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The vibrationally relaxing flow of a polyatomic gas through a 
normal shock wave is examin ed under the assumptions that the excitation 
of the vibrational modes takes place in "parallel", that the relaxation 
frequencies are constant, and that the energy equation can be replaced 
by the Bethe-Teller relation. 

1. Introduction 

When a gas is disturbed from a state of equilibrium, as in the 
passage through a shock wave, the redistribution of energy among the 
various degrees of freedom is not instantaneous; acertainfinitetime, 
the so-called relaxation time, is required for any particular mode to 
attain its new equilibrium state. The translational and rotational 
degrees of freedom usually adjust themselves comparatively quickly as 
compared with vibration, dissociation, etc., and consequently when 
discussing non-equilibrium effects due to, e.g., vibrational relaxation 
translation and rotation can very conveniently be regarded as being in a 
local state of equilibrium. Here we shall be concerned only with 
vibrational relaxation and it will be assumed that the amount of 
dissociation, etc., is negligible. 

It is usual when studying vibrational relaxation phenomena to 
assume that the rate of change of the vibrational energy is proportional 
to the departure of the vibrational energy from its local equilibrium 
value. This linear rate equation can be shown to be valid for a system 
of harmonic oscillators when only a small fraction of the oscillators are 
excited; it is doubtful whether the equation holds for large departures 
from equilibrium. Moreover, such an equation csnnot, in general, govern 
the excitation of the total vibrational energy in.a polyatomic gas which 
has more than one.vibrationaJ. mode, since it will, in general, be 
impossible to oharacterize the relaxation process by a single relaxation 
frequency. However, a set of equations of this form may hold for the 
individual vibrational energies in the various modes. The transfer of 
energy from the active modes (translation and rotation, which are assumed 
here to be fully excited) to the vibrational modes can take place in 
several ways (see Herzfeld and Litovitz (1959)), e.g., each vibrational 
mode may feed from the active modes but remain independent of the other 
vibrational modes in the sense that it does not exchange energy directly 
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~5th them. !l!his process is termed excitation in Wparallel". An 
alternative method of approach to equilibrium is a "series" type 
excitation in which one vibrational mode feeds from the active modes, 
the other vibrational. modes then feed from this one. In a complex 
molecule both types of excitation will oocur. 

In this report the non-equilibrium flow of a vibrationally 
relaxing polyatomic gas through a normal shock wave is analysed for the 
case when the excitation of the vibrational modes takes place in 
"parallel". It is assumed that the relaxation is governed by a set of 
equations of the form 

a"i -= 
at 

oiq - Oi) . ..(I) 

-kh 
where t is the time, cri is the vibrational energy in the i"*' mode, 
and 77. is its local equilibrium value corresponding to the 
translational temperature T. W. is the relaxation frequency for the i th 

mode and in general is a functioniof both the temperature and the density, 
but here it will be assumed constant. This latter assumption, and indeed 
the form of the rate equation itself, will probably not be valid for 
strong shock waves (in which there are large temperature changes and large 
departures from equilibrium). 

Vibrational relaxation in normal shock waves in a diatomic gas, 
for which there is only one rate equation, has been analysed in detail by 
Johannesen (1961) and by Blythe (IY6Ia), who assumed that the relaxation 
equation was of the form (I). The first of these papers describes a 
general approach to the problem while the latter discusses the various 
approximations that have been used in analysing vibrational relaxation 
regions in normal shock waves. The structure of such shock waves can be 
split into two parts (for waves above a certain 
(see Johsnnesen (I96I)), firstly a diff 

minimum Mach number) 
usion resisted part within which 

translation and rotation are assumed to attain a local state of 
equilibrium, this part is followed by the relaxation region within which 
the lagging mode adjusts to its new equilibrium state. The width of the 
dziffusion resisted part of the wave is usually assumed to be negligibly 
thin compared with the width of the relaxation region. The same picture 
applies to the present problem save that the structure of the relaxation 
region can no longer be characterised by a single relaxation frequency. 

It will be assumed that the energy equation can be replaced by 
the Bethe-Teller relation 

dz 
-= ‘P . ..(2) 
da 

where o = Z c 
i i' 0 = Z o., and p is a constant. Under the above 

ii 
assumptions the problem is greatly simplified; in fact (1) and (2) form 
a linear set of equations with constant coefficients for (in particular) 
E. = 0 1 i - bi, provided further that the vibrational specific heats are 
assumed constant. However,it was pointed out by Blythe (i961a) that (2) 
is not valid for weak waves and thus the solution derived here has only a 
limited range of applicability (since we cannot expect the assumption of 
constant oi to be applicable in very strong shocks). 

It should be noted that the solution obtained within is applicable 
to any one-dimensional flow, with a given initial departure from 
equilibrium, provided the Bethe-Teller relation holds (together of course 
with all the other assumptions). The n-mode case is solved $2, and a 
numerical example for the special case n= 2 is given in $3. 
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2. Solution for n-Mode Case 

From equations (I) and 

k-l 

(2) it can easily be shown that 

a& -L- at + wiei = % dt . ..(3) 

= z. - ui, E = a 
cc "vib 

where E i 
i 0 iS 3. -u,and ki = --. 

' + p 'vib 
vibi 

the vibrational specifio heat for 1 
/ 

:he ith mode, and ovib is the total 
\ 

vibrational speciric heat 
t 

= x0 i vibi ) l llhe 'vib.' and hence tie ki, 

are assumed constant. The time t is measured frgm the downstream end 
of the diffusion resisted part of the wave which is assumed to be 
negligibly thin as compared with the width of the relaxation region. 
The conditions at t = 0 are computed from the transition across the 
diffusion resisted part of the wave, within vdxich translation and rotation 
are assumed to attain local equilibrium; 
equations (3) are written 

these boundary conditions for 

si .= sia at t = 0. *c.(4) 

The initial value problem defined by equations (3) and (4) can be solved 
in the usual way. The Laplace transform Ei is defined-by 

00 
Ei = 

I 
pexp (- pt)Eiat 

0 

aa the transformed equations are 

(P + Wi>Ei - PEia = kiP(E -&a) w.(5) 
where 

E = ZE. ma Ea = SC. . 
i1 1= 

This set of equations for the Eils can easily be solved. 
However, it is more convenient to obtain the solution first of all for E. 
It is apparent from equation (5) that 

Lx 
E. La - ki", 

P I 
Ezz i 

P + "i A. 
= P J 

j-P 
II 

ki r ,p+h 
3 3 

i 
'p+oi 

. ..(6) 

(note that E is not singular at p = - oi, i.e., h 
hj's are the roots of J 

f oi) where the 

kih 
= -l . ..(7) 

i 
h - wi 

and the AJ.'s are given by (provided the h j are distinot) 

A. 
J/ 



c E. 3.a - ki'a 
h. -0. 

i J = 
A. = . 

J 

It follows that E is given by 

& = C A exp(- hjt]. 
j j 

. ..(8) 

o..(Y) 

A sketch of the function f(X) = I - 7 
kih 

is given in Fig.1 
ah=-0 . i 

for the case when all the wi are dist&ot, and in this case it can be 
shown that f(h) = 0 has n red, distinct, positive roots. When 
aXl the wi are not distinct, say s of them have a common value 0, 
then f(X) = 0 has only n+l-s 
correspondingly only n-s+1 

roots (with h fw, oi), and 
coefficients A. exist. 

3 

Returning to equation (5) it is found that 

c E. 121 - ki"a 

E, = 
- 7 :i""jl' j-9, + r I;ihj . A.p 

J . 
' (h' - cu,)(p + 'j). 

. . .(lO) 

3 J 
3. 

P + Oi 

From equation (6) it can be seen that 

E. la - kica 
= 

kiwi 

(consider the limiting process p + oi + 0), provided the wi are 
distinct. Hence the coefficient of p/p + oi in equation (10) is zero 
in this case. Id', however, there are s wits. the same (= o), and for 
convenience it will be assumed that these correspond to the modes 
numbered n+l-s to n, then 

n 
n 

1 , '"ia - kp,l 
tin-s+1 c 

A. 
= J 

aa thf3 coefficient 

n 

0 
II I ki 

i=n-s+l 

of 
P 

P+w 
in (10) is 

‘3” Xj’W 

ki 
E. - La n 

c ki 
i=n-s+l 
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!l!hus 

where 

E. = 1 3 aij api- Ajtj + bi expl-oit] 

a.. = kiAj A 
w '9 

A J 
j - % 

3 Q n-s+1 

bi = 0, 16 n-s 

n 
ki =& - 

ia F 
E. n la' ib n-s+1 

I 

1 I ki 
i=n-s+l 

i=n-s+l 

..&I) 

. ..(12) 

L . ..(13) 

and s is the number of repeated w.'s. Note that if for i 3 n-s+1 
all the modes are identical (i.e., a?1 the kits are equal, etc.) then 
b i = 0 for all i. 

3. The Case n = 2 

Suppose that in a three mode gas (non-linear triatomic molecule) 
one relaxation frequency is very much greater than the other toVo, then 
this mode can be regarded as an active mode and the gas treated as having 
only two lagging vibrational modes (strictly no gas exists which has only 
two vibrational. modes*). This case is, of course, the easiest to examine, 
apart from the trivial case n = I, and in particular an explicit expression 
for the 'hj's can be obtained, i.e., 

C [(l-k& + (l-kibala- 
4 

2h = (I+&L) (I-k,)y+ (l-k& + -wo * 
l+p Ia I 

. ..(14) 

(~+l&Jv* 
Firstly we note that for y = wa = CO, the two roots are 

The latter root is not permissible since h. = ai was 
J 

excluded from the analysis (although terms bi exp - ot will occur). 

Reoonsider equation (7): as already noted if there ark s equal wi*s 
then this equation has only n-s+1 roots. However, in practice one does 
not solve (7) but the equivalent polynominal expression 

which has n distinct roots provided al.1 the oils are distinct, but 
if there are s equal Wi's (= 0) then 

-00.-0-0-0-0-0c-----o - - - - - - - - - - - - I - - -  

*A linear molecule has 3a - 5 vibrational modes, and a non-linear 
molecule 3a - 6, where a is the number of atoms. 
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(h - 0)” “;s+‘(x - “k) = h(h - w)s-l r kin-g (h - Ok) 
i . 

which has s-l roots h = w and a further n-s+? distinct roots. 
(H owever, (6) cannot have a partial fraction of the form pA/p + ", and the 
roots X = w are excluded.) Returning to equation (14) it is now obvious 
why the root h = w occurs when y = w,. 

For convenience we shall take wi > ws and define Xi as the 
larger of the two roots. Consequently hi > 0 > ha > w . 
from (12) that ali, ala have the same sign as' Ai, 

a It is apparent 

&la is of opposite sign 
to A,, and aaa has the same sign as A,. (In general if we specify 
w 1 >wa . ..>o n and enumerate the hj's similarly, a. . and A. will have 

1J J 
the same sign for i 3 j, and will be of opposite sign for i < j.) It can 
be shown from equations (8) and (lb), after a little manipulation, that 
A, > 0. On the other hand A, > 0 if 

Oi - ha 

% -Oa 
> (1 +p,(+ci) 

a 

from which it can be shown that Aa > 0 for all wa < w if 1 

C vib, E la ->-e 
C vib & a 

It is worth noting that the relaxation frequencies (for parallel excitation) 
will depend strongly on the vibrational frequencies vi, i.e., vi < ua implies 
We > wa (Herzfeld and Litovitz (1959, p.91)). Hence oi > o, implies 
3, > Ta etc.*, but specifying .sia > &aa is not sufficient to satisfy the 
above inequality. It appears that it is, in fact, possible for A, to be 
negative, though for ua/ti, sufficiently less than unity A, is positive 
(see e.g. the numerical example given below). If A, is negative this 
implies that the total vibrational energy and also theenergy in the slower 
mode 2 will overshoot their equilibrium values; if A, is positive there 
will be an overshoot only in the fast mode I. Physically, it seems hard to 
conceive the slower mode overshooting and for this reason it might be 
expected that in practice the relative magnitude of wa/oi, E,~/E~~ may be 
such that A, > 0. By analogy we might expect that in the general n-mode 
case the slowest mode would not overshoot, i.e., a 

nj 
> 0, and hence Aj > 0 

so that the total vibrational energy would not overshoot, although there 
would be overshoots of varying magnitude in each of the individual modes 
except the nth. (However, it should be borne in mind that theoreticaXly, 
it is possible in general for there to be an overshoot in the slowest mode.) 

In Figs.2 and 3 some of the results of a numerical calculation are 
shown for n= 2. The characteristic temperatures of vibration were taken 
as IOOO'K and 1500°K. The shock considered was such that the final 
equilibrium temperature was 2000OK with the initial temperature ahead of the 

shock/ 

*In particular 0, = oa really implies Zi = :a etc., and in general 
from equation (13) it is apparent that if this is so bi = 0 for all i. 
One can in this case regard the (n+l-s)th mode as being a weighted mode 
comprised of the s similar modes. 
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shock wave equal to 3OO'K. This corresponds to a shock Mach number 
m 

S 
M 6.50, where m is the Mach number based on the active (frozen) speed 

of sound, The eq&ibrium properties were calculated assuming that each of 
the modes could be'regarded as a system of simple harmonic oscillators. 
p was oalculated by fitting the integrated form of equation (2) to the 

z 
conditions at t = 0 and at equilibrium (i.e., p = a 

- ze 
, where the 

'e - TFs 
suffix s denotes conditions ahead of the wave, and the suffix e the final 
equilibrium conditions far downstream of the wave). The constant values of 
C vib in the relaxation region were defined by $ 

l i 
ovib 

ia 

+ 'vib ie > 

For w = o E has only a single exponential dependence 
(only one hj &sts): and both E, .sl (which has a double exponential 
dependence) decrease monotonically to zero: on the other hand, E, does have 
a minimum value (i,e., an overshoot). The magnitude of this minimumis very 

w 
small and occurs at w,t > 6.5. For 1 >a > 0.977 both E~ and E 

overshoot, and for 0.977 > -z s1 overshoots. The magnitude of these minima 
wi 

(overshoots) is again very small and they occur outside the time scale of the 
figures. Note that for a fixed oi the manner in which the first mode 
approaches equilibrium is affected very little by the ma@tude of oz 
(see Fig.2), and of course vice-versa. 

4. Concluding Remarks 

The solution given here determines E and the si as functions 
of t. From e.g. (2) the variation of the temperature T with t can 
easily be found. To derive the dependence of the density, etc., on t, or 
the more useful variation with x, one can use either the usual continuity 
and momentum equations together with the equation of state, or some of the 
approximations outlined in Blythe (1961a). 

The simplicity of the solution obtained above arises from the 
assumption that the Be-the -Teller relation is valid, and the assumptions that 
% and o vib. are constants in the relaxation region. If the first of 

these assumpttons is relaxed then it is easily shown that 

dsi -++.&. = 
dt =l 

where v is the velocity relative to the shock wave. It can be seen that 
the modifications to (3) are the introduction of a non-linear term 

dv 
v- on the right-hand side, anda slight change in the constant ki 

dt 
(if constant enthalpy had been used as the modified energy relation then 

ki in (3) would have been c~J,./cp)' The non-linear term arises as the 

direct consequenoe of including ihe kinetic energy term in the energy 
equation, While the solution of this set of equations is beyond the scope 
of the present paper it is of interest to note that a non-linear 

integro-differential/ 
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integro-differential equation for v or for s oan be derived, assuming 
constant oi and ovib , (the usual conservation equations together with 

i 
the equation of state can be linked to give a relation between v and E). 
It can be shown that the corresponding integro-differential equation for E 
in the linear'case has the solution already obtained here. In the 
non-linear case the integro-differential equation admits of solutions of 
the type found in the corresponding one-mode case, but the general solution 
has not been found. 
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