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SUMMARY

Theoretical and experimental results are used to produce a
coherent ‘engineering! method for predicting normal lorce on thin
sharp-edged wings at supersonic speeds, the initial force curve slope
being known. The method can be applied at angles up to 90o and, in
rrinciple, to any planforn, although most of the results used to develop
the method are for delta and rectangular wings.

A summary of the method is given in section 5
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1 INTRODUCTICN

For preliminary design work it is essential to have a convenient
method available for the rapid estimation of the normal force developed
on simple wings. Methods based on linearised theory are well known,
but in the case of some aircraft and most guided weapons designed to
operate at supersonic speeds, the maximum angles of incidence used are
greater than those at which it is reasoncble to assume a linear
relationship between normal force coefficient and incidence, and it
becomes necessary to take account of the non-linearities. In the case
of guided weapons, angles of incidence up to 25° are not uncommon, and
weapons or space vehicles designed to operate at very high altitudes may
adopt angles of incidence considerably in excess of this.

Besides its relevance to estimates of acceleration capability and
drag due to incidence, a knowledge of normal force at high angles of
incidence is a prerequisite for estimates of various aerodynamic moments
which are essentially associated with normal force,

The Tollowing method for the approximate estimation of normal force
is semi-empirical, and is offered partly as a basis for discussion and
further refinement, and also as an interim engineering method which is
simple and consistent with existing theoretical and experimental results.
It will be assumed that the initial force curve slope is known, the
problem being to estimate the non~linear force.

It is proposed to treat the contributions to normal force from the
upper and lower swrfaces quite separately, i.e.

(1)

Cv = Cmu* Cne
where suffices ( )u and ( )6 refer to upper and lower wing surfaces

respectively. Following the yredictions of linearised theory it will
further be assumed that

3\
(ONu’a*O

a
(Cyedano = 3+ %

where a = (dCN/da)a+O’ @ is the incidence of the mean chord plane and
s &, 8TE the incidence angles of the upper and lower swfaces respectively.
For thin wings with sharp trailing edges, %5 Xp and a are equal, but for

wings having a finite mean trailing edge thickness/chord 5/5, then
@ s &, are defined by

(2)
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For the purpose of this analysis it is proposed to assume that effects
of thickness (other than at the trailing edge) can be neglected. It
is believed that thickness distribution may have an appreciable effect
on the non-linear force components, especially in the case of very
slender wings; hence consideration will be restricted in the main to
wings with sharp leading edges and thickness/chord ratios less than
about 5%0

2 NORMAL FORCE ON UPPER SURFACE

Two distinct reasons can be found why the variation of normal force
on the upper surface should not be linear with incidence. The overriding
reason is that the upper surface force cannot exceed a value corresponding
to the attainment of zero pressure over the surface, so that the relation~
ship between normal force and incidence must exhibit a meximum, Hence
there must be a non-linear force component which causes the upper surface
normal force ultimately to fall below the linear prediction and have the
correct maximum value, Since it can be shown from two-dimensional flow
theory that this component depends on the hypersonic parameter Ma, it will
be referred to generally as the hypersonic non-linear force component for
the upper surface.

The second component of non-linear force which is associated in the
mein with the upper surface flow is that which arises from the action of
the coiled vortex sheets shed from swept leading edges and tips, This
component is only present in the case of slender wings for which the mean
Mach. No., ncrmal to the leading and tip edges is subsonic; it will be
referred to as the non-linear force component due to leading edge vortices.
Unlike the hypersonic component, it causes an increase in force above the
linear prediction, but only at angles of incidence well below that at
which the hypersonic vacuum limit is approached.

At angles of incidence below &u (the incidence at which the upper

surface normal force coefficient reaches its maximm value), it is
mroposed to assume that the relation between upper surface normal force
and incidence can be expressed as follows

a 2 A
Chy = 3 % * b, @, (au < au) (3)

This general form for the equation has been chosen because it is consistent
with two-dimensional flow theory for angles of ingidence not too close
to &, a8 shown in seotion 2.1 below. For @, > & CNu is constant and

equal to its meximum value, ?3Nu, which will be taken to be a fraction k of’

the negative pressure coefficient corresponding to absolute vacuum,

As outlined sbove, the upper surface non-linear force has two distinct
origins and it is therefore proposed to assume that bu is the sum of two
components associated with each, i.e.

b, = (), + (b)), (5)
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2 2 . .
(bu)h o, and (bu_)v «_ ore the hypersonic and leading edge vortex

components respectively of the upper swface non-linear force coefficient.
It is clear that since the factor (bu)h is associated with the maxinmum

value of Gy , (bu)v must be a function of incidence having the

characteristics that it does not affect 6Nu and is zero for %, > au.

Mcthods for evaluating (bu)h and (bu)v are described below, in

sections 2.1 and 2,2 respcctively.

2,1 The hypersonic non~linear factor, (bu}h

From equations (3) and (4), and the prescribed condition that the
nen~linear component due to leading edge vortices shall not affect CNu’

it follows that

!

_x(u)? for o < 3
w

Cbu)h - 32k

(6)
(

o Ma 2k ~
(Du)h = <2MRu o )2 > Tor a, >y
u

whore Ma, = gk (7)

It has been pointed out by Relf1, Mnyerz and others that
S A . ; o .
C"Cp)m /(—Cp)vac, the ratio of the moximum negotive pressure coefficient

achieved on wings or bodies to that corresponding to vacuum is remarkably
constant over a wide range of lMach Nos. from subsonic to hypersonic.

The most frequently quoted value for the ratio is 0.7, although slightly
higher values are sometimes measured. Since any departure from a value
of unity is presumably an effect of viscosity the ratio may depend on the
state of the boundary layer, Now the mean suction on the upper surface
of a wing arises from the effects of both thickness and incldence, and
hence the appropriate value of k in equations (4), (6), (7) will be less

than (-—Cp)max/(--cp)vac by an amount (“Cp)t/(—cp)vac’ where <—Cp)t is the
mean negative pressure coefficient due to thickness. Since this analysis

is exprcssly concerned with thin wings, it is proposed to assume k = 0.7
for all cases, (except where otherwice stated), which is tantamount
to overestimating CNu'by an amount (—CP)t if @, > @ the error being

less for @, < &u. This error is unlikely to be significant in the case

cf_wings with supersonic leading edges, since in two-~dimensional flow
(~—CP),c ~ 0, but clearly thickness may have an important effect in

reducing CNu on wings with subsonic leading edges.

The validity of equations (3) and (6) can be checked in the

particular case of two-dimensional flow (for which (bu)v = 0 and

-6 -



b = (bu))'by comparing the empirical prediction of Cy for this case with

exact Prandtl-lMeyer values for inviscid flow. This comparison is made in
Fig. 1, by plotting the force coefficients in two-dimensional flow in the
form

N?(cNu) op = £[M(a) oyl ] (8)

For & < &u the empirical prediction (equations (3) and (6)) cast in this
form is

) ) 2
MZ(CNu)ZD = % M(a) ope Mt = 3%? [M(a)ZD.Mau] (9)

The full lines in Fig. 1 show this prediction for two typical values of k,
0.7 and 0.75, while the exact Prandtl-Meyer values are plotted as points

for various liach Nos. and angles. It will be noted, first that equation (8)
correlates the theoretical results extremely well, and second that with
these observed values of k, equation (9) gred%cts the theoretical values
with good accuracy at angles up to about /3 & e At higher angles of

course the empirical curve falls below the theoretical values since the
latter tend to the absolute vacuum maximum, never attained in practice.

Equations (6) and (7) show that (bu)h depends on the parameters
Mo and Ma .  Since (a)2D = L4/} as M » o0, equation (8) takes the well-
known hypersonic similarity form for M >> 1, and Mau then has the value
unity with k = 0.7,

2.2 The leading edge vortex factor, (bu)v

he quantity (bu)v.ai is the increment in normal force coefficient

due to the action of the vortex sheets which syring from the swept leading
and tip edges when the flow separates from these edges. The theoretical
studies of Mngler and Smith’ give (bu)v o L. for the case of a slender

delta wing for which the slenderness parameters Bcotﬂo and Ba tend to zero,
where B =  [M*~1 and Qo is the leading edge sweepback. In a comprehensive

survey of flow round swept edges, Stanbrook and Squ:lrelF have observed
that at moderate angles of incidence (Ma = 0.5) the flow separates if the
Mach No. normal to the edge, MN, is subsonic, but is always attached if MN

is supersonic.* ﬁN is given in terms of mean edge sweepback © and wing

incidence a by

My = «jM?coszﬁ.cos%z+ WeinZa = ,J;?coszﬁ + M?sin?a.sinzﬁ (10)

* There is some evidence that if Ma > 0,6, separated flow may persist up
to low supersonic values of M&.
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Clearly, then, the term (bu)v will only appear in the case of slender

wings with subsonic edges, (e.g. if M > 2, wings having an aspect ratio
appreciably less then 2). For Mach Nos. not too near unity, it is
reasonable to expect the value of (bu)v to vary with MN, from about 4 at

EIN = 0 down to zero at E’N ~1.0. Although ﬁN is not necessarily the
only parameter on which (bu)v may depend - for example at Mach Nos. ncar

unity Bcot and Ba may also be important, nevertheless the empirical
assumption is made that for a given type of edge (bu)v depends mainly on

'f/IN. The strength of the vortex and hence the magnitude of (bu) v is

likely to be affected by the "sharpness" of the edge, l.ee by the wing
thickness distribution in the region of the edges. This will be of
particular importance in the case of very slender wings where & small

wing depth in terms of chord has a large effect on the included angle

at the leading edge ncar the wing apex., For these rcasons, consideration
is restricted in this survey to thin wings with sharp edges.

Experimental values5 of (bu)v are plotted in Fig, 2 as a function of

-MN’ the Mach Nos, normal to the mean swept edge. 'IFIN is given by equation

(10) using the mean edge sweep ( of the line Jjoining the leading edge of
the centre~line chord to the trailing edge of the tip chord, (see sketches
in Fig, 2). Using a mean edge sweep so defined, results for delta wings
correlate reasonably well with those for wings with a curved leading edge
or o finite tip chord. The values of (bu)v have been derived from the

slopes of lines drawn through experimental values of CN/a plotted against

@, due allowance being made for the effect of the hypersonic non-lincar
term (assuming k = 0.7) and the non-lincar force on the lower swface
(see section 3.1), Tor all the plotted points the mean CN/GL vs. a lines

were drawn to cut the ordinate at a@ = O at a value corrcsponding to the
linoag theory 1lift curve slope. The general trend of the points for °
o > 4 supported this procedure in almost all cases, but CN/cc ab a < &4

tended to be below the lines so drawn.

It can be secn that the trend of the points in Fig. 2 is not
inconsistent with the slender wing theary result (bu) ¢ * % for My = O,
However, no points are available on thin wings for 0 < TV"N< 0.3 at
supersonic stream Mach numbers, so in the sbsence of come guide to its
shape, the curve in this range is shown broken,

At transonic speeds (say 1.0 < M < 1.2) the conditions for the
validity of slender wing theory may be satisfied although 1\%I + 0.

Under these conditions the curve of Fig. 2 would probably underestimate
(bu)v° This is confirmed by the results of tests® on a thick, A = 1.2

ogee wing, shown on Fig. 2, which gave values of (bu)v well above the
curve at M = 1.0 but broadly in agreement with it for M = 1.25.

2,3 Upper surface force as a function of Ma and Mau

In the foregoing it has been postulated that (‘bu)v is a function
of f\'%, which in turn depends on Mecos{l and Maina, sinﬁ, whereas the other

upper surface non-linear force factor, (bu)h depends on Ma and Mau.



It would obviously be very comvenient if both (bu)v and (bu)h, and hence
b could be expressed solely in terms of Ma and Ma , since MZCNu would
then be a function of these two parameters by virtue of the relation

¥ ¢

. 2
Ny = 2 Medo + by (Mau) (11)

Now since (bu)v is a factor most likely to be of importance in the

case of slender wings, for which sinQ = 1, it will usually be valid to_make
the approximation Msina,sinQ «~ Mau. Again, the relation between Mcos() and

Ma for a delta wing of vanishingly small aspect ratio is a fair approximation
to Mcos(l for a variety of low aspect ratio wings, as shown in Fig. 3.
licosf) for a very slender Aelta is shown as a dashed line, and will be
designated (McosQ) 4+ Hence a new parameter (I\!IN)S will be defined as follows,

(ef equation(10)).

(f/&\l)s = J(Mcos-ﬁ)g + (1'\’Iocu)2 (12)

where (-‘Ml\I)s 2 .IVTN and is a function only of Ma and Mo

A1l the experimental values of (bu)v shown plotted against iv'IN in
Pig. 2 are plotted against (ﬁN)s in Figs 4. The mean line through these

points is slightly different from that of Fig, 2, but the scatter about the
line is much the same,

Finally, using equations (5), (6), (11), Fig. 4 and the theoretical
relation between (Mcosﬂ)s and Ma shown on Fig, 3, Fige 5 has been drawn

showing Mchu as a function of Ma and Mau for thin, sharp edged wings at

Mach, Nos. in excess of Mach 1.2, This picture mekes clear the separate

effects of (bu)h and (bu)v'

It will be seen that for Ma < 3 there is a meximum in the CNu VSe @

u
curve occwring at Ma = 0.7, (i.es at an incidence well below ocu) which is

more yronounced the smaller the value of Ma. Since the curves for higher
incidences depend eriiically on the shape of tho Piceh curve, — which Is :not
well defined by the experimontal data ~ the dashed parts of Fige.5 should be
regarded as tentative,

3 NORMAL FORCE ON LOWER SURFACE

In the prediction of normel force coefficient on the lower surface
of thin wings, a distinction is made between wings which have substential
areas of two—dimensional flow with shocks attached to the leading edges
(assumed sharp) up to a fairly large incidence, and those which do not
come into this category. TFor clarity, an outline of the proposed method
will first be made, showing how these two cases are dealt with, then
details will be given in subsequent paragraphs,




Fige 6 illustrates ihe proposed method for constructing the

Cyg V8o @, curve, The curve labelled CNL is essentially the "fully

detached shock" case, It applies to wings with subsonic leading edges
or with a shock detachment angle small enough to have a negligible
influcnce on the shape of the CN& V8. &, Curve, and to any wing at an

incidence about 300 above the shock detachment angle. Thus to sum up

— ? 3 D] o
Ne = CN(; if a&<5

or ac>oc"é+30°

Here, “2 is the lower surface incidence for shock detachment. Theoretical
values of a% for wings with plane lower swrfaces, assuming a perfect gas

with ¥ = 1.4, are shown in Fig. 7 as a function of lich No. and leading
edge sweep, Qo. For the present analysis a%'will be assumed to be given

by these theoretical results, surface cuwrvature duc to thickness being
ignored,

Ifr a% is not too small and the tips do not influence cach other

the normal force coefficient will correspond with the upper curve in Fig. 6,
which is the "shock-attached" case, This curve has two distinct phases,
The first, CN& = CN% extends up to X, = a% and in this incidence range

there is an attached leading edge shock with extensive two-dimensional
flow on the wing. In the second phase the shock is detached but the
normal force curve follows on from the first phase without discontinuity,

0} 3 o t o . a — ,
and in this transition or "pertially detached" phase CN& = CN& + ACN&’

To sum up,

Ir ot >5° apd  BA > oE-

1+
— L]
GN@ = Cm for oc& < “.e,
— 1 »
Cxe = Ong * 80y for %e > %%
— * O
(Acm =0 for a,> a6+30)

The only remaining case is az > 5° and PA less than N VAEYW For

this, interpolation between the attached and detached cases is suggested,
proportional to BA(1+A)/Lh.



In the following seotions 3,1, 3.2 and 3,3, the estimation of CN”/

CNﬁ and ACN& are discussed in turn,

3.1 Lower surface force with shock detached, CN'e

It is proposed to base the estimation of CNI& on theoretical results
7

strictly applicable to slender wings., Munk has shown' that in inviscid
flow the normal force on a slender wing or body is proportional to the
rroduct of the axial and transverse velocity components, i,e. it varies
as sina cosa. Hence considering the lower surface only, there will be a

. a . . . . .
normal force coefficlent % sina.cosa due to the action in combination of

axial and transverse velocities, and an additional force due to the
transverse velocity alone. Remembering that the transverse flow is
two-dimensional in the case of a slender wing or body, this additional
force must be equal to that on the lower surface of the wing or body at
90° incidence in a stream of speed Vsina and Mach No., Msina; (pressure
measurements cn inclined infinite cylinders, for which a = 0, confirm
this), Thus for a slender wing we can write

. . 2
(CN&)S = -;‘-sn.nocf,.cosa& + (b,), sin” a, (13)

where (b 6)5 is the lower surface normal force coefficient on the wing
at 90o incidence at a stream Mach No, Msina 2 It may be noted that if
Msina 2> 1 there will be a shock parallel with the lower surface to which

the transverse flow Mach No. Msina ) is normal.

For non-slender wings which yet have detached leading edge shocks
the flow picture is exceedingly complex and there is no simple thearetical

basis for the estimation of CN‘(;' In the absence of an equally simple

alternative it is proposed to retain the general form of equation (13) and
to regard the first term as epplicable {o 21l wings in this category.
However, in the general case the transverse flow factor b p) is likely %o

differ from that for slender wings (b e) s if only because the mean

inclination to the stream of the detached shock will be less and the
effective Mach No. for the transverse flow will lie somewhere between
the slender wing value, Msinaz, and the meximum value which is of course

the stream Mach No. M The latter will probably apply to the case of

an unswept wing of high aspect ratio with detached shock because the

flow affecting the lower swrface passes almost normally through the

shocks In order to take account of these considerations, albeit crudely,
it will be assumed that b 2 is a function of MN, the Mach number normal

to the mean leading edge (equation 10) which tends to the required limits
for both slender wings and unswept wings.

Cyp = % sina .cosa, + b, sin® o, (14.)

ST



where b&, the transverse flow factor is the lower surface normal force
coefficient at 90° incidenss in a stream of Mach No, E&, where the latter

is given by equation (10) with a = a 2

Experimental values9 of b& are shown on Fig. 8 for both flat circular

plates and flat two-dimensional strips. On this evidence there seems to
be no significant, consistent difference between these two extreme cases,
50 by will be assumed to be independent of planform. Also shown on this
Fig. for MN > 1 is the thearctical curve of'be for circular plates

obtained by Maccoll and Codd1o, and since this curve fits the experi-
mental data rcasoncbly well it is proposed to use these theoretical values
of b, in equation (14) .

The result obtained by Vaccoll and Codd is

b, = 0.9054C - 02_12 2 (15)
P
8 YMN

where Cp is the pitot pressure coefficient, shown on Fig. 8 for
]
¥ = 1.4, corresponding to the effective normal Mach No. Nh. To complcte

the picture, the trend of experimental results11 for b, at subsonic
normael Mach Nos, up to 0.8 is also given, and a plausible line Joining
these to the supersonic thearetical curve can readily be drawn as shown,

3,2 Lower surface force with shock attached CN%

If there is a shock attached to the leading edge and at the same
time the angle of incidence is great enough for non-linearities in the
normal force curve to be appreciable, the Mach angle (sin~1 41/M) will in
most cases be small enough to ensure that the flow over the larger part
of the wing will be two-dimensional.  Accordingly it is proposed that
the normal force coefficient CNé‘be estimated by modifying thearctical

values of the rressure coefficient on a two-dimensional wedge of semi~
angle X, to allow for three~dimensional tip effects. Those wings which

have interfering tips are excluded so that the conditions for the
following method to apply are
L]
@, < &%

L
BA > FY .

There are two semi-empirical methods for estimating CN%’ both

of which give good agrcement with experiment if the above conditions
are fulfilled.

- 12 -



(2) The first is to use the obligue shock equations or tabulated
solutions thereof to cbtain (Cpy) pps the two-dimensional value of Cp

and correct this by assuming linear theory tip losses, i.c.

Oy = (Cppop - <'26 - ';'> ) (16)

where a is of course the wing lift slope according to linearised theory.

(b) A more convenient and no less accurate method is to use a modified
form of the so called strong shock approximationm,m. By assuning M
large and @, small the following expression for (CNgé) op Can be derived

from the oblique shock equations

(Cy3) 2
LDt wew o B o, () (17)
a, 2, >0 (I‘fa&)

This expression can be empiricelly modified to extend its range of
applicability, first to lower Mach Nos. and larger angles, second to
finite wings, as follows,

(1) The first term on the right hand side, (y+1)/2 is replaced
by the analogous coefficient of « ) in the Busemamn expansioni3 for
(CNé)ZD' In effect, this means adding & term (B)ZD = £(M)

to the right hand side of the equation, where

(B),, = Y.Ll (48)
2D B2 ZBL"

This term is negligible for Ii > 3,

(1i) The dependent variable (CNgé) 2D/ oc% is replaced by the impact
1:heory’u‘L equivalent (CN;é)ZD/sinza 2 thus giving the correct

limit for Mo 2 > 0ce

(1ii) The small angle hypersonic similarity parameter Ma . is
replaced by a large angle, supersonic-hypersonic equivalent
Bsina g2 COS® g The substitution of B for M follows Van Dyke's
supersonic~hypersonic similarity rule15 s but the substitution of
sinoce.cosor.e for a, is an empirical change justified by the very

good ccrrelations of exact solutions for both wedges and cones
which are thereby obtained. The resulting expression for

(CN%) op 1 then

(Cyps) 2
e el (s, +J<B & . +<Y;1> (19)

81 i sa
in “{’, s:Lna&.co &

- 13 -



Fig, 9 shows the ratio of (CN?é)ZD estimated by means of equations
(18) and (19) to (GN%)2D obtaincd from solutions of the oblique shock

equations, with y = 1.4. The difference between the two methods is
not greater than 57 for angles of incidence up to about L0 below that
for shock detachment, and is within 2% for angles up to about 8°
below that for shock detachment. These differences are of little
practical significance, since thickness and viscosity effects cause
the actual lower surface force coefficients to fall below the
theoretical values at angles of incidence Just below a%e

(iv) Finally, for three-dimcnsional wings the "two-dimensional"
variable Bsina g COSG, is replacced by its "thrce-dimensional"

cquivalent, = S1na ,e COSK 5y

2 2

C
L stn o) - (F)
sinza& 2 2s:ma&. cosa , 2

It may be noted that at Mach. Nos. great enough for B to be
negligible, i.e. M > 3, the above expression is consistent with
the small angle supersonic-hypersonic similarity rule'-,
Gﬁ/o&% = £(Ba,, BA), since for 'similer' wings Ba = £(BA).

The low Mach No. correction term B is a function of f and is probably
affccted by tip losses. On the evidence of experimental data, the
empirical assumption is made that B is proportional to 2. The final
expression for CN’@ rearranged in a form suitdble for graphical

rresentation is

, » i . : 5
W B sina ,oosa, = LX SRpCOtTe s e (o) Sl
atana e 2 ez e - 2 a 2 Y a

ssees (20)
where
Byl xxd (
e o LB + 853 (21)

A chart for the estimational CN% based on this equation with
v = 1.4 1s given on Fig, 10,

3.3 Lower swface force with shock 'partially attached', Cij + ACy,

Although the leading edge shock is, strictly speaking, detached if
X, > oc’z, the lower surface normal force does not fall to the value

appropriate to the fully detached shoock case (equation 14) until
a, > oaf & 30%  In the range a% < a, < a} + 30° the shock can be regarded



as 'partially detached! and the lower surface normel force coefficient

exceeds CNk'by ACN&’ iees

= t ® O
Cqp = Oyp *+ ACye for a% < a, < a% + 30 (22)

A cwrve for estimating ACN&’ derived purely from experimental data,

is given in Fig. 11. A is expressed in terms of «, - a?, ACN% and 6%,

C

Ne
* » . ‘ - * - -

ASN is the difference betwcen CN@ and CN& at X, = a&'whlle 6*is the

difference between dCNQ’/doc6 and dCy,/da, at a, = a%.  The farm of the

the curve of ACN&

be no discontinuity in dCNe/da& through a%s

is prescribed by the assumed condition that there should

Direct experimental support for this curve is not given in the figure
because owing to the small quantities involved therc is inevitably a lot
of scatter, The effectivencss of the method for predicting CN& for

@, > a% can better be judged from the comparisons between measured and

estimated CN described in the follewing section and on Fig. 13. On

the latter the estimate of total CNAassuming a fully detached leading-
' ] - aa 3 - \

edge shock, CNu + CN@ is shown as a dashed line, the difference

between this and the actunl estimate in each case, shown as a full line,
being ACN& for X, > az.

4 COMPARISONS BETEEN ESTIMATED AND MEASURED NORMAL FORCE

Estimates of normal force coefficient based on the foregoing method
have been made for a number of thin wings, (thickness/chord < 57), for
which measured values are available to fairly high angles of incidence.
These comparisons ere presented graphically, in Figs. 12 for the shock
detached cases and in Fig. 13 for shock attached cases.

All estimates shown as full lines in these figures have been made
with the following assumptions

(1) Initial force curve slope, a, as given by linearised theory.
. s - - Tf . . . o
(i) ¥ = 0.7 and <bu)v = f(LN)s’ i.e. Cy given in Fig, 5.
The contribution of CNu to CN is shown for each comperison, and in

the case of wings having a% > 59, the 'shock detached' estimate,

£
1
CN.u + CN& .
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In Figs 12 measured values of CN on delta wings are compared with

estimates, all these cases being 'shock detached'. The full lines show
the estimates of CN’ while the dotted lines assumes b& = f(Msina) instead

of f(ﬁﬁ), (i.e. the slender wing case)., These results do not allow a

choice to be made between the two methods, the difference between them
being smell, and the agreement of theory with experiment being good in
each case.

Figs. 13(a), (13(v), 13(c) compare measured and estimated Gy for
various wings in the 'shock-attached! category, i.e. of > 5%, Fig. 13(a)

deals with rectangular wings with BA > 2, i.e. tips which do not interfere.
The agreement in these cases is good in general, the least satisfactory
correlation being the aspcct ratio 1 wing at Mach 6,85 (Ref. 20) at
incidences greater than 4L0°; this wing however had rounded edges, which

may account partially for the discrepancy. Fig. 13(b) shows two rectangular
wings having lnterfering tips, i.e. with BA < 2; in these cases the
estimates are interpolations between the shock detached and shock attached
values, The A = 1 wing at Mach 1.45 has an apprecisble leading edge

vortex contribution to normal force, as shown. Lastly, Fig. 13(c) compares
results for delta wings having “% > 5°, which tend, of course, to be at

higher lach, Nos,

Perhaps the most striking feature of these results is the relatively
small contribution to normal force from the upper surface at high angles if
the Mach No. exceeds about 3.

5 SUMMARY OF METHOD

It will be assumed that the initial force curve slope is known, and
the problem is to estimate the non-linear force. The normal force
coefficient CN on a thin wing with sharp edges at supersonic speeds

(M > 1,25) may then be estimated from the following summary, in conjunction
with the list of symbols

®% = Cmu * Cne (1)
where CNu is given by Fig, 5 as a function of N, Mau and Ma. Obtain a%
from Fig. 7.
o
Ir a% <5
c .t = & sina,.cosa, + b sin?a (14)
Ne - YNe T 2 e e ) 2

where ba is given by Fig. 8 as a function of EN = NLJ;oszﬁ coszaejsin?aef
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" o LA
If ay > 5 and PBA > iy

]

. . 3
N CN?é given by Fig. 10 for Ay < a%

fl

' ¥
e GN&"'ACN& for ae><x&

where ACN& is given by Fig. 11.

% o LN
If oc&>5 and BA<1+)\

. \ . LA
CN& interpolated between CN 2 and the estimate for PA > el
in proportion to BA(1+M\)/L\.

6 CONCLUSIONS

A simple semi-empirical method has been devised far the prediction
of non-linear normal force on thin wings with sharp edges, which is
compatible with rclevant thearctical and experimental results at angles of
incidence up to 90°.

An extension of this analysis is desirable to include effects of
thickness, which are thought to be particularly important in the case of
slender wings.

Experimental confirmation is required of an implication of the
proposed method that there is a pronounced double maximum in the upper
surface normal forece vs. incidence curve if Mach No. x 1lift curve slope
is less than about 2.

LIST OF SYMBOLS

& initial force curve slope, (dCN/doc)a 50

bu,b ) non-linear force factors, associated with upper and lower
surfaces respectively

(bu)h component of bu associated with hypersonic parameter M«

(see section 2.1)

component of bu associated with leading edge vortices

(see section 2.2)

¢ mean chord
d mean thickness at trailing edge
k ratio cNu/(-cp)vac



LIST OF SYMBOLS (Contd)

A aspect ratio
B function of a and M, given by equation (21)
Oy normal force coefficient, normal force + & VoS
CI\T ) part of normal force coefficient contributed by lower surface
Cs Cyp, With attached leading edge shock (see Fig. 6)
CNIZ Cye with detached leading edge shock (see Fig. 6)
-t * % C (ac ;
ACy, Oy = Oy for af < a, < a¥ + 30 (see Fig. 6)
ONu pert of normel force coefficient contributed by upper swrface
Cora maximum value of Oy = f(au)
Cy rressure coefficient, (local pressure - stream statio
pressure) + pV
(hcp)max maximum negative pressure coefficient
(—613) " mean ncgative pressure cocfficient due to thickness
CP pitot pressure coefficient
]
(~C.) negative pressure coefficient corresponding to absolute
v’ vac :
vacuum, = 2/yW
M stream Mach No.
ﬁl\l Mach No. normal to mean edge, (see Fig. 2)
(MN)s approximation to My in terms of Ma and Ma (see Figs. 3 and k)
S wing plan area
v stream velocity
4 incidence of chord line
LY incidence of upper and lower surfaces respectively, see
equation (2)
a value of o at which §__ is first attained
u u Nu
B NP
Y rotio of specific heats, assumed to be 1.4
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LIST OF SYIBOLS (Contd)

- J F = o*
dCN%/dcce dCNe/doc& at o, = af
ratio, tip chord/root chord
sweepback of leading edge

mean edge sweepback, that of line joining rcot L.E. to
tip T.E.

stream density

in two-dimensional flow
applying to slender wings

at shock detachment
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FIG. 4. THE LEADING-EDGE VORTEX NORMAL
FORCE FACTOR (b), AS A FUNCTION OF
Ma & Mety,FOR THIN, SHARP-EDGED WINGS AT
SUPERSONIC SPEEDS.
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