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An analysis is given in which the method of singularities, used 
for the determination of cascade performance, is modified to account for a 
change in axial velocity across the cascade. Ch,angcs in axial velociQ 
across blade rows occur frequently in turbo-machines and solid wall wind 
tunnel cascade tests. 

Sources or sinks are distributed in limited regions of the 
potential flow field so that the axial velocity distribution through the 
cascade may be controlled. 

Calculations show that the blade lift and the air outlet angle 
decrease when the axial velocity increases tnrough the cascade. 
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Notation __I- 

c 

cP 
d 
K 

m 
n 

PI 

P2 

Q’ 

q(x) 

qh 

s: 

s 

S/O 

U 

U’ 

un 

v 

V' 

V' 
a 

va 

vL 

'rn 
Vmx 
Vm Y 

% 

Vt 
VI 
V 2 

X,Y 
X' 

YS 

Yt 

oL1 

a a 
'rn 

blade chord length 
pressure coefficient 
cascade axial thickness 

tan E = vm 
y/" 

mx: 

source strength per unit length in tangential direction 
number of strips par unit length in axial direction 
inlet static pressure 
outlet static pressure 
total strip singularity strength 
singularity strength distribution along chord line 
flux in the downstream direction 

flux in the upstream direction 

blade spacing 
space chord ratio 
perturbation velocity in x-direction due to singularities 

along chord 
perturbation velocity in x-direction due to strip 

singularities 

axial velocity factor = mnd/2Vmx 

perturbation velocity in y-direction due to singularities 
along chord 

perturbation velocity in y-direction due to strip 
singularities 

perturbation in axial direction due to strip singularities 

axial velocity component 

blade surfaoe local velocity 

cascade vector mean velocity 
component of V, in x-direction 
component of Vm in y-direction 
axial velocity ratio V4/V, 

tangential velocity component 
oasoade inlet velocity 
cascade outlet velocity 
co-ordinates of rectangular axes 
ordinate in axial direction 
slope line ordinate 
thickness ordinate 
inlet air angle 
outlet air angle 
vector mean flow angle 
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Y(X) vorticity distribution on x-axis 

h cascade blade stagger angle (positive for compressor cascade) 
& angle between vector mean flow angle and x-axis 

Subscr&& -- 

1 inlet condition 

2 outlet condition 
Y refers to source strength and velocity perturbation due 

to strip singularities 

I* Introduction L--s- 

In general the design of a stage in an axial flow compressor 
results in a change of axial velocity through the stage at any given radius. 
The change may occur along all the blade length, due to a change in annulus 
area, or may be due to a three-dimensional redistribution of the flow with 
radius. Thus it would be useful for the designer to know the way in which 
cascade performance varies with the axial velocity ratio across the blades. 

In the testing of two-dimensional cascades in wind tunnels the 
axial velocity increases on the centreline when separation occurs in the 
corner between the blade and the tunnel wall. British cascade data has 
been obtained using a solid side wall technique so that the value of Va2/Val 

has in general been greater than unity. 1;Ji.C.A. tests have been made in a 
porous wall tunnel, and by variation of the amount of air sucked away it has 
been possible to derive a set of results at an axial velocity ratio of unity. 
Rolls-Royce, using the same porous lvall method, have tabulated results for 
varying axial velocity ratios. 

Two basic methods of calculating cascade performance have been 
used in Ref. I, the first consisting OP a series of conformal transformations 
and the second a method of singularities. The lcttcr has been modified to 
include the effect of changing the axial velocity across the cascade. 
Liverpool University's "Deuce" digital computer has been used to perform the 
necessary calculations. 

2.1 Method of sin&ularities -l____-ms.*- :-- 2m-m- 

The method of singularities applied to cascade performance and 
developed by Schlichting2 has been used by Schneider3 in the calculation of 
the performance of cascades of N.A.C.A. profiles. Further development of 
the method is described in Ref. 1, and a modification of the analysis to 
include changes in axial velocity across the cascade is given here, 

Basically the method consists of replacing the blades of a given 
cascade by a singularity distribution of sources, sinks and vortices along 
each blade chord. A uniform flow, parallel to the mean cascade air 
direction, is superimposed on th ese singularities and the magnitudes of tizc 
latter are chosen such that the resulting flow has one streamline identical 
to each of the replaced profiles. The flow dircotion of this streamline is 
matched with the profile gradients at a nurilbcr of chordwise positions. 
The uncnmbcred base profile, and the csmbcr line are considered separately. 
with yut ~4 the profile upper and lower ordinates respectively, the baso 
profile ordinate yt is given by, 

Yt = 6(Yu - Y&j l .  .  (1) 
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and the camber line ordinate ys is given by, 

Y, = &(Yu+YJ l . . . (2) 

Consider the continuity equation 
in Fig.(la), 

(vmx+4Yt + Syfx)ax = 

for an element of base profile as shown 

( vmx+u+ z d+ (Yt’ 2 dx) 

(the variation of u with y is neglected). If &.&x is considered 
small, then 

s&4 ayt -= -* 
v, +u ax 

X 

The camber line is a streamline and the flow direction is, Fig.dSb) 

% my 
v +v 

-=-----“I, l . . (4)  

dx Vm +U 
X 

The source distribution q(x), and vortex distribution y(x) are related 
to the induced velocities u ana v by, 

y(x)-iq(x) c eih P' - F 
u-iv = 4 

2 
+ ;T/;=C[[q( --) +iy ( f )] 00th xeih F-Jd( fi 

l s* (5) 

(see Refs. 1, 2 and 3), and q(x) and y(x) are defined in terms of a 
Fourier series. For each aerofoil matching point chosen a pair of 
simultaneous equations (3) and (4) are produced. Thus if n matching 
points are taken a matrix of 2n simultaneous equations is formed ma n 
Fourier coefficients of each series for q(x) and y(x) may be derived, 
The induced velocity close to the chord line on either side is given by 

vX 
= vmx+u+$y (x) .a. (6) 

and the velocity on the blade surface by a transformation (Ref. I), 

2.2 Change in axial veloci& 

In the analysis of $2.1 the net fluid produced by the sources 
and sinks is zero so that the axial velocity does not change across the 
oas oade . To effect a change in axial velocity a further system of 
souroes and sinks is superimposed on the existing flow conditions. These 
new singularities are strip sources and sinks, along the cascade tangential 
direction y' and stretching from y1 = -CO to y* = $00. The flow 
produced is along the oascade axial direction x* as shown in Fig. 2. 

For a uniform distribution of singularities, with 

m = source strength per unit length in cascade direction 

n = number of strips per unit length in axial direction, 

where m and n are constant, 

X* = distance from origin in cascade axial direction, 

a = oasaade axial thickness, 
the/ 



the total source strength across the cascade is, 

q’ z mnd per unit length in the cascade tangential direction y'. 

The velocity in the upstream direction 
mnd 

"4 = - -.- l a* (7) 
2 

and in the downstream direction mild vi= +T-* .** (8) 

At any point x9 within the cascade, the flux in the downstream direction 
is 

t 

q!&x’) = z-z- 
2 

and the flux in the upstream direction is 
mn(d-x9) 

$(x1) = --- , 
2 

The net flux at x1 is thus, 

mn(a-x9) 
d q;(X9)-<(X9 ) = -7; m w-v.-- . . . (9) 

L 

and the velocity in the axial direction is 

mnd 
v$x' ) = -- 

2 

2 

-1 . 
> 

. . . (10) 

From Fig, 2 x1/d = x/c, so that the components of vA(x') in the x 
and y directions, u' and VI are given by 

. . . (II) 

vt = ---- sin h . ..* (12) 

2.3 Flow conditions - I- 

The two basic equations used in the method of singularities ($2.1) 
are applied to the systems shown in Figs. (3a) and (3b), which include the 
strip sources and the velocities induced by them. For the base profile 
(Fig. (&a) therefore 

au ad 
(Vm +U+U’)Yt+&(X)k+q’ (X)ytdX = ---4x+ - 2 

dyt ~ 
. 

X ( v,~x+u+u t -t 
ax ax j( 

yt+ - d.x 
dx j 

If au/ax is considered small then 
$dx) , 
-Ix* .- 



-2""t = (,:~j~+2$~~. 
&SW 

. . . (13) 
vm X vm dx X X X 

For the camber line 

v cwv “y = ays 
l$+u+u ax 

v% v -+_23”r;(,.$)~-; l 

vs vmx vmx dx 
X  X  

. . . (14) 

Now u' = - v'=---- 

f3U’ ma 
-=- cos h 
ax C 

q'(x) = mn . 

ma ad 
Writing un = - and substituting for u', - , aa qt (x) in (13) 

2Vmx a9 

and (14) 

&qM u dYt 
--_I = 

v”x v% ax 
c 

l+un co9 h 
( 

2 
X 

ayt Yt -- l- '2Un- 
C >I ax C ( 

cos h - -J-)(,5) 
cos h J 

v9 v u -f-R- = 
v% SC %x I 1+un cos x 

As for the method of singularities 
built up by matching the gradients 

the matrix of simultaneous equations is 
dy&h ws/b at given values of x 

with the induced velocities in equations (15) and (16). The solution of 
the matrix reveals the Fourier coefficients of the series for q(x) and 
y(x), from which u, v can be calculated. 

(2f4j]2+un sin,(,t- ~j .(16) 

The velocity induced close to the chord line on either side is 
given by 

TJ’ = X v,+u+u* kgy (x) 

and the local profile velocity at x/c by 

.*. (17) 

. . . . (18) 
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In equations (17) and (18) the positive sign refers to the upper surface 
the negative sign to the lower surface (see Ref. I), The pressure 
coefficient C is 

I? 

The velocity triangles are shown in Fig. Lb, from which it can be seen that 

vmx 
sin h + V 

tan ai = - "y 
cos h + AVt 

.---- . 
Vmx CO3 X - V 

my 
sin h wV%iUn 

AVt sin h + K cos h + - 

tan ai = 
vmx 

, w-v- 
cos h - K sin h - un 

..* (20) 

aa similarly 
AV, 

sin X + K cos h - - 

tan a, = - vmx -- . . . . (21) 
cos h - K sin h + un 

The axial velocity at inlet to the cascade V,, is given by 

vq = Vmx(COS h - K sin h - un) 

and the axial velocity at outlet from the cascade V%, 

vaz = vmx(cos h - K sin h + u,) . 

Thus the axial velocity ratio across the oascade VR is 

va2 co3 h - K sin h + u 
VR = n -= . . . . (22) 

% co5 h - K sin h - un 

The blade forces may also be obtained using the velocity triangles of Fig. 4.. 

The force on the fluid in the tangential direction TF is 

TF = P%pt, - P%.~vti 

1 
and the force on the fluid in the axial direction + is 

e,= s(pa-PL) + ps'p+ - PsvQa l 

1 

, The blade lift in a direction normal to the chord line LF is 

LF = TF cos h + f$, sin h . 

Now Vt = V9 tan a%, Vt = Va 
2 2 +ml a2 J v, 

5 
1 

J Var cos a1 and VR = -- 

vaL 

and/ 
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and 
S S 

cL = ', 
c0s2alcos h(tan al-Vi tan a,) + - cos2a1 sin h 

/ Frr '2, ._ v*' d, 1 
x {(l+tanza,) - Vk(l+tan2a2) + 2(Vi-I)] 

where 
LF CL = - . 

apq c 

3. Results 

A calculation of the potential flow through a cascade of 
1OC.k3OC50 profile blades set at +36O (compressor cascade) stagger with 
space chord ratio s/c = 1.0 and inlet angle a1 = 52.83O is described 
in detail in Ref. I. The effect of changes in axial velocity on the 
performance of the above cascade is shown in Figs. 5 and 6, with the 
original pressure distribution and outlet angle deviation for comparison. 
As the axial velocity increases through the cascade both the lift and the 
deviation decrease. Table 1 shows the lift coefficients obtained from 
the pressure distribution and from the calculated turning angle. The 
term VP tan a2 is also shown. I. 

Table 1 

-_--- , 

un 

/ 
_----_ 

I 

-0.053 

i O 
i 
I+o.o53 

- 

vR 
-- 

0.862 

1.0 

1.154 

vR tm a2 

0.5344 
- *OS34 

0.5914 
+ .:-+‘1i,7 

0.6529 

1 
1 

I cL 

+ 

Calculated from 
Turning Angle 

- 

0.763 

0.717 

0.686 
I - 

-.----- 

cL 
from Pressure 
Distribution 

- 

0.735 

0.715 

0.691 

Over this variation in axial velocity the change in outlet angle is 2.2O. 

In a further calculation the terms arising from au'/ax and 
q'(x) in equations (13) and (15) were considered small and were neglected. 
The omission of these terms had negligible effect on either the pressure 
distribution or the outlet angle. 

4. _____y_y Conclusions 

A method is given for calculating pressure distribution and 
flow angles through a cascade where the axial velocity is changing. The 
range of axial velocity ratio considered includes values which may occur 
in turbo-machine design, and values (VR > 1) which arise from cascade tests 
in solid wall tunnels. 

Results show a small but significant change in performance of 
the cascade. In the example quoted, over a range of axial velocity ratio 
from VR = 0.862 to v 
outlet angle decreases 8 

= 1.154, the lift decreases by just over 5jb and 
y 2O. 

Rcfercnced 
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