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SUMMARY

Fressure measurements were made at Mach numbers between 1°+3 and 28
; over a range of incidences on three simple models representing thick conical
uncambered wings with sharp leadins edges, These tests form part of an
investigation into the effects of thickness and camber on slender wings.

The aspect ratio of the models was unity in each case, and the spanwise
cross sections were bounded by:-

(1)  Rhombi - total leading edge angle = 60°,

(ii) Biconvex circular arcs - total leading edge angle = 60°.

il

i

(iii) Biconvex circular arcs - total leading edge angle = 120°,

The measured pressure distributions are presented, along with overall
1ift and drag (excluding skin friction and base drag) obtained by integration.

Replaces R,A.E, Tech, lote o, Aero. 2821 ~ A,R,C. 244082,
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1 INTRODUCTION

In recent years, considerable interest has been shown in the slender
wing with sharp leading edges. When the Mach number normal to the leading
edge is subsonic, the flow over the upper surface of the lifting wing is
generally characterised by two coiled vortex sheets originating from the
leading edges. To study how this type of flow is influenced by the free
stream Mach number, leading edge sweep, spanwise camber and the thickness
distribution, a series of simple conical wings is being tested at R.A.E.
Bedford. The tests in the 8 ft x 8 £t Supersonic Wind Tunnel consist mainly
of pressure measurements at Mach numbers from 1+3 to 2+8. The full programme
includes both symmetrical and cambered shapes; this note considers the first
three symmetrical wings of the series, covering the range of slenderness

parareter <%§> from 0°21 to 0°65.

Pressure distributions, measured on a representative spanwise line on
each model, are presented graphically. In addition, these distributions are
integrated to give the overall 1ift and drag which would be acting on the
models if the flow was truly conical

Only a very preliminary analysis of the results is attempted in this
note. A more detailed analysis should follow the issue of further data
reports from the 8 ft x 8 £t and other wind tunnels, and the reports on the
complimentary theoretical investigations (e.g. Refs.k and 5).

2 EXPERIMENTAL DETAILS

2.4 Models

All three conical models are uncambered and have sharp leading edges.
The aspect ratio is unity - that is the leading edge sweepback is 75° 58'.
The cross sectional shapes of the models, together with other leading
dimensions, are presented in Fig.2. Model 1 has rhombic spanwise cross-
sections; models 2 and 3 have cross sections bounded by biconvex circular
arcs. The total leading edge angle, measured in a plane normal to the
centre line, is 60° for models 1 and 2, and 120° for model 3.

The models were made from moulded fibre glass. A spanwise row of

pressure holes is situated 24" aft of the apex % = 0°73) on the starboard

upper surface. The pressure holes are placed close together near the leading
edge to permit a more detailed study of the pressure in this region. The
spacing of the holes in terms of y/s is the same for the three models and is

. shown in Fig.3. The models were supported in the tunnel by a sting with its

axils on the model centre line (Fig.1 .

2.2 Details of tests

The tests were made in the 8 £t x 8 £t Wind Tunnel at R.A.E, Bedford.
This is a closed circuit, continuous flow supersonic wind tunnel. The tunnel
stagnation pressure for these tests was 26" Hg at all Mach numbers; the
Reynolds number varying from about 4 x 106/ft at M = 1+3 to about 2 x 106/ft
at M = 2+8. No attempt was made to fix the position of boundary layer
transition on the models. The working section reference pressure was
measured at a wall static hole just ahead of the models. The effective
static pressure of the undisturbed stream was derived from this pressure
using a previous tunnel calibration.
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Pressures on the upper surface of the models were obtained by applying
positive incidence; equivalent lower surface pressures were obtained by
applying positive incidence to the inverted model. The base pressures of
the cones were not measured.

Tests on model 1 were made at M = 1+3, 2+0, 2+8; and on models 2 and 3
at M = 13, 1+6, 2:0, 2-4, 28,

2.3 Presentation of results

The pressures measured during the tests have been expressed in the
usual pressure coefficient form:

The force coefficients have been derived as:

1

k 1

- i} : . 3z(x,y)

CNF - [ (CpL Cpu) dn 3 CAF - [ (CpL * Cpu> ox dn
(¢]

0

where z = z(x,y) gives the ordinates of the model surface. If the flow is
truly conical, these coefficients are equivalent to the overall normal

force coefficient S'Fé and the overall axial force coefficient §°Fé

o) )
omitting the contributions from skin friction and base pressure.

The incidences have been corrected for the deflection of the sting
due to the aerodynamic loads on the model. At o = 16°, this deflection
was approximately 0°4° at M = 1°+4 and 0+15° at i = 2-8.

2.4 An estimate of the principal experimental errors

Inaccuracy of the manometers used for measuring the difference bhetween
the pressures on the surface of the models and the working section reference
pressure could produce errors in Cp of *#0-003, Under extreme conditions

(e.g. on the upper surface at high Mach number and high incidence) this
error could increase to ig:géB in Cp, due to the slow rate of mancmeter

response.

Irregularities in the form of the pressure holes and in the shape of
the model surface near the holes are estimated to produce errors in C
of *0-:003. b

Uncertainty in the relation between the working section reference
pressure and the effective pressure of the indisturbed stream may have
caused errors in Cp of *0°:005. ZErrors from this source should be approxi-

mately constant for all measurements at a given Mach number.

The effective incidence of the model mey be in error by *0°:1° due
to deviations in the direction of the undisturbed stream.

[LH]
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Taking into account the above sources of error and the method of
integration, the errors in the overall forces are considered to be less

than:=-
Model 1 Model 2 Model 3
Normal force coefficient *0 004 *0-004 *+0 004
Axial force coefficient +0-0015 *0-0009  *0-0024

Drag due to lift (i.e. Cp - CDO) *0+0007  *0-000L  *0-0011

3 DISCUSSION

3.1 Pressure distributions at zero lift

The pressures measured on the surface of T

are shown in Fig.4. Theoretical pressure distributions obtained by slender
body theory4’5 are given for all models; pressure distributions obtained by
thin wing theory are given for models 2 and 3. Pressure distributions
obtained by slender thin wing theory are given for model 2 only.

The pressure distributions predicted by slender body theory for model 3
are similar in shape to the experimental distributions. The pressures
predicted by this theory for the thinner models (1 and 2) tend to rise too
rapidly as the leading edge is apprcached. Tor all models the absolute
levels of the thecretical pressures are lower than the experimental values,

with the largest difference shown at M = 28,

AN

Both thin wing theories of course overestimate the pressure near the
leading edge since they give an infinite pressure on the edge itself. Away
from the influence of the leading edge, the thin wing theories underestimate

the pressure on the wings.

The results of integrating the measured and slender body theory
pressure distributions to give the drag (excluding the contributions from

skin friction and base pressure) are shown in Fig.5.

3,2 Pressure distributions at incidence

The pressures measured on each model at M = 13, 2+0, 2+8 are given
in Figs.6,8,10. The effects of Mach number on the form of the pressure

distribution at representative incidences of 4°, 8°,

Figs.7,9,11.

16° are shown in

A prominent feature of the pressure distributions is the high suction

acting over the outboard part of the upper surface.

This area of the wing

is beneath the core of the coiled vortex sheet shed at the sharp leading

edge.

As the incidence is increased the area influenced directly by the
separated flow and the additional suction produced become larger. The small
pressure peak sometimes present just inboard of the high suction region
(e.g. Fig.8(a) n = 067 at a = 6+15°) is associated with the reattachment

of the flow.

3.241 Effects of cross sectional shape

The spread of the influence of the vortex system with increase of
incidence is illustrated in Fig.12. At low incidences, the proportions of
the span affected by the leading edge separation are similar on models

-6 -



1 and 2, which have the same total leading edge angles (i.e. 60°). At
high incidence, the increased thickness near the centre line on model 1
appears to restrict the inwards spread of the separated region. On
model 3, with a total leading edge angle of 120°, the initial development
of the separated region is retarded.

Fig.13 compares the pressure variation with incidence at points near
the leading edge (n = 0:97) of the three models. The beginning of the
rapid pressure change on the upper surface marks the incidence at which
the point comes within the influence of the leading cdge separation.
Models 1 and 2, again, show similar characteristics at low incidence while
the initial development of the vortex is shown to take place at a higher
incidence on model 3,

As the incidence is increased a suction peak develops on the outboard
upper surface beneath the coiled vortex sheet. At low Mach numbers, a
second suction peak develops outboard of the main peak on models 1 and 2
at incidences above 12°, This second suction peak does not appear on
model 3, which suggests that the vortex system in the separated rcgion of
model 3 may be different from that on models 1 and 2. Vapour screen testsh2s?
and unpublished results of yawmeter surveys made in the 8 £t x 3 £t tunnel
on thin highly swept wings have indicated that the vortex system may exist
in several different forms, in some instances influenced by a shock wave.
The surface pressure distributions alone ara insufficient to give a complete
picture, and some further tests would be regquired to show how the complete
flow pattern is changed as the wing thickness is increased.

On the lower surface, thin wing theory assuming attached flowé,
predicts that the pressure should rise as the incidence is increased, and
that the rate of pressure rise should become greater as the leading edge
is approached. On model 3, the change in the lower surface pressure with
increase of incidence is smaller near the leading edge than on the centre
line. On models 1 and 2, at low incidences, the change in lower surface
pressure with increase of incidence is slightly greater near the leading
edge than on the centre line. It is possible to calculate the pressure
distribution by slender body theoryA, where the wing is no longer con-
sidered to be thin but the flow is still assumed to remain attached behind
the leading edges. The changes in pressure due to incidence calculated
for model 3 at o = 2+05° and 4°05° are compared with the experimental
results for M = 1°3 in Fig.10(d). The shapes of the curves are in good
agreement except in a small area near the leading edge on the upper surface
influenced by the separation. Introduction of the eft'ect of thickness into
the theory has changed the shape of the 1lift distribution over the lower
surface to resemble closely the measurced distribution. This would suggest
that, although the vortex must have an effect on thc pressure distribution,
wing thickness rather than flow separation is the main cause of the
difference between the experimental and thin wing theory 1if't distributions
on the lower surface at low incidence.

2,2.2 Mach number effects

As the Mach number is increased, the influence of the leading edge
separation on the pressure distributions over the wings becomes smaller,
and the region of high suction becomes less well defined. The initial
development of the vortex system appears to be retarded, though at high
incidence its effects are spread over a slightly greater proportion of the
span (Fig.12). The incidence at which the separation first affects the
pressure hole at n = 0+97 is also shown to increase with Mach number

(Fig.13).
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The absolutc pressure on the model surface beneath the vortex system
becomes very low at high incidence and high Mach numbers. This is illustrated
in the following table in which the minimum CP measured on the upper surface

is compared with the Cp corresponding to a vacuum.

C Min. Cp at o = 16° measured

M P
vacuum
on upper surface

'Model 2 Model 3

1:3 =085 -5 ®.0-38
1+6  =0.558 -0+},2 ~0+29 )
2.0 0358 -0+28 ~0+21
0., 0258 ~0+20 ~0+15
2.8  -0-182 -0+15 -0l

The form of the pressure distribution is modified as the pressure
level approaches an absolute vacuum. As would be expected, the peaks in the
pressure distribution become less well defined, and the general pressure
level in the region of high suction appears to fall asymptotically towards
some minimum value, which corresponds to about 0°+8 vaacuum' One result of

this limiting suction is that the thickest wing, having the highest surface
pressure at zero incidence, is able to develop the greatest upper surface
1lift at high Mach number and high incidence. This effect is shown in Fig.13.

It is of interest to note that the pressure measurements made by
Miohael1, at constant Mach number on flat plate delta wings of various aspect
ratios, showed that at high incidence the upper surface pressures approached
a minimum which did not appear to be dependent on aspect ratio.

The slenderness parameter %5 =~_/M2 -1. %-becomes less significant in

the determination of the 1ift distribution at high Mach numbers and high
incidences. The freestream Mach number, which in itself imposed a limit to
the minimum pressure coefficient over the wing, becomes more important, and
the combination of wing thickness and Mach number limits the maximum 1lift
(CPa=O - Cpa) obtainable from the upper surface.

3.3 Overall forces at incidemce

Figs.14,15,16 show the values of the normal force obtained by integration;
Figs.18,19,20 show values of the overall drags at incidence and Figs.21,22,23
show values of K, the coefficient giving drag due to lift. Numerical values
of normal force and axial force are given in Table 1.

3.3.1 Lift

The variations of normal force with incidence through the Mach number
range, along with the sgparate contributions from the upper and lower surfaces
are shown in Figs.14,15,16. The normal forgce given by thin wing theory for
a flat plate delta wing with attached flow®, and by slender body theory for
a thick conical models2 are included for comparison.

The variations with Mach number of the 1ift curve slope near zero
incidence (i.e. without separation effects) are shown for the three models
in Fig.17. The differences between the slopes for the three models are
remarkably small. The measured slopes are always lcss than predicted by

-8 -



thin wing thecry, with the biggest differences at low Mach numbers. The
slopes predicted by slender body theory¥:> arc higher than the values
that would be suggested by o smooth extrapolation of the experimental
data to M =10, The differences betweon the absolute values of the 1ift
measured in the test and those predicted by slender body theory may be
due to viscous effects which are not necessarily dependent on thickness.
Additional tests on thinner models may be helpful in a comparison of the
measured and theoretical reduction of 1ift curve slcpe due to thickness.

At low Mach numbers and higher incidence, with the flow separating
at the leading edges, the thickest cone shows the lowest 1if't. The
differences between the modelaw decrease with increase of Mach number to
become quite small at M = 2-8.

The separate contributions to the total 1ift from the upper and
lower surfaces have been found from the differences between the pressures
on these surfaces and the pressurc acting at zero incidence. At M = 1°3
and high incidence, the upper surface normal force contribution is greater
than the thin wing value. The non-linearity is reduced as the Mach number
is increased, moving the lift curves down relative to the theorcticel lines.
This trend is due to the decline in the effects of the vortex system above
the wing and to the change in *he pressure distribution caused by the
limit to the possible suction on the upper surfacc., At M = 13, the lower
surface normal force contribution is generally less than thin wing theory.
At higher Mach numbers this normal force curve becomes non-lincar giving a
considerably larger normal force than the theory, at high incidences.
Thus, at low Mach numbers the overall non-linearity is derived mainly from
the suction caused by the vortex system above the vpper surface. At high
Mach numbers, the non linear naturc of the normal force curves comes
mostly from the lower surfacc. Analysis of Fichael's results! shows a
somewhat similar appearance of non linear 1ift on the lower surface as the
slenderness parameter is increased by changing the wing apex angle at
constant Mach numbor. A non linear variation of 1lift on the lower surface
would be expected from a qualitative comparison with the results from two
dimensional shock expansion theory for perturbations of the order present
in these tests. Unfortunately there is ne corresponding theory for three
dimensional flow yet available to provide a more positive explanation of
the experimental observations.

3.3,2 Drag due to lift

The mecasurements used in this analysis do not include basc drag and
any influence cf skin friction is also omitted. Figs.21,22,23 show the
variation of the 1ift dependent drag factor, X, with slcndcrness parameter.
At low values of lift coefficient, K becomes scnsitive to small errors in
drag measurement, and the minimum value of CL for which experimental values

could be derived with confidence from the results of the present tests was
0+15.

At small values of a, the expression for K can be approximated to:-

TAa  TA _ A
K = C + 5 <CAF CDO> . L
L CI

Experimental values of these two components are shown in Figs.21,22,23 and
are compared with the corresponding theoretical components given by thin
wing theory for attached flow. It should be pointed out that the above
expression is correct only for vanishingly small values of a, and the com-
ponents shown in the lower parts of the figures may not add up exactly to

-9 -
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the values of K shown above. The first component reflects the overall
lifting efficiency of the wing., It is lecwest for Model 2 which has the
highest 1ift at a given incidence. The second component depends on the
distribution of the lifting forces over the wing, It is negative when the
changes in surface pressure due to incidence, resolved along the line
joining the apex to the tentroid of the base, give an overall force in the
forward direction. This is equivalent to the leading edge suction term in
the thin wing theory treatment of lifting swept wings with attached flow.
At M = 1-3, the experimental results show on model 3 a forward force of
about 2/3 the theoretical leading edge suction force for a thin wing, and
about 1/3 the theoretical force for models 1 and Zr‘ﬁA&\the Mach number is
increased, the forward force is reduced, becomldé at values of

13—— between 05 and 0+7.

dz\ . .
the surface dX/ is constant, and the experimenta 02 CAF CDO
L

depends only on the proportions of the total 1lift contributed by the upper
and lower surfaces. At M = 1°:3, more 1if't is gencrated by the suction on
the upper surface; the chordwise force is rceduced from the value at zero

2
CL
suction on the upper surface is less well developed, and more 1lift is

generated by pressure from the lower surface; thus the chordwise force is

incidence, and the value of TA <CAF - CD;\ is negative. At M = 2+8, the
/

increased from its value at zero incidence, and the value of E% CAF - CD0
Y
is positive, L

On models 2 and 3 with circular arc cross scections, the chordwise slope
of the surfacs av/k,y)/ax varies with distance from the centre line, so the
chordwise force depends also on the distribution of 1if't across the upper and
lower surfaces. The lifting forces acting near the lcading edge have a
greater influence on the change of chcrdwise force than those lifting forces
acting near the centre line, The value of E% CAF - CD;) for model 3 at

C

L
M =13 is especially low. The pressures on ths upper and lower surfaces
near the leading edge both decrease with incidence and, (because of the large
surface slopes in this region) these pressure changes have a large efflect on
the axial force.

It is remarkaeble that the total 1ift dependent drag factors for
models 2 and 3 are so similar in view of the differences in their pressure
distributions. At M = 13, the lower lift curve slope of the thicker wing
is compensated by its larger reduction of axial force. At M = 2:8 there is
much less difference between the overall 1lift of the thick and thin models
at a given incidence while the values of E% CAF - CDO> are both near zero.

c
L

The 1ift dependent drag factors for models 1 and 2 and for an uncambered,
unit aspect ratio, delta wing, with a sharp trailing edge, are compared in
Fig.24. The delta wing has a centre line thickness chord ratio of 8%, and
rhombic spanwise sections, giving the same lcading edge angle as model 1 at

X £ 0+1. Tho results for this wing were obtained from overall force
o
measurements and therefore include the effects of skin friction. The values

- 10 -



of XK for the thick cones are shown to be of the same order as those for the
complete wing, and the differences botween the models become smaller as
the slenderness parameter is increascd.

L CONCLUSIONS

The results of pressure measurements on three conical models are
presented. A preliminary analysis shows:-

The variation of 1ift with incidence for each medel is non linear
throughout the Mach number range from 1+3 to 2+8. At the lower Mach
numbers, the non linearity ig derived mainly from the ircrcase in suction
on the upper surface due to flow separation at the leading edge. At the
higher Mach numbers, a non lincar increesc in pressure over the whole of
the lower surface contributes most of the non linear 1ift.

The initial development of the leading edge scparation is largely
dependent on leading edge angle. The influence of the separation decreases
with increase of wing thickness and Mach number. At low supersonic Mach
numbers, the 1ift at moderate incidences is lcast for the thickest model,
while at M = 28, the 1ift appears to be almost independent of scction
shape.

The valuc of the 1ift dependent drag factor, K, beccomes groater as
the Mach number is increased because of the reduction in the 1ift curve
slope and the transfer of the 1ift from the upper to the lower surface,
Differences in K beitwecn ithe three models are comparatively small, being
least at the highest Mach number.

LIST OF SYMROLO

X,¥,2 Cartesian coordinates relative to body axcs used to define the
model shape

5 semi span

c wing chord

n = y/s non-dimensional y coordinate
S planform arca

A aspect ratio

4 1 corresponding to inboard edge of separated region
M Mach number

g ::Jﬁgn:“;

a incidence anglc

P static pressure

q kinetic pressure
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LIST OF SYMBOLS (Contd)
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refer to upper and lower surfaces respectively
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TABLE 1

Normal force and axial Torce on

model 1

M= 13
o “yp Cop
0 0 0+0309
140 0:019 , 00310
2405 0043 | 0°:0%12
3+05 0064 | 0°+030L
L1 0+091 { 0:030L
61 0148 | 0:0287
8e2 0+213 | 0:0267
1293 0359 1| 0-0220
M= 20
< ym CAF
o} 0+0219
10 0+:024 | 0+0215
20 0:036 | 0°0210
3.05 0+063 | 0-0209
L.+05 0+087 | 00205
6+ 0+133 | 0-0197
8+15 0192 | 0:0192
1242 0+31L | 00195
1643 07 | 00213
M= 28
a Cxp Cop
0 0 0:0192
5.0 0:036 | 0:0193
L.+05 0078 00191
8:05 0172 | 0°0206
124 0267 | 0°02uk
1615 0+378 | 0:0310

-1% =



TABLE 2

Normal force and axial force on model 2

-l -

M= 143 =24
a CNF CAF a CNF CAF
0 0 0-0143 0 0+008),
1.0 0.022 | 0-0149 L4+05 0-0139
205 0-045 | 00157 810 0-0335
3.05 | 0-075 | 0-0176 1215 00744
L+10 | 0-103 | 0:0199 16 +20 0+1282
615 | 0170 | 0+0286
8:20 | 0-238 | 0-0419
12+35 | 0+403 | 0+0893 1 = 28
16 +4,0 0-582 | 0+1648
a CAF
M=16 0 0+0081
. . 4+05 0:0133
a 80 00319
e AF 1510 0+0666
0 0 00129 16415 0+1182
140 0+020 | 0+0130
2:05 | 0+045 | 0-0139
3405 0073 | 00157
L+10 | 0099 | 0:0188
€15 0158 | 0-0264
8:20 | 0:226 | 0-0383
1230 | 0-375 | 0-0846
1640 | 0+527 | 01525
= 20
o Cop Cop
0 0 0-0088
140 0:020 | 0+0093
2:05 | 0045 | 0-0102
3405 | 0+069 | 0°0120
L+05 | 0095 | 0:0146
610 | 0146 | 00217
8+15 | 0-206 | 0-0348
12425 | 0:332 | 00756
1630 | 0468 | 01376




TABLE 3

Normal force and axial force on model 3

M= 1.3 M= 146
a Ch Cop o Cyp Cop
0 0 00614 0 0 0+:0557
2:05 0:043 | 0+0601 2+0% 0+050 | 0+0551
405 0+091 | 0-0593 4+05 0:091 | 0-0544
6°10 0+139 | 0-0571 6+10 0+140 | 0+0522
815 | 0+192 | 0-0526 815 | 0¢191 | 0-0481
1020 0:248 | 0-04,73 10+20 0241 | 0-0450
12425 0+31) | 0+0430
14230 0385 | 0-0371
16+40 | 0469 | 0-0313
M= 20 M= 24
a CNF CAF a CNF CAF
0 0 0+0L37 0 0 00422
2:05 0042 | 0+0437 2:0 0+041 | 0-0422
4+05 0+089 | 0°-0L4d 405 0087 | 0°0420
£+10 0136 | 0:0335 6+05 0137 | 0-0413
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533.6.048.2 :
PRESSURE MEASUREMENTS AT SUPERSONIC SPEEDS ON THREE 533.6,013.12/13 :
UNCAMBERED CONICAL WINGS OF UNIT ASPECT RATIO, 533,6.011.5
Britton, J. W, May, 1962,

Pressure measurements were made at Mach numbers between 1.3 and 2,8
over a range of Incidences on three simple models representing thick
conical uncambered wings with sharp leading edges. These tests form part
of an Investigation into the effects of thickness and camber on slender
wings.

The aspect ratio of the models was unity in each case, and the
spanwiise cross sections were bounded by:=

(1)  Rhombi = total leading edge angle = 60°,

(11) Biconvex circular arcs = total leading edge angle

(1ii) Biconvex circular arcs = total leading edge angle

60°,
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Pressure measurements were made at Mach numbers between 1.3 and 2,8
over a range of incidences on three simple models representing thick
conical uncambered wings with sharp leading edges. These tests form part
of an investigation Into the effects of thickness and camber on slender
wings.

The aspect ratio of the models was unity In each case, and the
spanwise cross sections were bounded by:~
(1) Rhombl = total leading edge angle = 60°,

(11) Biconvex circular arcs = total leading edge angle = 60°,
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