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SULE:ARY,

The problem of the incompressible potential flow past a
conventional aerofoil vhich has an arbitrary distribution of normal velocity
across its surface is solved by the appliocation of confarmal transformation
to the solution derived for the corresponding problem for the unit circle.
Several simple worked examples are given. Although it is theoretically
poasible to obtain any desired tangential velocity distribution on an
aerofoil by the ocorrect choice of suction velocity distribution, and this
use of "sink effect" gives promise of considerable 1ift increments, it is
oongldered that the quantities of suetion required to produce such desired
cffects are prohibiiively large for immediate practicel use. For suction
quantities of the order of those at which boundary-layer porous suction is
designed to act, the effect of the suction on the main stream potential
flow is negligible,
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1 Introduction

suction as a boundary-layer control device may be used in tuo
ways: by sucking through one or more slots or by sucking continucusly through
a porous portion of the surface. These methods are baged on rather diffcrent
principles. Suction at a slot either rcmoves parl of the boundary layer
at that point and forms & new, thinner, and if the original layer is laminar,
more stable boundary layer downstream of the slot, or else rcmoves mch
more fluid than that contained in the bowndary layer, thereby altering
the pressure field along the surface for some distance {rom the .slot.
separation of flow is thus delayed, and seversl suitably spaoed slots may
be used to suck away perts of the upstream boundary layer as it tends to
thicken and separate {rom tne surface, On the other hand, distributed
suction, instead of allowing the boundary layer to approach a conditien
near to separation before removing all or part of it, sims to maintain a
favourable vclocity profile through the houndary laycr, which is kept thin
all the time. Distributed, or porous, suction also has a stabiliszing effect
on the whole boundary layer. A considerable amount of theorebical work
has been done on the solullon of the boundary~layer eguations for flow past
a porous surface through which there is a continuous normal velocity, and
it is assumed throughout this work that the velocity distribution cutside
the boundary layer is that caloulated on potcntial theory for an impermeable
surface of similar shape. That Zs, it is assumed that surface suction,
of the scale envisaged in boundary-~layer distribution suction work, does
not affect the polential flow post that surfaces The question of the
volidity of this assurption led to the investigation beloit

We are concerned with invesbigating the potential flow past an
aerofoil of conventional shape which has an arbitrary distribution of
suction on its surface. By "conventional' we mean not specielly designed
for use with suction. A very thorough disocussion of aerofoils designed
to incorporate surface suction has been given by Professor S, Goldsitein'.
The words "arbitrary distraibulbion" cover the cases of "overall”
distributed suction, where the entire aerofoil is constructed of porous
moterial, distributed suction localised over a given porous region of the
aerofoll surface, single and multi=-slot suction, In particular we want
to know the tangential velocity daistribution on the aerofoil when the
suction, or inward normal, velocity distribution is known, and wo also
enquire vthat suction distribution is necessary to produce a prescribed
tangential velocity distribution on the acrofolrl at a given incidencc. We
are interested, too, in the cffect of surface suction on the theoretical
1ift and drag on thc aerofoils. The problem is tackled by considering the
corresponding problem for the unit circle, the solution for the flew
past the aserofoil being obtained from the conformal transformation of the
circle into the aerofoil. .

Section 2 deals cxclusively with the case of a porous cirole under
certain conditions of surface suction, The most gencral potential flow
round the circle is solved in the cases vhen either the normal.or the
tangential velocity on the circle is specilied, formulae being given for
the complex potential, complex velocity, surface ve1001ty dlstrlbutlons
and the 1lif't and drag on the circle.
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Scveral simple examples of distributed suction and one of slot
suction applied to a symmetrical Joukowski aeroloil ere given in section L.
The rosults are i1llustrated in the diragrams.

In the Appendix, the Blasius theorem for the force on a closed
curve is extended to the case when the curve is not neceassarily a
streamline.

2+ The Potential IFlow Past the Unit Circle with Arbitrary Surface
Suction

2«1 DStabement of the vroblem

Consider the unit circle in a uniforn stream of "perfect" fluid
of velocity U in a direction parallel to the negative real axis of .
z( = r eie) , with either the normal or tangential velocity distribution
on the circle prescribed. It is required to find the complex potential
W(z) = ¢ + iy of the flow past the circle, such that

(1) W(z) is analytic for Iz[ >,

&)

erther (2a) - = f(9) , is given,
or, r=1
Gl

or (2p) —— = g(o) , 1s given,

Q/r=1
aw 1
(3) -y U +0fm] a8 Z—Poo .

ds ]

In particular we want the unknown velocity distribution on the circle in

terns of the given one. The problem is stated above for the main stream

at zero incidence, but the solution to the case of non-zero incidence can
easily be deduced from the solution Yo this problem.

Put
W(z) = ~Uz+ W{z), We o= g+ By . (1)
Then Fq(z) mst satisfy
(1) Wy(z) is analytic for [z]>1,
0o,

either (2a) —
. \dr

£(0) + U cos @ ,

r=1

a¢1
or (Eb) ——
96

g(é) ~U sin o ,

il

r=1

(3)/
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dW.l 1
(3) ~———30 |{=] a5 zZ—doa .
dz z

?

Having enuncioted the problem for the flow past the circle, we
sholl consider separately the cases when the suction i.e., inward normel,
and tangential velocity distributions are specified, since although the
methods of solution at zero incidence are precisely similar, the extensions
to general incidence are different.

2.2 Solution for prescraibed suction velocity distribution

2¢241 Zero incidence

Consider the function

: aw 3¢ 3
P( Z ) = 2 —-1- = r nul - i -.--1 . =
dz dr 99

Then P(z) is analytic in [z|>1 , is finite at infinity and has its
real part known on the unat cirecle. In fack

0. .
[Re(@(z)],, = anl = £(6) +Ucos e = £,(0) , sage  +(2)

0r /iy

Hence, provided #£{0) is abuoolutely integrable, we have, by Poisson's
integral

1

£,(%)
P(z) ~Ef9) = ~- J "'1'('“; a , |z|>1,
7 oz -

C

vhere t = eiT , C denotes the unit circle and the integral is taken
round C in the positive sensc, f£4(t) or f£4(7T) will be used to

denote the walue of £4 on C as the context requires. Moreover,

i

(<) = -1-55 ?-(-El it = L f £,(z) av + 1K, (3)
2%l o) t 2n ~T

vhere K is on arbitrary constant, since [Im(l-‘(z))]r_{ is unknown.
Thus ' i

R

1 1 £4(¢)
P(Z) = iK § == f1('5) AT 4 é m——— 3 » |ZI> 1 » B
2% alJy 7 t

Hence/
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aw, K 4 . 1 £4(%)
ey o2 [adadit ST ] j‘ f1(']:) d‘r ] é bt g Sy d_t s |Z| )1 y
. &z z  2rz 4 mi z{ z-t)
and, neglecting an arbitrary constant,
1 =
F},‘(z) = iKlogz + ~ log = [ f1(1.‘) av
2% )
1 gt \ at
o j{ £,(8) log { >}~ (2{>1,
=i z t -
c
or
1
Y{1(z) = 3K log z = ~= log % £i(7) at
2%
-7

1 k3
+ - f £,(t) log (2 - tMac, |z|>1 .
®
s

Uaing (1) and (3) and the relation

i

!

cos plog (z - etT)AT = - = ,
l-'jt - Z
we have
1 ‘ 4 *
Wz) = ~U iz +~}+IK log za ~ ~ log = :[f('l:)d'r
% 2%
-l
1 "" .
S B CRUN RS [5[>1 . evsa(t)
T oAz
aw 1 K4 4 -1 & el
T I — - 1--.5 4 e o ‘[ f(""’)dﬂ; - [ -—-E:E dT ’ IZI >1 -
dz % Z 2%z -4 R 4 Eee
'0-¢o(5)
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The equation for W(z) holds also for |z] = 1, but in equation (5)

T

£(t)

f == d7 becomes divergent vhen z = e , To rind the tangential
%G

-

vélocity distribution on the circle, consider

a 1 £.(t
In (P(Z)) = - g?l = K -~ Re "'} —15—')- dt .
8

T Y gz -1
As z~—§eie,
1 £4(t) 1 -
Re [ Al ey / £,(1) ot 3 (0 - 7) ar,
i C Z-t 21‘ 7 -

where P denotes that the Couchy principal’value of the integrel is to be
taken. Hence ' .

90 r=1 2% 5

:a¢'1 1 )
e [ £(1) cot % (0 - 1) at,

and =ince

o~

P -j cos Teot 2 (6 ~ 7)dT = 2x sin @

wo have by (1) and (3)

rid

1
g(8) = 2Usin® «K 4 == P / £(7) cot £ (0 =~ T)dv , - <0 &n,

en
e

where g(0) denotes the tangentral velocity distribution on the cirele
induced at zero incidence by the outward normal velocity distribution £(0).

2e2.2 General incidence

(i) The suction distribution, when once chosen, must remain the same
with respect to the circle vhatever the direction of the incident stream,
We moy now generalise the above regults to the case when the direction of
the uniforn gtream is at an angle o to the negative real axis,



where

2 = rel® 2 2l p(e) = o ~o) = f(e) .

Since f£(0) has period 2r , then

/@('E)d'r =j £(z)az ,
- /3

i i 7t
[ ®(7) log (Z = e T)dT = [ £(1) Log (z ~ eL¥)dr + 1a [ £(7)dTe
v -~ =T
Thus, neglecting the constant term we have
s O 1 A
W(z) = =U{ze" 4 === |4 iK log z = = log z f(g)dy
z 2%
1 7 .
vm [ wmrog e -etiar, fz]d, e (8)
™ ©
-T
and it follows that
aw, W Ty o1 F 1} £(%)
S-S | (. S, [t f £(t)aT + - wmmze AT, |53,
dz 22 Z 275 n z-g* "
- - .
[N NN (7)

(6 = T)AT , = "<O &= »

[

1
g,(6) = 2Usin(0 +a) ~K 4+ =P [ (1) cot

2x
it

se b e (8)

Since K is the coefficient of 1 log z in the expression for Wa(z) ’
we see that =2xK is the positive circulation in the flow,

The above thecry holds provided f£(6) is absolubely integrable.
Hence the suction distribution may be chosen non=zeroc over Jjust a portion

of the circle « the oase of "localised" suction = and the results still
applye. Thus suppose we define -

0¢ £(0) ago<h ,

Or - ] 0 elsehicre »

Then/



Then
1
8,0) = Wein{(® +a) =K+ -=F £{t) cot £ (6 - T)ar , - x<0€x »
2% 2
But
. b

P A[ f(T) cot (8 ~ T)dT =

-

~ 2 {#(b) log| sin 5.(6 - b)]

b
af
- £(a) log|sin 7 (0 -~ a)]} +2 j° log[sin £ (0 ~ )| == » 4T »
L v
a

-

Hence unless f{a) = 0, £(b) = 0, the tangential velocity becomea
logerithmically infinite at ©

= a, 8 = b, the ecnd points of the
suction regions

So, when the suction distribution is non-zero only in
the range a<8<b , it must satisfy the conditions

£(a) = 0., f(b) = O,

which meke f£(©) continuous, in order that the tangentisl velocity remains
Pinitec everywherce

(ii) The extent of the suction region is quite arbitrary. Suppose
then, that we definc

0

Or r=1

#(6) B-e<BLB+E , o

4] e€lacvhere

fee '
and that as' £e—0 , Z* [- f(T)]dr tends to a fanate limit m,
p= )

says Conslder

B
I = £(1) [1og (= - e*T) - 10g (z - &¥P)] a1 , |zf>4 o
p=e
Since log (% = el?) is containuous et T = P , there exists a positive
g' = g' (g), such that

Pae
' |1} = e ‘ [i £(t) av ‘ .
: 1 pa

Hence/



B+e
Hence I—0 as £-— 0, since f r(t)at| is bounded. Thus
Brg
Bte
lim £(1) log (z - Tt = ~mlog (z - *P)
©9 5

and therefore from (6}, as €--0

o™ m n
W (2)— -~ U {z2e1% 4 ~onm |4 3K log 2 + ~ log z = - 1og (z - e*F) | |2] >1
@ 2 2% =
erens(9)
As z—el® , this equation still holds except at © = B, and it
follows that, as €0 ,
aw, Looe™®\ 4K m4 om
"--__}_ U e...ﬂr Lo "-E" o e S = "---'{E" > IZ] >1 ’ 00l01(10)
dz z z 2xz = {(z=e'F)

1)
8o(0)=22U sin (6 + a) ~K ~ =~ oot £ (6 - B) , ==n<O&n »
27
eeeed(11)

Equations (9), (10), (11) are the expressions for the complex potential,
complex velocity and tangential velocity on' the circle respectively for

the flow of a uniform stream U et incidence a past the unit circle with
8 sink of strength m at the point z = elP , the positive circulation
in the flow being ~ 27K « We may therefore conclude that as the gize of
the porous suction region about a given point tends to zero, the conditions
approach thogse due to a single slot of appropriate sink strength st that
pvoint, However, the conditions represented by these equations may be a good
approximation to the existing state of affairs when porous suction is
applied over a suffiociently small region.

If there are several secparate ginks, of strengths m, , at points

on the cirele vhere z = eifn _ the idealisation of "multi-alot" suction =
then 1t may easily be shown thati=

o~ia .
Wo(z) = ~U|zel® 4 mamm ) 4 3K log z + = Emn[—“‘e- log z = log (z - e"ﬁ‘])],'zl 31
3 n B
aw e~ie) ik 1 1 -1
. eia'---é— ok s F My e -, |Z|>1 ’
dz z z x B oz z=-elfn

1
g.(e) = 2Usin(9+o.)-1{--§ m, oot (8 ~Bn), ~=n<6&n.
2%

2.3/
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2.3 Solution for Prescribed Tengential Velocity Distribution

2¢3¢1 Zero incidence

09n51der the function

aw, 0 3
. 1 1 . 1

PO(Z) = 1Z w=— el B A .
dz 06 0x

Then Po(z) is analytic in |z' >1 , is finite ot infinity and has its
real part known on the unit cirecle. In fact

: A
Re[Po(z)] = | -1 = g(0) ~Usind = g1(9) , 83y,
r=1 00 / 1ot

vhere g(0) is assumed to be absolutely integrable. Then by a precisély
similar argument to that in 2.2.1, and using the relations

_

1 .
Pofe) = w= [ g(T)dT + K, ceeee (12)

27E~R

4 7i
j sin T log (z = e2T)at = ~ -,
%

n
P / sin 7 cot % (6 ~ T)dT - 2% cos @ ,
-

where K, 1s an arbitrary constant, we find that for the main stream U
in the direction of the negative real axis.

s
1 i
w(z) 2 =~y z-—+Kologz+—--logz f g('r)d'r
z 27
-7
£ i ﬂ
- - / g(t) log (z - eiF)az , |z} 1, ceese(13)
™
-7t

T n ; =
' T
aw B 2/ /4 . :l._\ . 159 . _i_ f ol NA- ‘;.L. f %E...)... Amr lel »a
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If £(8) and g(0) are the normal and tangentisl velocity
distributions on the circle in a particular case, the complex potentials
of the corresponding flows past the circle when either is presoribed should,
of course, be the pame., Thus, equation (13) may be derived from (4) an
followse Consider

12| >1 , from (&)

1 1 % M7 .
Wz) = =Ufz + =)+ iK log z = ~- 1ogzjf(1:)d1:+- ff(‘t‘) log (z - e*%)aT,

z 27 vid
. =7

Since P (9) = iP(cq) , we have from (3) and (12)

1 E 1 7 K
~K = - g, (T)dT = == / glr)ar = ~-, say,
2R 27 2%
7 -l
] T
4 4 Q
- KC‘ = e e f f',l('l?)ﬂ'b' = o oe- f f('f:)d't = ==, 3ay,
. 2% 2% 2%
-7
vhere g = [ g('c)d't: = = 2%K is the positive circulation in the
(] o

flow, as we previously noted, and Q@ = -~ f ft)w = - 27:K° is

-7
the total flux of liquid into the oircle per wmt time. Thus, using (1h)
—
1 i T
~Ulz + =~ |~K  log z = == Log z g(t)at
4 2% .
W(z) =ﬁ
y by 1 = .
‘- [ -~ 20 co8 p+ K = ~=P f z(t) cot £ (¢ - )dt
s 2%
-1 Ly
- x log (z - eiqb)dqb .
Now
x x
f cos ¢ log (z =~ eM®)ag = = = .
=
l log (z - ei¢)d¢ = 2% log z ,

vhenee/
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SULIARY

The problem of the incompressible potential flow past a
conventional aerofoil which has an arbitrary distribution of normal velocity
across its surface is solved by the appliocation of conformal transformation
to the sclution derived for the corresponding problem for the umt circle.
Several sinmple worked examples are given. Although it is theoretically
possible to obtain any desired tangential velocity distribution on an
acrofoil by the correct choice of suction velocity distribution, and this
use of "sink effect" gives promise of considerable 1if't increments, 1t is
oonsidered that the quantities of suction required to produce such desired
effects are prohibitively large for immediate praoctical use. For suction
quantities of the order of those at vhich boundary~layer porous suction is
designed to act, the effect of the suction on the main stream potentisl
flow is negligible.
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1a Introduction

Suction as a boundary-layer control device may be used in twvo
wayst by sucking through one or more slots or by sucking ocontinuocusly through
a porous portion of the surface. These methods are based on rather different
principles. Suction at a slot either removes parl of the boundary layer
at that point and forms a new, thinner, snd if the original layer is laminar,
more stable boundary laycer downstream of the slot, or else removes much
more fluid then that contained in ‘the boundary layer, thereby altering
the pressure field along the surface for some distance Irom the slot,
Separation of flow is thus delayed, and several suitably spaced slots may
be used to suck away perts of the upstream boundary layer as it tends to
thicken and separate from the surface., On the other hand, distributed
suction, instead of allowing the boundary laycr to approach a condation
near to separation before removing all or part of it, aims {to maintein a
favourable vclocity profile through the bhoundary laycr, vwhich is kept than
all the time, Distribused, or porous, suction also has a stabilising effect
on the vhole boundary layer. A considerable amount of theoretical work
has been done on the solution of the boundary-layer equations for flow past
a porous surface through which there is a continuous normal velocity, and
it is assumed throughout this work that the velocity distribution ocutside
the boundary layer is that calculated on potential theory for an impermeable
surface of similar shape. Thet Iz, it is assumed thet surface suction,
of the scale envisaged in boundasry-layer distribution suction work, does
not affeot the potential flow past that surfaces, The question of the
validity of this asswgption led to the inventigation belowvi

We are concerned with investigating the potential flow past en
aercfoil of conventional shape which has an arbitrary distribution of
suction on its surface. By "conventional' we mean not specially designed
for use with suction. A very thorough discussion of aercfoils designed
to incorporate surfacc suction has been given by Frofessor S. Goldstein’s
The words "arbitrary distraibution" cover the caszes of "overall"
distributed suction, vhere the entire acerofoil is oconstructed of porous
meterial, distributed suction localised over a given porous region of the
aerofoil surface, single and multi-slot suction, In particular we want
to know the tengential velocity distribution on the aerofoil when the
suction, or inward normal, velocity distribution is known, and we also
enquire vhat suction distribution is necessary to produce a prescribed
tangential veloeity distribution on the acrofoil at a given incidencc. We
are interested, too, in the cffeot of surface suction on the theoretical
1ifl and drag on the aerofoile The problem 18 tackled by considering the
corresponding problem for the unit circle, the solution for the fleow
past the aerofoil being obtarned from the conformal. transformation of the
circle into the aerofoll.

Section 2 deals exelusively with the case of a porous cirole under
certain conditions of surface suction, The most general potential flow
round the circle is sclved in the casges vhen either the normel or the
tangential velocity on the circle 1s specificd, formulae being given for
the complex potential, complex velocity, surfacc velocity distributions
and the 1lift and dreg on the circle.

In section 3, the transformation to the aerofoil is dascussed
and the flow round the serofoil deduced. The Kuita-Jowkowski condation of
smooth flow of'f the trailing edge is satisfied, ith a discussion of its
effccts on the swrface velocitics and the 1ift and drag on the aerofou.l.

Several/
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Several simple examples of distributed suction and one of slot
suction applied to a symmetrical Joukowski aerofoil ere given in section 4.
The results are illustrated in the diagrams.

In the Appendix, the Blasius theorem for the force on a closed
curve is extended to the case vhen the curve 1s not necessarily a
streamline.

2y The Potential Flow Past the Unit Circle with Arbitrary Surface
Suction

241 Statement of the problem

Consider the unit circle in a uniform stream of "perfect" fluid
of velocity U in a direction parallel to the negative real axis of
z( = r e1¥) , with cither the normal or tangential velocity distribution
on the circle prescribede It is required to find the complex potential
W(z) = ¢ + iy of the flow past the circle, such that

(1) W(z) is enalybic for |z|>t,

[

either (2a) | -- = f(8) , is given,
CL
o¢

or (2b) - = g(0) , 1s given,

Q/r=1
aw 1
(3) ey » U+ Of=] a8 z2—o0 o

da z

In particular we went the unknown velocity distribution on the circle an

terns of the given one. The problem is stated above for the main stream

at zero incidence, but the solution to the case of non-zero incidence can
casily be deduced from the solution to this probleme

Put
Wz) = ~Uz+ W(z), W, = & + b, . (1)
Then W,(z) rust satisfy
(1) Wy(z) is enalytic for |[z|>1,
Oy

either (2a) ——
or

£(0) + Ucos @,

r=4

a¢1
or (2b) ——e
6L

u

g(0) ~U sin o ,
r=1

3V
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dﬁg 1
(3) wme—30 {=] a5 zZ—00 .
dz g

1

Having enuncioted the problem for the flow past the circle, we
shall oonsider separately the cases when the suction i.e., inward normsl,
and tangential velocity distributions are specified, since although the
methods of solution at zero incidence are procisely similar, the extensions
to general incidence are different,

2.2 Solution for prescribed suction velocity distribubtion

2e2+41 Zero incidence

Consider the function

aw 04, ¢
P(z) = = -l o r i i ol . )
az dr 30

Then P(z) is onelytic in |z{>1 , is finite at infinity end has its
real part known on the unit cirele. In fact

O
[Re(]?(z))]r=1 e | e = £{6) +Ucos & = £1(6), says ++(2)

or r=1

Hence, p;éovidcd f(8) is aboolutely integrable, we have, by Poisson's
integral

£
P(z) - E(9) = :-9[ f(8) at , |z]>1,
xi\c z -3

vhere t = eiF ;s ( denotes the unit circle and the integral is taken
round C in the positive sense. f£4(t) or £4(T) will be used to
denote the value of f4 on C as the context requires. Horeover,

1 () 1
P() = = ﬁ ————at = o~ f fq(x) dv + 3K, (3)

vhere K is an arbitrary constant, since I:Im(P(z))]r_1 is unknowme
Thus

1 r . 1, £(8) .



Hence
aw, K - 1 £4(%)
—L s e [ @ are = § e, o,
dz gz 2rz ) iy z( zt)
ond, neglecting an arbitrary constant,
1 =
W1(z) = iKlog z + ~ log & [ f1("s.') at
2% %
1 z=t\ dt
+ é £4(t) log { =~ |—, |z]>1,
i o -4 £ -

or

i

1
W1(z) ik log z ~ ~= log z f £4(t) at
27
-

T~
™

-7

+
Al

Using (1) and (3) and the relation

-

e

. %
cos T log (z - elTar = -~ -,
we have
1 1 x
Wz) = ~U{z+~-]+ ik log 2 ~ ~ log z ff('r)d'r:
5 2n
-7
1 i
+ - f £(1) log (z ~ €*)at, {z|{>1, vesea(l)
L
aw 1 ik T 1 Foe(x)
Ll B —] - 1-&!5 4 e = e / f('t)d"[: G - [ ---E:E d'f 3 IZI >1 .
dz 4 2 2Rz -4 X g Z-€

esens(5)

The/
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The equation for W(z} holds also for [z] = 1 , but in equation (5)
s
£(7)
T dt becomes divergent when z = e , 7o find the tangential
Z=g
-7

velocity distribution on the circle, consider

0 1 £, (%)
In (P(z)) = = =+ = K ~Re -jﬂ A .
08 Tog Z~t
As z—-}eie ’
1 £4(t) 1 g
Re "'/ """ dt) — == P [ £,(t) oot £ (6 ~ 1) ar,
i C Z "t 27{ %

where P denotes that the Cauchy prineipal value of the intepral is to be
taken. Hence

3, 1 =
~K4 =P [ f.,(*r)cot—%(e-'r)d'r,

r=1 2n 5

.

96

1

and since

P J cos Teot £ (6 ~ T)dr = 2% sin

we have by (1) and (3)

i

1
g(6) = 2Wsin® =K 4 == F j f(t) cot 5 (0 ~ g)dtr, -~ ®<6&x,

2n
-

where g(6) denotes the tangential velocity distribution on the circle
induced at zero incidence by the outward normal velocity distribution £(6).

24242 General incidence

(i) The suction distribution, when once chosen, mist remain the same
with respect to the circle whatever the direction of the incident stream,
We may now generalise the above results to the case vhen the direction of
the unaforn stream is at an angle o %o the negoative real axis,

Taking the positive real axis of Z opposite to the direction
of the incident strean, we have from (L)

1 1
WZ) = ~U {Z =)+ ik log & = ~~ log 2 ®(r)at
Z 2n
! 1
.- o(7) log (% ~ e*T)ar, |[2] 21,
i

Fﬂ where/



where

ia,

72 = rel® 2 ze , ®(B8) = f(le ~a) = £(8) .

Since £(©) has period 2n , then

[@(T)dr = f f(g)ar ,

(1

% x
[ (1) log (2 - ei'r)d’c = '[ £(1) log (z ~ etMar + ta

-t

.4
f £(1)aTe

L] -y

Thus, neglecting the constant term we have

-ia s
o © 1

W(z) = =0 26" 4 wm== |4 IK log 5 = = log z '[ f(g)dr
z 27

1 7 .
- [ £( 1) log (5-617)dr, lz{>1, veres (6)
~ ®
“ﬂ

and it follows that

aw, ede i 1 F 1 £(7)
f £(T)dT + = ———r ar , [z[ >,
" x _J z=e'T

veves (7)

r

1
8(8) = 2Usin (0 +a) =K 4+ == P / £(1) cot (6 = T)AT , - "<6 <=
2n

]

ss0rs (8)

Since K is the coefficient of i log z in the expression for W (z) ,
we see that «2xK is the positive circulation in the flows -~

The above theory holds provided £(6) is absolutely integrable.
Hence the suction distribution may be chosen non~zero over Just a portion

of the circle - the case of "looalised" suction ~ and the results still
apply. Thus suppose we define

0¢ (6} a<e<b ,

or - 0 elsevhers .

. Phen/



Then

1
2,(8) = 2Usin (0@ +a) =K 4 =P f
a

£(t) cot £ (6 - Tlav , - <0 <xn »

2%
But
. b
P é/ £(7) cot (6 - 1)aT = ~ 2 {£(b) log| sin & (6 ~ b)|
b as
- £(a) log| ®#in £ (0 =~ a)]} +2 [ log | 8in 2 (8 = )| == » dT s
dv
a

Hence unless f(a) = 0, f(b) = O, the tangential velocity becomes
logorithmically infinite at 0 = a,

8@ = b, the cnd points of the
suction region.

50, when the suction distribution is non-zero only in
the range a<8<b , it mst setisfy the conditions

£f(a) = 0., £(b) = 0,

vhich make f£(0) continuous, in order that the tangential velocity remains
finite everyvwherc.

(ii) The extent of the suction region is quitc arbitrary. Suppose
then, that we definc
d¢ f{6) B~-e€0&B+¢8,
Or =1

0 e¢lscvhere |,

frE
and that as e——0 , [ [= £(7)]ar tends to a finite limit m ,
. .

says Consider

p+E
I = [ £(1) [rog (z - el?) - 10g (z - e18)] az , |z} >1 .
P-e
Since log (z - e17) is continuous at T = P, there exists a positive
g' = &' (e), such that

5} = o

B+e
[ £(7) d’t} .
B—

Hence/
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B+e
Hence I—0 as &-—0 , since ‘ [ £(1)dt| 1s bounded. Thus
Bre
B+e
lim f #(1) log (z -~ eiW)aT = = milog (z - f)
£€—230
p-g
and therefore from (6), as £-—0
e~ia m m .
W&(z)—% ~ U lzel® 4 memm )4 4K Jog 5 4 == log z = = log (z - e*F) N |z|2>1 .
3 s %
.....(9)

As z—e® , this equation still holds except at 6 = B , and it
follous that, as e—0 ,

aw, o %\ K m1om )

o e oo [J {8 = mmma 1 p e e o A e e z| 21 0..--(10

dz 22 z 2nz x (z-etP) S IR

m
8, (0)—>20 sin (8 + a) ~K =~ =~ cot £ (6 - B) , - n<O6<&x -
27
erves{11)

Equations {9}, (10), (41) are the expressions for the complex potential,
complex velocity and tangential velocity on the circle respeoctively for

the flow of a uniform stream U at incidence o past the unit oircle with
a sink of strength m at the point 2z = el , the positive circulstion
in the flov being -~ 272K + We may therefore conclude that as the size of
the porous suction region about a given point tends to zero, the conditions
approach those due to a single slot of appropriate sink strength et that
point. However, the conditions represented by these equations may be e good
approximation to the existing state of affairs when porous suction is
applied over a sufficiently small regione.

If there are several separate sinks, of strengths m, , at points

on the circle vhere 2z = elfn _ the idealisation of "muliti-slot" suction =~
then it may easily be shovm thati~

=ig
. e 1 .
Wo(z) = ~Uj{gze*® 4 wmom )y iK log z + = Zmn[-;: log z = log (z - elﬁ.l)].'z| PR
z x B
aw e~ia) iK 1 1 -1
_-E ~ 2] U eio‘ - -__2__ 4 g z n&l e P o - 3 izl /1 ’
dz z z 7 o7 geeifn
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2¢3 Solution for Preacribed Tangential Velocity Distribution

24341 Zero incidence

ansider the function

aw, acp,, O,
Po(z) = iZ == = == g ir e——-
dz 00 Or

Then P,(z) is analytic in |z| >1 , is finite at infinity ond has its
real part known on the unit circle. In fact

¢
Re[Po(z)] U = g(6) ~Usiné = g,(0) , say,
r=1 go ]
r=

vhere g(6) 4is assumed to be absolutely integrable. Then by a precisély
similar argument to that in 2.2.1, and using the relations

1

{

1
Poe) = [ g (D)aT 4+ K, eeens (12)
¥id

~K

7T

F 7.
/ sin T log (2 = AVar = - -,
T

-y

i

R
P [ sin t cot % (0 -~ T)dt - 27 cos8 0 ,
-1

vhere K, fis an arbitrary constant, we find that for the mein stream U
in the directzon of the negative real axis

i
1 i
Wz) = =~U(z~~}+ K, log 2 + ~= log 2 f g(t)at
z 2%
-7
i .4
- [ E(T) 10g (z - ei‘c)d": ] ‘Z‘ )‘1 ] oooon(13)
(L
. < -
aw 1\ K i i oglw)
f A T D C P i NP
az % z  2rg 3 T zmetT
’ %
£(6) = -~ 2Wecos6 +K ==~=P [ g(t) cot 5 (0 - Tlar , -~ KB L™
2n
-7 00001(11{-)

vhere f£(0) denotes the normal velogity distribution requared %o produce
the given bongenvial velocity distribution g(6) »

1t/



If £(0) and g(0) are the normal and tangential velocity
distributions on the circle in a particular case, the complex potentials
of the ocorresponding flows past the circle vhen either is prescribed should,
of course, be the same, Thus, equation (13) may be derived from (4) as
followse Consider

2{>1 , from (4)

_ 1 n

1 1 .
W(z) = =Ulz + =)+ 1K log 2 = == lop =z J £f(r)ar + - / £(T) log (z - e*V)dT.
/!

z 2% s
. -7

Since Po(ooJ = iP(o0) , we have from (3) and (12)

1 7 1 F k
m K = - [ g1 (T)d‘f,’ = e f g(’ﬁ)d‘r = ==, 34y,
2 2% 2%
] -y
s
1 T 1 Q
mK =z = [ f1(1:)d'1: = oee f f(r)ax = ==, say,
. 27 2n 2
il T

vhore = [‘ g{t)dt = =~ 27K 1is the positive ciroulation in the
Lot ki

flow, as we previously noted, and Q = =~ f ) = -21tKo is

-
the total flux of liquid into the circle per unit time. Thus, using (14)
-~
1 1 .
Uz + = -Itologz--logz f g('l:)d'!:
zZ 2n
Wz) =4
| 1 B
- [ ~2U cos g+ K, -~ ~F f g(t) cot%(:{;-r)dr
7 2n
-1 -~
. x log (z - eiqb)dgb .
Now
T s
®
! log {z - e*P)ag = 27 log z ,

vhence/
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whence
4 i A 1
Wz) = =~Ulz -~ -]+ K, log 2 = == log = ./ glr)ar - -~ 3(z) , ..(15)
Z 2% 7
-~
where
y x 7
JNz) = == [ [P f g(t) cot & (¢ = 'r)d.'[:] log (z = em)&qb ’
2%
1 s ™ i¢ ei¢ + el“F
=~ [ a@|p [ 10 m o) - afomri )
21‘ J ( 1¢ . elT ¢ H
-] -
=
1 s+ t\ ds .
= .- fg(T)P}{log(z-s). ————— —~lar, s = o,
2% o o s -1t/ 8
1 ™
= A [ g('r) [25::'. (- log z + log (z - eiT))] at ,
2%
-
x 7
= = iloga ./ g(T)at + i ./ g'1) log (z - eiT)dt »
- ~T
Substituting in (15) we find
1 i 7
Wz) = =Ulz = =14+ K log z + =~ log z j- g(T)at
z 21
=T
. %
+ it
- - fg('t)log(z-e Jat , |2]>1 .
-

This also holds for [z = 1, and so we have equation (13).

2e342 General incidence

Unlike the suction distribution, which must be the same for all
directions of the main stream, the tangential velocity distribution must be
prescrabed for one gaven incidences Thais then defines the suotion distribution,
obviously of the "overzcll" type, for all incidence. Thus let the required
tangential velocity distribution be g, (0) vhen the angle of incidence
iz a, » Substituting in (13)

1 ia

we/



we have
(2,) : - e
w2 = ~UfZ, ~==)+K logZ2_ + - log Z /I‘ (T)av
° > z,) ° ° on ° %o
=7
i L
- ; 4{ PG@ (t) Llog (Zg = eit)dt ’
so that, neglecting an additional constant term,
ia ei% ! fﬂ
w&o(z) = = Ulze*% . -:;. + K log z + E; log z J Za, (%) dt
=%

. ﬂ
i .
- - f ga,g (7) tog (z = e*Par, |z|>1 .
R
£

o

It follows that
’ 'm

£(6) = ~2U cos (6 + ao))+ Ko ~ =T ‘/ 8o (1) oot § (0 - T,
2%

-7(<G<j‘: - 00100(16)

This therefore gives the suction distribution, all round the circle, which
mist be applied if the tangential velocity distribution on the circle

is to be g4 () at incidence an + This suction distribution must now
remain the same for all engles of incidence, and hence the flow for
general incidence, in this case, is obtained by substituting (16) into
equations (6), (7), (B8)s It can be checked from (8) that (0)]

o= q
does in fact equal g%(e) as prescribed, °

We may note here that although the above method is necessary to
obtain the complete solution to the flow, the relations between the normal
and tangential velocities on the cirole could have been deduced at the
outset, since £y and -g4 ere the real and imesginary parts, on the circle,

of the funclion =z - ; vhich is analytic outside the circle, and hence
dz
they may be expanded in conjugate Fourier serieg.

2.4 Summary of the solution

Since the arbitrary constants in the solution have now been
identified, and the equivalence of the solution for prescribed suction and
tangential velocity distributions demonstrated, we may for convenience
summarise the solution in its simplest forms. The following formulae apply
vhen the uniform stream U is in a direction at an angle o fo the
negative real axis, and there is a positive circulation K in the flowe

2eliatl/
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2ele1  Distributed suckion

(1) Overall suction

If the outward normol vclocity distribution on the cirele £(e)
is dcfined in the range - %<0 {7 , then

_ coemey (ik - Q) 17 .
Wu’(z) = =~ U {26t 4 memm } = e -log 2 + = f f('r) log (z - elT)d_q;’
P 25 =
o dE D)
aw,, g™\ (ik ~Q) 1 4 T (1)
ia
R G g P i Rl L RN L X
dz z2 2% z % 4 z=c'
G ..-.-(18)
K 1
8,(0) = 2Usin (0 +a) + ~ 4+ -~ ¥o) , ~ 20 %, eeees(19)
2% 2%
where
=
Q = = / f(f)d-'],' Py 00000(20)
-7
=
Fl¢) = P £(t) cot £ (0 - T)dT eesns(21)
-7
Moreover, if f£(0) 1s such that
R 4 .
£{e) = - A cos (8 +ay)~=—==0G (8), - nllgm,
2x 2x °
..l.'(zz)
vhere
5
Gu(8) = P J g.(T) cot % (8 - pat , eeees(23)

then go(0) is the tangentaal velocity distribubion on the circle at
incadence ag s

(11l
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(11) localised suchion
If £(6) is non~zero only in the range a<0€b , then
equotions (17) to (21) s$ill hold, but in order that g, (6) is not
infanitc at & = o or © = b it is necespary that
f(a) = 0 ’ f(b) = 0 . sevas (2&.)

2e4e2 Blot suction

If there are N sinks of strengtha m, Pplaced at points

@ = Brp,n = 1 +ees N, on the circle, then
_ o O 1N ifn
W(2) = ~U{ze’® 4 wmee |- e Jeg g+ - % mn[-} log z - log (z = e "1)],
Z 2% T n=i
IZI>1 » oop-n(25)
aw, o €Y ik 11 N4 1 |
. - ] L U [&] - LI L I R z e e Srem e — ’ Z > 1’
dz 22 2z =® n=t 2z 7 - eJ.fSn ‘
enees(26)
K 1 N
g(0) = 2Usin (6 +a) 4 === — I mncot%_-(e—en), - z{ B&n.

2% 2n n=1

veess{(27)
In this case
N
Q = E m e .....(28)
n=14 n

2e5 Lift and drag on the circle

In the Appendix, formulac arc derived for finding the force on
a closed curve C +which is not a streamlince 7These may be applied to
the case vhen C is the unit circle under the above conditions of
surince suction.

Y
e
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If q,X sre the nagnitude and direction respectively of the velocity
vector, then

. i
g e~iX o 2
dz
whence
aw_ 2 aw., af
2 o o a
q - [ = - l-n:-- » [ RN NN J (29)
dz dz dz
m

Since in this case A = + © then when € i1a the unit circle

po 8

equation (i) of the Appendix becoues

a4
X2i¥ = =42p ?(__g.__g..e-ziedz_
Low &

Nov, on the unit circle

z = eif ,
1
E S . Peswe (30)
z
Thus ve may write
X=2Y = ~-%4ip ?gT(z)dz ,
Cc
where
1 aw ai
T(Z) P - "‘""g: * ﬂ:g r's [(E¥EE] (31)
z2  dz Q5 Jue

1
Zom e

2
Now, for |z]>1 , from (18) for distributed suction,

' .8
aw by b, 1 £(7)
1
-g-: = bo s e L a-% go - / ol i w4 2 d'r ’
% x z m e’

where

o
1

- Uei“

i
b‘f Z m e (iH - Q) F
2%

Hence/



Hence
dﬁd 2 - - Z Iy f(T)eir
- = Ez Z" & b1z +b = j‘ werm——— T,
az J. 1 O x z - eilt
L = = -7
3
where
- ia _
b2 - Ue - ~ bO
- Q
b1 = om ome (‘ 1K = Q) = = b1 .- o- )
27 s
- ia
bo = - Ue = - b2 »
Hence, for [z}>1 .
ﬂ L] Lod
by b, 1 2(F) b, by £(x)
T(Z) - bo o rmom b me L = f ....--..:{- d‘r 52 o - -E - e /. 4 d'[" s
z oz n 7 - ev? z 3z L e+
-7 ' -

from which we see that T(z) is analytio for |z|>4 2nd is finite af
infinitys Thus, since T(z) is continuous on C , by Cauchy's theorem
the unit circle may be deformed into a oircle Cp of large radius R,
so that

X=21Y = -%1ip f ™(z) dz

Cr
Por large =z ,
By
T(Z) = ‘BO o o peae » reree (32)
' z
sinoe for large 2
1 1 eiz
------- I Bl R Y Y ¥
7z - X 5 z2 !
where
- 2
Bo = b°b2 =z - bo
s
B1 = b°b1 + b2 b1 + ; / f(T)dT = bo 51 - {b, = ; = 2 bob1 .
-7t

Hence/
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Hence
B 1
X-i'.‘[:--"a;ipj{ Bo+-1-+o--dz
CR Z 22
1 P ! 10 L
= -""i B — o Py o = - »
7 1P °+Reie+ =3 i Re™” ao ®pB, +OR
=T

Letting R— o0, we have
Xmi¥ = 7wpB = 2npbyby = ~ pU et (4w + Q) , +..(33)
vhence

pUK sina ~ pU Q cos a ,

4]

b4
£

Y

PUK cos o + pU Q 8ln o e

Thus the 1aft L and the drag D on the circle, vhich are normal and
parallel to the incident stream respectively, are given by

L = plk,
D = plug.
The rosults for L and D are exactly the same when equation
(26) for multi-slot suction is taken for g‘g?: s, with Q given by (28).

We therefore deduce that fox any incoupressible potential flow
pogt a circle, the lift is proportional to the circuletion and the drag
is proportional to the totsl flux per umt time into the oircle.

3¢ The Potential Flow Past an Acrofoil with Arbitrary Surface Suction

3,1 Transformation from the umit circle

By Riemann's theorem, the space outside an aerofoil can be
confortnlly reprcsented on the outside of the unit cirole by 2 uniquec
analytic function {(z) , where z end [ are complex varisbles in the

ag
planes of the circle and nerofoil respectively, so that e~=-—91 as
dz
z—300, The transformotion is of the form
a a
L = Z+ ==+ == & ses ’
z zZ
dar, a, Zay
- = 1 o mm o mam m g,, » evete (3&,)
dz 22 7

vhere,/
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vhere, in general, a, , 8, , ese are ocomplex numbers, For an aerofoil
with a sharp troiling edge, the point in the Z-plane corresponding to the
trailing edge lies on the circle, Ve shall take this point to be

z = e~ ®+€),

If we denote by W'(Z) the complex potential of the flow past
the aerofoil corresponding t8 the Ilow Wﬁ(z) past the circle, then

W@ = v (0)

where z({) is the inverse of §(z) » The complex veloocity in the
aerofoll plane is

aw}, dw,, dz

S D e g mem sreee (35)
ag dz  4g
If we put
dz .
- = etV ceees (36)
dag

then from (35) we have

gle~f' o g e3P yeiv )
vhere q' , V' represent the mognitude and direction respectively of

the velocity vector in the flow past the aerofoil. Henceforth, primes
will be used exclusively to denote quantities in the flow in the aerofoil
plane ithus

q' Mq,
1’)' = 'O,I) = Ve X EE N (37)

Theve relations hold at corresponding points everyvhere outside and on the
circle and the aerofoil, though the transformation hos a singularaity at

2 = ei(" %+ €) » vwhich corresponds to the trailing edge, where M is
infinite. Now, on the circle,
o
dz = doe \2 q )
and on the aeroforl
1{E401
al = dse\z ) ’

where ds is the elemont of length along the acrofeil, and 8' is the
angle between the outward normal to the surface and the positive real axis,
Hence, from (36), on the aerofoil we have

de Mads ,

n

)

n

0 + V o resse (38)

Figure/
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;f ve dencte the oubward normal velocitics and the tangential velocities
in thc'positive direction, at corresponding points on the circle and
acrofoil by £, f' ; g, g' respectively, then on the circle

arg (£~ ig) = ~$+ @,

and on the aerofoil

arg (' - ig') - P+ 0!

Thus, using (37) and (38)

arg (£' - ig') arg (£ - 1g) ,

thence

veras (39)

Also, on the circle

1
2 2.7
(f '*'g):

o
i

and on the aercfoil

kN
g = (£1%+g'2)% ,

the positive square root being taken in each case, From (37) and (39) we
then have

o= ME o, gt o= Ng

Hence, the solution for the flow past the aerofoil can be obtained from the
solution in the circle plane from the relations

W (D = v lz() ,

dﬁ& di, dz

d dz az

4

which/
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vhich hold outside and on the aerofoil, except at the trailing edge, ond
noreover the normal and tangential velooities, f' and g' , on the
aerofoil itsclf are given in terms of £ and g ot the corresponding
Points on the circle, by

f' = Hur , g = lig,
where
dz
}lI = }l——}
ag
on the carcle,

3e¢2 Lift and drag on the aerofoil

We may apply the rclations derived in the Appendix for the
force on a closed curve C vhich is not a streamline, to the case vhen
C as the aerofoal ¢' ., If X', ¥' represent the forces on the
aerofoil parallel to the rcal and inaginory axes of [ , respectively,
then from equations (ii) and (iii) cf the Appendix

d\w’&2 -
X' - iY' = Fip 55 ) g2 ap,
ag
ot
vhere
!
p.' = -tan'1-— »
gt

We may change the integral round the aerofoil C' into one round the
unit ecirele C . From (39),

Mt = p = -~ tan™ -,
g
and also
7
R T
2
so that
d
2 s ge® o L gq it nik
dz

Hence/
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Hence, from (29), (30), (31)

aw 2 pipt
X'-iY'-%lpjﬁ —~— e ay
gr \4g
2
du,\" ,,
= 3i0 9 (2] AW,
& dz ag
2 .
:.—%:.pfqezle-—dz
d
a A
(1( dz
= ~&ip T™z) ~- dz
d
c ac
dz
Since T(z) -~ 1is &n analytic function of =z in |z} >4 , and is
ag

continuous on C except at 2z = ei(' “+e) » by considering the
Cauchy principal velue of the integral we may deform the comtour into
the large circle Cp so that

dz
X' =1 Y = ‘%ip %T(Z)o"‘oﬁﬁo
Cr g
Fron (34) for large =

dz a
1

e = 14 ""‘“é + asse >
az 7

whence, using {(32),

t

Xt ~ iyt

B1 1 1
%ipf BO+;-+O;'2- +O;—2- dz ,
Cr
1

7:pB1+O- .

Letting R—®, we see from (33) that,

X -11 =’;"CpB1 = X~1Y,

Thus/
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Thus the force on the aerofoil is exactly the same as the force on the
unit circle, for corresponding flows, and hence the 1ift L' and the
drag D! on the aerofoil are given by

Ll

1
1t

pUk L, teree (l;.O)

D' = pUQ D, ceens (41)

However, if @' represents the ?otal flux per unit time into the nerofoil,

then
ae
Q':*éf'ds:-?‘h‘--z-ffde:f;}.
C - C

cl

We therefore conclude that for any incompressible potential flow round
any aerofoil, the 1lift is proportional to the circulation and the drag
is proportional to the total flux per unit time into the aerofoil.

343 Satisfaction of the KuttamJoukowski trailing~edge condition

It is well-known that ain order that the velocity at the
trailing edge of an acrofoil is fimrte, the corresponding point on the
circle must be a stagnation point of the flow round the circle. This
condition imposes restrictions on the permissible suction and tangential
velocity distributions which wmay be chosen on the circle, and enables the
arbitrary constants in the solution to be determined. Further, it mokes
it possivle to calculate the change in 1lift and drag due to suction from
the corresponding flow round an impermeable aerofoil.

3e¢3¢1 Conditions on the surface veclocirties

If the stagnation point on the cirole is at z = gtl= 7+ 8),
then we must always have

£f(=7+6)

] ’ ssvae (}_‘_2)
0 s for all a » seves (45)

gal= © + €)

(i) Suppose the suction distribution is prescribed. Then 1t must
satisfy (42) vwhich gives a restriction on the possiblc porous suction
distributions about the point ci(= 7 + ¢ an the circle which may give
rise to a corresponding porous suction distribution on the aerofoil,
and slso indicates that in the ocose of slot suction there must not be a
slot placed at this point. If f£(- = + £€) 4 O, the corresponding flow
round the aerofoil has no physical significance. ioreover, the
tangential velocity ga(e) which is produced by the prescribed f(@)
rust satisfy (43) for all o , and this condition determines uniquely
the ciroulation nccessary to give the required stagnation point. Thus
for distributed suction we have from (19

K = 4rUsin (a+€) =F(~%+ g , eenns (Uh)

ga(e) = 2U[sin (8 + a) + sin {a +€)] + 5—- o) -~ P(~ = + el], = n<0&n ,
i

whilst/
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whilst for slot suctionm, from (27)

N
# = 4= U sin (a + e) + Z m ten % (ﬁn ~ ¢) ’
n=i B

. 1 N
g,(0) = 20{sin (0 + a) + sin (a + £)] = ~ [IE u_[cot & (0 = By)
ox =1 0

-tm1%(ﬁ1—gﬂ}, - n{0€ T o

For any typc of surface suction, we may therefore writoe

K = Ll-'KUEin (G+8) + Xk » vecse (45)

vhere for distributed suction

7
k = -F(-=+8) = "‘EP f f(T)COt%(Q'T)d'ﬂ ’
@ = =m4E
e

and for slot suction

: (

k = T Il tan%—ﬁ-—e) .
=1 B n

Substitution of the above value of K in the expressions for the complex
potential and complex velocity gives the flow round the circle which,

under the given conditions, has a stagnation point et z = (- +€),
This 1s the only flow vhich when transformed gives a physically possible flow
past the aerofoil, It is apporcnt that the incident main stream and the
suction distrabution provide independent contributions to the flow.

Thus for the case of pregcribed suction distribution on the
circle, whether porous or slot suction, the suction velocrty must be zero
at the point corresponding to the trailing edge of the aerofoil, whilst
for suction locelised between a<6€b , we must have, also, f(a) = 0,
£(b) = O . The circulation is dotermined uniquely, but the total suction
gquantity Q may be chosen arbaitrarily.

(ii) A presaribed tangential velocity distribution gq (9) at
incidence a, fixes the suction distribution uniquely, We nust have that

to, (-7 48) = O,
and since also f(=m + &) = 0, then from (22)

Q@ = 4nUcos (o +€) = Gdo (=m+¢8),

1
£(6) = - 2U[cos (8 + ay) + cos (a, + €)] ~ - [Gao(e) = Ggp (=7 +€)],
2%
- nl0&T,

The/
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the suction distribution is cobviously of the overall type. Satisfactaon
of condation (43) for all a then pives the circulation k , as in
(44,.) above.

Hence for the case of prescrabed tanpential velocity distribution
on the circle at a given incidence, this velocity must be zero at the
point corresponding to the trailing edge. The oversll suction distribution
18 then fixed and the total suction quantity and carculation ere uniquely
determined.

3¢342 Changes an lift and drag due to suction

Since the previously arbitrary constonts in the flow have now
been not only identified but deterraned uniquely, we nay caleulate the
changes in 1ift and drag on a2 suction aerofoll from one without suction.
Fron (40), (41), (45) we have for the theoretical 1ift and drag on a
suction aerofoil:~

L pUk = h.‘ﬁ:pUz sin (o + &) + pUk ,

D

pUQ .

Now the 1ift Lj and the drag D;, for o sirdler-shaped inperneable
aerofoil an the same uniform strean are given by

Ly L pU2 sin (o + €) ,

i

Di = O

and hence the changes AL and AD in the 1ift and drag due to suction are
AL
AD

it

plk ,

pUY »

Thus, theoretionlly, the use of suction gives promise of a considerable
1ift increase over the irpermeablc case, though there is a corresponding
inerease in drag.

It is convenient here to introduce the non-dinensional suchtion
coefficient Oy and express the changes ACy and ACp in the 1ift and

drag coefficicnts in terms of it. Defining

and since
L D
C =] e 0 -] . -
L ’ ?
zpU 3 pU2e
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¢ being the chord of the aerofoil, then

AL k
‘ACL = %-565-(;.= 2aacqo
AD
o I T o .
‘ ACL ; k
pep o

Thesc relations enable the 1ift and drog increments to be snalyscd in
eny given case of surface suction. This analysis is eapecially simple
for the case of a single_slot, which has been irnvestigated, rather
inconclusively, by Spithd.

L. Exanples

L1 Choice of surface velocity distributions

The theory for finding thc potemtial flow round a porous
aerofoll when either the tangential or normal velocity distribution on
ifs surface is prescribed holds for aerofoilsobtained from a circle by
a known conforual transformotions The problem in the aerofoil plane is
then reducible to a corresponding problen for the unit circle, the corplete
solution to shich is given in 2.4. Difficulties may be enoountered in
evaluoting anclytically some of the Poisson intcgrals which occur in
this solution Eut methods exist for calculating these integrals
nur.xerlcallylhé: « Thus for any speoified velocrity distribution on the
porous serofoil, the couplete solubion of the flow may be deduced.

We nay note here that the pressure field on the aerofoil is
obtoined, by Bernoulli's theorem, from the dastributlon of total velocity
on the surface and not, as in the case of an irmperneable aerofoil, fron
the tangential velocity distribution alone. If the total velocity
distribution were prescribed, we should have an integral equation for
finding eafher of the couponent velocities, since if g, (0) is the
given total velocity on the circle, then

£ (0) = £50) + g2 (0),

where

’
£(e) = ~20fcos (6 + ay) + cos (o, +&)] ~ -2-- [GGO(Q) ~ G, (== +¢e)] .,

-nl8€x ,

\

: 1
g%(e) = 20[sin (8 + a,) + sin (oo + )] + ;;: [F(e) ~F(-x + &)]

-0 &n ,

whence/
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uhence
1 ‘ s 2
£2(0) + ;;5 [s%(e) + P f (1) cot % (0 --r)d'c} = qéo(e) ,
-t
-x<{0&xn ,
1 J ‘
€ (0) 4 mmm 1 (0 - _ 2
5000 + == {ca,oce) P / B (%) o0t 3 (0 -c)ar] = £,
%
- <&,
vihere
Smo(e) = 4aUfsin (¢ = ap) + ein (o, + 8)] ~ F(- 7 + ¢) ,
G%(e) = LaUfcon (8 = a,) + coa (0,0 +g)] - Gmo(- T+ E) e

Thus, if ve are interested in obtaining exactly a certain pressure field
on the surface, the determination of either of the component velocities
requires the solubtion of an integral cquation of the forn

s

2
[? “4[ y(z) cot % (x = z)dz + A(xi] +ByXx) +0(x) = 0.

Hovwever, in the cases of slot suction, suction over a small localised
region, and slight suction over the whole aerofoil, the tangential velocity
distribution is very nearly equal to the total vclocity. In any event,
knouledge of the pressure distribution is required mainly so that an
catimate of the position of boundary-layer scparation may be made, and

if the suction velocity is sufficiently large to affect appreciably the
total velocity, then it seems feasible that it will also be large enough

to eliminate the possibility of the boundary layer separating ot alls

The rest inportant case o work out would therefore seen to be
that of o specified tangentinl velocity distribution at a given incidence.
Hosever, we see fron the theory thet the suction distribuiion thus
defincd nust be of the overall type, and this is a great drawback because
of the irmense practical difficultice imvelved in unking a corplete
wing of porous material and simmlating a given, presumably very oorpliceted,
suction distribution over its surface. It would be better, therefore,
to approxiuntc to the derived overall suction distribution by some form
of localised or slot suction. But e already possess a general idea of
the effect of the position of suction on the tangentisl velocity
distribution - for exarple, ve know that to incresse the Cp~range on a
low=drapg wing the suction should be applicd on the upper surface near the
lcading edge, whilst to reduce the profile drag on a thick high moxinun
Cp, aeroforl we require suction sonevhere towards the rear of the upper
surface - so that we con in any case nake good guesses as to the position
of the suction to produce a certein desired offeat. Hence it appears even
nore convenicnt to work out the coses of suitably-chosen suction distributions
in preference to the more complicated ones derived from giventengential
velocity distributions.

The/
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The required surface velocities on the aerofoil are usually
given as functions of éA » the fraction of the chord from the leading
edge, ond nay of course be expressed as functions of 6 so that the
corresponding surface velocities on the oircle may be found exactly in
terns of © + These expressions for f£(0) and g(0) will undoubtedly
be couplicated, and here agoin it is convenient to approximate to the
exact required velocities. One simplification is to use the fact that in
general &p varies like cos © , For the simplest possible computation,
£(0) or g(6) may be chosen so that the Poisson integrals moy be
evaluated onalytically.

L.2 List of worked exsnples

We consider the effect of several prescribed suction
distributions on a 13% thick syrmetrical Joukowski serofoil, derived from
the unit circle by the tranaformation

(1 - 8)°
C(z) = (Z +6)+"‘""‘"""""‘" s 0 = 041
(z + 8)

Corputations are performed only for specified suction distributions for the
above mentioned reasons, in any oase, the exarples worked out are sufficient
to enable moveral gencral conoclusions to be drawm, (see the postsaript to
the Conclusion)e. ,
The suction distributions considered are the sirplest possible
whach satisfy the required conditions on the circle, being obtained by

putting

(o) = A, + A, cos 0 + By gino ,
and finding the appropriste values of the constants. Since for a
gymmctrical aerofoil & = 0, the point on the circle corresponding to
the trailing cdge is 0 = =« % , and the conditions to be satisfied by

£(0) arc therofore f(-x) = 0 and o ag = 0, f{b) = 0 for
localised suction. We note that gince (0) is the outward normal velocity
and we are dealing with sucking, not blowing, then we must have £(9)<0
everyvheres An arbitrary constant is left in the expression for F(6) %o
cnable the tobtsl suction quantity Q and the suction coefficient CQ to

be varied.

The cases corputed are as follows:ie

(1) Overall suction

£(6) = =Qy [t +c080] , =n<0&n .

n

£~ x) 0 ; £(0)€0 for Q,20

(2) Localiged suction

e

8 =a) - 8in (0 =~ Db) = sin (b - &)
Lol ) e b ot s

sin (b - a)

0 , clsevherc .

Three/
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Three different coses arc congidered:

(a) a = 0°, b = 90°, Suction applied to thet pert of the upper
surface of the acrofo:rl between the leading edge and a point Q.456 of the
chord fron it.

(b} 2 = 30°, b = 45°. Suction applied to that part of the upper
surface ol the aerofoil betuween points 0058 and 04127 of the chord from the
lecading edgce In this particular case the streaulines past the circle are
also oawputed, since originally some doubt existed as to whether or not a
stagnation point aluays appears downstream of the porous region in the case
of localised suction. It would scem at first sight, by analogy with the
case of slot suction, that this would be the case.

(¢) a = 1422, b = 48° , Suction applied to that part of the
upper surfacc of the acrofoil between points 0.009 and 0.021 of the chord
fron the leading edge.

v

(3) Slot suction

Single sink of strength n at 6 = 15° , i.e., 2t 2 point on
the upper surface of the aerofoll 0,015 -0f the chord fron the leading edpe.
This single slot case is chosen for cormparison wath (2(e)).

The gize of C, permissible in preactice imposes on the sur:'i:ion
distribution a l:i.nitatiog in size which is treated by putting

Qo = COU ’
s0 that for suction (1)
1 z 2%
Oq = == f Q [1 + 008 0] @ = ==C_,
Ue c
-7:
and for suction (2) ,
1 P [sin (6 - a) - sin (0 ~ b) ~ sin (b - a)] .
I Q, mmmmemmmann s e
9 Uc [ ° sin (b ~ a)
a

[2(1 - cos (b = 8)) = (b~ a) sin (b - a)]

oy T AT et i gy T S S e sk e Y oy A A Vo Bl P kSt ) Y S e Oy B s g T

For suction (3) ,

and is chosen to take the sane values as in suction (2(c))s In the computation,
C, is adjusted to gave suitable ranges for Cg »
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In cach of the above cascs the tangential velocity distribution
round the aerofoil is calculated, the total velocity also being worked out
vhere it differs substantinlly from the tangential one i.e., for suctions
(1) and (2a)s The calculations are perforned for several values of C
and for a = 0°, 5% 10°, vhich, for flou without suction, corrcspond
to theorcticnl 1ift coefficients of 0, 0.602, and 1.200 respectively.

The results are illustrated in the fipgurcss A toble showing the values
of ACL , the chenge in 1ift cocfficient due to the use of suction, is
givens Also included are diagrars of the streanmlines past the suction

gegion on the circle for the case (2 for o = 0 and four values of
Q L]

Be Conclugions

The incompressable potential flow past sn aerofoil having a
given distribution of surface suction may be deduced by conformal
transformation from the corresponding flow round the unit cirele. However,
not all flows with specific surfoce velocities on the circle may form the
basig for flowa round the aserofoil. In order that the flow comes smoothly off
the trailing edge of the serofoil, 1t is necessary that the prescribed
surface vclocity on the circle rust be zoro at the point corresponding to
the trailing cdge, vhilst in the case of a specified localised suction
distribution, the suction velocity imst be zcro at the end points of the
suction region to prevent the tengential velocity becorang infinite there.

The incident maein strean and the suction distribution provide
independent contributions to the flow, By applying the correct overall
suction distrabution, any given tangential velocity distribution at any
incidencc uay be obtained exactly, though if the extent, form and size of
a localised suction distribution are well-chosen, a good approximation
to any required tangential velocity distribution nay be obtained, Strictly,
the tongential velocity distribution does not determine the pressure field
on the awrfaoe, vhich controls the separation of the boundary layer, but
for zmall encunts of suction and suction over a snall localised region it
is sufficiently close to the total velocity to give a good idea of the
pressure field, vhilst for larger suction gquantitics it seems feasible that
there will be no tendency for the flow to separate over the suction region.
If the extent of a localised suction diastribution becomcs infinitesimally
small vhilst the total influx of fluid remains congtant, the solution for
distributed suction reduces to the solution for suction through a single
plot of appropriate sink strength at the centre of the localised region.
The 1ift on the aerofoil is proportional to thc circulation in the flow,
and the drag io proportional to the total {lux per unit time into the
perofoile The satisfaction of the Kubta=Joukowski treiling-edge condition
determines the increase in 1lift on a suotion aerofoil over a similer
inpermeable one, indicating a promise of a considerable 1ift increment to
be obtained by using surface suction, though there is o corresponding
increase in drag. .

It appears that for wvalues of Cp at which boundary-layer porous
suction is dcsigned to act i.e., Cp< 0,001, the effect of such suction
on the potenticl flow outside the boundary-layer is negligible, for overall
or loealised suctions For higher values of Cp , overall suction still
has little effcct unless the form of the suction distribution is chosen
especially woll, vhich in any case is probably equivalent to some fornm of
localised suctions. Locelised suction is very effective at higher values of
Cq say Cq >0.05 + The change in laft coefficients brought about by th?
iftroduction of suction is minute for Cg<0.001 , and is 1n any case quite
srnll. Vhen the extent of the suction region ig small, say <5% chord,
the state of affairs outside the suction region may be approximated by that
duc to a single slot of appropriatc sink strength at the centre of the
regione

The/
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The compubted streamlines for the circle show clearly that, for
Co below a certain value, there is no stagnation point downstream of a
localised suction regions This is a conseoquence of the condition of
continuity irposed on the suction distribution in order that the fanpential
velocity may remnin finitc.

In conclusion then, we sec that the asswiption that the
introduction of distributed suction for thc purpose of boundary-layer
control does not affect the potential flow outside the boundary layer, is
quite Justifieds The rosults also indicate that the use of "sink effect"
to alter adequately the pressure ficld round an aercfoil regquaires such
large suction quantities thaot its practical use is at present very
doubtful.

Note. It has been pointed out by Dre Re Co Poankhurst that the
chosen exanples do not give a completc picture of the lift increments due
to the usc of suction, since to obtain an increase in 1ift in potential
flow, with practical suction guantities, the suction should be locoted in
the trailing edge region. 1In the exarples chosen, it is because of the
forward location of the suction that the guantities needed for appreciable
lift aincrenent are prohibitively highe An exemple with trailing-edge
suction has not yet been corputed,
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APFENDIX

The Force on a Closed Curve vwhich is not a Streauline

The following is an extension of the well-known Blasius theoren
when the closed curve under consideration is not 2 streanline.

Congider the closed curve C , wath radial and tangential velocity

coponents £ and g respcctavely at a point P , ihere the element of
length is ds

J dz = aQacid a5 = asait.

)

The force on the element ds is in the direction of the inward normal
at P, so that

dF = aX + idY = ipdz ,

vhiere p 1is the hydrostatic pressure at P . Hence the total force on

the closed curve C , having components X , ¥ porallel to the co-ordinate
axes, Ls given by

X+i¥ = & jgpaz.
c
Toking conjugates
X~miY = ~4i j{pdz = -3 ?{pe-zndz.
c c

Frory
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Fron Bernoulli's equation for incorpressible potential flow

P+ %‘pq? = constant everywhere in the fluid ,

and since C 1s a closed curve,

de=00
c

Thus
. 1. 2 _-2i) .
X"':LY = —2'1p g e dz ’ ereers (l)
G
and since
. dw
q e-I¢ =om=
az

where gq ,¥ are the mogmitude and direction of the velocity vector,
regpectively, in the flow where the complex potential is W(z) , then this
may be written in the altermative forn

a; 2

) o1

x - iY = 'lg'ip é L] a :LP' dz ’ ebedoe (ii)

C dz

where

f
b= ‘P -A = - tan"’] -t oco-.-(iii)

g

We note here that since in general e ig not an analytic function
of z , the integrand is not an analybic function and the contour

of intepration may not be suitably deformed without some modification
of the inftegrand.

TARLE/
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TABLE

Changes in Lift Coefficicnt for Various Suchion Distributions

Type of
Suction Co Cq Cr,
Suction 0410 041728 0
(1) 0.04 0.0173 0
Suction 1.0 0.1180 001015
(2a) 044 0,0118 0.0101
Pl vl sl s ap b g —‘—-——n---“-ph ------------ 4 -----------
300 0e1242 0.0842
Suction 200 0.0828 0.0564
(2b) 100 0.0l14 0.0281
20 0.0083 0.0056
3,000 0.0789 0.0237
Suction 300 0,0079 0.0024
(2¢) 30 0.0008 0,0002
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