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EUMMARY

Transient temperatures in asvofoil sections and tapered discs are
calculated taking advantage of simplifications in heat flow analysis
achieved in Biot's variational method. Cross-sections are represented by
a line eof adjacent squares of various sizes suitable for the local dimen-
sions, €.g8. small squares nesr tune leading and trailing edges.,  The poten-
tial, dissipation and surface dissipation functions of Biot's method are
set up, and the Lagrange cquations lead, by automatic procedures, to an
eigenvalue formulation in matrix form for the temperatures and their first
time derivatives. Solutions are sums of exponentials in time, and are
evaluated by digital computer, requiring about five minutes for each cross-
gection and heat transfer coefficient. Transient temperatures in a per-
ticular aserofoil section for variation of heat transfer coefficient and for
external temperature depending exponentially on time agree with results
obtained on an analogus computer. Maximum transient temperature differ-
ences are evaluated for tapered discs (which are not amenable to analysis
by a simple electrical analogue) with variation of edge radius and heat
transfer coefficient. Peculiarities in the solution for cyclic tempera-
ture external to an zerofoil over a range of frequencies indicate limita-
tions in the mathematical formulation. A successful solution for cyclic
external temperature might enable eigenvalues to be separated out in
experimental measurements using electronic equipment, and this might be
extended to exponential external temperature if a relationship between
cyclic and exponential external temperature could be established. Eigen-
values and eigenvectors as discrete valuss arise fictitiously from the
sub~division into squares and the possibility of an integral formulation
is mentioned. There is a possible, but not immediate, extension to
cooled blades, whose cross-sections are multiply~connected regions,

Transient stresses due to creep, and viscoelasticity might be included,
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1.0 Introduction d

Remarkable simplificatlions in heat flow analysis have been achieved
by Biot!, whose variational method permits considerable flexibility in .
formulating and solving heat {low problens. Several examples are given
in Biot's Paper and they apply mainly to situastions with one space dimen-
sion. The present problem of transient heat {low in an aerofoil section
(or a tapered disc, which is its axisymmetric equivalent) has heat flow in
both the chordwise and thickness-wise directions, but it is still possible
to treat it one-dimensicnally by regarding the latter heat flow as occur-
ring essentially at the surface. A simple formulation of the heat flow
equations is possible, leading to an eigenvalue® problem, which although
formidable for hand calculation, can be readily solved by digital computer.

Calculated transient temperatures have besn required at the
National Gas Turbine Fstablishment in connection with an investigation of
thermal fatigue?,3, Transient femperatures in an aerofoil section have
been determined by an analogue computeru, but this cannot readily be
adapted to determine transient temperatures in tapered discs, which have
been used for the bulk of the experimental work. Techniques of calcula-
tion equivalent to the analogue method, using finite differences and
squares of constant size, have been used to a small extent5’6, and these
permit extension to tapered discs, but since they vrobably require more
time on a digital computer, they are less attractive, although potentially
more accurate, than an application of Biot's metuod.

A correlation between thermal fatigue endurances of tapered discs
and mechanical properties has been obtained7, using a few experimentally-~ ¢
determined transient temperature differences in tavmered discs together
with trends adapted from results for aerofoils, for variation of heat
transfer coefficient and edge radius. The results presented below
are the first calculated values for tapered discs and their use, instead
of the previous curves, improves the correlation betwsen thermal fatigue
endurances and mechanical properties, especially with regard to the effect
of variation of' edge radius,

oy

A previous method f'or the rapid calcul-tion of transient tempera-
tures in aerofoil sections® was indebted to Blot's ideas, but depended on
an assumption of equal rates of heat flow in a chordwise direction and
across the surface, The present method is based much more rigorously on
the heat flow equations, and with a digital computer available, is equally
l"apid.

2.0 Bagic theory

Bint! defines a vector field B such that the heat flow at any

4

point is %% per unit area, normal +to B, Energy conservation leads to the
equation

d_iV B = "'CT scoe (1 )

*Elgenvalues are particular values of a parameter for wmich an equation {or set of equations) has .
non-zero solutions,



The following relationships (see Appendix I For List of Symbols) indicate
that the equation of heat conduction is equivalent to an equation between
the first variations of the thermal potential V

V = %/CTQ d.T ceo¢o (2)

and the dissipation function D
> = )L (g.%)*dT ceer (3)
The variation of V is
5V = / cTET dt cres (W)
= i/ T 6 div B dt

= i/ T div 6B d=

il

-/ (div T8B - grod T » 6B) dt

/Tn~6BdS—/l ¢8 | 5B ar,
] k ot

using the equation of heat conduction, and where n is the inward drawn
normal. If B, V and D are cxpressed in terms of coordinates qj,

v = 3 IV 8q. 58 = 532 84,
aql di» aqi Bql . (5)

el = s ——- e 80 tha‘ e st foed cmn— 8068 e 6
g E 15 . (1\ ) ( )



Hence
/l?-}?‘-»SBdwzx,@R_&q
k ot a"li

by replacing 0B using Equation (5) and then applying Equation ).

If at the surface,

8By
ot

then

fab}
o<
(]

— o OB dS

/ Tn = 6B dS = i/

which is the same form as before, so that defining

a1 [OEaY
DS = 2 / E (-é—"t-:g) d—S,

g bt
@

the variational principle, which applies for arbitrary variations
to the equations

v, a(D + Dg)
943 CLE

If at the surface

then

|

oy, 80 +Ds) | /Tai%‘lds = Q
043

Q3 is referred to as a thermal force by Bilot.

ceee (7)

o)
esoe ((-))

eoes (9)

sooo (10)

oq leads

voos (11)

ceoe (12)

cees (13)
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The purpose of this section has been to indicate concisely the
mathematical relationships applying between the functions V, D and Dg and
the coordinates g4. These relationships are expounded more fully by Biot,
The meaning behind this formulation can also be indicated in descriptive
terms, Thus the function V represents the potential of the actual tem-
perature distribution to cause heat flow back to the equilibrium state,
and the function D sums a measure of the heat flow taking place through-
out the body and therefore represents a dissipation function Ffor the pro-
cess by which the difference from equilibrium is reduced. The function
Dg represents a similar process concentrated in the boundary. As pointed
out by Biot, the formulation has close analogies with dynamical systems.
Thus Equations (11) or (13) correspond to the Lagrangian equations for a
mechanical dissipative system with s potential energy V and a dissipation
function D. The entity Qi of Egquation (13) is referred to as a thermsl
force since it can be defined in exsctly the same way as a mechanical
force, i.e. as the virtual work done by a temperature T on a virtual dis-
placement OB, If heat flow is regarded as belonging to the subject of
irreversible thermodynamics, the function D as defined by Equation (3) has
a physical significance since it is related to the rate of entropy produc-
tion, The whole process of heat flow as discussed here has a complete
analogy with the seepage of a compressible viscous fluid through a porous
solid, The mass {low rate corresponds to the rate of heat {low, the
pressure to the temperature, and the increase of fluid mass per unit volume
to the heat content. The fluid compressibility represents the heat
capacity and the permeability is the equivalent of the thermal conduct-
ivity.

3.0 Transient temperatures in symmetrical aerofoil

Figure 1 represents a quarter of a symmetrical aerofoil by n
ad jacent squares, Bight squares are shown on Figure 1. Sides of
squares lying along the x and y axes are insulated. Other external com-
plete sides of squares have heat transfer coefficient h, while incomplete
segments of sides arc insulated. The squares are numbered 0 .... n-1,
with sides £35.,, temperatures arc Tij-;, the first time derivatives of tem-

perature are vi-1, heat conduction %% inward across the external side
parallel to the x-axis of square i-1 is Ri-1, and heat conduction g%
in the direction of the x-axis across the common side of squares i-1 and
i, that is, over a length £i, is Li.

With the definitions €n = €n-1 and Tn = O

13
2 2
V prd -Z- Z €i_l Ti"'l soee (14)
i=1
2y o o
D = %F <;~ e; Ly  where g5 = T4 +21) i=1 ceon -1
=1

2 fp cees (15)

1}

E€n



2
£€i.1 Ri

+ tnay L

eece (16)

The equations of conservation are obtained from Equation (1), by using

the theorem/ div B dx

€105

]

/B’dS,as

and the coordinates are taken as

a3

aqn+i
9%

Equations (11) are

Equations (17), (19) and (20)

— ‘.
= T5,

1]

Ri-y

\ 2
//Dll Dig  Dian /;51—1 Vie1
Dga Dez Das Li =h
\Da 1 D32 Dsys Ria ;

veee (17)

cees (18)

eeos (19)

ceoo (20)

can be expressed in matrix form as

vese (21)

where Dij ere n x n matrices and Ti., etc., are representative terms of

n x 1 matrices.

By subtracting the second row of matrices from the third,
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then in the first row of matrices subiracting successively row i-1 of

elements Prom row i sbtarting with row n-1, and similarly in the second row
of matrices subtracting successively row i from row i-1 starting with row
n, and finally subtracting rows of elements multiplicd by €i-1 in the third

row of matrices from rows of clements in the first row of matrices, the
following matrix equation is obtained

, ) \ / ‘
~1 M O‘\\ /c&i_lp Vi~1\\ //€i~1 Ti—;\
\ f
0 N O } ( Li } = h K Ticy = Ti | oo (22)
|
{
o 0 1 // \\ Ri-y // \Tia

where matrices merked O have =11 elements zero, matrices marked *1 have

+1 along the main diagonal and other elements zero, and non-zero elements

of M are

ii

M L4 1 = 1 60 n~l

i+1,4

and non~zero elements of N are

IJii = E‘lf_é; i = '1 o060 1’1—1
41
He

Nnn = an-i-1 B (25)
“n

On multiplying out, Equation (22) leads to the matrix equations
2
"leli...l Vi'—l + NlLl = h‘ai.—l Ti_l e oo (214-)

CIE- -

NLg

!
juy
TN
=

e
i
1
i
—3
[
g

so that

2
"C’@i-——l Vi_l -+ I\!ZN—SL h(Ti-—l - Ti) = 1‘1’6:‘{‘—-1 Ti“l -

(26)

. . . - . . ) .
Since N is diagonal, N = is easily obtained and the term MN T4 is con-

verted to the form PTi-, by putting the first column of P zero and



column i of P the same as column i-1 of M .
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el

be expressed in the eilgenvalue formulstion

(¢ - upt) T =

G'i,i+1 =

Gi+1,i =

Equations (27) have non-zcro

det (G

This equation has n roots ip

(6 - 23D)%;

where Xxi i

o]

solutions

I

- ppT)

‘:7‘3: J =

1l

""1 oeco

i:1 R n"1

n=-14

T irf

il

2

@

©

Hence Tquation (26) can

o.no (27)

n--}

cvoo (28)

coes (29)

0 ess n=1 and for each root Kj

defined apart from an arbitrary multiplying constant,

have n solutions

m- .
'LlJ =

A

C
ot

Aj Xij exp <

=]

esee (30)

has nrows 1 = O ..o n=1 and one column specified by j, and is
Egquations (27)

sooe (31)

-5



so that the general solution is

o /N sa )
T; = N Ty A exp | A
LT NIV
/ /
A3t
or T = X [hj exp \LQE> ceee (32)
i

where X = (xi-) is an n x n matrix whose columns are the eigenvectors
xij with 1 = 8 ses n=1 for each J. I the iniiial values of Ty are all
unity, then

-7

50 that A = X1 scco (33)

where 1 is an n ¥ 1 matrix with all elements 1. Determination of A in
terms of X reuwoves the effect of the arbitrary multiplying factor in the
coluimns of X.

Solutions of Eguation (27) with the elements of & given by
Eguetions (28) have bwen obtained by Mercury digital computer, using
Mercury Autocodc and an R.L.B. Library programme9, However, starting
from Equations (17), (19) and (20) all the matrix operations could have
been performed by digital computer, so that Equations (22) need not have
been obtained explicitly.

For a particular acrofoil section a quarter of which is represented
by eight squares with sides 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.k, 0.3, as shown
in Figure 1, Toble I shows the eigenvalues ror Hlo = 0.25, 0.5 and 1,0, and
Table IT gives the elgenvectors for Heg = U 5. (Typical values of Hio
encountered in gas turbine vluding applications lie in the range O to Qolre )
Table ITT shows the values of A: for unit initial temperature, and
Table IV presents valucs of the temperatuces Tg ..o T at various intervals
of time. Tables I to IV therefore illustrate the calculation procedure,
but gince the whole process is carrzed out by dizital computer the inter-
mediate results can be obtained Jjust by printing out, or can be ignored
altogether.

From results guch as thoce of Tuble IV the familiar type of cooling
curve cen be plotted?s?, Maximum transient tempersture differences are
plotted in Figure 2, together with analoguc results’O for +the same shape,
The analogue measurements are made for eight adjacent squares, exactly as
for the calculstions. The question of the relative meriss of fitting an
aerofoil shape by adjacent scuares or by an analogue mesh is net con-
sidered here, The calculated and analogue resulcs agree iairly well
although there is a slight but significant discrepancy, which is probably
due to the inadequate representation of thickness-wise conduction in

the mathemabical formulation.
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31 Time-dependent external ‘emperature

Equations (13) apply if the external temperature is time-dependent
instead of the step change of temperature of Section 3.0.

For coordinates, i =1 ... n

9; = Ti=

i

Rj_..l

i1
N~ 2
;L. = (-c&3 vi + €:R3)
1+ d YJ Jd
2 2
6 s " N
BIn o L%in oo pnet OBn L %fim
BVimg in 0Ti tn
L ~\'L 3 - a y - 2
- a 1 = _}“‘l- S0 that -.-E-n_.— = - ;e_}u-i. eoouv ()l}-)
0Rim on 9Qn4i in
) 2
Hence Ri = Ty clig
Qn+i = Ta j'e'i"‘l - ‘\:.];:_]1. 4 .@n = O cwoe (35)

Equations (13) lead to eguations similar to Equations (19) and (20)
but with extra terms on the right hand side, The extra term on the right
hand side of Equation (22) is the 3n x 1 matrix

=0iw1

onl| g cees (36)

whose first n elements are -£i-1, whose seconl n elements are zero except
for the last which is 1 and whose third n elements are all 1.



i

The equation corresponding to Equation (27) is

(¢ = ppI)T

where

If T = X£ #0 that & = X711,

(G - upI) E o=
. \

so that th - WP Ej =
or X I Aj - up
where the matrix has Kj - hup s d

7 f“ — - 1
Hence £ = S
Kj - un
N N
Ay - HD

Ir To, = exp(-at)

i

Jdp =

where

T, J veve (37)
- ::.(:). n i p=qg 1 [ l’l‘1
iy
£
- ..()J_.O..« - m—-u—u‘\{?.»wm'—‘ oo (38)

Cn-1  Hep+4énp

X has the eigenvectors ss columns,

T J
Ta J Leoae (39)
g = Tg d

iagonal clements.

-~‘1 T Ty
J

cocs (40)

i
Tg, where X J = T

cooe (41)
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P
£ = e e;@(—at)
J ?\j -
Fj exp(-at) 4 (.2
= [ NS LA Aj G}Cp >\'J"' « o0 (42/
N3 + ap B
so that
, o .
T — X -........_QJ;M e:x‘p(—a't) + _A_:' exp )\-j—- ocoe (43)
Ay + ap ¢ H

IfTg =D exp(iwt), the cyclic solution without transient terms is

£ - Fjbexp(IWt} cooo (1)

Aj - piw

and if T, = b cos wt = 2 (exp(iwt) + exp(-iwt)),the cyclic solution for

"
(]

the temperatures is

Fsb :
T = X =t gkj cos wt - pw sin wt) ocoo (45)
A o4 Pl?
J (s
or
E\. .}\,'
T = bX (=¥ <—<1 cos wt -'ﬂsinwt)
C'J' UJJ q‘J
I
where ag = K; + pgwa

If Ty = ft, the solution without transient terms is

"
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R

so thst

LT 3
S
Nyoohg

¢ Ceee (48)

Tor exponential externsl temperaturs given by Iguotion (1),
transient temperatures have been calculated [or eight adjacent sguares of
sides 1, 069 soe 0.3, for Hip = 0.5 and Tor ap = 0.8, 3 and 6. The
eigenvalues are the szme as on Table I for g 0,5 1d chn variation of
maximum transient tsmperature difiereace with ap is plotted on Figure 3,
which shows that the reduction of (T - Ty )max from the step change case,
leeo au = o only becomes appreciable when ep is comparable in magnitude
with the smaller elgenvalues, The +time to the maximum tempcrature
differecice increases as all decreaseg; [or instance for au = 0.8 this time
is three times greater than Tor the step change case. The same results
are plotted on Figure 4 on the basis of time-constants i.e., the time to ¢
of the oripginal temperature, togsether with analogue results. As on
Figure 2 the calculated and analozus results agree fairly closely but
there is a significant discrepancy at high Hlge

I

The eTlpCu of time~-dependent external tewpsrature has previously
been considersd’l using an operational method which while implicitly
including the effect of chordwise conduction does not allow for its varis-
tion. Although conditions are not comparable it appears that the reduc-
tions in maximum transient temperature difference predicted by the present
methods are somewhat smeller than those obtained by the operational
method,

2.1e1 Cyclic externsl temperabure

Equations (45) have been evaluated over a range of frequencies w
for eight squares or sides 1, 0.9 ese O 3 and for g = 0.5 and the smpli-
tude and phase of Ty and T; are shown on Figures 5 aﬂd 6, The eoscilla=-

tion of amplitude for uww in the region of the smallest eigenvalue, and the
occurrence of amplitudes greater than that of the external temperature
indicate the inacdequacy of the mathemetical formulation to describe this
gituation, although for lorge uw the results show co.rect trends, The
slight discrenancy with analogue results noted on Figures 2 and 4 is rein-
forced by the breakdown of the method for cyclic exterrnal temperature and
suggests that this is due to an inadequatc representotion of thickness-
wise conduction.

Thickness-~wise conduction can be taken into account to some extent
by writing

n_ j)
1 NN L .2 N, 2
D = RN e I3 i . '()/*'.. Rim ececs L
57 i i by + 21(:Y = i-1 Hi-a (¥7)
1=1 1=1

where ¥ is a constant whose value can be estimated from the heat flow in
single slabs and may be about 0.25, with a dissipation function D given
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by Equation (47), Equations (28) are replaced by

o
Gi o= = e o e

s -Lo &4 Lo Lo
711 = p - T - N
Hey O3y Heioy i (1 4 vHEio)
G = - to - £o
Hen + in Hﬁn..l en—l (1 + "."H‘@n.—l ;’
7 2 7
R
Gi’i+1 = = 20 i = 1 eca n_1
Hog £3-1
2 .
G’i+1’i = ﬁ;Q'— 1 = 1 et o n-1 o000 (48)
1

It may be anticipated that BEquations (48) would improve the results for
step change and exponential temperatures, but would not yield correct
results for cyclic external temperature,

4,0 Transient temperatures in tapered discs

The analogue computer4 cannot be readily adapted to determine
transient temperatures in tapered discs, although an approximate method
of using the analogue for tapered discs is described in Appendix IT,
In this method the important re~ion of the tapered disc near the thin edee
is least well represented, in contrast to Biot's method in which the size
of squares can be chosen to obtain equally Zood representation everywhere.
Transient temperatures in tanered discs have been determined experimentally12
using thermocouples, but not over the ranges required in the correlation
between thermal fatigue endurances and mechanical properties, The present
calculations have been made partly to valida®e this correclation.

A quarter of the cross-section of the tepered disc is represented
by n squares, with square O starting at the radius of the bore. Defining
fn = 4€n-1 and Tp = O, then for 1 = 1 ... n and with the notation

Piwg = T+ 485 i=1
ri_l = ri_2 + ’Ci_l i=2 ses I
&
2 o\ .
Sq{-1 = Ci-—l (I‘i_l i ) i =1



(-

— 17 -
z *
53 = £i-1(ria -7ri-2) i=2 ...n
1=1..6 (n"‘I)

g1 = 2(sina + si)

4
En = ZS8n-1

the functions V, D and Dg are

1=l
<-
D = *75' ; £ LQ‘
ok L T
1=1
<&
34 2
Dy = I ) St Rim + 2n-1 Tp—y L
2\ b

The equations of conservation are

pRo
89
2ri-1 21 L = <§— ~CS: V. 4+ % R
J d .4
A 25
J::O
For the coordinates
G = Tig
dan4 i
s = R4
at i~1
Equations (11) are
j=n .
K €] o
iy - = el TR T Ly =
R Eiri—y "9 ln T

cees (49)
5 eeee (50)
eese (51)
0 veee (32)



.
g & & fn-

a - L: + Ln+R-_1 = 0 cese (55)
2 LT T .

The analysis is similar to that of Section 3.0 and leads to
Equaiion (27) where the non-zero elements of G are

2 2
. -hro 414,
1y = e -]
I‘l&l So
2 2 2 2
D “ 0 . :
Gis = -2 £iy Lo  hri_, &5 &4 Lo
1i o= - 7 - 1l = 2 oo n"1
Hejoy si Hej s 8ia
2 2 2 Q
e _ Thrn-zfnoi 4 _ Lrp-i €n e Lo
Hep-1 sp-a Hen sp-1 + 2rp-1 fn-1 sn-1 &n=1

2 2
i{}—l 43 4o

Gi,i+1 = 220 4 -4 .., n-1
Hei si.a
veio e e, _
Hey s4

The analysis of Section 3.0 between Egquations (29) and (35) azain applies.

Transient temperature differences have been calculated by Mercury
digitzl computer for tapered disc specimens used in N.G.T.E., thermal
fatigue tests,2 with edge radii of 0,010, 0.020, 0.030 and 0.040 in.,
which can be fitted by adjacent squares as shnown in Table V.  Maximum
transient temperature differences for Héo = 0,05, 0.1 and 0.2 are shown
in Table VI and plotted on Figure 7. The variations with heat transfer
coefficient of the present results for tapered discs and analogue results
for an aerofoil with 0.020 in, edge radius are very similar in shape.

The variations with edge radius of tapered discs and asrofoils differ

to some extent. As edge radius increases the maximum transient tempera-
ture difference for the particular aerofoil decreases to a greater extent
than for the tapered discs,

HeO E&EQBssion

Tt can be seen {rom Section 3.0 thet when matrix operations have
been carried out to the extent that Lj_., and Ri{ can be determined
individually, the formulae for these are the finite difference equations
which could have been written down immediately for the szegment in ques-
tion, However, use of Biot's method allows these equations to be



-G -

produced by automatic procedures, with various lengths taken correctly
into account, and further, all the matrix operations can be processed by
digital computer, so that the {inite difference equations ne2d never be
produced explicitly. Use of Blot's method indicates the validity; of the
finite difference equations by the extent to which the original selection
of coordinates q4 represents the actual heat flow, More accurate {inite
difference formulae, such as Simpson's rule, might be usedl. A marked
advantage of this method is that it allows shapes of varled size to be
used so that hest flow in a small region is as adequately represented as
in a large region. Results can be obtained quickly by digital computer;
for instance, the resulls shown on Ficure 7 (i.e. 12 oases? required about
one hour on Mercury digital computer, The method can be extended to
cases with variable heat transfer coefficient round the periphery, time-
dependent heat transfer coefficient and temperature-dependent material
properties, as indicated by Biot!,

In attempting to determine transient temperatures in an aerofoil
for cyclic external temperature, the method has been taken to one of the
limits at which it breaks down. It is thought that this is due to an
inadequate representation of thickness-wise conduction and this may also
account for the slight discrepancy between the calculated and analegue
results shown on Figures 2 and I. An approximate method of including
thickness-wise conduction has been indicated in Section 3,1 but this is
probably not realistic enough to produce valid results for cyclic
external temperature. Another limit of the method of Section 3.0 was
reached in an attempt to apply it to a cooled blade whose cross-section,
being a multiply-connected region, produces internal conduction terms Lj
on more than one side of the squares., Taking the coordinates g3 as the
temperatures and surface heat flows leads to an unequal number of
coordinates and equations. While Biot's method, using another selection
of coordinates g;, might apply te a cooled blade, this would not be a
direct extension of the method of Section 3.0. The same applies to pro-
blems treated two-dimensionally and to three-dimensional problems. An
analogue computer for a particulsr three-dimensional problem has been
designed at N.G.T.E.'/.

One of the objects in considering cyclic external temperature was
to enable eigenvalues for exponential or step change external temperature
to be separated out in analogue measurements. While eigenvalues could
be separated out in analogue measurements for two adjacent squares, these
were not obtained precisely, and for more than two exponentials the
mathematical situstion’® is that even with results of high precision,
exponentials cannot be separatced with any certainty. The same does not
apply to the separation ef cyclic components, to which electronic tech-
niques can be applied, and since there are similarities in the formulae
for exponential and cyclic external temperatures, as shown in Section 3.1,
it was possible that a relationship between the two might be established.
However, the frequency of all temperatures Ty., is the same as the exter-
nal frequency so that only phase and amplitude differ, which is not the
usual situstion in the separation of periodicities. Thus the attempt to
derive eigenvalues from measured temperatures fails because (1) the
mathematical method is inadeguate to produce results for cyclic external
temperature, (ii) a connection between exponential and cyclic external
temperature has not been fully established and (iii) electronic tech-
nigues may not be applicable.
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In a sense eigenvalues and eigenvectors as discrete entities are
fictitious and are due to the sub-division of the eross-section into
sguares. The product of the matrix of eigenvectors with the matrix con-
taining exponentisls, with eigenvalues as coefficients of time, is how-
ever meaningful and is a sum of discrete elements which could be replaced
by an integral. There is often an equivalence between systems of linear
equations and iutegral equations1b, so that for instance the eigenvalue
formuletions of Sections 3.0 and 3.1 could be replaced by Fredholm integral
equations of the second kind, i.e. of the type

1
¢(x) - 7‘/0 K(x,y) ¢(y) ay = f(x) 0 <x<1

with the operator p(: é% being treated as 2 constant. Thus is may be
dt/

possible to formulate the problem more in keeping, analytically, with the

integral expressions used by Biot, although for numerical results it may

be desirable to use systems of algebraic equations. However it is poss-

ible that an integral formulation might lend some meaning to the product

of the matrix of eigenvectors with the matrix of exponentials, with eigen-

values as coefficients of time, all the terms of which are derived,although

by several processes, from the shape of the cross-section.

The pregramme on Mercury digital computer for temperatures could
be extended to determine stresses allowin% for various material properties
such as secondary creep/, or eaoh{6 or 211717 of the three creep components
(primary, secondary and tertiary)., This is essentially a calculation added
to the temperature calculation, but since Biot originally derived his
results for visocelastic behaviour19, the present methods may be applic=~
able at a deeper level to material behaviour, for instance to coupled
thermal and stressing effects, as in thermoelastic damping.

6.0 Conclusions

Transient temperatures in symmetricgl aerofoil sections and tapered
discs have been calculated using Bilot's variational method and a Mercury
digital computer. (The computer programmes have been deposited in R.A.E.
Mathematics Department Programme Library.) Cross=-sections are repre-
sented by lines of adjacent squares, whose sizes are chosen to suit the
local dimensions. After setting-up the potential, dissipation and sur-
face dissipation functions, and selecting coordinates, the Lagrange equa-
tions lead, by automatic procedures, to an eigenvalue formulation in
matrix form for the temperaturss and their first time~derivatives, The
computer time required for the solutions is about five minutes for each
cross~-section and heat transfer coefficient.

Transient temperaturces calculated for a particular serofoil sec-
tion for (i) a step change of externgl temperature and variation of heat
transfer coefficient and (ii) external temperature depending exponentially
on time agree fairly closely with results obtained on an analogue computer,

Maximum transient temperature differences have been evaluated for
tapered discs (which are not amenable to analysis by a simple electrical
analogue) for variation of edge radius and heat transfer coefficient.

[
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Peculiarities in the solutio. for cyclic temperature external to an
aerofoil over a ran-e of freguencies indicate limitations in the mathema-
tical formulation, A successful solution for cyclic external temperature
might ensble eigenvalues to be scpurated out in experimental measurements
using electronic eguipment, and this might be extended to exponezatial
external temperature if & relationship between cyclic and exponential
external tempurature could be esteblished.

Figenvalues and ei-envectors as discrete values arise fictitiously
from ithe sub-division into squares and the possibilit; of an integral
formulation has been mentioned.

There is a poszible, but not immediate, extension to cooled blades,
whose cross—sections are multiply-coanected regions. Transient stresses
due to creep, and viscoelasticity might be included.,

The opportunity provided by the Royal Alrcraft Establiishment
Mathenatics Department to use their Mercury digital computer, and assistance
with its operation, are graterully acknowledged. Mr. W, A. Abbott of the
National Gas Turbine Establichment is thanked for performing the calcula-
tions on the analozue computer,
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TARLE I

Eicenvalues for eisht adjacent squares
of sides 1, 0.9, 0.8 ... 0.3 for variation of Hég

0.25 0.5 1.0
values ‘ ‘

1 : ~66.938 ~35.455 ~19.778
2 | -37.033 . =19.902 ~11.363
3 04205 1318, - 7.686
A -17.081 = 9.45L - = 5.648
5 ~11.682 - 6.756 - 4.245
6 - 6.876 - L.36k -~ 3.030

~ 3.325 - 2.505 ~ 2,004

i
-
.
—
ON
(@)

8 - 1,288 - 1,224



0

0

- =0.0006 :

0.0055

' -0.0499

0.2619

. ~0.8138 ¢

1.0000
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TABLE IT

Eigenvectors for eight adjaceant squares

Of Sides 17 009’ 0.8 oo e O._-!) and H"?/O = O.

2

0.0006 '-0.0184 . 0.1371 | ~0.3389 ; 0.4765 =-0.6327

. . . T .

- t PN

1.0000

3-0.0058 ; 0.1070 =0.5113 = 0.7508 §—0.4191 | -0.1008  0.8751

0.0377 %-o.3586 | 0.7907 =0.0886 ;~0.7017 .
: =0.1773 5 0 T46L . =0.2807 - =0.7630 :~0.1830 |
0.5498 '=0.6501 - =0.7253 =-0.2779 ' 0.5035

. ) . 3 '
'

(=0.9005 i-0.L441 . 0.0572 - 0.5340 ? 0.9146

PR

0.1583 © 0.5781 . 0.8106 © 0.9799 : 1.0000 °

¢ - ses pe

+

1.0000  1.0000  1.0000 1.0000 0.8855 .

Note: Colums are eigenvectors

0.5029

0.8846

1.0000

4

| 0.7033

© 0.5333

0.9353 ;

0.7917 .

0.6356 %

Coefficients A;_, for eight adjacent squares

of sides 1, 0.9, 0.8 ..., 0.3 for
i€y = 0.5 and step change

of external temperature

0.0473

. 0.0504

- 0.0537
0.0611

. 0.0987

' 0.2013
0.4905
1.240)

L 0.3951

o
H °
n
.o
(@]
1

0.2126

0.1603
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Representation of cross—section of tapered discs
by adjacent sgquares

rggfis 0.010 in. 0.020 in. @ 0.030 in. E 0.040 in.
Bore 0.0935 " 0.0935 | 0.0935 % 0.0935
Square 1 - 0.138 - 0.138 é 0.138 ©0.138
2 . 0.120 C 0,124 § 0.124 ©0.124
3 0.097 . 0.099 ? 0.100 0.103
I : 0.078 < 0,081 . 0,085 - 0.086
5 0.06L 0.065 L 0.057 - 0.073
6 0.050 . 0.055 " 0.057 0,061
7 0,042 0.045 C 0.047 . 0.052
8 0.0%4 0.057 - 0.038 0.0i3
9 © 0,025 ~0.028 . 0.033 " 0.040
10 0.022 0.02 0.030
19 . 0,016 0.020
12 0,013
13 © 0,011
14 0.010
Sggj&s 0.813 . 0.810 . 0.812 0.813

Note: The side of the smallest square is taken equal Lo the edge radius since the
element ®hen has the same ratio of perimeter tn area as the quardrant of the edge
which it represents,
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TARLE VI

in tapered discs

(£o = maximum half-thickness of disc)

0.050 0.201

. 0.156
fo.o0L

L 0.296

" 0.020 in, ° 0.030 in.

§ 0.133

L 0.198

| 0.261

- 0,040 in.

0. 114
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APPENDIX T

List of svmbols

coefficient for exponential external tewperature

amplitude of cyclic external temperature

specific heat per unit volume

determinant

exponentigl

coerficient for linear rate of change of external
terperature

heat transfer coefficient

square root of -1, or suffix

suffix

material thermal conductivity, or suffix

length of side of square

vector or suffix denoting normsl to surface
(positive inwards)

2.

eperational expression for T

b

generalised coordinate

radius of bore of tapered disc

proportional to the volume of a ring of square
cross~scction, or a variable

time



APPENDIZ T (cont'd)

r————

v 9T
t
W variable
X component of cigenvector, or variable
Z } variable
A coefficicnts
B heat flow vector
D dissipation function
D3 j matrices
Ds surface dissipation function
) coefficients, for time~dependent external tempcrature
G matrix
H n/k
I unit matrix
J exira matrix, over step chsnge case, for time-
dependent external temperature
K kernel of integral equation
L vector specifving internal (chordwise) conduction
M matrix

N matrix, or normal
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APPENDIX T (cont'd)
thermal f{orce

vector specifying heat flow across surface (positive
inwards)

surface area
temperature
external temperature

difference between initial temperature and external
temperature

thermal potential

matrix with eigenvectors as columms

factor allowing for thickness--wise conduction
small change, or first variation

mean ares of two adjacent squares

function in integral equation

diffusivity k/c

elgenvalue

L, opput = ()| L
h ’ p’ ( ) @2

volume
frequency of external temperature, or variable

nermal coordinates of temperature

~}
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APPENDTX TT

Approximate method of determiniung transient tempsratures
in tepered discs using an analogue computer

The equation of heat conduction for axially symmetrical heat flow

2 0
291 | PT, 000
Kk Ot 3s? 322

The coordinates (s,z) are orthogonal and this eqguation can be simulated
by &n electrical network with capacities proportional to r¥ and resistances
in the z airection proportional to r-2.

The further transformation w = g leads spproximately to the
equation

r*aT 8’7 +62T
K 8% 0s?®  Qw?

The coordinations (s,w) arc not orthogonal, but this eguation is probably
valid where the transformation is nearly orthogonal, i.,e. near z = O, and
the equntion can be simulated by an electrical network with constant resis-
tances and capacities proportional to r2. Since ds = %ﬁ and dw = %3,
individual squares of the (s,w)mesh corrsspond to equal-sided figures on
the disc cross-section, the size of the latter being vroportional to r.

The beundary coandition is

8T 4t nr = 0
an

where n is the normal in the (r,z) plane. If N is the normal in the
(s,0) plane, then dn = rdN where the transformation is almost orthogonal,
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so that

O

OT | (r)T =
N

Hence heat transfer coefficients for the disc are multiplied by r *to give
heat transfer coefficients for the analo-ue.

Since the mesh on the tapered disc cross-section consists of lines
rauiating from the origin, together with lines glong the z direction to
produce approximate squares, the approrimaie sguares are biggest near the
thin edges, and at the surface of the thickest portion of the disc are
least erthogonal. Thus this method of using a constant resistance mesh
to determine transicn: temperatures in tapered discs has several limita-
tions.,
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and for external temperature depending exponentially on time agree with
results obtained on an analogue computer, Maximum transient temperature
differer~es are evaluated for tapered discs (which are not amenable to
analysis by a simple electrical analogue) with variation of edge radius
and heat transfer coefficiente Peculiarities in the solution for cyclic
temperature external to an aerofoil over a range of frequencies indicate
limitations in the mathematical formulations A successful solution for
cyclic external temperature might enable eigenvalues to be separated out
In experimental measurements using electronic equipment, and this might
be extended to exponential external temperature If a relationship between
cyclic and exponential external temperature could be establishede FEigen—
values and elgenvectors as discrete values arise fictitiously frcm the
sub=division into squares and the possibility of an integral formulation
is mentioneds There 1s a possible, but not lmmediate, extenslon to
cooled blades, whose cross-sections are multiply=connected regionse
Transient stresses due to creep, and viscoelasticity might be included.
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In experimental measurements using electronic equipment, and this might
be extended to exponential external temperature 1if a relationship between
cyclic and exponential external temperature could be establishede Eigen—
values and eigenvectors as discrete values arise fictitlously from the
sut~division Into squares and the possibility of an integral formulation
1s mentionede There 1s a possible, but not immediate, extension to
cooled blades, whose cross—secclons are multiply-connected regionse
Transient stresses due to creep, and viscoelasticity might be includeds
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