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SUALRY

An analysis is made of the effect of lincar variation of the spanwise
skin thickness on tle divergence, flutter, and aileron reversal speeds of

thin wings.

Tt is assumed that the wing weight and stiffness arc provided by the
skin alone and that the wing mass remains constant for the tapers considered.

It is shown that for rectangular wings, a skin thickness tapering from
root to tip produces an increase of up to &6 in the critical speeds, whereas
an inverse taper results in a reduction of up to 1Lk. TFor a tapered wing,
skin thickness tapering from roct to tip results in a reduction in the
critical speeds of up o T

A comparison is made between the results obtained from the analysis and
from some flutter speed criteria., Further the effect of skin taper on the
mode of distortion and on the dynamic torsional stiffness is investigated.

Replaces R.A.E. Report No. Structures 264 - A.R.C. 22,963
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1 IVTRODUCTION

In recent years there have been numerous reports1’2’3 on. the effect
of wing tapcr on the various aspects of aeroelasticity. It was felt that
there was a need to investigate the corresponding effect of varying the
spanwise skin thickness.

The scope of the present investigation, with its concept of an
idealised wing is (a) to show the effect of the different modes on the
aeroelastic properties, (b) to make a comparison of the results obtained
with various criteria in use at the R.A.E., to ascertain if a corrcction
factor for skin taper is nccessary, (c) to show the variation of the measurcd
static stiffrness to the effective dynanic stiffncss for the various tapers
taken over a range of reference secctions.

The problem was approached by choosing a stiffness distribution along
the span and obtaining where possible the exact solution for the modes of
deformation. Where the cxact solution could not readily be obtained
sinpler methods of calculation were used.

2 VARTATION OF WING PROPERTIES WITH TAPER

The geometry and basic properties of the wing are shown in Fig.1l and
Table 1 respectively. These arc gimilar to those used by Molyneux4 but the
flexural axis has been moved further aft to obtain a finite divergence
speed.

The wing is considered to be a thin walled closed tube with constant
wing thickness to chord ratio, the wing weight and stiffness being provided
by the skin alone. To provide a basis for comparison of the effect of taper
a constant wing mass was maintained. It is assumed that planc cross sections
of the wing remain plane under load, and that the skin thickness and the
wing chord vary spanwisc in a linear manner.

With thesc assumptions it can be shown that taking the mean chord as
standard we can express the skin thickness and thc chord in the following
nanner,

2 (1 -1 %
(2 = 1)

2 (1 - amn) c. ()
) (2 - T) )

If wing taper and skin taper are considered together then the skin
thickness at the mean chord will have to be varied to keep the wing mass
constant, If tm is the skin thickness of a wing having uniform skin thick-

ness it can be shown that for constent wing mass

( iy
b = L1 T2 -6 (v 1)+ hmr} b (3)

Thus for a rectangular wing (v = 0) or constant skin thickness (I' = 0) we

have t =1t .
r m
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From the Bredt-Batho formulac for a thin wall tube with parallel
generators we have that the St. Venant torsion constant J is proportional
to the skin thickness t.

For a rectangular wing the torsional rigidity at an arbitrary section

is given by
. 2\U =T ) L
GJ = —%E—_ f%L GJr .

Taking wing taper into account we have i
2(1 = ) 2(1 - Tn)

where

5T ~
Gy = {1 T2 (v + 1) + lwl‘} Gy

Similarly for local value of the inertia

3 n
S ST L EE P o

There are four cases Tor which solutions can be readily obtained:- -

(a) =

(b) ¢ = 0 '+0 Rectangular wing with skin taper

T = 0 Rectangular wing with wnilorm skin

(c¢) < % O I'=0 Tapered wing with unilorm skin
(a) <« =1 % 0 Tapered wing with same value for skin taper.
The tapers considered are:-

t

I'=0,1, 2/3, -2 go that §2 =1, O, 1/3, 3 respectively and
R
2 Cr 1
T =0, /3 so that «— = 1, /3.
R
3 DIVERGENCE .

The method uscd for the solution of the problem of wing torsional
divergence is essentially that outlined by Broadbent”. The wing is con-
sidered to be rigidly built-in at the root, while the aerodynamic coefficient

a, is assumed to be constant along the span and independent of the twist of

the wing. Considering the wing to be a tube in which the skin thickness can
be varied spanwise the position of the flexural axis will be constant chord-
wise and taking the acrodynamic centre at the 1 chord position we have the
parameter e constant.

The general differcntial equation is developed for wing and skin taper,
and then the 'exact' solution, Tor the different cascs, is fourd.

-5 -
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3,4 Derivation of ecuation

(.

-E—VE [e 2y ozedy

. ‘o de 4
Tor the critical condition we have ™ =2
+J

y

or
y 8
- 4 > / _1_— /‘ 3 2 A
0 = zpV | GJ’ea,‘c@dyJ.y o (6)
C J
Substituting equations (2) and (4) into the above and writing
-‘E = 7 and 6 = aof(y)
N T 1
“ (2"‘"1:)(2"‘11) e &
f = pVL TS T S G*n2 82 [ “m"'“‘%"“'—' [(1 —m)zf dndn . (7)
r ‘ (1-n)”(1-In)
© m
Putting
5 r (2-7)(2-7)e a, 5 i
uoo= o A “n ® (8)

£

and differentiating (7) we obtain

- 1
ar - 2
?1—1:] = u5 [(1—Tn) fdn .
(1-m)” (1-I'n)
it
Purther differertiating then yields
3 a°s 2 1 ar 2 2
(1-m)? (1=Tm) =5 - (1-m) (3501 =10) + 201 - on) g;;- = - u(1-7m)F .
dn L Jen
Ir (1 - ) £ 0,
a- .
(1 =m)(1-Tn) "-—*g - {33(1 - I'n) + (1 -’L'T]) —gﬁ + u2f = 0 (9)
dm Jon

3.2  Golutions for particular cases

(a) T = I = 0, rectangular wing with uniform skin thickness. Equation (9)
reduces to



=X +uf = 0 . (10)

Solution of this equation is of the form
f = A sin un + B cos un

where A and B are arbitrary constants defined by the boundary conditions

which are £ = O when n =0 and-%% = 0 when m = 1.

Thereflore
B = 0O and Aucosu = O
whence since
A ¥ 0, u = (2n + 1)-%, n = 0,1, 2 coos

For the lowest critical speed from equation (8) with n = O we have

2 GJ
r

V - — P

2

ea, S C
P 1 m

(b) 1 =0T # 0, rectangular wing with varying skin thickness.
Equation (9) reduces to

2-13
(1~I‘n)£1-§——1‘—(i—i:+u2f -0 . (11)
dn dn

By substituting (1 - Tm) = £ equation (11) can be modified to a form of
Bessel's equation expressed as

2 . 2
S R
dg & & & T
The solution of which is
8 AT + 3y (22 VAT
£ o= AT (erﬂ-rn) + BY (2I,f1 Tn) (12)

where A and B are arbitrery constants and J,Y refer to the appropriate
Bessel functions. Apnlying the boundary conditions £ = O when m = O and
df/dn = O when n = 1 we obtain two equations of the form

u u
AT (2 1,) + BY (2 r) = 0

AT, (2%%1‘:"?') + BY, (22yT-T) = 0
..7_



from which the lowest critical speed which satisfies both equations
gsimultaneously for a particular value of T can be found. Details of a
graphical method of obtaining the lowest criticsl speed and the mode of
defornstion is given in the appendix.

(e) T #% 0, T =0, Eguation (9) for a tapered wing with uniform skin
thickness reduces to

£ 2l
(- & -3+ v = 0 . (13)
an an

Making the substitution (1 - tn) = 2 it can be verified that eguation (13)
reduces to a Bessel equation of the form

2
a3 af

1
o+ e
o

2
. o
ol % a4z 5

T

The solution of which is
£ = (1 m)” (AJZ (z—iﬁ‘“:"m) + BY, (2 % & 1‘%},)7& o (1)
“ J

Substituting in the boundary condition and by a method similar to 3.2(b) and
the Appendix the lowest critical speed and corresponding mode of deformation
is found.

(a) v =T %0, for a tapercd wing with the same skin taper equation (9)
reduces to

2

(4 —¢Tﬁ2 af . L (1-Tﬂ>'%£ + uzf = 0
an an

the solution of Whioh3 is

.3 —
/2 !A sin {a log(1-—¢n)3 + B cos {a log(1-¢n)§i]
J

where

> Y
o = 4 -9) . (15)

L \\’L‘

i
-

Satisfying the boundery conditicns we have for =0, B = O,

a = g'tan {m log (1 - T)} (16)

(since A * 0).



Solving this equation for o in terms of T we obtain the critical
divergence speed by substitution from equations (8) and (13).

3.3 Numerical examples

With the substitution of the taper values in section 2, and the wing
properties, listed in Table 1, into the solutions of the differential
equations, the divergence speeds are obtained, shown in Table 2, and the
divergence mode shapes are as shown in Fig.2. The ratio of the divergence
speed with taper to the divergence speed of the rectangular wing with
uniform skin thickness is plotted against the value of the skin taper in
Fig.6. This shows thaet for a rectangular wing of constant mass the diver-
gence speed increases with skin taper, whereas for a tapered wing of con-
stant mass the divergence speed dcecreases with increasing skin taper for
the range of skin taver O < 1' < 2/3,

For the tapered wing the effect of kceping a constant skin thickness
et the mean chord (rather than constant wing mass) is shown by the dotted
line in Fig.6 and it can be seen that the divergence speed then increases
with skin teper. IHowever, comparison for constant mass seems morc logical,
and on this basis it may be expected that there will be an initial increase
of divergence speed as the value of the skin taper is reduced below T' = O.
The probable result is shown by the broken line in Fig.6.

L ELUITER

For the flutter investigation, only two modes were considered, namely,
pure flexure and torsion about a flexure axis for a cantilever beam. The
"exact" solution was obtained for the torsion mode but a simpler but
slightly less accurate solution was obtained for the flexural mode, as it
has been shown' that small variations in the flexural mode do not signifi-
cantly affect the flutter mode.

k.1 Fundamental torsional mode

The differential equation is derived on the basis that the fundamental
torsional mode of the wing in the flutter oscillation will be essentially
the same as the fundamental torsional mode of a cantilever beam vibrating
in vacuo. The Jjustification of this assumption has been demonstratedtsd,

L.1.1 Derivation of equation

The method used is essentially that developed in Refs.4,6,7. The
differential equation for the torsional oscillation of the wing is

2

38 _ 90 /.5 36\
I—5 - {6J o . . (17)
at2 oy \ ay/
For the fundamental mode of vibration
626 2
® = 8, sin (pt + ¢) or —5 = -p6 .
ot

Substituting equations (4) and (5) into equation (17) and changing the
variable we have



Iy

- £ {(1 —en) (1-Tn) %%} s I, (1-m) (1-T) @ = O
veo (18)

performing the differentiations and if (1 -qn) = O we can write

.2
(1 - em)(1-Tn) 2 - {31(1 crn) + (1 - | L s P mm(i-T)e = 0

d
dn J m
ees (19)
where
2 2
2 P s II‘ ( 20 )
.t{ - ——— ..G.-j..,__..—-.
L.1.2 Solutions for particular cascs
(a) T=T =0
The differential equation (19) reduces to
2
48 .x% = o . (21)
2
dn

The solution of which is
0 = A sin Xy + B cos Kn

where A and B are arbitrary constants. Applying the end conditions
(i) 5 = 0 where n = O and (i1i) d8/dn = O when m = 1 we have from (i) that

B =0 and from (ii) that since A + O, cos K =0, or K = (2n + 1) %2
n=0,1, 2. Therefore
| GI,
P sl T, (22)
T

Tt is assumed that the frequency ol torsional vibration of the rectangular
wing with constant skin thickness is 50 c.p.s. Hence we obtain the value
of the torsional rigidity, and the mode of oscillation is given by

0 = A sin-g 1 (23)

where A is to be determined by the amplitude of the oscillation.

- 10 -



(b) 4=0,T*0

The differential equation (19) becomes,

2
a0 e .2 .
(1-1‘11)—"2--TE;1+K (1-M) 6 = 0 .

dm

Putting (1-Pn) = Z this equation can be rcduced to a Bessel equation
of the form

a° o ¥

Sz 450 = 0 .

1
LA
it & 4 42

<D

The solution of which is
B &
6 = AT 3@ (1-1Tn) | + BY X (1 -Tn) (24)
o) L} ) o )T

where A and B are arbitrary constants and J refers to the approprlate Bessel
functions, Applying the end conditions (1) 8 =0 whenmn =0 (11) as/dn = 0
when mn = 1 we obtain two equations of a form similar 4o those of sect. 3. Z(b)
and by use of the same method we obtain the fundamental torsional freguency,
and the appropriate mode,

(¢) %0, T'=0
Equation (19) becomes
4% a6 . .2
(1-mm) == ~-31-—=+K (1-mm) 6 = 0 .
2 dn
dn
This can also be medified to a form of the Bessel cquation the solution of

which is

6 = (1~ [AJ K~ (1 —fvn) + BY, G% (1-—Tn)>} (25)

where A, B are arbitrary constants end J, Y refer to the appropriate Bessel
functions. By a sinilar process to 3.2(b) the fundamental torsional fre-
gquency and assoclated mode are obtained.

() Tt=T%0

Equation (19) reduces to

2
(1-m)2-@—q—m(1-m)99+1<2 (1-»m)ze = 0 .
dnz dn

This is the same Torm as equation (A.5)1. Reducing the equation to a form
of the Besazel equation by substituting (1-—Tﬂ) = Z we get

=)

2 2
é—% + %3 %% + =5 6 = 0 .
az © g



in

The solution of which is in the form
~3/2 < /%
= .- X i" bl —E -~ o 26
0 (1 - ) {AJB /5 C’” (1 m)> +BI_; /o (\T (1 m))} (26)

This nay be written as & simple trigonometrical expression and the solution
is then

6 = (1-7)7 p /e * A {Sin B(1-wn) - p(1 = m) cos B(4 -m)}

+ B {— 6(1 =) sin p(1 - ) - cos B(1 - Tﬂ)} :}

. s . . . vi < e s . .
This is compatible with equation (A.8)" and it is shown by satisfying the
end conditions that the equation reduces to -

1/2 N (sinp(i- -
5 / (1—Tﬂ)2<9 = ksé?gg%ﬁ§ﬁL - 0086(1—Tﬂ)} - @{Sin5(1“Tﬂ) +_gg%§§%5§nl}

snp-feosf Lo gmp o SLE (D
B sin B + cos B 3+92 (2+7)(1-1)

where o

f is defined as the positive root of the expression

2 2 i
62 . 8» _r _ ??&..*2 fm. - __.KZ
- 2 GJ 2 GJ - 2
T r T m T

le1.3 Iumerical examples

mmikcyuwmoamzhﬁmalnTaﬂeQ and the torsional modes are
shown in Fig.3. The flutter coefficients were evaluated from the modes
using Simpson's Rule.

L.2 Tundamental flexural mode
The fundamental flexural mode was calculated by treating the wing as

o cantilever beam divided into four discretc sections. A comparison with
the "exact" solubtion was obtained for case {a) and the mode shape and

- 12 -



frequency gave good agreement. The accuracy could be improved by increasing
the number of sections. Tor case (a) (t = I' = 0) the cxact solution is

—

2 (BT
p = 2nf = 1'825 mm rad/sec .

5 N

A value of EIm is thus obtained for the assumed frequency of 16 C.p.Se.

Le2,1 Numerical examples

The results of the calculations are shown in Fig.4 and Table 2. A
node of vparabolic shape of the form z = rf has been included in Fig.h and
it may be_seen that it corresponds very closely to that of case (d%

(T = I = /3). The modes and frequencies were used directly in the flutter
calculations, Simpson's Rule being used in the evaluation of the flutter
integrals.

4.3 Flutter calculations

The basis of the wing flexure - +torsion flutter calculations 1s the
method described by Templetona.

Two~dimensional incompressible flow aerodynamic derivatives? were
used throughout as we are mainly intercsted in a comparison of the ratio
of the flutter speeds and not an absolute valuc. Agreement was reached
between the assumed and derived {requency parameter.

4.3.1 Numerical examples

The results obtained from the flutter calculations are listed in
Table 2, and shown in Fig.7. In all cases the flutter speed and frequency
arc expressed as ratios of the speed and freguency of the wing with taper
to that of the rectangular wing with constant skin thickness (v =7 = 0).

It is seen that for the rcctangular wing the flutter speed increases
from a minimum value for inverse skin taper (T = -2) to a maximum for skin
taper slightly < 1 then decreases. For the tapcred wing with constant wing
density, the flutter speed decreases with an incrcase in the skin taper in
the range O < T < 2/3, TPFor skin taper < O an initial increase in the flutter
speed seems likely. The probable result is shown by the broken line in
Fig.7.

5 ATLERON REVERSAL

The method adopted for obtaining the critical ailergn reversal speed
and associated mode is described in detail in R & M 2186 “.

The integral equation is obtained and then the wing is divided into a
number of rigid fore and aft strips interconnected by springs represcntative
of the local stiffness. The solution then takes the form of an iterative

process.

A half span aileron, extending to the wing tip, with ratio of aileron
chord to wing chord I = 0.20 was used in the calculations. The appropriate
acredynamic data were determined from the geometry of tho wing and aileron,
ard werc assumed to be independent of the wing tuist. Thus aq was taken to

be constant over the wing span, and 2y and m constant over the aileron span.

- 13 -
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5.1 Derivation of cquation

A% the critical aileron reversal speed the equation developed in
R &M 21867 is of the form

S
2 Al
£(y) = %’pV2 , 'é~ [ c | ca, £ + (eaz-m) { - --—L~l} dy dy
0 Y
o e @ (27)
where
6 = 0_f£(y)
s
AR) = /) cy ga - ay Y £(y) + a2} dy
o
C = [az cy dy .
o

The iteration process yields the aileron reversal speed and mode to a high
order of accuracy.

5.2 Numerical cxamples

In all cases the critical aileron reversal speeds shown in Fig.8 are
expresced as ratios to the critical specd of the rectangular wing with
uniform siin thickness; the actual speeds obtained from the calculations are
listed in Table 2. The nodes obtained with the mid-aileron position as the
reference section are as shown in FigeH., It may be seen that the variation
of aileron rcversal speed with skin taper exhibits characteristics similar
to the divergence speed results, having an increase in the critical specd
for rcctangular w1ngs, with 1noreaso in skin taper. For the tapcred wing in
the range O < I € 2/% there is a reduction in the critical speed with increasc
in skin taper. The probable rcsult for skin taper < O is shown by the broken
line in Fig.8. In Fig.10 are shown the static torsional modes used in the
iteration process obtained by applying a unit torgue at the wing tip.

6 COMPARTSCN OF CAT CULATED FLUTTER SFEEDS WITH CRITERION RESULTS

Two forms of criterion are in current use for predicting wing flutter.
It is of interest to compare the speeds given by these criteria with the
flutter speeds found in Section L.

The critcrion sugrested by lolyneux'O is based essentially upon the
static stiffnesses of the wing. It is a semi-empirical criterion, developed
using the results of wind tunnel and ground launched rocket model tests, and
talkes the following form:-

-l -



n §Y2 (0.9 - 0. 3)x)<§ 77 +.-—> (? 95 + W'> 7 /A ) )

\ps cmz/ 0.78 (g - 0.1)

<!

eeo (28)

v, (1 - 0.1656 M, cos A)

where V2 is the required flutter speed.

Broadbent has proposed certain modifications 1o the above formula11,
the main feature being the use of the strain energy in a linear twist mede
as an alternative to wing static torsional stiffness. The criterion is in
a form suitable for early project work, and indicates the minimum stiffness
required to give a safe margin on flutter at the design diving speed, thus

1/5 1/2
U = 0.0035 s o Vb J SR L1 Bl - ]

[(b 77 4 1> o’ 2 <A __%%> (1 = 0.166% cos A)[
eee 7(29)

where M cos A < 1.
¢ is the chord (ft) at 0.75s from the root for O € © < 0.6, or at

(0.775 = 0,125 7)s from the root if 0.6 < 1 < 1.0. B is the sweepback of
the centre line of the box.

Tor low aspect ratio (R < 3) replace sec3/2 <A --f%> by 0.9 {1 +-9j§}

seq {A - T€>
\

Since the formula includes a safety factor it cannot be used directly
to predict flutter speed. It is therefore assumed that the flutter speed VF

is related to the speed Vb given by the formula, as follows:-

(1 - 0.166 x 1.25 i)
Vp = 125 Ve 0.7CE W)

where ﬂ is the Mach number at speed V The correction implies that the

flutter speed is 255 higher than the desxgn diving speed (roughly equiva-
lent to a 5CH margin on stiffness) and also allows for the change in Mach
number.,

The flutter speeds in Section 4 were found using aerodynamic deriva-
tives for two-dimensional incompressible flow. In order to compare these
speeds directly with those given by the critcria an allowance should be made
for the effects of aspect ratio and Mach number. The following correction
was adopted,

- 15 -



/y . 9.8 -
Vo= V{14 A>(1 0.166 Mo) ,

A\,
"

where VO is the original calculated speed, and MO the corresponding Mach

number. No allowance is made for the leading edge sweepback of the tapered
wing as its effect is small.

The criterion speeds and modified calculated speeds are given in
Table 3. TXach speed has been divided by the modified calculated speed for
the rectangular wing with uniform skin thickness, and plotted as a speed
ratio in Pig.9. The trends of variation of the modified calculated speeds
with skin taper agree very well with those predicted by the Molyneux
criterion, and the speeds are in excellent agrcement for the rectangular
wing. The corresponding trends predicted by the Broadbent criterion are
opposite to those given by the Molyncux criterion and by calculation. It
should be noted, however, that the variation of speed with skin taper is
small in the range considered.

7 VART/TION OF TORSTONAL STIFFIESS WITH SKIN TAPER
The torsional stiffness of a wing as measured in a stiffness test at a
reference section (static stiffness) will in gencral be different from the
effective stiffness in the actual mode of deformation (dynamic stiffress).
In Ref.1 an cetimate has been made of the magnitude of this difference for
the torsional mode in the flutter oscillation for tapered wings. In the
present report the method is extended to include the effects of skin taper.

The problem is approached by considering the strain energy in the two
modes for a range of reference sections. Cne mede, corresponding to the
dynamic mode, is the "exact" mode obtained in Scction 4.1 and the other is
that appropriate to a concentrated torque applied at a reference scction.

7.1 Btatic stiffness

The strain energy in the wing is derived from the general equation

2

1 GJ /de\
W = = — (=) dn . 0
d 7 o Kd”/ M (30)

If the concentrated torque is appliecd at somc reference section My the

static strain cnergyv for the general problem can be written

" o
U = 1 —Eir—:i--—-—-"—-- [ (1- 'm\B(‘l -T'm) <§_@>2 dn (31)
S % a2-)(2-1) g ' o

The static mode is given by

3 n
6 o L2-0)” (2-T) [ dr

M g ! -»m)3 (1-Tn)
r o

-6 -



and since by definition 6 = 60 when n = My where 60 is the twist at
reference section we have
m
d
SN P -
5 (1=wm)? (1-Tn)

e r e o o o e . et

Mo

amn .
S (- (1-1Tn)

Case (a) v =T = O Rectangular wing with uniform skin thickness

ﬂo ”
GJ
U = - ,f ’/'Sl"e“ d’r)
8 s | Ldn
o)

GJ 8 2

. B 0o

5 My

Case (b) © =0, T # 0 Rectangular wing with skin taper

o
- log (1-Tn) ae 0 (-1)
® = %% Tog (i-Tn) » dn T Tog l-Tny) " (I-Tm)
i
e} 02 1° © 3

U = ..._a_m.._)... 0 2[ - ﬂr)

e G A TP N NS e IS

eI 62 1
m 0

T s(2-T) ° 1og(d -I‘noj

the

(32)

(33)

(34)

/Case (c)
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Case (c¢) v+ 0, ' = 0 Tapered wing with uniform skin thickness

% g _,mo)2 {1 - (1 —ﬂm)ﬁ

1o (=m)? W-m)® )

2
dae eo (1 - Tno> 27T

——— — o e ————

2 z
1= -m) (1-m)

b
16 GJ f (1 -’C'Y‘} ) ‘)2 /~ d'ﬂ

A t1~<1-mn>2J (1)

<
i

(35)

n N2
3 GJm T 2 [ (1 -Tﬂo) }
o PR
o |4 - (1= )

t
n
—~
o
t
I
o
N

Case (d) t =T + 0

. \3
. Go(l—TﬂJ {1"“"‘7”13}
{1 - (1= )’} L = )

(‘ (1—’m) Y 3¢
° U - (1=, )?J (1 - o)™

Hex

el
i

S]

therefore

s}
§
5
¢
'
'y
Y

— LT S i i, ot e o e, i o

24 GJI’ 5 (1 —fcno)B 7
. 6
© {1 —(1-m0)3,$ (36)

s(2 - ’L‘)L!.

7.2  Dynanmic stiffness

As before the strain energy in the wing is derived from the general
equation (30). Using the modes determined in Seotion L.1.2 to find d6/dy,
the solutions flor the various cases are as follows.



(a) 7 =

T =0 From equation (23)

sin% m
T 2
6 = As:.nzn = eosinj-c
2 Mo
therefore
dn ~ 2 2 M
and
GJ 6 2 1
U, = - 2 2 cos® I d
a7 2s \gm, 2 2 M- o
2 o o
GJ 7(262
~ n 0
T o des 2%
5 2 Mo

(b) © =0, T 0 Trom equation (24) writing

Z = (1—1‘1q) then yz = (1-In) and B = -I-—E
0 o T
we have
o = 47 (pz) +3Y (B2) = 2z (BL)
thercelfore
ae o 0
5= = B 2,82 = -p z,(p2)
and

- 19 -
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Solution of this integral cen be expressed as
eI BT - 2 , - (1)
.- JPU s SN Z v /4 {
U ¢ CSEIT Y {[ ((82)1° - 2 (B2) zz(az)j
~ 1

2
R O
S(E-P)f P

— e

1]

[2,(8-K) ) - 2_(B-K) zz(a-K)}

roj-—

(12,(7° - z,(p) ZZ(B)B :

This expression presents some difficulties in determining Ud as the values

of the constants A and B are different for each reference section. However
from Section 4.1.2 and the Appendix the ratio of the constants has been
determined. Writing

[\N]
il

i

?‘AJ()+Y()\'B Z §f 1B etc
o (B o o pee 1 *

o
where

©
B o= oo (39)
39,z + ¥ (8)

we can write the exvression for the dynamic strain energy as

GI_ g - m2 -
/ JRSERy {[zm-fc)lz - 2,(B-K) ZQ(B-K)}

2

1 2 (e TP
2[%(3)1 () z2<.e>§ 1 eior (10)

where the expression inside the brackets { 3 reduces to a single value for
L J

a particular wing and the variation with the choice of reference sectlion is

incorporated in the term B2 equation (39).

(¢) v %0, T =0 This is treated in a similar manner to 7.2(b), when, from
equation (25), making the substitution 7 = (1 =), B = K/t we have
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0o = ¢ z,(p2)
and
ao -1
T = - 80 Z,(80)
whence ( )
1 1=
1 G 1 GJ /de
e (19 - [ 19w
o} 1
2
L GI g 2
= -—" [ L) {[22(6-1012 - 2,(p-K) ZB(G—K)}
5(2 -'r) . v
-3 12 - 2,(0) ZB(B)}_J
whence expressing
- o (A = (]
2, = LBJ()-M{() B, Z, = {JB eto.
where
i i (11)
B = —gp———— = —— '
) K { (B2 + T (2, ﬂ
0
we have
2
LGI B = = (1 _ 2
U = -2 '{ (4 ZT) {[22(6-K>]2"Z1(3"K) ZZ(B-K)}
5(2 - T) .

-3 {[ZZ(B)]Z - 2,(g) 23((3)} ——

(42)

(d) t=T +0 The equation (26) by a similar substitution to 7.1.2(b) can
be written as

-3
= Z & Z3, (82)

whence

4o _ - 7_3/2

-21 -



and the expression for the strain energy vecomes

2
8CI BT m (g2 12 - -
s [ (e 07 -y, (00 3, G0

.

2 R
-‘12‘{[25/2 )7 - 2, (8) 7, <s>h : (43)

The evaluation of U, was hampered by the laclk of suitable tables. In order

d
to overcome this the Bessel function obtained for d6/dmn was expressed as
trigonometry ratios and then the integration for the dynamic strain energy
was performed graphically. To reduce the work to a minimum we wrote

3/2
o (A h % 5o

45/2 = tg J5/2 + Y5/2} B where B = EE;EZEZET .

-

Hence for the numerical case considered

] 6 3/2 2
U, = 59078 S
a 7 ¢ /~—-2-~‘— 4 (8in BL - cos BL -
—] = (= -~ cos BZ YV - {sin BE + -
t N Keéo L.B Béo O} L © Béo )J

7.3 Numerical examples

The ratio of the strain energies Us/Ud is obtained from the two

preceding seoctions and as the twist of the reference section 1s the same in
the two modes this ratio is also the ratio of the static stiffness to the

dynamic stiffness ma/mé + The results obtained are plotted, in Tig.11,

against the spanwise co~ordinate mn, and show that an increasc in skin taper
produces a reduction in the stiffness ratio, the effect being most marked
at the tip. For rcctangular wings the peak of mg/mé moves from mn = 0.8 to

n = 0.6 for skin taper variation of -2 € T s 1 ard falls from 0.955 for
T = -2 to 0.86 for 1" = 1. The effect of wing taper is similar to that

obtained in Ref.1. The variation of me/mé with skin taper at reference

section m = 0.7 is shown in Fig.12. Yor rectangular wings the effect of
skin taper is slight with T < 2/3, but for I' > 2/3 the reduction is more

marked. For a tapered wing the reduction in me/mé in the range

0 <T g 2/5 is greater than for a rectangular wing in the case considercd
(7 =2/3)., In Fig.13 are plotted the dynamic mode and the static mode Tor
reference section at n = 0.7 and n = 1.0 for the tapered wing with skin
teper (v =T =2/3). It can be secn that the difference in strain energy
is appreciable.

&  COICLUSIONS
The main conclusion to be drawn from the present report is that the

effect of skin taper on the divergence, {lutter, and aileron reversal speeds
is not large when the comparison is madc on the basis of constant wing weight.

- 20 -



For a rectangular wing, skin taper leads to a slight increase in divergence,
flutter, and reversel speeds, whereas skin inverse taper leads to a slight
decrease. The opposite effect is obtained for a tapered wing with a tip
chord to root chord ratioc of 1 : 3.

The effcet of skin teper on the ratio of the static stiffness to the
dynamic stiffness is small for rectangular wings in the realistic range of
skin taper for a reference section at 0.7 semi-span. For tapered wings
the effcet is more pronounced, the stiffness ratio diminishing as the skin
taper is increased,

A comparison of the calculated flutter speeds (found using two-
dimensional dorivatives) with speeds found from flubter oriteria shows
that the trends of variation of calculated speed with skin taper agree
closely with those predicted by a criterion based upon static stiffness.
A criterion based upon strain energy in a linear twist mode shows trends
contrary to those given by calculation.

NOTATTON
dCL
a, acrodynamic coefficient Ta
dCI
2, aerodynamic coefficient —5{‘3: where { is the ailcron rotation angle
o wing chord ft
C defined in text
d distance from wing root to equivalent tip (0.9s)
e distance betwcen flexural axis and acrodynamic centre as fraction

of the chord

&3

ratio of aileron chord to wing chord

T flutter frequency c.p.s.

g position of inertia axis aft of L.E. as fraction of chord
GJ torsional rigidity at a section

h position of flexural axis aft of L.I. as fraction of chord
I value of inertia at a section / unit length

k ratio of tip chord to root chord

K defined in text

&

flexural stiffness as measured at relference section 1b ft/rad

- 23 -
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NOTATION (Contd)

de
m aerodynamic coeff. ~7§§
Mg torsional stiffrness as neasurcd at reference section 1b ft/red
M free gtream Mach number
M1 free stream Mach number corresponding to specd V1
e fundamental wing torsional frege. CoPoS.
L, m

oo . / 0] 0

r stiffness ratio (=3 -“—"5/
Nod7/S de
ul

s wing scmi~span (root to tip) £t
t skin thickness
u defined in text
U strain energy in a lincar torsion mode, torsion about the

centre~line of the box with an amplitude of onc radian at

the tip (1b £t)
v critical speed ft/sec
VO critical flutter speed as used in criterion
vy design diving speed (M cos A < 1) knots D.A.S.
V2 final estimated flutter speed as used in criterion
x chordvwise coordinste (alt of roference axis)
y spanwise coordinate
Z downward displacemcnt
o wing incidence radians
B angle of sweepback of wing {lexural axis radians
T skin tapcr = (1 ~ t, . /%

” - ( t3, root)
Z (1 -=7n) or (1 =Tn) as defined in tex
7 non~dimensional spanwise coordinate
o wing twist
A sweepback leading cdge radians

- 24 -



HO7LTION (Contd)

p air density p = density sca level (0.002378 slugs/ft5)
. wing density (; mass of ;ne w1qg> sluga/ftj
\ 5 ¢
i
. . . density of wing
w wing relative density = density of surrourding air
N Cp
T wing taper (1 - k) = (1 -=
\ R/
R aspect ratio
Subscripts
n refers to valuc at the mean chord position
r refers to valuc at the mean chord position when tm is varied
T refers to value at the tip
R refers to value at tlie root
0 refers to value of expression when © =1 = 0
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APPEIDIN A

Calculation of divergence speed and mode for T = 2/5, I = 0,

Trom equation (1L4) we have the solution as

-4 { S ) / e e
£ s (=gt lag, f2 By v oo 2}#ﬂ—¢n} (4k)
/\- 2 ‘\ T 2 T . }
where
, 2 2
A AT e
B L G
writing
—% = oy and (1-wm) = %

and putting equation (L4) in the forn
= 1/2 -1 1/2 N2
f o= g Zy(2yz / ) = & {AJQ(ZyQ ) + BY,(2v / )} .

This equation must satisfy the end conditions

(i) £=0 when 1=0
(11) %% = 0 when n=1

From (1) 0 =7 (2'{) if (1 ~'m) + O,

2
Also
ar ~3/2 1/2
b = - Iy ‘ Z 2 zt’ °
d,n Y& 3( Yo )
From (ii)
0 =

ZBQYVTTE)if(1-vm 0,

Now have two equations o) the form

aI,(2¢) + BY,(2¢) = O (15)
and
AJ3(2Y VIZ7%) 323(2Y Yvi<z) = 0O . (46)
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Tor variable V we have, with the other terms being constant.

Appendix 1

Yo Y
/ - A
vl ooe) | vy s (<22 s w1 o) |2 . (222
2 4 LS J 3 5 B J
N2/ 3/
Lo @ o . ae v e e e - e e ———— ——— -
1000 | O0.4132h | 014635 | =0.35557 0.15231 ~0.95951 6.02289
1200 | 0.,2058L | 0.33391 | -1.0222 0.23360 -0.696M1 2.:.917Lh
1400 | -0.05231 | 0.35491 6.78L93 0.31631 ~0.51770 1,62333
1600 | -0.25209 | 0.21742 0,86218 0.33577 -0.36106 0.53595
1800 | ~0.31215 {~0.0C329 | -0.05054 042571 ~0.20718 0.48553
e e e e e e - —
Plotting-% against the sneed V in Fig.44k we get V = 1580 ft/sec for
the condition that-% is the same for both equation (45) and (46). Replotting

for a narrower band of V (say 1550 < V < 1600) we fird that V = 1581.L ft/sec
for a value of'% = 0.9875.

Substituting this value of V back into cquations (45) and (46) we
have a check on the value of'% . From (45) % = 0.98742., Trom (46)

A
7= 0.98738.

A
The value of = was taken as 0.987k.

Taking unit displacement at a reference section (say £ =1 at n = 1) the
valucs of A and B can be determined and hence the mode shape.

The mede is given by equation (44).

The method is essentially the same for the other solutions.

In the
torsion case the frequency p was taken as the variable.

et . st s it
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Semi-span s
Chord ¢

Mean chord c
A

Plexural axis aft of wing L.D.
Incrtia axis aft of wing L.Z.

Radius of gyration of wiug
section aboul flexural axds

Wing mnss

i
Mass

of wnilorm rectangular
wing oer {6 run, n
2 0

Uncounled {fixced root

Dending frequency (v = 7 = 0)

i
O
-

Torsion frequency (7 = I' =

TAPIR 2

0.287¢c

0,0952 slugs
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TABLE 3

_Comparison of criterion and calculated flutter spceds (ft/sec)

Broadbent criterion
Modified Molyneux speeds
calculated | criterion
specd speed VD VF
(a) T = I = O 52909 537:0 )-{-72.6 579»6
(b) t =0T %0
T =1 547.6 557.2 457 .6 561.6
I =2%/3 55345 556 L6l 6 570.0
11 - __2 2_“78.6 )+97.8 48501 5924"6
(¢)T#0T =0
Tt = 2/3 790.1 725.9 581 .1 709.3
() 1 =720
t=T=2/3 755.6 709.6 615.5 750.1
- %) -

¥.1.2078 C.P.6U2 K3,

Printed in England.
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whereas an inverse taper results in a reduction of up to 14%. For a
tapered wing, skin thickness tapering from root to tip results in a
reduction in the critical speeds of up to 7%.

A comparison is made between the results obtained from the analysis
and from some flutter speed criteria. Further the effect of skin taper
onh the mode of distortion and on the dynamic torsional stiffness is
investigated.

whereas an inverse taper results in a reduction of up to 14%. For a
tapered wing, skin thickness tapering from root to tip results in a
reduction In the critical speeds of up to 7%.

A comparison is made between the results obtained from the analysis
and from some flutter speed criteria, Further the effect of skin taper

on the mode of distortion and on the dynamic torsional stiffness is
investigated.

whereas an inverse taper results in a reduction of up to 14%. For a
tapered wing, skin thickness tapering from root to tip results in a
reduction in the critical speeds of up to 7%.

A comparison {s made between the results obtained from the analysis
and from some flutter speed criteria. Further the effect of skin taper
on the mode of distortion and on the dynamic torsional stiffness is
investigated,



C.P. No. 642

© Crown Copyright 1963

Published by
HEr MAJESTY’S STATIONERY OFFICE

To be purchased from
York House, Kingsway, London w.c.2

423 Oxford Street, London w.1
134 Castle Sirset, Edinburgh 2

109 St. Mary Street, Cardiff
39 King Street, Manchester 2

50 Fairfax Street, Bristol 1

35 Smallbrook, Ringway, Birmingham §

80 Chichester Street, Belfast 1

or through any bookseller

Printed in England

5.0. CODE Ne. 23901342
C.P. No. 642



