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1.0 SUMMARY

A method of conformal transformation due to Howell (Bl)
and a method of distributed singularities due to Schlichting (Cl),
for predicting the performance of cascades of arbitrary airfoils,
have been adapted for use on an electronic computer. Much greater
accuracy than hiterto is thus possible, and this has enabled
numerous refinements to be made. For an airfoil section defined
at 30 points, the former method requires about 4 hours equally
divided between automatic computing and graphical work, while the
latter is completely analytical and needs about 3 hours machine
time (both times being for a slow code of computer operation).
The two approaches are critically sensitive to profile shape.
Pressure distributions as determined by each method are in close

agreement, but the agreement in turning angle is only fair.



2.0 INTRODUCTION

There exists disturbing differences in cascade data as
determined by American and British experiments, and in comparisons
between these data and the limitcd amount of theoretical treatments
at presentavailable., The former disparity may be due to differences
in experimental technique, because of difficulties in obtaining
truly two dimensional flow in practice, while the latter is
undoubtedly due to lack of an adegquate theory. This paper out-
lines a study of two theoretical methods suggested by Howell (B1)
and Schlichting (Cl1).

Among the methods available for solving the direct problem
of the potential flow of a fluid through a cascade of arbitrary
airfoils, a transformation method by Garrick (B4) may be mentioned;
but like so many others, the usefulness of his method is severely
limited by simplifications which are initially inherent, and
approximations which are subsequently unavoidable, if a working
sclution is to bc obtained., Of other classical treatments, two
have becn selected for study in this paper. Howell's approach
was favoured because mathematically it is relatively simple and
sound ~ the only approximation is in transforming an irregular
circle into an exact circle. The Schlichting treatment found
favour because it suggested a completely analytical approach,
and lent itself readily to the study of a cascade with suction
(c.f. American experimental technique). Both methods have as a
starting point the basic profile shape of the arbitrary airfoil
under investigation, and the performance of the cascade as
determined by the said methods is very much dependent on the
accuracy to which the profile is defined. Therefore the
reliability of both treatments depends on the number of airfoil
points which can be accommodated by the anzlysis, and this in
the past has been the limiting factor. This limitation has heen
studied in detail in each approach, and the use of an clectronic
computer has brought about several improvements. With such a

device, calculating time is no longer of prime importance - the
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limitations are now mathematical. Many difficultics were solved,
but others arose; chief of these was the effect of profile shape,
at the lcading and trailing edges, on the pressure distribution
round the blade., WMathemetically, this is related to the rapidity
with which a PFourier Series converges. It is true tc say, that,
the two apprcaches on an electronic computer having becn exhaus-
tively developed, the success of a calculation hinges on this
major difficulty more than anything clse.

dodifications of the Howell and Schlichting analyses were
developed from calculations on cascades of 10C4/30C50 and
NACA 65 —(12A10)1O blade profiles, because these are two profiles
which, while having been designed basically for similar purposes,
give the disturbing difference in performance rceferred to earlier.
The development work was performed on these two profiles in
compressor cascades at a stagger of 3%69; it was then extended
in the case of the British section to turbine and compressor
cascades of 159 stagger. Thus the modified analyses have been
investigated over a limited range of stagger, camber and thickness.
To prove the valuc of the methods in general, they should be
employed in a systematic investigation of all the possible
combinations of stagger, camber and thickness likely to be met
with in practice., Only then will the recommendations of this

paper find universal application.

3.0 SYNOPSIS CF METHODS

3.1 The Method of Conformal Transformation

A scries of conformal transformations, suggested by Howell (Bl)
and cmployed by Carter and Hughes (B2) reduces the flow through a
cascade of known airfoils to that around a cirecular cylinder with
circulation. The velocity at any point on the latter is easily
calculatcd, whence the velocity at that point in cascade is found
after multiplying by the velocity coefficient for each transformation
performed.

The first transformation collapsecs the cascade into an

dJantTatoand Q@ o acahancd AnntEniire 494+ 4o
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( = tanh z.

A succession of Joukowski transformations

~n2

;

are used to transform the S-shaped contour into an irregular
circle. The "optimum" irregular circle is sought - that is,
one having the least number of irregularities, It is obtained
after the minimum number (usually 2, 3 or 4) of Joukcwski trans-
formations, by careful choice of the axes and the parameter C.
The optimum irregular circle is easily recognised, since the
effect of a subsequent Joukcwskl transformation is to render
the irregularities worse.

If the optimum irregular circle has no pronounced local

irregularities, it can be transformed into an exact circle using

the Theodorsen transformation

n
L[(Ar +1B) "= [%]
p

in which the Fourier coefficients converge rapidly. Using 50
or 60 points to define the irregular circle, some 12 or so
coefficients are sufficient to specify the Fourier Series.
Should coefficients of higher order than the twelfth be not
entirely negligible a better irregular circle should be sought.

The caleculation is best performed for every point at which
the airfoil is defined, and the choice of axes and parameter
(referred to sbove) is best obtained by hand. Experience has
shown that although this may take about 30 minutes for each
transformation, it is still less than an electronic computer
requires using curve fitting programs, etc.

The method has been specially adapted for use on a Deuce
Electronic Computer. Using a slow code of operation, the machine

time required for a complete calculation, involving fixed cascade
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geometry and variable incidence, is approximately 2 hours. About
2 hours additional graphical work is necessary.

A full development of the method of conformal transformation

is given in Appendix B.

3.2 The Method of Distributed Singularities

3,21 Basic¢ Theory

The concept of singularities, and their use in the
theoretical prediction of ideal fluid flow past solid bodies has
been in use for many years and has been dealt with at length by
various authors (eg. reference Cl0). Schlickting (reference Cl)
has used the method of singularities to determine the performance
of two dimensional cascades of blades, in turbine and compressor
configurations.

sources, sinks and vorticies are distributed along a line
corresponding to the position of the camber line of each blade
in the cascade. The velocity induced by the sum of these singu-
larities is calculated at points throughout the flow regime and
added to the free stream velocity. The magnitude of the singu-
larities is choosen 8o that a fluid streamline corresponds to
each blade profile.

3.2.2. Approximations usad in the analysis

To simplify analysis and bring calculation time down to a
reasonable value the following three assumptions are made:-
(i) that a finite number of singularities are used to match the
profile at a finite number of points, As the calculation requires
the solution of a matriX of simultancous equations, previous
workers (references(Cl) and (C2)) have limited themselves to
thrce matching points. The authors of this paper have had the
use of a "Deuce" digital computer and have extended the number of
matching points to between 15 and 20,
(ii) that the blade profile can be split into a camber line and
thickness distribution, which are considercd separdtely (see

figureCl) and
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(iii)that the singularities are distributed along the chord
line, whence the induced velocities are calculated on the chord
line, and corrected to give the velocity on the profile.

3.243. Basic equations

If at a given chordwise position % the profile upper and
lower ordinates are y, and y;, , the camber line ordinatc and

half thicknesscan be written, approximately,

y

I
o}
~
e

o

+
e«
S’

S

and y, = z(y, - v, )

With a source distribution q(x) and vortex distribution  y(x)
the induccd velocities st a point x,parallel to and perpendicular
to the chord u,and v are such that, applying the continuity
equation (see figure C1)

dy,  a(x)
dx =~ 2(0 + u)

(3.2.1.)
and the slope of the camber line is given by,
dy V + v
== =T+
dx
(3.2.2.)

U, V are the components of the free stream, parallel and
perpendicular to the chord.

Assuming q(x), y(x)lo be functions of a parameter ¢ where

x=%(1 - cos ¢),
(]

the distribution of singularities may be described in terms of
a Fouricr series and U and v calculated in terms of gq(x), y(x)
for the cascade. The gquantities q(X)gu.and v are substituted
in equatiors (3.2.1.) and (3.2.2,) with the Fourier coefficients
as the unknown quantities. Tor every matching point on the

profile (one value of yé and one value of y/ ) a pair of simul-
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taneous equations is produced and a pair of Fourier coefficients
can be found. If n matching points arc used, 2n simultauneous
equations arise and the solution reveals 2n Fourier coefficients.
The solution of 30 or more linear simultaneous cquations is a
task easily performed by the cemputer.

3.2.4. Computer time required for a calculation

The time rcquired for a calculation on Liverpool University
"Deuce" computer is 34 hours comprising:—
i) Onc and a half hours for calculating cascade paramcter data,
a function of stagger and space chord ratio.
ii) Half an hour to calculate thickness and camber line gradients
iii) One and a quartcr hours to solve the simultaneous equations
and calculate the pressure coefficients.

An extra half hour is required for each value of inlet
angle o, after the first.

The programmes are written in "alphacode" which is compara-
tively slow, and could bc rewritten in "basic" code, to producs
quicker results now that the method has been shown to work.

A full development of the mephod and analysis is shown in

appendices C and B.

4.0 CALCULATIONS ON CASCADES OF C4 AND NACA BLADES

Full details of thc computational methods used are given in
the appendices. The results of the various calculations made
are now discussed.

4.1 The lcthod of Conformal Transformatien Applied to a Cascade

of 10C4/30050 Airfoils, at a stagser of +36°, zero incidence

4,1.1. The prossure distribution (Pig.4.1.1,)

The proussure distribution shown is that derived from the
flow around the irregular circle, with the leading edge point
neglected. All the points lie on a smooth curve, with the
exception of a few towsrds the trailing edge. The pressure
distribution has not been constructed 4o pass through the
theoretial stagnation point at the trailing edge, since this

is not obtained in practice. The base profile is accurately
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defined in the region of the leading edge, and this has enabled
a reliable determination of the suction and pressure peaks to
be made.

4,1.2. The original and mndified nose shapes (Pig.4.1.2.)

The leading edge point is rneglected on the irregular circle,
and the recalculated, effective nose shape is shown in Pig.(4.1.2.).
The discrepancy as a result of neglecting the leading edge point
is thus seen to be small. The pressure distribution of Fig.
(4.1.1.) has slightly reduced suction and pressure peaks compared
with the true C4 profile, since the modified nrse shape 1is more

slender.
1

4.1.3. The modified Fourier coefficients, Arl, Br

Graphical representation of the coefficients accentuates
the asymptoting of the series to zero. In this example, it is
seen that about 10 coefficients are sufficient to specify the
series completely. This shows that the optimum irregular circle

chosen has few irregularitics, and these are small,

4.2, Method of Singularities Applied to Cascade of C4 Profile

at 36° Stagger

Results of a specimen calculation are shown in graphs
4.2.1. to 4.,2.5, ‘The cascade is a compressor of 269 stagger
and space-chnrrd ratio unity. The pressure distribution has
been determined for an inlet angle of 52.8° to compare with
experimental data at present being obtained. The curve produced
is smeoth and the integratcd lift coefficient compares favour-
ably with that calculated from the turning angle, as shown in
the table below. The blade profiles used are 10C4/30050 profiles
with & circular arc camber line, and a smooth pressure curve
is produced from the measured gradients. In the case of a
more irregular shape (eg. NACA 65(12410)10) it is necessary
to reduce the leading and trailing cdge gradients. The effect

of using this proccdure on the C4 profilec is shown in Pfig.4.2.2.
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There is little diffcrence between this curve and the one for
the original gradients shown in Fig.4.2.1.

The source and vortex distributions are shown in Fig.4.2.3.
for the normal 10C4/30C50 profile and the recalculated camber
line and thickness distribution shown in Figs.4.2.4. and 4.2.5.
The recalculated camber line agrees well with that originally
specificd, but the thickness distribution shows some small
discrepancy. The maximum difference between calculated and
original thickness ordinates is %% of the chord at 30% of the

chord back from the leading edge.

TAZTE T
Comparison of integrated and calculated parameters
’ 1 ’ »
1 . N ) Percent
B Intcgr?tud Calculated _ Differcnce
Cp 0.720 0.728 1.1
4 f<§152>d<§> 0.005 0.000
Mx
1 [(x(x)\q/% 0.517 © o 0.5%1 2.6 |
c me c : i

4.3 Comparison of the two methods for calculations on a

Csscade of 10C4/30C50 airfoils at zero incidence, various

staggors
4,3,1., 4.%3.2., 4.3,3. The Pressure distribution

(Mgs.4.3.1., 4.3.2., 4.3.3.)

The agrcement between the proessure distributions as deter-
mined by the two methods is close at the three staggers shown;
therefore the calculation of the 1ift coefficicnts (which are
proportional to the arcas enclosed by the pressurc curves) as
detcrmined by both methods is consistent. For positively
staggcred (compressor)cascades, the method of conformal trans-
formation gives suction and pressurc pcaks which are slightly
exaggorated compared to those determined by the method of
singularities. At ncegative staggers, this is not so. The
suction peak as determined by the Howell method occurs at
abrut 10% chord; the method duc to Schlichting yields a suction

peak at about 15% chord.
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4.3.4, Deviation as a function of stagger, and comparison

with the rule for nominal deviation (Fig.4.3%.4.)

In positively staggered cascades, the deviation determined
by Howell's method is less, and that determined by Schlichting's
method is greater, than that predicted by the rule for nominal
deviation (B5). At low ncgative staggers, the Howell deviation
increcases above the nominal deviation, while the difference
between the Schlichting deviation and nominal deviation increases
as the stagger becomes very large, negative. These latter trends
are, however, dependent on a calculation at one negative stagger

in each case.

4.4, FPurther results using the method of singularities

Fig.4.4.1. shows the pressure distribution of a 10C¢4/10C50
profile blade in a 36° stagger, 1.0 space-chord ratio configur-
ation, for three different inlet angles. With a low (10°)
cambered profile a smooth curve is produced for all values of
inlet angle, but at high angles of incidence the integrated
1ift coefficient shows a 5% error when compared with the calculated
value.

Figs.4.4.2 and 4.4.3%. show the pressure distribution for
an NACA (12A1010) profile in 36° stagger 1.0 space-chord ratio
compressor cascade. PFig.4.4.2. shows the original profile
pressure distribution and Fig.4.4.3. the modified profile
pressure distpibution. The curves are of the same general
shape but the number of calculated pressure coefficients which
do not lie on the smooth curve has been reduced and the
integrated 1ift coefficient compares more favourably with the

calculated one in the second case than in the first.
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5. CONCLUSIONS

5.1, Results of calculations using the method of conformal trans-
formation and the method of singularities have been given in
graphs 4.1 and 4.2 respectively. A comparison of the two methods

at various staggers has been given in graphs 4.3.

5.2. The method of conformal transformation is mathematically
exact and only two approximations are required in numerical
computation, The Pourier series used (see paragraph B4) is
limited to a finite number of terms and the irregular circle

of the last transformation is smoothed at a point corresponding
to the leading edge in order that this series may converge
rapidly. The recalculated nose shape is very little different
from the original and increases the length of the chord by only
3% (Fig.4.1.3.). A full explanation of these approximations

is given in appendix B.

The pressure distribution obtained is a smooth curve and
on integration the 1ift coefficient derived agrees with that
produced by the turning angle, to within 3%. At the single
gpace chord ratio investigated the method was found to be
satisfactory over a wide range of stagger angles.

It is unlikely that this method will be transferred
completely to a computer calculation, as the time required
for curve fitting and the change of axes in the intermediate
steps 1s rather long. The correct choice of the new axes
between transformations requires a certain amount of experience
if a reasonable transformation shape is to result. The change

of axes by hand involves about half an hour's work.

5.3 The basic flow equations in the method of singularities
contain the approximations mentioned in paragraph C.l. The
results suggest that for the profile investigated these approxi-
mations are qguite valid., Lift coefficients from the pressure

distribution area and the turning angle agree within %%, and
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the recalculated thickness distribution has a maximum discrepancy
of 4% of the chord at the station of maximum thickness 30%
(Fig.4.2.5.). Uninterrupted use may be made of a computer
which allows a comparatively simple method of operation to
be followed. Pnor results are obtained from some profiles
and the method is also unreliable at high angles of incidence
(section 4.4), Large gradients in the camber line at the lead-
ing or trailing edges (e.g. as for the NACA 65(124,,)10 profile)
cause irregularities in the calculated pressure distribution
curves and thus the method would not be applicable to highly

cambered turbine blades.

5.4. The outlet angle deviations from the two methods have

been compared in Pig.4.%.4. Results from the method of con-
formal transformation predict a lower deviation for compressor
cascades. The deviation derived from the method of singularities
shows good agreement with the Howell-Carter nominal deviation
rule. Pressure distributions from the two methods are in close
agreement, with two small differences. The method of conformal
transformation gives a slightly higher 1ift coefficient and a
suction peak closcr to the leading edge than the corresponding

quantitics from the method singularities (Fig.4.3).

5.5. Both methods have been adopted for use on a digital
computcr and ce¥tain approximations have been modified to
allow full use to be made of computational accuracy.

The method of conformal transformation is more accurate
analytically although the shape of the leading edge of the
profile cannot be truely specified., The method is fairly
slow as intermediate steps in the calculation have to be
performed manua .y. For the cascades considered in this
report the method has been found satisfactory over the range
of stagger employed. Tha method of singularities, although
containing mathematical approximations is straight forward and

calrrilationa avra ecaaslv nerformed an a compniiter. No 1imit was
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found for stagger angle, but care must be taken that large
values of profile gradients do not produce incorrect results.

At large angles of incidence the method is inconsistant.

5.6. The method singularities is being developed to take account
of boundary layer growth on the blade profile and the effect of
a change in axial velocity across the cascade., It is hoped to

present this analysis at a later date.
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Appendix A NOTATION

The two wmcthods cof calculation set out in appendices B
and C are so distinct that the notation for each is given under
a scparate heading. Al contains the notation used in the method
of conformal transformation, shown in appendix B and A2 the
notation for the method of singularities in appendix C. An
attempt has been made to use the same notation where possible,
the most notable cxception being the symbol for stagger angle,

y in appendix B and N in appendix C.

A.1l. The iethod of Conformal Transformation

y stagger angle (positive for compressors, negative
for turbincs)

C blade chord

s blade spacing

P static pressurc at a point

v velocity at a point

o} density of fluid

Cp pressure coefficicent at a point

D an integer

o} an integer

r an integer

n an integer

i imaginery quantity, equal to N=1

(X,Y) cartesien co-ordinates in the basic airfoil

Z & cocmplex plane

¢ the transformed complex plane of 2

(x,y) cartesian co-ordinates in the plane of 2

(&sm) cartesian co-ordinates in the plane of ¢

(E/y,m') t?e ori%in in a planc of ( for the succeeding
plane of z

K the angle between the axis of ¢ and the succeeding
axis of x.

C Joukowskil parameter

Ay, By Pourier coefficients
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Apl,Bpl  modified Fourier coefficients
A parameter in the plane of z

argument in the plane of z

Y parameter in the plane of ¢

9 argument in the plane of (¢

a radius of base circle

To radius of exact circle

A increment in A produced by Theodorsen transformation
€ rotation of ¢ produced by Theodorsen transformation
od flow angle relative to axial direction

(f,8,0) )

(my, mo) % parameters nf the Theordorsen transformation
)

@1, 62)

Subscripts:

0 a point on the airfoil

- ® a point at infinity upstream of the cascade

+ o a point at infinity downstream of the cascade
r the rth term

a axial direction

1 inlet conditions to the cascade

2 outlet conditions from the cascade

T. . the trailing edge point.

A.2. The Method of distributed Singularities

An, B, Fourier coefficients

Cp Pressure coefficient

c Blade chord length

K Tan ¢ = mevmx

M Combined, complex singularity strength (source

and vortex)
n An integer
P,Q,R,S oimultaneous equation parameters
Pr, Local static pressure
Py Inlet pressure

a source strength



A(x)
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Source strength distribution along x-axis

R(F), I(F), f,g Intermediate calculation parameters

r, 0

o ot @

Polar coordinates
Cascade blade pitch
Space chord ratio
A stream velocity

Perturbation velocity in x-dircction due to
singularities

Perturbation velocity in y-direction due to
singularities

Blade surface local velocity
Cascade vector nean veloclty
Component of Vy in x-dircction
Component of Vi in y-direction
Tangential component of velocity

Difference between inlet and outlet tangential
velocitics

Cascade inlet velocity

Cascade outlet velocity

Velocity potcntial

Coordinates of rectangular axes

Terms associatz:d with integration
Combined blade profile lower ordinate
olope line ordinate

Thickness ordinate

Combined profile upper ordinate
Complexcoordinate (=x + iy = rei6 )

Inlet flux angle

Outlet flux angle

Vector mean flow angle

Vortex strength

Vortex strength distribution along x-axis

Angle between vector mean velocity and x-axis
Cascade blade camber angle

Cascade blade stagger angle (+ ve for compressor
cascadcs)
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@ Strcam function
Subscripts

! Gradient

gi bingle aerofoil

R Cascade minus singie aerofoil(remainder cascade)
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Appendix B THE ME1LOD OF CONFORMAL TRANSFORMATION

B.1l., The Basic Airfoil

The airfoils are spaccd along the cascade at a distance
7 apart; this is so that when the first transformation
¢ = tenh z is applied, the cascade collapses into a single
contour. The basic cambered airfoil co-ordinates are therefore
calculated to a chord length T§§?7 to maintain the correct
space:chord ratio. For greatest accuracy the calculation is
preferably  performed for every point at which the airfoil is
defined, (thesc points are hereafter referred to as the "girfoil
roints")

An origin is taken on the camber line at approximately
50% chord; and cartesian axes (X,Y) chosen so that the axis of
X is parallel to thec chord. pocitive direction towards the
trailing edge. The co-ordinaics (X,Y) of the airfoil points
arc calculated.

5.2 The Pirst Transformation ( ¢= tanh z)

The origin of the z-planc is chosen to coincide with that
of the (X,Y) planc, ths orientation of the axes (x,y) being
such that the x-axis males an angle with the X-axis equal to
the stagger, in the accopted scnse. The new co-ordinates of
the airfoil points in the 2zZ-plane are found.

At this stsge, and agsin later, 1t is scen that many
points lie close to nnc or the other axcs; and therefore the
percentage error in determining x, or y as the case may be,
for these points will tend to be large compared with points
lying well away from both axes. To overcome this disadvantage
it is strongly recommendcd that, heving chosen the origin of the
new axes, and their orientation with rcspect to the old axes,

simple formulac be used to give the new co-ordinates. For example
x = (&~ &Jeos K + (n - n')sin X

vy={(n=~-mndcos K- (- &)sink
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In this way any percentage error should be reasonably constant
over the whole airfoil. The above expressions for x and y are
to be preferred to the alternative msthod of drawing to a large
scale and mecasuring.

The transformation ¢ = +tanh 2z is applied to the airfoil
and infinity points, and the co-ordinates (&, n ), together
with the velocity coefficient %%go , evaluated. The trans-

formation has singularities given by

a 2 _
dz-—1-—C..Ooroo

but Howell ( B,1 ) has shown that thesc points lie outside the
airfoil, and in fact the transformation is conformal for all
the airfoil points.

The infinity points (= «, O ), (+ «,0 ) in the z-plane
have transformed into (- 1, 0), (+ 1, 0) in the ( -plane; while
the cascade has transformed into an isolated S~ shaped contour,
the severity of the curveture at the ends being largely dependent

on the stagger.
(2
B3. The Joukowski Transformations ( ¢+ < = z)

(i) The first Joukowski transformation

The origin (§',7m’) of the new z-plsne is chosen at the
nid-point of the line joining the leading and trailing edge
points, the x-axis 1lying along that line and being positive
towards the trailing edge. The new co-ordinates (x,y) of the
airfoil and infinity points in the z-plane are calculated.
The parameter C is chosen to be one quarter of the distance
between leading and trailing edge points.

The Joukowski transformation is applied to every point
in turn. For each 2 , two values of ( are possible. Con-
sidering the Joukowski equation, it can be seen® that for the
transformed contour to be described in the same sense as the
original airfoil, with |z| < 2 C¢ , points on the upper or
suction surface should take the positive root, points on the
lower or pressure surface the negative root. Tor the infinity

points, take the root having the same sign agy; if y is zero,
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then follow the sign of x. The velocity coefficient is also

evaluated
- A
dzlo - Cl

The result of the {irst Jouvkowski transformation is an
irregular kidney shape.

(ii) Subsequent Joukowski Transfermations

The longest straight line PQ contained by the previous
contour is located, and also points P/, Q° on it wkhich are
as near as possible to the centres of curveture of the ends of
the contour P, Q@ respectively., 1f P¥, @’ are the mid-points
of PP’ and QQ respoctively then the origin of tune new

z-plane is taken at the mid-point of P» @7 , the x-axis lying
along PQ and being positive in the general direction of the
trailing edge. 4C is taken cqual to p# g¢. The new co-ordinates
(x,y) of the airfoil ard infinity noints are calculated.

The Joukowski transformation is again applicd to every point
in turn, taking the root of thc samc sign as y; if y 1s zero,
then following the sign of X (here and after, lz] > 2 C).

The velocity coefficients are again evaluated, and the resulting
contour is an irregular circle.

To obtain optimum accuracy from the last (Theodorsen)
tronsformetion, the irregular circle to which it is applizd
should have as few irregularities ss possible; hence the optimum
irregular circle is sought. It can be seen that the effect of a
Joukowski trensformation in gencral is a contraction along the
x=axis, and an expansion along the y-axis. This effect is
controlled by the choice of axes, and the value of C. Clearly,
the x-axis has been chosen to lie along PQ , as defined above,
with the objccet of using this fact to the best advantage; also
C emphasises this effcct, an increase in ¢ giving an increased
contraction in the x-dircction, cte. Thus by diligently orient-
ating the axces and choosing ¢, the optimum irregular can be

obtoined from the minimum number of Joukowski transformations.
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Por cascedes of low stagger, the optimum Joukowski transformation
is usually the sccond; for higher stagger (giving greater
curvatures on the S-shaped contour) the optimum onc may be the
third or even fourth.

If more than two Joukowski trensformations are found to be
nccessary the third and subsequent ones can conveniently be
taken with the samc origin as the second; all that is usually
necessary is a rotation of the axes and a suitable choice of €.
It is usually fairly obvious when the optimum Joukowski trans-
formation has been rcached, since the next one renders the
irregularitics worsec.
Note *
( = rceiﬁf

then as 2 - w0, { = o or 0.

Briefly, put 2z = rgelﬁg,

dg
but we nmust heve ¢ 2 0
g
e 88 Z s o0y { - o0
This 1s the deciding facter when determining which of the

quadratic roots to take.

B.4. The Lost (Theodorsen) Transformation
n
G +18) (77| 2
r 1B ¢ _'=£n[/£]
1

The usefulness of tnis trancformcticn depcnds on the rapidity

with which the Pouricr cocfficicents Ap, B,, tend to zero, (see

for example, thc formulae for %%

irregular circle has any pronounced localised irregularities,

). If the optimum

(o}

high order cocfficients are rcquired to accommodete them., The
leading edge point in the planc of the optimum irregular circle
can somctimes coursc such a localised irregulerity, and the
Theodorsen transformation fails in its objecect. To overcome
this difficulty, such a point is ignored for the purpose of
the last transformation, thus cnabling a rapidly converging
series to be obtaincd., Accordingly subsequent reference to

"airfoil points'" should now be understood to refer to the
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original alrfoil points, less the leading edge point. Neglect-
ing the leading edge on the optimum irreguler circle has the
gffect of changing slightly the nose shape of the airfoil for
which the flow is detcrmined. Toc "modified" shape can easily
be obtained by applying the transformations in reverse to the
optimum irregular circlc; it will in general not differ greatly
from the originzl profile specified.

A point in the plane of the optimum irregular circle can

be conveniently cxpressed as

z = aetiP aex(cos ¢ + i sin ¢)
while the transformed position would be

¢ = ac?ti0 _ ae¢(cos 6 + i sin 6).

A now sct of axes (x,y) is chosen in the plene of the optimum
irregular circle, with thc sam: origin 28 the optimum irregular
eirele, but with the x-axis passing in a positive direction
ithrough the + o point., Th. base circle is a circle with
cenbre at the origin, and arece cqual to that of the optimum
irrcgular circle. The radius vector aek and argument ¢
with rcspect to the x-oxis can then be calculated for airfoil
end infinity points. By linear intcrpolation of the graph of
radius vector egainst argument for airfoil points, cqually
spaced ordinates arc obteined, cnabling Simpson's Rule to be
uscd in finding the arca and hence radius of the base circle.
For airfoil points, ¢ will be constant, and its proximity
t0 gero is an indication of the closcness of the base and exact
circles, The function N is evaluatced for the airfoil and

infinity points, and used to find ¢o , where

1 2m
Yo = oy No 4o
0
Arl and Brl arc calculatced from the formulae

Al = A =1 [ em Nocos(rfy)dd,
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B.!' =8 = 1 o N Si
r =B, =1 o 8in(rf,)dd,.
(ae¥0)r °

forr=1, 2, 3, 4, «~=~q. If the inegrals are evaluated
using cqually spaced ordinates (iec. at equal intervels of 6, ),

it is scen that many of the trigomometric functions occuring
are rcecurrent, and this can greotly reduce the amount of
repetitive arithmetic involved. For greatest accuracy in
making a truec rcprescntation of the irregular circle, ( 27T/d@o
should be of the order fifty or sizty. The valuos of Ayt and
Brl are plotted, and 2 value of r (say p) ascertained for which
subsequent valuecs of Arl and BI.1 cen be neglected. In the
analysis that follows, usec only the first :p values of Arl and
B,

The transformed positions of the two infinity points is

found by using Nowton's mcthod of successive approximations

to solve the following cquation for ¢ , given N and ¢
A=N=-y = i%\{[AP' cos(rd) + B, sin(r@)]e"r¢}
L

1

These results arec used to solve for ¢ of the infinity points,

wherce
D
€ = ¢ -0 = 2; {[Br' cos(rd) - Ar' sin(r@)]e’r¢}
1

The transformced positions of the airfoil points are found from

the following formulse
1Y

€0 = $po = 0 = E: [Br' cos(rf, - AP‘ sin(rég)]
1
4 b
15% =1 E: {(r - 1)[AP‘ cos(réy) + B, sin(r@o]}
1
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Note:

It would sccem that ¢o , Arl, Brl, A@’ €0 €4 and ‘%% o
cannot b cvaluated, since ¢ and not 6 is known., Expcrience
however shows that € is usuclly very small, and so ¢ may be
used for 6 without great crror.

The trensformed positions of the infinity point could be
determined by combining A&) and ¢ dinto one complex cquation,
and solving it using the method of cheractoristics., Also the
transformed position of an airfoil point could be found by
using Nowton's method of succossive approximations, to solve

0o , given ¢, (e.f. thc cxpression for €o ). However, it is
suggested that thesc two refincmeonts are not consistent, and
therefore not justificed, for the following rcason., The Fourier
coefficicnts have beon feund ucing ¢o for 6o , hence the last
trensformation is onky mothematically consistent if this
substitution is adoptcd thrcughout., When analysis on the
exact circle is pursucd however, 0o should be used, and is

given by 0o = (fo - €dto a first avproximation.

B.5. Veloeity cn the Ixact Cirecle

Howell (BR1) has shown that the velocity at a point on

the exact circle is given by

%ﬂ = fo + go tan (o;) + ho tan (az)
a
where fo = _1 sin (8,) + sin (65)
2To %(m.+;L)+cos(6|) %(m2+;L)-cos (6s)
! Ma
(ml - ﬁ%)
go = _1
4T %(m|+-n;1-l-)+cos (6,)
. ] —_
hO O -:1— (mQ“ ';EZ)
L4r

A
%(m2+ﬁz)—cos(62)

b st ottt s
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and 6 = 0o + (m - 6_ )

(+'0]
62260—6+°°
m, = ¥/~ ;0 mp = ¥ to
Ty = ae¢°

opis found from Joukowski's hypothesis, which demands a
stagnetion point at thc trailing cdge.

viz:

tan (a2)y 5, = [— 315 {fo " Eo Ten (m)}] T.E.

B.6. Veloeity and Proessure Coefficicnt on the Adirfoil in

Cascade

The velocity at o point on the eirfoil is obtained by
multiplying the veclocity at that point on the exact circle by
the veloeity coefficivnt of that point for each trsnsformation
performed, The pressurce cocfficiuvnt is defined as the increase
in static pressure over free stream stetic pressure, compared

with the inlet dynomic head. That io

but V= Voo gg,‘»,g_(; e ac
'dz dz dz
and V, = Vi cos (ai).
s e C =1 - & l.ac]e ~—=lac] .
Cp 1 {[%o + go tan(ay) + hg tan(ag)] AL P

cos (a.)}2
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Appendix € METHOD OF DISTRIBUTED SINCULARITIES

C.1. Basic Thcory

The theory sct out in this appendixz is based on an
extension of classicnl potential flow theory, by Schlicting
(C1). The fluid considered is inviscid, irrotational and
incompressible, Threc basic potential flows are
1. A Uniform stream

v=Ux , ¢=-Uy , V=10

2. A sourcc or sink

V= % é% 1oger s Y o= % 5%’6 V., = g =3,

3, A vortex

= =l - _ X _ Y
VEsp 0, ¢=-pplogr Vpo= oo

where Vo, V@ arc thce fluid velocities along and pcerpendicular
to a radius .

A combinction of the uniform stream with singularities of
varying magnitude placed ot various positions can be uscd to
producc the flow round an a.rorfoil., £ simple extension of the
analysis will then give the {low round a scrics of equally
spaccd aerofoils, that is, a caccade.

In order to golve the dircct problem of deducing the
pressure distribution round & given aerofoil, the singularitics
distributcd in the potertial flow planc arc selected to produce
s streamlinc matching the acrofoil prescribed. 4An exact way of
doing this is to spread an inrinitc number of singuloritics
along the blade cambor lin. and match completcely the blade form.
As this is an extrcmely complex proccdure a small, finite
number of singularitics is uscd. In previous work (C1, ¢c2)
this numbor has rarcly cxcccded threc, but the authors, with
the aid of Liverpool University's "Douce" digital computer, have
increcascd it to between fiftcen and twenty. This requires the
solution of thirty or morc lincar simultencous cquetions, a
task well within the scope of the computer uscd.

A sccond approximation, that the singularities are located

. - - = . N N - . - - . . B - q
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simplify the mathematical analysis. This assumption limits
calculations to blades with camber 0.1 to 0.15c (see reference
Cl).

Defining the vorticity distribution along the x-axis by

y(x)and the source and sink distribution by q(x)-

c
I = [ y(x) dx
0 (c1)
where [' is the total blade vorticity, and
¢
Q= / a(x) dx
0
(c2)

where Q 1is the total source distribution and is zero for a
closed aerofoil.

The flow round a cambered aerofoil of finite thickness (x:,yu )3
(x,yp ) is considered as the sum of two superimposed flows.

1) The flow over a thick blade of zero camber defined by
yt=%(yu"y£)

(C3)
The uncambered profile is a streamline and applying the

continuity equation (see Fig.Cl(a)) to an element of the blade:-

1 - Qu ay
(me+ u)yt + Fq(x)dx = (me+ u o+ == dx)(yt + 3=t dx> o

(c4)
It is assumed in this equation that u does not vary with y and

the component of velocity in the y-direction, v is zero. A

further assumption is made that gﬁ is small compared with u
d
and 5§t . Rearranging equation C4 the following
W = v 1 - a(x)
axt =Y = 3w +uy
My

(05)

results,
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2) The flow round a thin camber line or vortex sheet.

The ordinates of this line are:-

= L
Vg = 2(yy + ¥,)
(Cé)

Plow is tangential to the camber line so that at any point

+ Vv
gxs:y’: -—L—
dx [ vV + U

mX

(C7)
see figure (Clb)
For each pair of ordinates (yu, v, ) determined from the
profile a pair of equations is »produced, equations C5 and C7.
Thus if n pairs of ordinates are used to define the aerofoil 2n

equations are produced. ‘Phe equations are solved simultaneously.

C.2. Development of Equations

C.2.1. Mathematical concept

In order to solve the simultancous equations (C5) and (87)
the following four steps ardé nccessary:-

1) Define q(x), y(x) in terms of a Fourier series

2) Deduce the equations for u and v the induced velocities
from the singularity distribution

3)  Calculate the numerical gquantities associated with
a(x), y(x), u and v.

4) Substitute the above quantitics into equations (C5) and
(C7) with the Fourier coefficient as the unknown
parameters.

C.2.2. Definition of singularities

If x is the distance along the chord from the leading edge,

a new coordinate ¢ can be defined as

P:S

2= 3(1 - cos ¢).

(c8)

The source-sink and vortex distributions are written down in
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terms of ¢ as a series (see Glauert Ref.(3)

XLzl Agcot g + Aisin ¢ + AxSin 2¢ + eee + A sin(n-1)¢.
2Vm 2 n-1

It

X
(c9)
%%&l = Bo(cot % - 2 8in ¢) + B2Sin 2¢ + ees + B, sin ng
m
X
(C10)

where Ao, Ay === A 7, Byy Bp --- Bpn are Fourier coefficients.

C.2.3. Determination of induced velocities

The velocity potential at a point z in the complex plane,

induced by a singularity at another point z is

_ M P
W= 5= 1oge(z - Z)o

(C11)
where M is a complex singularity, M = Q@ + iT.
The induced velecity is given by
- iy = 4% S
bm iV =g T 2mz - %
(C12)

The cascade is located in the complex planc by one of the
blades having its leading edge at the origin of the complex
plane (z = 0) and its chord lying along the x-axis as shown in
Fig.€2. The cascade tangential direction is then at an angle

N to the y-axis, where A is the cascade stagger angle. If
the spacing of the blades is s, the leading edge of each blade

lies along a line

L = ie™ 3D
(C13)
with coordinates given by
7 = inse™ M (n an integer)

7 ~-1 2\
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As n varies from - «» %0 + » , 7 locates each successive blade
leading edge for the infinite cascade.

It has been assumed that the singularities are distributed
glong the chord line (sce § Cl), that is parallel to the x-axis.
Thus any singularty on the chord of any of the cascade blades
has the complex coordinate,

Z = inse™™ M + %
(C15)
where X is its distance from thc blade leading cdge.

The complex velocity induced at z by this singularity is, from

equation (C12)

. M 1
U - 1v o o -
iN

z - (inse”

+ X)
(c16)
The velocity induced by the sum of singularities at corresponding

X positions on all the blades as n goes from - « 50 + o« is then,

+o00
. M 1
u - 1v = 5~ -
V= on Eﬂ . -iN | =
Lu z - (inse + X)
-0
+o0
2ge™ N 2wa f;x - inw)
~co\Se /
and
u - iv =

%% el coth <31§251 ei%)

(C17)
Substituting for I and ¢q from equations (Cl) and (C2) in
M=@Q+ il

equation (Cl7) beconmes

ia 1 -
_ £ £ X . - i
u - iy = S5 2 ]; [q<g>+ 1y<§>]coth<w(5—g—3l e1%> d(%)
£ o
C

(c18)

To simplify the calculation the induced velocity is derived

T Aven ey o oo AT Tam dlr.n T S an o 4 P e gt e VT QN
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becomes

. 1 i
u-iv = = y{x)-iq(x) + 21%9 [_ q<z>+iy<§>]coth<welxgx-§2)d<§>
5 283_.:0 Cc s -c'
c

(C19)

As s - o equation (C19) becomes that for a single acrofoil, and

in the limit (see refercnce C2)

usi-ivSi =+ y(x)-ig(x) + c_ ! [g<§>+iy<§>] __Qi_
2 o |_ c c =
-0
c

X -
(c20)

where suffix "si" refers to the single acrofoil.

Both the induced velocity for the whole cascade and that for the

single aerofoil becomes infinite at x = X, a singular point in

the complex plane. By subtracting the single aerofoil velocity

from the cascade velocity the singular point is eliminated. The

resulting velocity is known as the induced velocity for the

"remainder" cascade so that

uy - ivp = (u - usi) - i(v - vsi)

(cel1)

"R" refering to the rcmainder cascade, and
. _ 1L 1 X\ .. [X iN in, =\ _-iA X
Up - ivp =2 3 - o] €>+1y E):F [%oth(we x-x>1g ] S__ :F(g)
& S Vi ZX-x;
c

(c22)
Substituting for +(x), a(x) from equations (c9) and (C10)
equation (C20) is integrated explicitly.  Equation (C22) must
be integrated numcrically.
Finally u = ugg + uR
(c23)

V=vV_. + 7V
si R

(c24)
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C.2.4, Numerical parameters

The left hand side of each of equations (C5) and (C7)
comprises a numerical quantity defining the aerofoil profile at
a given abscissa (distance along the chord) x. If the profile
is defined at n positions the quantities on the right hand side
of each equation g(x), u and v must be determined explicitly
for the n corresponding values of x, For n pairs of cquations,
n terms of each Pourier series can be found (equations (C9) and
(C10)). These terms replace q<§>, y<§> in equation (C20) and
(¢22) which are integrated for cach valuc of x. This requires
n integrations for each equation, or term by term n2 integrations.
This number is doubled by taking the real and imaginary parts of
the equation separately.

Tor the gingle aerofoil from equation (C20)

si 2 2T |- x - X
£-0
C
(C25)
T\ - £ o3
Vei *(2 *217;{— x - %) &
z
(c26)

Substituting for a(x) and y(x) from (C9) and (Cl0) and writing

=t

= 4 y X
s =1 -cos¢) , Z=2(1-cosp) equations (C25)

and (C26) are integrated to gives:-

u_ . .
vﬁ-l- = i(Aooot%JrA, sing+e.od Sin\(n"“)?*{Bo(1+2003¢)-Ba cos2¢ -

m

X

~+se=B cos(ng)}.
(ca7)

and
A2

(c28)

Bquation (C22) must be integrated numerically. Writing for el%

T o= (ertA,cos¢+”.+An_1cos(n~1)¢)i(Bo(cot%-esin¢)+Bgsin2¢e°.+Bﬁﬁnn¢)
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ei% = ¢cos N+ 1 sin A

(Cc29)

the integrand may besplibp into real and imaginary parts.

i iNz=x\\ e N g s =
Let F = e %{coth<we (—;—))-; = E} = F(%,E,X)
(C30)
F = (cos N + i sin k)cotﬁjﬁ(cos N + 1 sin %)5321 S R S,
8 mTX - X
(C31)
from which Rilow the real and imaginary parts of F,
F =R(F) + i I(F) and
_ _ (C32)
R(F) = cos%sinh[2wzgzcosk]+sinXSin[2w5§§sin%] - __ 8
cosh[2négzcos%]—cos[2ﬂzgzsin%] m(x - x)
_ _ (c33)
I(F) = sin%sinh[2v§§5008h]—cosksin[2ﬂzé§sin%]
cosh[Eﬂzgzcos%]—cos[2ﬂ5gzsin%] )
(c34)

Rewriting equation (C22) gives

up = dvp = % 2 j;=JIé<§>+iy(§jK%(F)+11(F)>] d(%)

(C35)
T asss L @@ G
R s %:O c Ne c)
(C36)
and
e (C37)

Putting in the quantities for y(x), g(x) from equations (C9)
and (Cl0) produces integral cquations in terms of the Fourier
coefficienty R(F), I(F) and trignometrical values of @

(G36) and (C3%) then become

?
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1
; % f~ J: {Bo(cot§—2sin5)+Bgsin25+...+aninnE}R(F)—
B

-,

p' G -
{Aocot%+A.sin5+...+Ansinﬁ$} I(F):F<§>.
(c38)
Vp oo 1 9 - - -
- /; J: {Bo(cot2—231n¢)+325in2¢+o°+aninn¢}I(F)
My £
c

+ [Aocot%+A,sin$+.,+Ansinn$}R(F)]d<%>
(c39)
These equations are inegrated term by term. For ease of

rcference the following short hand symbols are used:-

= [(cordeotrfi@n(]) sy, [(cothzetnp)rcea(®)

{103 x =% [sino3 x
fqa=-§ fs1n2¢I(F)d<c> gqg—s /81n2¢R(F)d<C>
c [ .. = % .= X
fq =< [Slnn¢I(F)d<%> \ g%ﬁ=§ 81HH¢R(F>d<%>
n (C40)
. Z - < (cut)
=2 p:S =L X
fyo = fcotQR(F>d<c> g5 /cotZI(F)d<c
=8 [asnm X ¢ [ = X
£, = fsmsbR(F)d(C) g, /SlnsﬁI(F)d(g)
& fainmTn (m)al X -
£, =~ /smnszsR(F)d(;-) gyn=—-§ /smnqmF)d@)
(C42)
3 o (cu3)
The limits of the integration are § = 0 and % = 1, and
d<§> = % sin ¢ d¢
(C44)
Fora > 2 f, =g, (C45) and £, = -g, (C46)

n n n
Substituting (C40Q) - (C43) in (C38) and (C3%9).

I

3= Bd +B © o0 )
) ( 08y *B2g, + +Bngqn) + (A°gyo+A'gy|+ +Angy )

x (capy

<
it

R
T B f +B f +00°+B f o0 o0
n (Bo g0 P25, n qn) + (AofyoﬁA|fyI+ *Anfyh)

(C48)

The induced velocitice on the x-axis are obtained from equations
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(c23), (c24), (c27), (c2s8), (C47) and (C48) and are given by,

u
o= (Bo(1+2c08¢)~Byco82¢=4ss-B_cosng)+(Bog  +Bag  +ee.+B g )
m_ n Qo Q2 n=q,
+(A 0o
( ogyo'*'Atgyl‘*‘ +A11g}/n)
(€49)
= (=Ao+hA;cOs$ )+(
= {(=Ap+A, +eeot+A cosng )+(Byf cae
me Apcosng)+(Bof +Bof  + +anqn)+(Aofyo+A;fyl+
soet+h T )
nty,
(€50)

Note that on the x-axis components with a + sign disappear.

i}

Now let £ % =1 -1 g% =g + 2c084 + 1

14 Yo do Qo
f * = P—
yy = Ty, +cosd 8,5 = g, - cos2¢
f.* =f + cosn¢g (C51) ¥ = - (Cc52)
Yn Yn ¢ gqn gqn cosng
so that formn > 2 £ % = - g * (C53) and
Yn U
u
5= (A g +A +o0stA + % L3 o
oy o8, *hig ngyn) (Bogqo+Bagq2+0oo+Bngqn)
(C54)
== = (Aof *+A L *+eeoth T #) +
- ¢o o0 f PP
Vm 0 Yo | Vi n ,yn) (Bo qo+Bgfq2+ +anqn)
X
(C55)
Bquations (C54) and (C55) give the values ofﬁg— syl  in terms
mx mx
of evaluated quatities g, g%, £*, [ and the unknown

yooTa Y o a
Fourier coefficients. The evaluated quantities arc in terms

of ¢, % (space chord ratio) and A (stagger angle). These
results can bce tabulated and used as constant parameters. The
variables arc then:-

1) Blade shapc given byjyé, v

2) Fluid inlet angle.

C.2.5, Setting up of simultaneous cquations

Equations (C5) and (C7) are

«V{; = Z(VQ(Xl 3 g = mﬁf + v
mx (05) S VmX + u (07)
y(x) a(x)

Now va 9 2Vm are defined in §C.2.2.

X X
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§E~ , ﬁi— are derived in § C.2.4.
My My
and vi s VL appear from the aerofoil profile, see §C1,

Kearranging equations (C5) and (C7)

From (C5)
alz) o u gy
2Vm Vﬁ t t
X x (C56)
From (C7) Vi
v AT
VTV ¥ Ys T
v pe X x (€57)
m
Lat g‘l = ¥ and from equations (C10), (C54) and (C55)
My
B o . .
Bo(cot2 2sing ) +B281n2¢+°.o+Bn81dh¢)—(Aogyo+A4gm+w.+%%%h} v
- ¥+Bog #F+eee % ) =
(Bog *+Bag *+ +Bngq;)yg V4
(c58)
K+Af*+A.f*+uve+Af* cee 3
( (o} Yo | V) n yﬂ)+(Bofqo+Bgfq2+ +anqn>
-(A +A +oootA I -« (B *4+B HhoootD 2)v! = v/
(hogy, +h18,, ngyn)ys (Bog *+Bag *+ +Dngqn)yS v

(C59)
Using a further substitution of P, @, R, S

AgPo + AP, +vo-+AnP + BoRo + BzRo +esat Ban = -K + y'

S
(C60)

—AoSo - A|S| —-oo-AnSn -+ BOQO + BgQg + o0 et BnQn = yé
(C61)

n

in whichs:~

O Qo:cot%—281n¢—y£gq§ , Ro=f_ =g * , So=y(g,_

Yo 7Y do ©qo y
P =f *-g  , Q=sinng-ylg #* , R =f ~g* , S =ylg
DY, Vg n tq, * "nTq, dp n Ty
(062)

For each point on the profile a pair of simultaneous
equations as above arc produced. For n points defined, there
are 2n equations and the matrix has (2n)2 elcments on the left
hand side. As the equations stand it would be necessary to

produce a solution for cach angle of inlet flow required, as

Vin

m
the value of K <f ~w£> depends on the inlet angle. It is
X
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useful thercfore to split the matrix into two, one independant
of X and one including K, and to solve the matricies separately.

The solution then applies for all values of K. Writing:-

AO = Aoo + K.Aoﬁ BQ Boo + KBn

B

3 Bn = Bno + KBn

oA A (¢63)
n = fne t n

B

substituting in equations (C60) and (¢61) and separating out
the K terms, the final two sets of simultaneous equations are

produced,
AOOPO+AIOP|+aoofAnOPn + BOQRO+B20R2+,,.+BnORn = y/

~A0080~A|QS|—000-AnOSn + BQ0Q0+B20Q2+ooo+BnOQn

AoﬂPo+AlﬁP|+...+AnﬁPn + BOBR°+B2ﬁR2+"‘+BnﬁRn

g - e o o LR 4 = o
Aoﬁso Alﬁs, Anﬁsn + BoBQ°+BzﬁQ2+ +BnﬁQ

1l
g
ck<

il
1
-

I

C.2.6. The solution of the equation matrices

The magnitudc of each of the parameters P, ¢, R, S
(equation (C62)) is determined for each value of x along the
chord line corresponding to the position of the measured values
yé ,yé producing one pair of equations. The matrix is
erected by calculating parameters at various values of X.

From thc solution of the two matricies apnears the Fourier
coefficients AoB -——- Anﬁ s AQQ ——-— Ano : Boﬁ -—- B ng
E%o --~ B, used in subsequent calculations.

C.3. Turning Angles and Pressure Distribution

The circulation round anserofoil in cascade is defined as T
If 2AVt is the change in the tangential velocity of the flow
through the cascade then

2AVtS = T
S
AVy = 53 (C66)

Substituting for T from cquation (C1)
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O
AV, = o= 16 y(x) dx

(c67)

Substituting for vy(x)from equation (C9) and integrating,

AV
t
,q..:;l‘g (Ao + %A,),
X
(C68)
and from (C63) A\
v;—'= § g ((Aoo+%A|0)+K(Aoﬁ+%A'ﬁ)>
X
(C69)
from Figure 3, v
tan an - " sin N+ Py cos A+ V¢
= v cos AN -V sin A
m rny
4070)
m

Putting in the value of AV from (C69) and K ::VAX

]

X
. T g
51nk+Kcosk+ZAE_&?oo+%Ano)+K(AQQ+%A|g)J
cosh-KsinA )

tan o) =

(C71)

The stagger is defincd and Aoco, Ao, A R A|¢; are calculated

°p
from the simultencous equations, so that if a value of g is
substituted in equation (C71) & value of K may be obtained.

Separating out the "I " _tcrms,

tanal—tan%—% < AOO+%AIO

8 cosA

Tolp 41 e
tana,tan%+1+2 S LA05+2A¥ﬁJ cOsA

K =

(c72)

and the direction of outlet flow, again from Figure 3 is

given by
tan N + K - ==t ffi
tan ap = o8 A Vg
17 - K tan A

(c73)
K having been calculated from equation (C72).
The veloeity induccd on ¢ither side of the chord line

in tho x-direction is,



X
(C74)
From equations (C27) and (C.54)the following equation is obtained,
v
P = 1iE$oootQ+A,sin¢+.,.fA sinng )+(AoE,, +A 18 +esoth g )
my 2 n Yo Yi n=yy,
+ * * e ce *
Bog,*+Bag, ¥+ +Bngqn)]
(c75)

The positive sign in the second term refers to the suction
side, the negative sign to the pressure side. The velocity on
the blade surface V, 1in terms of the velocity along the x-axis
has been determinced by Riegels(references C4 and C5) from the
gpproximatc conformal transformation of a flat plate into an
ellipse of high length to thickness ratio. For an uncambered

profile (refcrence C4)

Ve x
m me NT ¥ yéa

(c76)
This equation is used in rcferences Cl and C2 to obtain
the pressurc distribution round the profile. For a cambered
profile however Ricgel's rccommends (refcrence C5) that the

gradient of the cambercd profile beused so that,

VL_— Vk ’
V.~V Newrerra
mX mX1+yu
(CT77)
for the uppcr surface, and
ok :
v. TV T
My My N1 Ty (c78)
for the lower surface.
) ; - 1
Equation (C3) vy = 2(y, - ¥,) (03)
differentiating dyt
T = vy =3y - vy)
dx £ u e (679)
Equation (C6) Vg = %(yu " y@>

(Cc6)
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differentiating
N
T = Vg = 2y +vy)

0

(Cc80)

(The gradient of the
upper surface)

wdding (C79) and (C80) y! + y{ = y/! g
; (c81)
)

(The gradicnt of the

Subtracting (C79) from (CSO)yé - Vi = V4 1 fa0c)
ower surface

Substituting for y! , y; in (¢77) and (C78)

=

.Y ]
m Vi NT + (7! £ y7)°
X X T yt

l

<3

(¢82)
where the plus sign refers to the upper surface and the minus
sign to the lowcr surface.

Phe aercofoil pressure coefficicnt is,

Cp=3’§-§-9*'"=1-<y-%>2

Z VT

Vi
(c83)
where
gl _ Sos A - K sin A
gin B
mX !
(cs4)

sec Figure 3.
squations (CG66) to (C84) allow the cascade outlet angle

and blade pressurc distribution to be cvaluated.

C.4., Calculation Checks

The following five checks may be made on the calculation:-
1) The blade 1ift may be found in two ways, by graphical
integration of the curve of acrofoil pressurc distribution, and
from the fluid inlet end outlet angles. The 1ift coefficient

is given by,
Cp = % coszag(tanza,—tanzag)sin%+20052ax§(tana;-tanaz)cos%
(Cc85)

Both valuces of lift arc quanbtities measured perpendicular

to the chord as distinct from normal cascade practice of measuring
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1ift perpendicular to the vector mean flow dircetion,
2) The vorticity distribution along the blade chord is given
by cquation (C9) and the total circulation T from cquation (C1)
Graphical intcgration may be performed to determine +he y(x)
circulation. The ocxplicit  integrotion of y(x) defincd in
cquation (C67) in terms of the change in tengential velocity, is
given in cquation (C68),
3)  The source distribution may be found from equation (C10).
Graphical intcgrstion of the source distribution curve should
give zero to fulfil the condition of cquation (C2).
4) The recalculated acrofoil gradicnts mcy be determined
using equations (C5) and (C7). q(x) is found using (C10), u and
v from (C49) and (C50).
5) The originesl acrofoil ordinectos are found by integrating
cquations (C5) and (C¢7). In order to make the integration
possible cxplifitly the equations are written in terms of a

singlc acrofoil.

sguation (C5) is dy, (%)
dx = 2(Vm + u) (c5)
X
Equation (C7) is \%
g Dy iy
dx V, +u (c7)
X
for a single acrofoil u <<Vm and is neglccted so that
bid
dyy a(x)
dx Zth (c85) -
dy v .
-d-.-‘§=K+-—S¢J.‘.
X Vhy
(¢86)

Substituting for g(x) from equation (C10) andv_, from ecquation

¢ea),
Bo (cot@-2g1 i i 4y
o 5- 31n¢)+B281n2¢+.°°+Bn51nn¢ = T
(c87)
~Ao+tA 1 COBP+oeoth | cos(n-1)¢ = -K + EZE
n-1 | dx

(cas)
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(C44)
For zcro angle of attack X = 0 and writing AO = 0 (see refercnce cl)

equations (C87) and (C88) on integration become,

n
2 _ U sin(1-n)¢ _ sin(1+n)¢
Sy = Bo (sing++sin2e )+ Ez:Bn<2(1_n) 5o
=2
(c89)
and n
2 _ 2 2 cos(n-1 _ cos{nt] _ y
c Vs T A'u(1’0082¢>+ }:'An { 2(n=1) 2(n+d ) (n-1)(n+1)}
n=2
(€90)
where Ay, Bp erc cocfficionts calculated at X = O.

¢.5. llumericsl velucs

C.5.1. Choice of integreting points

CGertain quontities have to be intcgrated numcrically e.g.

f 8 (cquations (C40) - (C43)). The "Douce" computer

n 9n

porforms an intcgration using Simpson's rule and requires
ordinatcs tabulated for cqually spaccd abscissa. As the inte-
grations arc¢ performed with respect to 5 <% = %(1 - COS 6))
the arc of @ from O +to m is divided into (18) parts of 10°
cach giving (19) ordinctecs.

C.5.2. Choice of singularity points

There arce threc considerations which determine the position
of thc¢ singularity points:-
1) The number. As e computer isused throughout the calculation
the auvthors werc not restricted to the use of three points only
as othcr workers have been. The initial calculation was performed
on a ¢4 base profile which is defined by 17 points., This was

t

v}

2ken as a nominal numb.r of singularity points and any quantity

It

between 15 and 20 is appropriate. Wwer points would produce
quizker results, more would tend to make the colculation unwieldy.

It is useful to have points close togither near the leading edge,
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to prcdict the suction peck, and on cpnroximnte spoeing of cvery
10% chord reorward of 204 chord. Tt wog thought that with such
& lerge number of points sehlidting's wothod of positioniag was
supcrfluous cnd was ignored,
2) the distance from the lending cdge. The simultoncous cquation
metrix is very scnsitive to lorge numerical velucs. TF any onec of
the peramcters P, Q, R, S is lerge, the computer cequotcs ©1l small

paremcters to gzoro ond produccs an incorrcet result. Iquotions

(C£0) - (C:3) ghow qu’gOO’fyO’gyo as functions of cot %

which is iafinitc at = 0. Howcver on chaaging tu: intcgration

-

r Tl

C R
function from % 4o 3 (%= (1 s @ the cot € tern
Irom 2 C S < 3 - cos @) { 5 tern

disapncears.

9 () - 2\ 43
/ cot d 2 = cog 2> dg
(Cco1)
which ie finite for all valucs of ¢ . Thus the intcgroting
points may boe cerri.d up to the lczding edge of the profilc,

For the singularity nointe on the oth v hend, it cen be scen

fron cquation (G62) thet Q0<=cotg - 28in¢‘y£gq§> beconc very

2
]

o

large

r

& ¢ = 0 <§ N o) o avoid heving Qe  ton largc the
first singulcrity ie token at 2.5% dsrd back from the lecading edge.
%) Imtcgration singuloritics., The discontinuity of intcgretion
in equatisan (C19) is (limincted by thc use of equctions (C20) and
(C22). Th¢ numcricel quentitics rnay ©t1il1l beeone infinite if

z =% (scc {or cxorple ecquntions (033) and (C34)) so that the
flux singulerity noints must be ehoscn so thet they do not
coincide with the numcrical integrating pointe, The limit of
R(F) and IF) as x - X  is zero, bub a slight discrcpancy in
computation will producc o 1o rge numcrical quantity. 1f howcver
the compuler progrom ic modificd 45 cive a result of zero wlhcn

the valuc of R(F), I(D) risce obhove o cortoin queatity the flux

singularitice moy be chvoscn oi roidom.
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C.5.3%. Prof’le coordinates

Blade profiles are usually described using cember line and
base profile ordinates. The base profile ordinates are measured
perpendicular to the camber line, at a position measured along
the camber line corresponding to the base profile % position
(see Pigure C4). It has been suggested (reference C2) that the
values required in the calculation y_, Vs (equations (C3) and
(C6)), may be taken as the conventional coordinates. If the
profile iscet out as upper and lower ordinates along the chord,
on the other hand, equations (C3) and (06).can be used directly
to determine Vs Y£ . Using an interﬁolation program the
values of Ygr Vi for every 2.5% along the chord can be determined.

C.5.4. Profile gradients

From the thickness and slope (yt Ve ) ordinates the
H
gradients are found using the central difference method of cal-
culation. The Newton-Stirling forrula is differentiated (reference

C6), giving
1 1 /
£h = T <N§foﬁg#53fo+g%u55fo—?ﬁ5#57fo+ov-)

(€92)

where f{ is the 1lst derivative of the function f at x = xgq,
h is the ordinate spacing 5 represents the nth difference
and p the mean of the upper and lower nth gifference. The
inclusion of terms up to 57 is satisfactory for % from
125 to 0.90. Outside these values it‘is necessary to use the
forward or backward difference formulae; |

However it was found that these formulae were unreliable in
these circumstances and the gradients required are taken from
a scaled up drawing of the base profile and camber line by direct
measurement,

As has been previously mentioned with regard to the values
of P,Q4R and S, if any one of the parameters in the simultaneous

equations is large compared with thc rest a useless result is
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produced. This phenomenon also occurs with large malues of the
gralients, which appear near the leading and trailing edges of
the profile, and comprise the right hand side of equation (C64).
The error is apparent in the plotting of the pressure distribution
curve as a number of "rogue" points occur (ie. a smooth pressure
plot is not produced), and the integrated 1ift coefficient from
the curve does not agree with the 1ift coefficient calculated
from the turning angle (see C4, 1). The guthors have found it
necessary in these circumstances to reduce leading and trailing
edge gradients, so modifying the original profile. The largest
numerical gradient is that from the thickness distribution at the
leading edge, which is infinite. Even at 2.5% and 5.0% the value
of yé is sometimes toolarge to be accommodated and has to be
reduced. Boetween 10% and 90% chord the plotted values of the
gradients frrm a smooth curve. A general rule for producing a
reasonable pressure distribution, ie. no "rogue" points and
correct lift coefficient, would be to extrapolate the smooth
gradient curve back to 0% chord, from say 10% and on to 100%
chord from say 90%. At the present time this rule is arbitrary
and it is necessary, if the correct result does not appear first
time to adjust leading and trailing edgc gradients until a
consistent answer is obtained.

For a circulasr arc camber line the gradient is found

analytically. With % chordwise peition and 6 the cember
angle x

dy _ ' 2

ax -~

,J coseozg - (2% - 15‘

(C93)



Appendix D

ADAPTATION OF THE MATHOD OF CONFORMAL TRANSFORMATION

TO USE ON AN ELECTRONIC COMPUTER

D =

BASIC AIRFOIL
D:Basic airfoil

R: (X, ¥)

/

CHANGE AXES
Ditany, &/yn’
(X, Y)

R:(x, y)

v

FIRST TRANSFN,
D‘(XsY)

nié, n, 5]

CIANGE AXES
Detank, &', n’
(&s n)
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\

Data
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i
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i
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\J

vt -
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sin{ro,)

. ! 7
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D:<X9Y)s c?
R:(fs ﬁ)s l%%

SUBSEQUENT JOUK.TRANSN .

THE INFINITY
POINTS (1

DA B,
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\/

¥
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~Co
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R: 0o

R: tdz:
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\J

0,5 b2

D:Go,ﬁqw,ﬁﬁm

N

fo, Zq, ho

Dimy, masros 61,02

(fo,80s5h0)

\/

ATR ANGLES

D:ay s (fo,805h0)T-Eos

R: aa

|

PRESSURE COEFRIC-
1ENT.

D: Glsaas(fo:go:ho

L, |g)... |2

R: C_o

¢*ws%”m,%%w /




Appendix E

ADAPTATION OF THE METHOD OF DISTRIBUTED

SINGULARITIES TO USE ON AN ELECTRONIC COMPUTER

M

PROGRAM 1

D:X’I‘A--J-C- -~ TOR PROGRAM
RESULTS- ! 16
| PROGRAM 2 }
DATAF r*wMﬂ FOR $RouRAA
i REQU'LTS—C. l
"PROGRAH 3 )

DATA-PROFILE COORDINATEs(xn,yn)
RESULTS-~ORDINATES AT INTERMEDIATE

POINTS a
- : N G o
PROGRAM L4 i ;?
DATA~ORDINATES OF PROFILE ;'; N
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! s
PROGRAM 5 f -
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!
- : i
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Y
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i
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, £
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