suction is dcslgned to act i.e., c&-J<o.oo ) the effect of such suction 
on the potentIn flood outstde the bdlndsry-layer is negligible, for overall 
or localised suction. For higher values of CQ , overall suotion still 
hns littlo effcot unless the form of the suction distribution is chosen 
espeoinlly well, which in any case is probably equivalent to sane fom of 
localised auction, Loaalioed suction is very effective at hi&her values of 
%-I say CQ >0.05 . The ohanSe in lift coefficients brought about by the 
i&ro&&ion of suction is minute for C~<0.001 , and is &n any case quite 
SWll . Y/hen thee&tent of the sudion region is SmJll, SaY (5% chord, 
the &ate of affairs outside the suotion region ~zay be approxinated by that 
due to a single slot of appropriate sink strergth at the centre of the 
region. 
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The couputcd streamlines for the circle show clearly that, for 
Cg b&on a certain value, there 1s no stsgnatlon pomt downstream of n 
lckalised suctzon region. This is a consequence of the condition of 
continuity inposed on the suction distribution in order that the tangential 
velocity my remin finite. 

In conclusion then, we set that tho assumption that the 
introduction of distributed suction for the purpose of boundary-layer 
control does not affect the potential flow outside the boundary layer, is 
quite astified. Tho results also in&oate that the use of "sink effect" 
to nlter adequately the pressure field round sn nerofoil roqulrec such 
1arSe suction qunntities that its prncticnl use is at present very 
doubtful. 

Note. It has been pomted out by Dr. R. C. Pnnkhurst that the 
chosen exs~s do not give a complete picture of the lift mcrenents due 
to the USC of suction, since to obtarn an mcrense In lift in potential 
flow, d.th prsctlcol suction qusntlties, the suction should be located in 
the trailing edge region. In the exmples chosen, it is because of the 
formrd location of the suction,thot the quantities needed for spprecmble 
lift incretient sre prohibitively high. An exmple with trailing-edge 
suction has not yet been oonputed. 
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The Force on n Closed Curve >Thwh is not a Stremline 

The following is an extension of the well-known Blasius theorerl 
when the closed ourve under consideration is not a strewline. 

Consider the closed Curve C , mth radial nnd tangerrtiol velocity 
coqownts f and g respcctlvely at n point P , &are the element of 
lene;th is ds . 

1--- Y /--- 9 -\, 

,$5” 
._---- _- -,L--- 

~~~ 

/’ i‘“- 

-- - -. 
--- 

>3c 
. 

iit P a2 = dseih , dz = dS$', . 

The force on the element ds is in the direction of the inward norm1 
at P , so that 

dF = dXtidY = ipdz, 

xhere p is the hydrostntio pressure at P . Hence the total force on 
the closed curve C , having colnponents X , Y p~nllel to the co-ordinate 
cues, IS @.vcn by 

XtiY = i p&s, 
/ 
C 

Taking conMates 

x -  iy = -  i 

f 

p  & = -  i 

f 

p  ewzix de l 

C C 
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Fran Bernoulli's cquntlon for inoor.~rcssible potentml flow 

p+$pq2 = constant every--there in the fluid , 

and since C 1s a closed curve, 

! 
' az 3 0. 
c 

Thus 

X-iY = $ip 
‘f 

2 ,-2ih h , 

C 
. . . . . . (i) 

and since 

where q ,$ are the mgnltude and drredion of the velocity vector, 
respectively, in the flow where tht complex potential is IF(z) , then thrs 
may bc witten in the alternative fom 

a?/ 2 
X-U! = $ip Cm 

“0 
c?i!J az , *****a (if) 

c a2 

where 

. . . . ..(iii) 

We note here that since in general e"Q is not an nmlytic function 
of z ) the intcgrand is not an analytic functzon and the contour 
of integration may not be suitably &formed without some notification 
of the integrand. 
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TABLE 

Chanms m Lift Coefficient for Vnrioua Suction Distribut~om 

“----------_------_-____u__________I_ m---.----3-~ 

Type of T 
Suction CO cQ CL 

--------------_-_----------------------"---------" 

Suction 0.10 0.1-/25 0 
(1) 0.01 0.0173 0 

---_----------------------“----------------------- 

Suction 1 .o 0.1180 0.1015 
(24 0.1 0.0118 0.0101 

----------_-------------------------------------- 

300 0.1242 0.0842 

Suction 200 0.0828 0.0561 

(2b) 100 0.0414 0.0281 

20 o.oOa3 0.0056 
-------------------------------------------------- 

3,000 0.0789 0.0237 

Suction 
(2c) 

300 0.0079 o.oo%l+ 

30 0.0008 0.0002 
~----------------------------------------------- 
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