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An analysis is made of the effect of linear variation of the spanwise 
skin thickness on tile divergence, flutter, and aileron reversal speeds of 
thin wings, 

It is assumed that the wing weight and stiffness are provided by the 
skin alone and -that the wing mass remains constant for the tapers considered. 

It is shown that for rectangular wings, a skin thickness tapering from 
root to tip produces an increase of up to S;6 in the critical speeds, whereas 
an inverse taper results in a reduction of up to ll&. For a tapered wing, 
skin thickness tapering from root to tip results in a reduction in the 
critical speeds of up %o $h. 

A comparison is made between the results obtained from the analysis and 
from some flutter speed criteria. Further the effect of skin taper on the 
mode of distortion and on the dynamic torsional stiffness is investigated. 

Replaces R.A.E. Report No, Structures 264 - A.R.C. 22,963 



3+1 Derivation of equations 
3e2 Solutions for particular CasGs 
3 .3 Numericftl examples 

9 

9 &.I Fundamcrdzl torsional mode 

b-.1 .I Derivation of equation 
4.-1.2 Solutions for particular casts 
It*? .3 1Tuzericnl ex,mplcs 

9 
10 
12 

b.2 lkrdamental i'lexural mode 12 

4.2.1 Numerical examples 13 

4.3 Flutter calculations 13 

4.3.1 Kumcrical examples 13 

13 

14 
14 

5.1 Derivation of equation 
5.2 Numoricnl examples 

16 

7.1 Static 3.biiOfnes3 16 
7.2 Dynamic stifPness 18 
7 D 3 Bumerical examples 22 

8 co~~TCLUsIor~ 22 

NOTkTION 23 

LIST 25 

APPEliTDIX 1 - 

TABT;F;S 1-3 

27 

29-30 

ILLUSTRATIONS - Figs,? -14 

D!;TACIG.BLE AES'I?LrlCT CfYRDS 

-2- 



Table --me - - - 
LIST OF TABLES ---w-e 

1 - Wing properties 

2 - Results of numerical calculations 

3 - Comparison of criterion an& calculated flutter speeds 

LIST 03' ILLUSTRATIONS w-e--__- -.----we. - 

Diagram of tapered wing 

Divergence modes 

Fundamental torsional modes 

Fundamental flexural modes 

Aileron reversal modes 

Variation of divergence speed with skin taper 

Variation of critical fldter speed and frequency with skin taper 

Variation of aileron reversal speed with skin taper 

Comparison of flutter speeds obtained from criteria and calculations 

Static torsional modes for unit torque at tip (3-~ = 1.0) 

Variation of stiffness with reference section 

Variation of stiffness with skin taper at reference section 7 = 0,7s 

Static and dynamic torsional modes for 7; :: ?.' = 2/3 

Determination of divergence speed 'G = z/3, l' = 0 

----. 

Page 

23 

29 

30 

FiJp 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

44 

b 

i 

. 

-3- 



1 II~~RODUCTION -.----w.-- 

In recent years there have been numerous regorts"2j3 on the effect 
of wing taper on the various aspects of aeroelasticity. It was felt that 
there was a need to investigate the corresponding effect of varying the 
spanwise skin thickness, 

The scope of the present investigation, with its concept of an 
idealised wing is (a) to show the effect of the different modes on the 
aeroelastic properties, (b) to make a comparison of the results obtained 
with various critel-ia in use at the X,A,E. to ascertain if a correction 
factor for skin taper is necessary, (c) to show the variation of the measured 
static stiffness to the effective dynamic stiffness for the various tapers 
taken over a range of reference sections. 

The problem was approached by choosing a stiffness distribution along 
the span and obtaining where possible the exact solution for the modes of 
deformation. Where the exact solution could not readily be obtained 
sispler methods of calculation were used. 

2 -VMUATIO~T OF' YUG FROFT%A'IES WITH TAPER -*-_ ---,^ ----- - -. . - ---..4--...----- .---* --. I 

The geometry and basic properties of the wing are shown in Fig.1 and 
Table 1 respectively. These arc similar to those used by Molyned but the 
flexural axis has been moved further aft to obtain a finite divergence 
speed, 

The wing is considered to be a thin walled closed tube with constant 
wing thickness to chord ratio, the wing weight and stiffness being provided 
by the skin alone, To provide a basis for comparison of the effect of taper 
a constant wing mass was maintained. It is assumed that plane cross sections 
of the wing remain plane under load, and that the skin thickness and the 
wing chord vary spanwisc in a linear manner. 

With these assumptions it can be shown that taking the mean chord as 
standard we can express the skin thickness and the chord in the following 
manner, 

2 (1 - Pq) t 
t z ---. 

(2 - 1:) --z 
(1) 

2 (1 - TrJ c m 
C z 

(2 - T)-- o 
(2) 

If wing taper and skin taper are considered together then the skin 
thickness at the mean chord will have to be varied to keep the wing mass 
collstallt. If tm is -the skin thickness of a wing having uniform skin thick- 

ness it can be showrn that for constant wing mass 

(3) 

Thus for a rectangular wing (T = 0) or constant skin thickness (I' = 0) we 
have tr = tmV 
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From the Bred-t-Batho formulae for a thin wall tube with parallel 
generators we have that the St. Vennnt torsion constant J is proportional 
to the skin thickness t. 

For a rectangular wing the torsional rigidity at an arbitrary section 
is given by 

GJ = +<-?GJr . 

Taking wing taper into account we have 

where 

GJr = r 
c' 3 GJm * 

Similarly for local value of the inertia 

There are four cases for which solutions can be readily obtained:- 

(4) 

(5) 

(4 7= I' = 0 Rectangular wing with uniform skin 

09 't z 0 l'+O Rectangular wing with skin taper 

(4 'c * 0 l'=O Tapered wing with uniform skin 

60 'G z 1' + 0 Tapered wing with same value for skin taper. 

The tapers considered are:- 

I' z 0, I, 2/3, -2 that tT so 1; = 1, 0, ‘/3, 3 respectively and 
R 

CT 7;= 0 , 213 so that -C- = 1, -113. 
R 

3 DI'VXRGXNCE c- . ----- 

The method used for the solution of the problem of wing torsional 
divergence is essentially that outlined by Broadbe&. The wing is con- 
sidered to be rigidly built-in at the root, while the aerodynamic coefficient 
a, is assumed to be constant along the span and independent of the twist of 
the wing. Considering the wing to be a tube in which the skin thickness can 
be varied spanwise the position of the flexural axis will be constant chord- 
wise and taking the aerodynamic centre at the & chord position we have the 
parameter e constant. 

i 

The general differential equation is developed for wing and skin taper, 
and then the te~~ctt solution, for the different cases, is found. 
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301 Derivntlon of eauation _-_.-- _ ___ 

e a, c20dy dy o 
.! 

, vd 
0 Y 

X-tibstituting equations (2) and (4) in50 the above and writing 

1 

3 --w-e!----- 
1 

(1 - q)*f d-q d-q e (7) 
(1 -TT-J3(4 -rT$ s 

0 n 

Putting 

2 
U z 

Ff2 (2-T)(2-") e a, 2 2 
---7------ c 

Li GC 
3 

in 
T 

and differentiating (7) WC obtain 

Further differetiiating then yields 

(1 - ‘Irlj3 (1 -I-q) $ - (1 - ml)* PT(4 -?!?I> I- l-(1- m)] z = - u2(, - q)2f ‘ 

(4 - I‘?-/) i- :'(I - 'GT]) af + ,2f 
3 drl 

= 0 (9) 

3 .2 Solutions for 9articular cases -_ _ . . -. I - -- _ _ * .J-... --.- . - - . _ I._ x . - 

c with uniform skin thickness. Lziuce; z.~I? =: 0, rectangular win, Equation (9) 

-6- 



2, LT. + u”f 
d7: 

= 0 D 00) 

Solution of this equation is of the form 

f;t A sin v=r; + B Cos uq 

where A and B are arbitrary constants defined by the boundary conditions 7 
which are f = 0 when q = 0 and Lf 

ar 
= 0 when 7-j = 1 U 

Therefore 

0 = 0 and Auaosu = 0 

whence since 

A + 0, U D (213 t I);, n = 0, 1, 2 000* 

For the lowest critical speed from equation (8) with n = 0 we have 

.-- 

p;, i 
2 GJr -- . _ e...- 

4, 
pea 

1 
s2 c 2 m 

bj 7 = 0 i' :b 0, rectangular wing with varying skin thickness. 
Equation (9) reduces to 

(1 - I$$ - r g + u2r =o. (11) 

By substituting (1 - I'q) z c equation (11) can be modified to a form of 
Bessel's equation expressed as 

d2f 1 df 1 u2 
-+- -y+y --f 

a2 
E; k c, $ 

-0 0 

The solution of which is 

f = AJo (2 + n-=nl) t BY0 (2 ; J-l -p-J (32) 

where A and B are arbitrary constants and J,Y refer to the appropriate 
Bessel functions. 
af/dv 

ApTlying the boundary conditions f = 0 when r = 0 and 
= 0 when Q = 1 we obtain two equations of the form 

AJo (2 5) + BY0 (2 <) = 0 

, 

* 



from which the lowest critical speed which satisfies both equations 
simultaneously for a particular value of r can be found, Details of a 
graphical method GP obtainin, Q the lowest criticr.1 speed and t'ne mode of 
defornation is given in the fippendix. 

(4 z -i: 0, 7_; = 0. Xquntion (9) for a tapered wing with uniform skin 
thickness reduces to 

c 

Making the substitution (1 - 't-0) = g it can be verified that equation (j3) 
reduces to a Bessel equation of tile form 

The solution of which is 

. 

3ubstituting in the boundary condition and by a method similar to 3,2(b) and 
the Appendix the looses-i; critical speed and corresponding mode of deformation 
is found. 

(6) z - 37 + 0, for a tapered wing with the same skin taper equation (9) 
reduces to 

(1 -&2 &; - 47; (I -m-J) -G&+i121 = 0 
dTy 

the solution of which3 is 

f = 0 - 'Gd 
-3/2 - [ A sin a log( 

L__ 1 
1 - T-q) 

1 
-t B co9 ia log( 1 - z"(j) 

J i 31 

where 

Satisfying the boundary conditions rre have for q = 0, B z 0, 
and q = 1, 

cc = Stan 
c 

alog (I - 7;) 
3 

(15) 

(16) 

(since A + 0). 



Solving this equation for a in terms of z we obtain the critical 
divergence speed by substitution from equations (8) and (13). 

3.3 Numerical cxamJles -- " sll-- - ̂  .---I- -- 

With the substitution of the taper values in section 2, and the wing 
properties, listed in Table 1, into the solutions of the differential 
equations, the divergence speeds are obtained, shown in Table 2, and the 
divergence mode shapes are as shown In Fig.2. The ratio of the divergence 
speed with taper to the divergence speed of the rectangular wing with 
uniform skin thickness is plotted against the value of the skin taper in 
Fig.6. This shows that for a rectangular wing of constant mass the diver- 
gence speed increases with skin taper, whereas for a tapered wing of con- 
stant mass the divergence speed decreases with increasing skin tapr for 
the range of skin taper 0 $ i' < v3. 

For the tapered wi-ng the effect of keeping a constant skin thiokness 
at the mean chord (rather than constant wing mass) is shown by the dotted 
line in Fig. 6 and it can be seen that the divergence speed then increases 
width skin taper. However, comparison for constant mass seems more logical, 
and on this basis it may be expected that there will be an initial increase 
of divergence speed as the value of the skin taper is reduced below I‘ = 0, 
The probable result is shown by the broken line in Fig.6. 

4 FLUTTER -e-w- 

For the flutter investigation, only two modes were considered, namely, 
pure flexure and torsion about a flexure axis for a cantilever beam. The 
"exact" solution was obtained for the torsion mode but a simpler but 
slightly less accurate solution was obtained for 
has been showr? that small variations in the 

the flexural mode, as it 
flexural mode do not signifi- 

cantly affect the flutter mode. 

4.1 Fundamental torsional mode --- *--. 

The differential equation is derived on the basis that the fundamental 
torsional mode of the wing in the flutter oscillation will be essentially 
the same as the fundamental torsional mode of a cantilever beam vibrating 
in vacua. The justification of this assumption has been demonstrated1j5. 

4.1.1 Derivation of equation - -- *"-__ --- 

The method used is essentially that developed in Refs.1,6,7. The 
differential equation for the torsional oscillation of the wing is 

I a20 - - a !/GJ z) = 0 . 
at2 aY '1 

. (17) 

For the fundamental mode of vibration 

2 
0 = 0, sin (pt + E) or q = -p2e . 

at 

Substituting equations (4) and (5) into equation (17) and changing the 
variable we have 
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t 

[(I - T-q)3 (1 - 3-J) a0 TiTj +p 1 2 Ir (1 -Q-J3 (1-R-J 8 = 0 

.*0 ON 

performing the differentiations and if (I -'Gv) i 0 we can write 

.2 
(1 - TT-J(l -r?J) 2; - rjz!l - l?rl) + I?(1 

I 
-ml) 7 2 + K2(1 -TT$(l - r?-Je = 0 

drl i r 

00, (19) 

where 

2 P 2 s2 I 
K = r _.,- I^ - .--- 

GJr 

4.1.2 Solutions forpsrticular cases -_ -__ e_-_ ---e w-- ^^-,- _-- 

(a) T=O 'G " 

The differential equdion (19) reduces to 

2 
LB + X2% 
h-l2 

3 0 . 

(20) 

(24) 

The solution of' which is 

where A and B are arbitrary constants. Applying the erd conditions 
(i) % z 0 where q EG 0 and (ii) d%/dq = 0 when q =: 1 we have from (i) that 
B= 0 and from (ii) that since A "F 0, cos K r: 0, or K = (2n + I) ~(2 
n = 0, j, 2* Therefore 

(22) 

It is assumed that the frequency ol' torsional vibration of the rectangular 
wing with cons-ta-n-t; skin thickness is 50 c.p. s, Hence we obtain the value 
of the torsional rigidity, and the mode of oscillation is given by 

0 = A sin $ 71 (23) 

where A is to be determined by the amplitude of the oscillation, 
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(b) T=o,r*o 

The differential equation (19) becomes, 

Putting (1 - pr)) = i: this equation can be reduced to a Bessel equation 
of the form 

d2f3 I de K2 -+2 ~+yp3 = 0 . 
dr;* 

The solution of which is 

where A and B are arbitrary constants and J refers to the appropriate Bessel 
functions. Applying the end conditions (ij 0 = 0 when r = 0 (ii) d0/d.q = 0 
when v = I we obtain two equations of a form similar to those of sect. 3,2(b) 
and by use of the same method we obtain the fundamental torsional frequency, 
and the appropriate mode, 

(4 T * 0, 1’ = 0 

Equation (19) becomes 

(1 -TrJ f$ - 3+K2 (1-q) 0 = 0 . 

This can also be modified to a form of the Bessel equation the solution of 
which is 

where A, B are arbitrary constants and J, Y refer to the appropriate Bessel 
functions, By a similar process to 3,2(b) the fundamental torsional fre- 
quency and associated mode are obtained. 

Equation (19) reduces to 

This is the same form as equation (L5)‘. Reducing the equation to a form 
of the Bessel equation by substituting (1 -TV) = z we get 

d20 4 de K2 -+- y-b-0 = 0 0 
dr;2 ij dcz ** 
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The solution of which is in the form 

T 

, 

s (1 .-T-r)) 
-3/2 

0 
c c 

‘?/2 
" (1 - nl)> -I- BJS3,2 1: (1 - z'?l) * (26) 

\ 

This may be written as a simple trigonometric, 91. expression and the solution 
is then 

8 = (1 -sq)-3 p-3/2 'p [sin F(1 - ~71) - F('1 - ~GV) 00s p(l -TV) I ,- . 

r + B \ - (2(-l -mJ sin $(I - 771) - cos fi(4 - r~r)) 7 u 
c i I 

This is compatible Tj<ith equation (A,8)' and it is shown by satisfying the 
end conditions that the equation reduces to - 

sin $3 - 6 cos @ where a = --- sin p -k cos /3 and p 
tanp =: 

j+p2 (2+4(1-T) 

p is defined as the positive root of tho expression 

whence the frequency p :is given by 

401.3 ?,~umerical examples -- e-v-.. * - - - - .- -_ - _ _ - 

The frequencies are listed in Table 2 and the torsional modes are 
shown in ?i.c;03. The: .L "lutter coefficients were evaluated from the modes 
using Simpson's Rule, 

402 Pundarnental flexural mode --*__ _ _". _ _^-__--_ _--_ --.- 

The fwiciamental flexural. mode was calculated by treating the wing as 
a cantilever beam divided into four discrete sections. A comparison with 
the "exact" solution was obtained for case (a) and the mode shape and 
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frequency gave good agreement. The accuracy could be improved by increasing 
the number of sections. For case (a) ('G = I' = 0) the exact solution is 

P 
1.m2 

‘?F‘ 

= 27rj? = -- 
s* I 

-2 r&/see . 
2, m 

E 

A value of EIm is thus obtained for the assumed frequency of 16 c.p.s. 

4,2.1 Numerical exam@-g -"-_ -- -_ --- 

The results of the calculations are shown in Fig.4 and Table 2. A 
mode of parabolic shape of the form z = $ has been included in Fi 

7 
.4 and 

it may be seen that it corresuonds very closely to that of case 
(7 =: r = 2/3). 

(d 
The modes and frequencies were used directly in the flutter 

calculations, Simpson's Rule being used in the evaluation of the flutter 
integrals. 

The basis of the wing flexure - torsion flutter calculations is the 
method described by Templeto&. 

Two-dimensional incompressible flow aerodynamic derivatives9 were 
used throughout as we are mainly interested in a comparison of the ratio 
of the flutter speeds and not an absolute value. Agreement was roached 
between the assumed and derived frequency parameter. 

? 

. 

4.3.1 Numerical examples -__I---_--- -- 

The results obtained from the flutter calculations are listed in 
Table 2, and shown in Fig.7. In all cases the flutter speed and frequency 
are exPressed as ratios of the speed ard frequency of the wing with taper 
to that of the rectangular wing with constant skin thickness (1; = I' = 0). 

It is seen that for the rectangular wing the flutter speed increases 
from a minimum value for inverse skin taper (I' - -2) to a maximum for skin 
taper slightly < 1 then decreases. For the tapered wing with constant wing 
density, the flutter speed decreases with an increase in the skin taper in 
the range 0 c I' < 2/3. For skin taper < 0 an initial increase in the flutter 
speed seems likely. The probable result is shown by the broken line in 
Fig.7. 

5 AILSRON RBWRSAL ----.-- -- 

The method adopted for obtaining the critical ailerjn reversal speed 
and associated mode is described in detail in R 8: M 2186 . 

The integral equation is obtained and then the wing is divided into a 
number of rigid fore and aft strips interconnected by springs representative 
of the local stiffness. The solution then takes the form of an iterative 
process* 

A half span aileron, extending to the wing tip, with ratio of aileron 
chord to wing chord % = 0.20 was used in the calculations. The appropriate 
a;rodynami.c data Xcre determined from the gcomctry of the ~-Tin@ and aileron, 
and were assumed tq bc indepcndcnt cf the win& lzrist. ‘s”hs al YT(iS taken to 
be constant over the wing span, and a2 and m constant over the aileron span. 
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501 Derivation of equation - - __-_--_--_- ̂  - . - - ---a. 

At th," critics1 aileron reversal speed the equation developed in 
R & M 2186' is of the form 

f(y) r: +pV 2;~ f2r , E , c 1 ea,f+ (ea2-m) r 
I 

l-f --C ‘@l-l _ ay ay 
,! ! 

0 Y 
00. (27) 

where 

0 2 o. f(Y) 

A(f 

C 

s 
P r 

,\ 
I ,- 

.i i 
CY (aI - a2: fb 

0 

3 

z 
I a2 CY fb . 

.! 
0 

3 + a2 
3 

a~ 

The iteration process yields the aileron reversal speed and mode to a high 
order of accuracy. 

5-2 ~~~umericsl exam$es __-_-_. ------ ---- 

In all cases the critical aileron reve rsal speeds shown in Fig.8 are 
expreshed as ratios to the critical speed of the rectangular wing with 
uxiform skin thickness; the actual speeds obtained from the calculations are 
listed in Table 2. The nodes obtained with the mid-aileron position as the 
reference section are as shown in Fig.5. It may be seen that the variation 
of aileron reversal speed with skin taper exhibits characteristics similar 
to the divergelxe speed results, having an increase in the critical sped 
for rectangular wings, Txith increase in skin taper. For the tapered wing in 
the range 0 < I' < 2/3 there is a reduction in the critical speed with increase 
in skin taper. The probable result for skin taper < 0 is shown by the broken 
line in Fi.g.8. In Fig010 are shown the static torsional modes used in the 
iteration process obtain& by app>Jine; a unit torque at the wing tip. 

6 _C_Olr;P.FXTSL!N 09 MI CULAmD PLUTTER SFiWDS WITH C'RITERIOF RESULTS _. -_--- -__ -_ -_--. _-__--.-------._.-.--.. - _ --- 

Two forms of criterion are in current use for predicting wing flutter. 
It is 0;' interest to compare the speeds giv-n by these criteria with the 
flutter speeas f0;md in Section 4. 

. . The crltcrlon suggested by IdolyneuxqO is based essentially upon the 
static stiffnesses of the wing. It Is a semi-empirical criterion, aevel0ped 
using the results of vd?c; tu;mel and ground launched rocket model tests, and 
takes -tlE f OllOKiil~ form:- 
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..O (28) 

v2 = v, (1 - oo166 M, cos A> 

where V2 is the required flutter speed. 

Broadbent has proposed certain modifications to the above formula 
11 

, 
the main feature being the use of the strain energy in a linear t&St mode 
as an alternative to wing static torsional stiffness. The criterion is in 
a form suitable for early project work, and indicates the minimum stiffness 
required to give a safe margin on flutter at the design diving speed, thus 

U = 0.0035 s c2 vn2 1 '/2 -K (?!LJi -_-----.--- _--_-_ - 1 ‘J2 

i 
i f 

0.77 -I- \ +.) se?* (A - $) (1 - 0.,&l% cos q 

.*. (29) 

where 1: cos A 6 1. 

c is the chord (ft) at 0.75s from the root for 0 s T < 0.6, or at 
(0.775 - 0.125 'G)S from the root if 0.6 < 'c 6 1.0. p is the sweepbaok of 
the centre line of the box. 

For low aspect ratio (LR < 3) replace set J/2 (A - -q by 0.9 (I + y] 

/ sea [A 
\ 

-5 0 
> 

Since the formula includes a safety factor it cannot be used directly 
to predict flutter speed. It is therefore assumed that the flutter speed VF 
is related to the speed Vu given by the formula, as follows:- 

(i - 

vF = I .25 vD --- 
0.166 x 1.25 MD) 

~-=--KKii~ 

where $7.. is the EZach number at speed V II . The correction implies that the 
flutter speed is 2Y,$ iligile ,r than the design diving speed (roughly equiva- 
lent to a 50"/d margin on stiffness) and also allows for the change in Mach 
number. 

, 

The flutter speeds in Section 4 were found using aerodynamic deriva- 
tives for two-dimensional incompressible flow. In order to compare these 
speeds directly with those given by the criteria an allowance should be made 
for the effects of aspect ratio and Nach number. The following correction 
was adopted, 
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v z v. (I + A- “*) (I - 0,166 !io) , 
‘. / 

c 

where Vo is the original calculated speed, and Mo the correspotiing Mach 

number. No allowance is made for the leading edge sweepback of the tapered 
wing as its effect is smell. 

. 

The criterion speeds and modified calculated speeds are given in 
Table 3. %ach speed has been divided by the modified calculated speed for 
the rectangular wing with uniform skin thickness, and plotted as a speed 
ratio in Fig.9. The trends of variation of the modified calculated speeds 
with skin taper agree very well with those predicted by the Molyneux 
criterion, and the speed s are in excel!ent agreement for the rectangular 
wing. The corresponding trends predicted by the Broadbent criterion are 
opposite to those given by the Molyncux criterion and by calculation. It 
should be noted, however, that the variation of speed with skin taper is 
small in the ranGe considered. 

7 VXWTICT~ OF TORSICHAL STIFFNXS? X;iTrB SKIN TAPER -- - . .-,.,"..-z~--* c_c--.._.-_ *--_ _.." -._-------.---- -II 

Tne torsional stiffness of a wing as measured in a stiffness test at a 
reference section (si;atic stiffness) will in general be different from the 
effective stiffness in the actual mode of deformation (dynamic stiffness). 
In Ref.d an estimate has been made of the magnitude of this difference for 
the torsional mode in the flutter oscillation for tapered wings. In the 
present report the method is extended to include the effects of skin taper. 

The problem is approached by considering the strain energy in the two 
modes for a range of reference sections. One mcde, corresponding to the 
dynamic mode, is the "exact" mode obtained in So&ion 4.A and the other is 
that appropriate to a concentrated torque applied at a reference section. 

The strain energy in the wing is iierived from the general equation 

If the concentrated torque is applied e-i; some 
static strain energy for the general problem 

93 

reference section v, the 
can be written 

us = ; 
GJr 24 

---I_----. 
s(2 - 7)3(2- I\) 

(1 -TTI)~(I -b-j) (3-o 

The static mode is given by 
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and since by definition 0 = B. when q z v. where 0 is the twist at the 
0 

reference section we have 

‘I 0 

i 
drl --- -- 

; w--J3 (I-Td 

Case (a) T = T = 0 Rectangular wing with uniform skin thickness 

GJm eo2 
z- 

2s -T 

Case (b) 't = 0, I' * 0 Rectangular wing with skin taper 

0 
eO -r> 

EG 
@ yo&(l-rT$ a0 ----- 

0 log (I - r?Jo~ ’ -& = -G-- e 1 - r-q 5-7 

us = 
GJm 

. - -1-1 - I 
s(2 33 

00* T2 __ i"(,drn) 
ilog(l - rl-j,) I2 ; 

GJm Q2 -f 0 *- 
= -y@-.yylog(.l-i'rl,) 

(32) 

(33) 

(34) 

L 

/Case (c) 
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Case (c) 'G + 0, I 5: 0 Tapered wing 

8 

0 

o (1 -  n7,12 

z -II_ 

I  -  (1 -  ‘cg2 

2. = e. (1 - a+* ---..-- dn 1 - (i -7g2 

with uniform skin thickness 

us = 
‘I 6 GJm 
. ---- 0* T;- 
4243 O 

8GJ 
rn' 22 --. --- c2 

\3 0 s(2- 7;; 

Case (d) 'I: =: r + 0 

2T 
- ------T 
(1 -Q-l>-' 

r (I 
2 % 

-loI -j 
----e-v --." r) 

c-1 - (1 - T710)21 r i (1 -tv)J 
0 

c (1 - TQ2 
I--. --II_ 

i ( 1 - 1 - .?lo)2 I 

therefore 

24. GJ 
2 = ---- -+ 'GO 

42--T)! O 

(35) 

(36) 

As before the strain energy in the wing is derived from the general 
equation (30). Using the modes determined in Section 4.1.2 to fjnd de/dy, 
the solutions f'or the various cases are as follows, 



(a) r= ‘t= 0 From equation (23) 

sin L?! 
0 2 -O = A sin -$ -q = e. ---- 

therefore 

and 
GJ 

Ud = 2 

eO 2 1 
x 

.- sin{ q, 2 > , \ cos2 2 2 -0 0 drl 

0 

GJ 71 
= y-g 

2 0,' 

sin2 ," 2 rlo 

b) fc=o,r*o Born equation (24) writing 

z = (1 -r-Q> then co = (1 -hoI and P $ z 

we have 

0 = AJow + =o(Pc) = zo(l%) 

therefore 

and 

(37) 

c 
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Solution of this integral cG;n be expressed as 

0-r) 

(Pa2 - zo( Pd z2( PC)? 
I )I 

GJ, p2r 
= r- LLg! r[ z1 (c.+K) 12 - 

- -$2-=-g 1 i 
Z,(W) Z2(P-K) 

L 3 

- $ Gz, (s)12 - zob> z2(8g * i 

This expression presents some difficulties in determining Ud as the values 
of the constants k and B are different for each reference section, However 
from Section 4.1.2 and the Appendix the ratio of the constants has been 
determined. Vriting 

z. " 
c 
'J( Ti 0' > i- Yo( 1-j B , 

J 
Z, = i 

where 

B = 
eO ----I -..-.-----I_.-- 

$ Jo(pgo > -I- Yo(K,) 

B etc. 

(39) 

we czn write -k&E; expression for the dynamic strain energy as 

% = Zo(P-K> Z2(P-K) 

c (40) 

where the expression inside the brackets 
I! 

reduces to a single value for 
J 

a particular wing and the variation with the choice of reference section is 
incorporated in the term B2 equaLion (39). 

(c) 7 * 0, r = 0 This is treated in a similar manner to 7.2(b), when, from 
equa'iion (25), making the substitution < = (1 - zy), p = K/'c we have 
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and 

whence 

= - 

- 5 [[z2(p)12 - z,(p) z (p)7 -’ 
L 3 i i 

whence eqressing 

z I z @J() LE I +Y,( ;:13, z2 sf f- 7 B etc. 
J 1 li 

where 

we have 

- Z&$-K) Z,(@-K) 
3 

- 3 [z2m12 - z, (P> Z,(P) 

.o. (42) 

(a> z=T’*o The equation (26) by a similar substitution to 7.1,2(b) can 
be written as 

whence 

-3/2 
0 = z z3/2 (Pt;) 

de -~-- = 
a% - Pz-3’2 z5,* (p/g 
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and the expression for tile strain energy becomes 

'd 

8 GJr p22. 
= _ I* s---m 

s(2 - 2) 
4 

(43) 

The evaluation of Ud was hampered by the lack of suitable tables. In order 
to overcome this the Bessel funi. +ion obtained for de/d? was expressed as 
trigonometry ratios and then the integration for the dynamic strain energy 
was performed graphically, To reduce the work to a minimum we wrote 

where B = 

Hence for the numerical case considered 

Ud 
--- -- 

sin @go c 

7.3 Numerical examples -____-------.e --- 

The ratio of the strain energies U B Ud is obtained from the two 

preceding sections and as the twist of the reference section is the same in 
the two modes this ratio is also the ratio of the static stiffness to the 
dynamic stiffness m- d rn; . The results obtained are plotted, in Yig.11, 

against the spanwise co-ordinate -r-j, and show that an increase in skin taper 
produces a reduction in the stiffness ratio, the effect being most marked 
at the tip. For rectangular wings the peak of mO/mb moves from v = 0.8 to 

r) = 0.6 for skin taper variation of -2 6 I' $ 1 and falls from 0.955 for 
I‘ s -2 to 0,86 for i' = I, The effect of wing taper is similar to that 
obtained in Bef .l. The variation of m d mb with skin taper at reference 

section v = 0.7 is shoxn in Fig.12. POT rectangular wings the effect of 
skin taper is sli@t with r -C 2/3, but for 1‘ > 2/3 the reduction is more 
marked. For a tapered winr; t'ne reduction in m d mb in the range 
0 4 I' 6 2/3 is greater than for a rectangular wing in the case considered 
('G = ‘pj). In Fig.13 are plotted the dynamic mode and the static mode for 
reference section at q = 0.7 and q = 
taper (7 = 1' = 2/3) e 

1.0 for the tapered wing with skin 
It can be seen that the difference in strain energy 

is appreciable. 

8 CCi'CLUSIOK3 - - - -----*-- 

The main conclusion to be drawn from the present report is that the 
effect of skin taper on the divergence, flutter, and aileron reversal speeds 
is not large when the comparison i s made on the basis of constant wing weight. 

- 22 - 



For a rectangular wing, skin taper leads to a slight inorease in divergence, 
flutter, and reversal speeds, whereas 
decrease. 

skin inverse taper leads to a slight 
The op:?osite effect is obtained for a tapered wing nith a tip 

chord to root chord ratio of 1 : 3. 

The effect of skin taper on the ratio or" the static stiffness to the 
dyriamic stiffness is small for rectangular ;-sings in the realistic range of 
skin taper for a reference section at 0.7 se?&-span. r'or tapered wings 
the effect is more pronounced, the stiffness ratio diminishing as the skin 
taper is increased. 

A comparison of the calculated flutter speeds (found using two- 
dimensional derivatives) with speeds found from flutter criteria shows 
that the trerxls of variation of calculated speed with skin taper agree 
closely with those predicted by a criterion based upon static stiffness. 
A criterion based upon strain energy in a linear twist mode shows trends 
contrary to those given by calculation, 

al 

"2 

E 

f 

65 

GJ 

h 

I 

k 

K 

"d 

NOTATION ----- 

dCL aerodynamic coefficient - 
da 

dCI aerodynamic coefficient A 

wing chord ft 

defined in text 

W 
where F is the aileron rotation angle 

distance from wing root to equivalent tip (0.9s) 

distanae between flexural axis aild aerodynamic centre as fraction 
of the chord 

ratio of' aileron chord to wing chord 

flutter frequency cOg.s. 

position OX inertia axis aft of L.E. as fraction of chord 

torsional rigidity at a section 

position of flexuzal axis aft of L3. as fraction of chord 

value of inertia at a section / unit length 

ratio of tip chord to root chord 

defined in text 

flexural stiffness as measured at reference section lb ft/rad 

t  

L 

. 

E 

A 
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>-CTATICPT (Contd) --I _^ -* 

m 

m0 

M 

J\$ 

P 

r 

v 

vc 

5 

v2 

X 

Y 

2 

a 

G 
-1 J. 

2; 

v 

6 

h 

aerodynamic coeff, dCm 
ld';? 

torsional stiffness as measured at reference section lb ft/rad 

free stream iAac:l number 

free stream Mach number corresponding to speed V, 

fundamental wing torsional freq. c.pOs. 

stiffness ratio 

wing semi-span (root to tip) ft 

skin thickness 

defined in text 

strain energy in a linear torsion mode, torsion about the 
centre-line of the box with an amplitude of one radian at 
the tip (lb ft) 

critical speed ft/sec 

critical flutter speed 

design diving speed (X 

as used in criterion 

cos A s 1) knots I=,A.S. 

final estimated flutter speed as used in criterion 

chordv:ise coordinate (ai't of rcfcrence axis) 

spanwise coordinate 

downv?ard dis$Lscement 

wing incidence radians 

angle of sweeTback of wing Plex~al axis radians 

skin taycr = (' - 'tijjtroot) 

(-I -Tqj o~ (I - I?-$ as defined in text 

non-dimensional spanv&e coordinate 

wing twist 

sweepback leading cdgc radians 
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P 

pw 

o- W 

'I: 

ix 

I:OTAYtors (conta) -"-* - -deI- 

air density p, = density sea level (0.002378 sluga/ft3) 

wing density / maas of one wint I = ------s sluga/ft 3 
\ 2 SC > m 

wing relative density = den- of wing 
density of surrounling air 

f 
C\ 

wingtaper(l -kj = 1 -r) 
\ Yu 

aspect ratio 

Subscriats -.--- - . A.. _I 

m refers to value at the mean chord position 

r refers to value at the mean &iiord position when tm is varied 

T refers to value at the tip 

R refers to value at the root 

0 refers to value of expression when z' = i' = 0 
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. 

CcLlculation of divergcrice speed a-id mdc fi;r 2 z 2/j, r "' 0. 

From equation (14-) we hsvc the solution as 

where 

and putting equation (a> in the form 

This ecpxtion must satisfy the en& Corditioix3 

(i) f = 0 when rl =O 

From (i) 0 -1 Z2(2y) if (1 .-m-J * 0, 
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Appendix 1 

For variable V we have, with the other terms being constant. 

i 

--- 

v 

i 

w.- L* . 

1000 
'1200 
1400 
1 Go0 
1300 

1 - -- -- 

---I------ 
! 

J&d ’ 
I 

y2h) 

oe41324 
0.20584 

-0.05231 
-0.25209 
-0.31215 

O.l.!&Yj 
ou33391 
Ob35491 
0.21-&2 

-0.0~329 

-j- 
I 

i 
I 
I 

_,I-- - - - .  L -  -e. , * . . ! “ . - .~  I--_ -  - - .  

-- -. --_---- 
t 

I--- 
t--‘-"- ----- 

0.15931 -0095951 6.02289 
0,233EG -0,69691 2,917u. 
0,3lCBl -0ey770 1 .62383 
0 0 3z577 

1 
-0a36106 0.93595 

Oe42671 -0.20713 0.43553 
I 

- ---.---.- - --!-- --- 

Plotting 6 qainst the speed V in Fig. 14 vre get V G 4580 ft/sec for 
the condition t;lat 4 is the same for both eoLuation (45) and (46) e Replotting 
for a narrower band of V (say 1550 < V < 1600) we fird that V z 1531.4 ft/sec 

A for a value of - f 0.9875. B 

Substituting this value of V SncL into equations (45) and (46) we 
have a check on the value of $ ., S'rom (45) i E- 0.93742. From (46) f 

.A - = 0.9a73a. B 
. 

The value of $ was taken as 0,9374. The mcde is given by equation (L$+)* 
Taking unit displackment at a reference section (say f = 1 at 11 = 1) the 
value3 of A and B can be determined .znd hence the mcde shape. 

The method is e3scntFslly the same for the other sol&ions. In the 
torsion cast the frequency p was taken a3 the variable. 
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Mean chord c m 

Flemrczl axis aft GE wi.r;,v, L.l3. 

0.267c 

0.0932 slugs 

?auttes Aileron 
reversal 

speed 
ft/scc 

-. --.1-_1_ 

534.1 

568.7 
568,4 
467 0 y 

823.8 

803.3 

I 
Cvcrgence 

speed 
.rt/sec 
_ . - --, -I _.-- 

1017.8 47501 

1101 .?I lc92.3 
1094.0 498.1 

G7C.Z 425.7 

15G4.2 

I . _.. _--....------ _ m-e - 

V& ---- -, 
Plc!xme 

c.p,s. 
.-_--.-m-w 

16 

32.2 
21.7 
11 4. 

27.1 

35.5 

/ 
I- 
j 

i 

I 
1 

I 
/ -. 

i i i 
1. 

I  - - - -  

Y!orsion 
c.p.s. 
. -- I -e-v... 

50 

:"z 
3$:& 

c5.10 

97.a 

(0) 'C f 0 i'-0 
T &'3 

( cons-t 0 t) 
_.- - . - _. - - * - .,.^ - -. 

. 
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TABLE 3 ---- 

_Comparison of Criterion and caloulat~$ flutter spe& (ft/sec) 

----- 

__cI _--- --.. - 

,a) z = 3: = 0 

:b) z = 0 1’ * 0 
y s I 
1’ = 2/3 
y = -2 

:c> T + 0 " = 0 
T = 2/s 

3) 1; = 1’ * 0 
‘c=* 7 = z/3 

- _-. _--._._ --- _-~ 

-.---- 

Modified 
calculated 

speed 
_ - --_I- 

529.9 

- -  

i 

i 

hlolyneux 
criterion 

speed 
.-_- e---m - -- 

537.0 

547.6 557.2 
553.5 551t.e 6 
478.6 497.8 

790.1 

755.6 

-- ---- 

725.9 

709*6 

.-v--T 

Broadbent criteriol? 
speeds 

457 -6 
464.6 
485.1 

581.1 

615.5 

% 

we- -  

579.6 

561.6 
57060 
534.6 

709.3 

750.1 

z 

c 

^ . 

* 
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LINE OF AEROOYNAMIC CENTRES 
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5 dY 

*. 
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1 

FIG. I. DIAGRAM OF TAPERED WING. 
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‘3 

I-0 

FIG. 2. DIVERGENCE MODES. 
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FIG. 3. FUNDAMENTAL TORSIONAL MODES. 
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FIG. 4. FUNDAMENTAL FLEXURAL MODES. 

0 0*2 0*4 

-TOO r-01 

r=; P=O 

z=o r=$ 
~30 f-0 
x=0 t-r-2 

FIG. 5. AILERON REVERSAL MODES. 
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FIG. 6. VARIATION OF DIVERGENCE SPEED WITH 7 
SKIN TAPER. 
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I-. RATIO - 
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-2 -I 0 P I 

FIG. 7. VARIATION OF CRITICAL FLUTTER SPEED AND 
FREQUENCY RATIOS WITH SKIN TAPER. 
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FIG. 8. VARIATION OF AILERON REVERSAL 
SPEED WITH SKIN TAPER. 
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FIG. 9, COMPARISON OF FLUTTER SPEEDS 
OBTAINED FROM CRITERIA AND 

CALCULATION. 
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FIG. II. VARIATION OF STIFFNESS WITH 
REFERENCE SECTION. 
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FIG. 12. VARIATION OF STIFFNESS WITH SKIN 
TAPER AT REFERENCE SECTION Om7S. 
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.:,F,,c, C,F. No.@ 533.6.013.412 : 
629.13.012.612 

THE EFFECT OF SKIN TAPER ON THE AEROELASTIC PROPERTIES 
OF WINGS. Rein, J. ii. March, 1961. 

An analysis is made of the effect of linear variation of the spanwise 
skin thickness on the divergence, flutter, and aileron reversal speeds of 
thin wings. 

It is assumed that the wing weight and stiffness are provided by the 
skin alone and that the wing mass remains constant for the tapers 
considered. 

It is shown that for rectangular wings, a skin thickness tapering 
from root to tip produces an increase of up to 8:; in the critical speeds, 
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An analysis is made of the effect of linear variation of the spanwise 
skin thickness on the divergence, flutter, and aileron reversal speeds of 
thin wings. 

It is assumed that the wing weight and stiffness are provided by the 
skin alone and that the wing mass remains constant for the tapers 
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It is shown that for rectangular wings, a skin thickness tapering 
from root to tip produces an increase of up to 8% in the critical speeds, 
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THE EFFECT OF SKIN TrpER ON THE IJZROELASTIC PROPERTIES 
OF WINGS. Rein, J. A. March, 1961. 

An analysis is made of the effect of linear variation of the spanwise 
skin thickness on the divergence, flutter, and aileron reversal speeds of 
thin wings. 

It is assumed that the wing weight and stiffness are provided by the 
skin alone and that the wing mass remains constant for the tapers 
considered. 

It is shown that for rectangular wings, a skin thickness tapering 
from root to tip produces an increase of up to 85 in the critical speeds, 

(Over) 



vfhereas ah inverse taper results in a reduction of up to 14s. For a 
tapered wing, skin thickness tapering from root to tip results in a 
reduction in the critical speeds of up to 7%. 

A comparison is made between the results obtained from the analysis 
and from some flutter speed criteria. Further the effect of skin taper 
on the mode of distortion and on the dynamic torsional stiffness is 
investigated. 

whereas an inverse taper results in a reduction of up to 14% For a mereas an inverse taper results in a reduction of up to 14%. For a 
tapered wing, skin thickness tapering from root to tip results in a tapered wing, skin thickness tapering from root to tip results in a 
reduction in the critical speeds of up to 7% reduction in the Critical speeds of up to 7%. 

A comparison Is made between tho results obtained from the analysis 
and from some flutter speed criteria. Further the effect of skin taper 
on the mode of distortion end on the dynamic torsional stiffness is 
investigated. 

A comparison is made between the results obtained from the analysis 
and from some flutter speed criteria. Further the effect of skin taper 
on the mode of distortion and on the dynamic torsional stiffness is 
investigated. 
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