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SUMMARY

An analysis is given in which the method of singularities, used
for the determination of cascade performance, i1s modified to account for a
change in axial velocity across the cascade. Changcs in axial velocity
across blade rows occur frequently in turbo-machines and solid wall wind
tunnel cascade tests,

Sources or sinks are distributed in limited regions of the
potential flow ficld so that the axial velocity distribution through the
cascade may be controlled.

Calculations show that the blade 1if't and the air outlet angle
decrease when the axial velocity increases through the cascadc.
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Notation

w o e}

=}

blade chord length
pressure coefficient
cascade axial thickness

Vg Ve

source strength per unit length in tangential direction

tan € =

number of strips per unit length in axial direction
inlet static pressure

outlet static pressure

total strip singularity strength

singularity strength distribution along chord line
flux in the downstream direction

flux in the upstream dircction

blade spacing
space chord ratio

perturbation velocity in x-dircction due to singularities
along chord

perturbation velocity in x-dircction due to strip
singularities

axial velocity factor = mnd/2Vpy

perturbation velocity in y-direction due to singularities
along chord

perturbation velocity in y-direction due to strip
singularities

perturbation in axial direction duc to strip singularities

axial velocity componcnt

blade surface local vclocity

cascade vector mean velocity
component of Vp in x~direction
component of Vp in y-direction

. . o
axial velocity ratio Vaz/V34

tangential velocity component
cascade inlet velocity

cascade outlet vclocity
co~ordinates of rectangular axes
ordinate in axial direction
slope line ordinate

thickness ordinate

inlet air angle

outlet air angle

vector mean flow angle

y(x)/
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y(x) vorticity distribution on x=-axis
A cascade blade stagger angle (positive for compressor cascade)
e angle between vector mecan flow angle and x—-axis
Subscripts
¢ inlct condition
3 outlet condition
! refers to source strength and velocity perturbation due

to strip singularitics
1.  Introduction

In general the design of a stage in an axial flow compressor
results in a change of axial velocity through the stage at any given radius.
The change may occur along all the blade length, due to a change in annulus
arca, or may be due to a three-dimensional rcdistribution of' the flow with
radius. Thus it would be useful for the designer to know the way in which
cascade performance varies with the axial velocity ratio across the blades.

In the testing of two-dimensional cascades in wind tunncls the
axial velocity increascs on the centrelinc when separation occurs in the
corner between the blade and the tunnel wall.,  British cascade data has
been obtained using a solid side wall technique so that the valuc of Vag/vai

has in gencral been greater than unity. L.AWC.A. tests have been made in a
porous wall tunnel, and by variation of the amount of air sucked away it has
been possible to derive a set of results at an axial velocity ratioc of unity.
Rolls-Royce, using thc same porous wall method, have tabulated results for
varying axial vclocity ratios.

Two basic methods of calculating cascade performance have been
used in Ref, 1, the first consisting of a serics of conformal transformations
and the second a method of singularitics. The letter hes been modificd to
include the cffect of changing the axial veloclty across thc cascade.
Liverpool University's "Deuce" digital computer has been used to perform the
necessary calculations.

2.  Analysis

2¢1 Mcthod of singularities

The method of gingularities applied to cascade performance and
developed by Sohlichting2 has been used by Schneiderd in the calculation of
the performance of cascades of N.A.C.A, profiles. Further devclopment of
the method is described in Refs 1, and a modification of the analysis to
include changes in axial vclocity across the cascade is given here.

Basically the mcthod consists of rcplacing the blades of a given
cascade by a singularity distribution of sourccs, sinks and vortices along
cach blade chord., A uniform flow, parallel to thc mecan cascade air
dircetion, is superimposed on these singularitics and the magnitudes of the
latter arc choscn such that the resulting flow has one strecamline identical
to cach of the replaccd profiles. The flow dircotion of this strcamline is
matched with the profile gradicnts at a number of chordwise positions.

The uncambered base profile, and the camber line arc considercd scparately.
With yy, y;, the profile uppcr and lower ordinates respectively, the basec
profile ordinate y4 1is given by,

ve = 2y, =) oo (1)

and/
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and the camber line ordinate Y is given by,

v, = 2lypy,) cee (2)

3

Consider the continuity equation for an element of base profile as shown
in Fig.(1a),

Jdu dy
(Vg +w)y, + gedx)dx = <Vm FU —— de (y bt d%)
x v X ax /\°% dx

(the variation of u with y is neglected). If du/dx is considered
small, then

za(x)

- = vee (3)
+u

mX

The camber line is a streamline and the flow direction is, Fig.{1b)

EZE i} V@y+v

ax Vp +u
X

» see (LF)

The source distribution q(x), and vortex distribution y(x) are related
to the induced velocities u and VvV Dby,

ctr = 1 2 Ry (2 e 2 )
-0 ° ° 8 c
ees (5)

)
(see Refs, 1, 2 and 3), and q(x) and y(x) are defined in terms of a
Fourier series. For each aerofoil matching point chosen a pair of
simultaneous equations (3) and (4) are produced. Thus if n matching
points are taken a matrix of 2n simultaneous equations is formed and n
Fourier coefficients of each series for q(x) and y(x) may be derived.
The induced velocity close to the chord line on either side is given by

VX = me"l'Ui;zy (X) tee (6)

and the velocity on the blade surface by a transformation (Ref. 1),

2.2 Change in axial velocity

In the analysis of §2.1 the net fluid produced by the sources
and sinks is zero so that the axial velocity does not change across the
cascade, To effect a change in axial wvelocity a further system of
sources and sinks is superimposed on the existing flow conditions. These
new singularities are strip sources and sinks, along the cascade tangential
direction y' and stretching from y' = =» to ¥y' = +oe The flow
produced is along the ocascade axial direction x' as shown in Fig. 2.

For a uniform distribution of singularities, with

source strength per unit length in cascade direction

=]
il

number of strips per unit length in axial direction,

ol
it

where m and n are constant,

distance from origin in cascade axial direction,

N‘
I

ol
i

cascade axial thickness,
the/
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the total source strength across the cascade is,
g' = mnd per unit length in the cascade tangential direction y'.

The velocity in the upstream direction

mnd.
Véi = "'—"; sae (7)
and in the downstream direction
R md
VB’ = e ces (8)
2

At any point x' within the cascade, the flux in the downstream dircction
is

(1) mx!
gt (x! = e
a 2
and the flux in the upstream direction is
(1) m (d=x*)
(k! = e .
Hu 2
The net flux at x' 1is thus,
mx' mn(d-x')
] t V! $ e e . e oo
d (ld(x ) Clu(X ) - 2 2 cso (9)

and the velocity in the axial direction is

vix) = red <2 x . 1) ) ver (10)

2 d
From Fig., 2 x'/d = x/c, so that the components of vé(x') in the x
and y directions, u' and v' are given by
mnd X
u' = e <2 —-— 1> cos 7\. s o (l11)
2 c :
mnd X
v! = - e <2 - - 1> sin \ . ees (12)
2 c

2.3 Flow conditions

The two basic equations used in the method of singularities (§2.1)
are applied to the systems showm in Figs. (3a) and (3b), which include the
strip sources and the velocities induced by them. For the base profile
(Fig. (L4a) therefore

ou out Qyt \
(Vg +u+u')yt+%q(x)dx+q'(x)ytdx = (Vm RV ALY NI, U U — dx) (yt+ ——n-dx) .
x x dx dx dx
If du/dx is considered small then
#q(x)
v



1
za(x) u dy u' | dy y, du'  q'(x)
- LA <1 + ) L - e eee (13)
v vV, dx v dx V., dx Vv
Dy My m, My My
For the camber line
]
me+v+v ) fzi
me+u+u' ax
and
v, v u dy ut | dy v!
my 4 - 5 = <1 + ) 5 - . s ('“-{-)
mnd x mnd x
Now uw = e— (2-— - 1> cos A, vVv! = = -——.<2~— - {) sin A
2 c 2 c
ou’' mnd
—— = me—— CO8 A
ox c
'(x) = m.
mnd ou!
Writing u, = and substituting for u', — , and q'(x) in (13)
Qme ax‘
and (14)
1
Fqa(x) u dy x dy y 1
- L {1+un cos A (2 - 1>} _t +2u -t <oos A - _.,....\(15)
me me dx c dx c cos A

Vhy v u b4 dy X
+ - = {1+u cos M[2—==4y{ —E 4u_ sinr (2~ =1).(16)
V. V. V. n c dx n c

By e Dy

As for the method of singularities the matrix of simultaneous eguations is
built up by matching the gradients iyt/dx, dys/dx at given values of x

with the induced velocities in equations (15) and (16). The solution of
the matrix reveals the Fourier coefficients of the series for q(x) and
y(x), from which u, v can be calculated.

The velocity induced close to the chord line on either side is
given by

V.';C = me+u+u'i%*y (X) eve (17)

and the local profile velocity at x/c by

vV ATAl 1
L = X — . LN ] (18)
3
Vi meJ1+<dys:dyt>
ax dx
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In equations (17) and (18) the positive sign refers to the upper surface
the negative sign to the lower surface (sce Ref. 1), The pressurc
coefficient Cp is

-p V. 2
C = .I.i' : = 1 = _.I.".\ . «ee (19)
P 1 72

EPVZ V1

The velocity triangles are shown in Fig. 4, from which it can be seen that

tom @ o Vﬁx sin A + me 608 A + AVt .
1
me cos A = me sin A = meun

Writing me/me - I{, = A&ﬂ' oport ,\:

sin A + K cos N + —

tan @ = X ces (20)
cos A =X sin A = u

and similarly

sin A + K cog N = ——

X e (21)

tan a,

Ksin M+ u

cos A

The axial velocity at inlet to the cascade Vg, is given by

Vo = Vpleos A =XKsind -u)

and the axial velocity at outlet from the cascade Vo ,

Vo, = me(cos A=K sin A + un) .

Thus the axial velocity ratio across the cascade VR is

Va, cosl-Ksin?»+un
VR = ———— = ° °oa s (22)
Vhi cos A = K sin A - u

The blade forces may also be obtaincd using the velocity triangles of Fige L.
The force on the fluid in the tangential dircction TF is
Tp = psVa, Vg, = psVq Vg
and the farce on the fluid in the axial direction AF is
A, = s(py=p, ) + ps‘«“é’a“a - ps\fgi .

The blade 1lift in a direction normal to the chord line LF is

Lp = Ty cosh+ Ap sin M.
v
Now Vti = Vai tan a , Vtz = Vo, tan o, V, = Va1 cos o and Vp =;]....
a,

and/



and
s s
, = 2 z cos®a, cos A(tan ai-V% tan a,) + — cos®a, sin A
7 pee'n, . v /r(’»\-'c, '
2 3 b 2
x {(1+tan ai) - VR(1+tan az) + 2(VR-1)}
L
where C, = 3 .
L
QP 10

3. Results

A calculation of the potential flow through a cascade of
10C4=30C50 profile blades set at +36° (compressor cascade) stagger with
space chord ratioc s/¢ = 1.0 and inlet angle « = 52.83° is described
in detail in Ref. 1. The effect of changes in axial velocity on the
performance of the above cascade is shown in Figs. 5 and 6, with the
original pressure distribution and outlet anglc deviation for comparison.
As the axial velocity increases through the cascade both the 1if't and the
deviation decrease. Table 1 shows the 1ift coefficients obtained from

the pressure distribution and from the calculated turning angle. The
term V? ten a, 1is also showm.
Table 1
‘ o
L ! L
up VR VR tan a, Calculated from | from Prcssure
Turning Angle Distribution
-0,053 | 0,862 0.5344 0.763 0.735
-8y
0 1.0 0.5914 0.717 0.715
PENATe
140,053 | 1.15L 0.,6529 0.686 ; 0.691
. | ,

Over this variation in axial velocity the change in outlet angle is 2,2°.

In a further calculation thc terms arising from du'/dx and
q'(x) in equations (13) and (15) were considcred small and were ncglected.
The omission of these terms had negligible effcct on cither the pressure
distribution or the outlet angle.

L, Conclusions

A method is given for calculating pressure distribution and
flow angles through a cascade where the axial vclocity is changing. The
range of axial velocity ratio considered includcs values which may occur
in turbo-machine design, and values (VR > 1) which arise from cascade tests
in solid wall tunnels.

Results show a small but significant change in performancc of
the cascade. In the example quoted, over a range of axial velocity ratio
Prom V. = 0.862 to V. = 1.154, the lift decreases by Jjust over 5% and
outlet angle decrcases %y 2°,

References/
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