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'rrunsient temperatures in aerofoil sections and tapered discs are 
calculated taking advantage of simplifications in heat flow analysis 
achieved in Biot's variational method. Cross-sections are represented by 
a line of ad<jacent squares of various sizes saitable for the local dimen- 
sions, e,g* 3mal.l squares near the leading and trailing edges. The poten- 
tial, dissipation and surface dissipation functions of Biot's method are 
set up, and the Lagrange equations lead,'by automatic procedures, to an 
eigenvalue formulation in matrix form for the temperatures and their first 
time derivatives, Solutions are sums of exponentials in time, and are 

evaluated by digital computer, requiring about five minutes for each cross- 
section and heat transfer coef'ficicrrt. Transient temperatures in a par- 
ticular aerofoil section for variation of heat transfer coefficient and for 
external temperature depending exponentially on time agree with results 
obtained on an analogue computer, Maximum transient temperature differ- 
ences are evaluated for tapered discs (which are not amenable to analysis 
by a simple electrical analogue) with variation of edge radius and heat 
transfer c0efi"ici.e~t. Peculiarities in the solution for cyclic tempera- 
ture external to an aerofoil over a range of frequencies indicate limita- 
tions in the mathematical formulation, A successful solution for cyc1i.c 
external temperature might enable eigenvalues to be separated out in 
experimental measurements using electronic equipment, and this might be 
extended to exponential external temperature if a relationship between 
cyclic and exponential external temperature could be established. Eigen- 
values and eigenvectors as discrete values arise fictitiously from the 
sub-division into squares and the possibility of an integral formulation 
is mentioned, There is a possible, but not immediate, extension to 
cooled blades, whose cross-sections are multip?.y-connected regions, 
Transient stresses due to creep, and viscoelasticity might be included, 
--------------------________I___________-------------------------------- 
Replaces N.G.T.E. Memo. No. M.352 - A.R.C.23,519. 
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1 .o Introduction -- _ -.-..----- 

2emarkable simplifications in heat flow analysis have been achieved 
by Biotl, whose variational method permits considerable flexibility in 
formulating and solving heat flow problems. Several examples are given 
in Biot's Paper and they apply mainly to situations with one space dimen- 
sion, The present problem of transient heat flow in an aerofoil section 
(or a tapered disc, which is its axisymmetric equivalent) has heat flow in 
both the chordwise and thickness-wise directions, but it is still possible 
to treat it one-dimensionally by regarding the latter heat flow as occur- 
ring essentially at the surface, A skmple formtilation of the heat flow 
equations is possible, leading to an eigenvalue" problem, whjch although 
formidable for hand calculation, can be readily solved 3y digital computer, 

Calculated transient temperatures have been required at the 
National Gas Turbine Establishment 
thermal fatigue253, 

in connection with an investigation of 
Transient temperatures in an aerofoil section have 

been determined by an analogue computer&, but this cannot readily be 
adapted to determine transient temperatures in tapered discs, which have 
been used for the bulk of the experimental work, Teckiniques of calcula- 
tion equivalent to the analogue method, using finite differerces and 
squares of constant size, have been used -to a small extent59 , and these 6 
permit extension to tapered discs, but since they probably require more 
time on a digital computer, they are less attractive, although potentially 
more accurate, than an application of Mot's metiiod. 

A correlation between thermal fatigue endurances of tapered discs 
and mechanical properties has been obtained7, using a few experinentaily- 
determined transient temperature differences in tapered discs together 
with trends adapted from results for aerofoils, for variation of heat 
transfer coefficient and edge radius. The results presented below 
are the first calculated values for tapered discs and their use, instead 
of the previous curves, improves the correlation between thermal fatigue 
endurances and mechanical properties, especially with regard to the effect 
of variation of edge radius. 

A previous method for the rapid calcul-tion of transient tempera- 
tures in aerofoil sect;ons 8 5j-as indebted to Slot's ideas, but depende,d on 
an assumption of equal rates of heat flow in a chordwise direction and 
across the surface. The present method 5.s based much more rigorously on 
the heat flow equations, and with a digital computer available, is equally 
rapid, 

2.0 Basic theory -I__ 

Bint' defines a vector field B such that the heat flow at any 

point is aB 
,t 

per unit area, normal to B, 3nergy conservation leads to the 

equation 

div B = -CT *ea. (1) 

* Elgenvalues are particular vd~?s of a pararnetcr for ‘~lilich an eqwxon (or set of equations) has 
non-zero &utions. 
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The following relo tlonships (see Appendix I I'or List of Symbol= l -) indicste 

that the equation of heat conduct2.on is equivalC?nt to an equation between 
the first variations of the thermal potential V 

and the dissipation function I) 

The variation of V is 

/ 
6V = I CT&T d7 

0..* (2) 

*.*. (31 

0**. (ic> 

I = - T 5 div 13 dz 

using the equation of heat conduction, and where n is the inward drawn 
normal. If 5, V and D are expressed in terns of coordinates qi, 

6B = CF 6q-i 
i 

0.0. (5) 

, 
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Hence 

by replacing &B using Equation (5) and then applying Equation (6). 

If at the surface, 

ah-l -= 
at 

-hT, 

then 

Tn 0 GB dS 22 6B dS 

which is the same form as before, so that defining 

**Y. (8) 

.0-. (9) 

5 

the variational principle, which applies for arbitrary variations 6q leads 
to the equations 

2.x+ a(D i- Ds) = 0 uooe (II) 

a$, aFii 

If at the surface 

aBn -= 
at 

h(Ta - T) 

then 

a(D+Ds) = i 

*00. (12) 

0000 (13) 

. 

Qi is referred to as a thermal force by Biot. 
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The purpose of this section has been to indicate concisely the 
mathematical relationships applying between the functions V, D and Ds and 
the coordinates qio These relationships are expounded more fully by Biot. 
The meaning behind this formulation can also be indicated in descriptive 
terms, Thus the function V represents the potential of the actual tem- 
perature distribution to cause heat flow back to the equilibrium state, 
and the function D sums a measure of the heat flow taking place through- 
out the body and therefore represents a dissipation function for the pro- 
cess by which the diffesence from equilibrium is reduced. The function 
D, represents a similar process concentrated in the boundary. As pointed 
out by Biot, the formulation has close analogies with dynamical systems, 
Thus Equations (II) or (13) correspond to the Lagrangian equations for a 
mechanical dissipative system with a potential energy V and a dissipation 
function D, The entit‘y &i of Quation (13) is referred to as a thermal 
force since it can be defined in exactly the same way as a mechanical 
force, i.e. as the virtual work done by a temperature T on a virtual dis- 
placement 6B, If heat flow is regarded as belonging to the subject of 
irreversible thermodynamics, the function D as defined by Equation (3) has 
a ph.ysical significance since it i s related to the rate of entropy produc- 
tion. The whole process of heat flow as discussed here has a complete 
analogy with the seepage of a compressible viscous fluid through a porous 
solid. The mass flow rate corresponds to the rate of heat flow, the 
pressure to the temperature, and the increase of fluid mass per unit volume 
to the heat content. The fluid compressibility represents the heat 
capacity and the permeability is the equivalent of the thermal conduct- 
ivity. 

3.0 Transient temperatures in symmetrical aerofoil 

Figure 1 represents a quarter of a symmetrical aerofoil by n 
adjacent squares, Xight squares are shown on Pi&ye I, Sides of 
squares lying along Yne x and y axes are insulated, Other external com- 
plete sides of squares have heat transfer coefficient h, while incomplete 
segments of sides are insulated. The squares are numbered 0 *O.. n-l, 
with aides 43-i-1, temperatures are TimI, the first time derivatives of tem- 

perature are viml, heat conduction a$ inward across the external side 
3B parallel to the x-axis of square i-1 is R-i-1, and heat conduction E 

in the direction of the x-axis across the common side of squares i-1 and 
i, that is, over a length bi, is Li. 

With the definitions &n = en-1 and Tn = 0 

n 
v = c 

5 2 
4fsl T;wl 

i=i 

0*.. (14) 

D = L+ EiLt where 1 = E' 
2k L 

&(&i-l" +St) i=l . ..n-I 
IL=1 

En = F en-1 : 
!a 

**.0 (15) 
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Ds = 1 
Fh 

The equations of conservation are obtained from Equation (I), by using 

the theorem 
1 

div B dT = 1 B o dS, as 

* -1 

CiLi = +- i i-~-gs vj + 8jRj) 
.I=0 

and the coordinates are taken as 

aqn+i - = R- 
at l-1 

.000 (17) 

0,d.D (48) 

Equations (1.1) are 

hTi,1 - Ii 
~ EjLj 

/ T-Ln = 0 .COO (19) 
j=i 

j=n 
H '\ '~~. + Iln + Ri 

/ ej 
-1 = 0 **oo (20) 

j=i 

Equations (17), (19) and (20) can be expressed in matrix form as 

/ 

\ 
Dll D12 Dl3 

Q21 Dz2 JJ23 

' D31 
\ 

D32 D33 

= h [ij ooo6 (21) 

where Dij are n x n matrices and Ti-1 etc., are representative terms of' 
n x 1 matrices. By subtracting the aecozd row of' matrices from the third, 
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then in the first row of matrices subtracting successively ITOW i-1 of 
elements from role 3. starting with row n-1 9 and similarly in the second row 
of matrices subtracting successively row i from row i-1 starting with row 
n, and finally subtracting rows of elements multiplied by &i-, in the third 
row of matrices from rows of slements in the first row of matrices, the 
following matrix equation is obta:ined 

-1 M 

0 N 0 000 (22) 

0 0 

where matrices marked 0 have YX elements zero, matrices marked fl have 
fl along the main diagonal and other elements zero, and non-zero elements 
of M are 

hl * 1+1,i = ei i=l eeo n-l 

and non-zero elements of N are 

On multiplying out, Equation (22) leads to the matrix equations 

l\iLi = h(Ti-1 - Ti) 

so that 

OOUQ (24) 

ooco (25) 

Since N is diagonal, N-l is easily obtained and the term XiY-' Ti is con- 
verted to the form PTi-1 by putting the first column of P zero and 
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column i of P the same as column i-1 of MX" 0 Hence 3quation (26) can 
be expre ssed in the eigenva'iue formulation 

cc - ypI) % 2 0 O.DO (:17) 

c-3 where i-1 = ..-2 , ~~ d 
5 = G’ 

I has 1 in diagonal elements and zero else- 

where , and non-zero elements of G are 

i 

Equations (27) have non-zero solutions T if 

de-t (G - ppl) = 0 oO". (29) 

This equation has n roots /tp = hj, j = 0 .,oI n-l and for each root hj 

(G - Xtii)xij = 0 ..a.. (30) 

where Xij has n rows i = 0 D00 n-l and one col;un;l specified by j, and is 
defined apart from an arbitrary multiplying constant. Equations (27) 
have n solutions 

'ij = 0 O B .  (31) 5 
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01 O Y C  (32)  

where X = (xi . > 
d 

is an :z x n imtrix whose cOlU;l-1 li s are the eigenvectors 

X-jj with i = o o. n-1 for each j, If the iniiial values of Ti are al.1 
unity, then 

xA=l 

so that A = x-' 1 DDDO (33) 

nhere I is an n x 1 matrix with all elements I, Determination of A in 
terms of X removes the effect of the arbitrary multiplying factor in the 
COlUiWS Of" Ic. 

Solution:; of Equation (27) with the elements of G given by 
Equations (28) have b-J - b+n .,en 0 tiained b;r krcury digital computer, using 
Mercury Autocodc alid Sil R,h,E, Li!!rS.ry ~l?Ogr3II~IRle~. iIowever 
from Equations (-!7), (13) and 

, starting 
(20) all the matrix operations could have 

been performed by di.{gital computer, so that Equations (25) need not have 
been obtained explicitly, 

For a particular ar;rofoii ~ec'iio~~ a quarter of which is represented 
by eight squares with sides I, Ocy, O,O, 0.7, 0.6, O,bj, 0,4, O,3, as shown 
in Figure I, Table I shol:;s the eigenvalues for 1140 = 0,25, 0,5 and IrO, and 
Teble II gives tix zigenvectors Pox* MO = U 5. (Typical Vi’LlUeS Of HJ20 

encountered in gas turbine b%-ding applications lie in the range 0 to 0,4.) 

Table IT? shows the v&ties of "j for unit initial temperature, and 
'Table IV presents values of the ternpeYsatu1"es To oUD T7 at various intervals 
of time, Tables I to IV therefore illustrate the calculation procedure, 
but since the whole process is carried out by digital computer the inter- 
mediate results can be obtained ju:;t by printing oat, or can be ignored 
altogether. 

From results such as those of Table IV the familiar type of cooling 
curve can be plotted2J3, Maximum transient temperature differences are 
plotted in Figure 2, together wi.31 analogue result;s10 for the same shape. 
The analogue measure!Tents .e,re made for ei,&t adjacent squares, exactly as 
for the calculctions, The question of the relative merits of fitting an 
aerofoil &ape by adjacent squares or by an analogue mesh is not con- 
sidered here. The calculated and analogue results agree fairly well 
al$hough there is a slight but significant discrepancy, which is prob::bly- 
due to the inadequa-te reoL --esentntion of thickness-wise conduction in 
the mathematical formulation. 
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3‘1 Time-dependent external '<emnerature -l-.l">- L- - ,--- w.,".h- a-‘.- 

Equations (13) apply if the external temperature is time-dependent 
instead of the step change of temperature of Section 3.0. 

E'or coordinates, i = 1 C0o n 

and equation3 of conservation 

aLn 
I 2 

.~-_-~_- = 
C&i-l 

-_I_ C&i-1 
avim en 

so that $k. = --- 
i-1 en 

aLn Ci- 1 
-= - so that a@Tl 
aRi-1 

--z 
en. 

_ &AZ. 
aqn+i C,n 

**** (31,) 

Hence 

i 

‘1 

Qn+i = Ta Ci-1 - 
I 

%2*.e, = 0 
Cn 

_I 
Q”e* (35) 

Equations (13) lead to ecLuations similar to Equations (19) and (20) 
5ut with extra term3 on the right hand side, The extra term on the right 
hand side of Equation (22) is the 3n x I matrix 

“000 (36) 

whose first n elements are -&i-l, whose second n element3 are zero except 
for the last which is 1 and whose third n elements are all 1, 



The equation corresponding to Equation (27) is 

where 

(G - ppI)T = T, J 

Ji = . 'Cl -=. . ~ n i = 1 Cc. n-l 
4-i-l 

oocr (37) 

If T = Lx so that c = X*-IT, where X has the eigeilvcctors as CO~UCU?S, 

so that 

where the matrix has A5 - lip zs diagonal elements, 

Hem e g = --“. - X-'J Ta 

If 

= yy---c+. Ta where X-" J = y 

Ta = exp (-at) 

:*** (39) 



‘ oo (42: 

so that 

If Ta = b exp(tit), the cyclic solution without transient terms is 

Pjbexp(iwt) 
E  * = --e--ea "J 

hj - piw 

and if T, = b cos wt = $ (exp(iwt) + e,xp(-iwt))Ythe cyclic solution for 
the temperatures is 

T = X 

L 

(hj CO9 Ut - PW sin Ut) 

T -J 
where a 

"j = A; + pa u" 

If Ta = ft, the solution without transient terms is 

1 0 ‘ 0 e (45) 



so thdt 

For exponential external temperatur;: given by Xquat~cn (l+l ), 
transient temperatures have been calculated for ei@t adjacent squares of 
sides 1, 0-9 ooo 0.3, for K. = 0,5 and for ap = eJOe, 3 and 6, The _ 
cigenvalues are the same as on Table I for W/o = 0,5 and the variation of 
maximum transieat temperature difi'ereace Viith Cw is plotted on Yi;gn72 3, 
which shows that the reduction of (To - 'l$,)max from the step change case, 
i.e, C3.y = 03 OIlly beCO!lES rt;,prC3Ci.l3ble rivheli au. is corlyoarable in magnitude 
with the smaller eigenvnlues, The tiiE to the maximum temper ature 
differc;lce increases as a!~ decreases; for instance for 94~. = 3,F? this time 
is three times greater than for the step change case. The smc results 
are plotted on E'igure 4 O:I the basis of time-constants i,e. the time to e-l 
of the original temperature, totTether with analoglue results, As on 
Figure 2 the calculated and analogue results agzc fairly closel;r but 
there is a significant discrepancy at thigh RC,, 

The effect of time-dependent external ter;issarature has previously 
been considered" using an operational method which while implicitly 
including the effect of chordwise conduction does not allon for its vsria- 
tion, Although conditions are not comparable it sppertrs that the reduc- 
tions in maximum transient temperature difference predicted by the present 
methods ari- somewhat smsller than those obtained by the operational 
method, 

391.1 $yclic extarnal tempersture .---__r-r---I 

Equ3tions (45) '_ nave b?en evalllated over a range of frequencies w 
for eight squares or" sides 1, O,y ,,** 0,3 and for E&o = 2.5 and the papli- 
tude and phase of To and T, are shown on .Figures ij and 6, The oscilla- 
tion of amplitude for :JW in the region of the smallest eigenvalue, and -the 
occurrence of amplitudes ;ger,ter ti;c>,n that of the external temperal-ure 
indicate the inadequac?) of the mathemzticsl f'ormulation to describe this 
situation, although f"or l,lr;i;e iii~1 the results show co:rec-L trends, The 
slight discrei;nncy with anAo,~e results noted on Figures 2 and 11. is rein- 
forced by the- breakdown of the method for cyclic external tem?eratLli-e anal 
suggests that this is d,Je to an inadeqdatc representztion of Z;~;~.C~IESS- 
wise conduction, 

Thickness-wise conduction can be taken into account to some extelit 
by writing 

where y is a constant whose value can be estimated Prom the heat flow in 
single slabs and may be about 0,25, hZit41 a dissipation function D given 
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by Equation (47), Equations (28) are replaced by 

40 Gi+l,i = --- 
H&i 

i=l eCO n-l 

It may be anticipated that Equations (48) would improve the results for 
step change and exponential temperatures, 
results for cyclic external temperature. . 

but would not yield correct 

4.0 Transient temperatures in tapered discs 

The analogue computer4 cannot be readily adapted to determine 
transient temperatures in tapered discs, although an approximate method 
of using the analogue for tapered discs is described in Appendix IT, 
In this method the important re:ion of the tapered disc near the thin edge 
is least well represented, in contrast to Riot's method in which the size 
of squares can be chosen to obtain equall;y c 'rood representation everyvJhere, 
Transient temperatures in tapered discs have been determined experimentally12 
using thermocouples, but not over the ranges required in the correlation7 
betlseen thermal fatigue endurancpm rP and mechanical properties, 
calculations have baen made partly to validate this correlation. 

'Ybe present 

k quarter of the cross- section 
by n squares, 

of the tapered disc is represented 
with square 0 starting at the radius of the bore0 

4, = en-1 and Tn = 0, then for i = 1 oeo 
Defining 

n and with the notation 

riwl = r + 4-i-i i=l 

X-* 1-l = ri-z + Ci-1 i= 2 ooo n 

si-i = CL-1 (rt-, -9) i=l 
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2 
si-) = Ci-1 ITi- - ??l-2 ( :' ) i=2.0.n 

Ci = 2 ‘(St-1 + S-j) i-l a.00 - b-1 > 

the functions V, D and Ds are 

The equations of conservsticn 2re 

For the coordinates 

a?lnti <_--us = 
at R. l-l 

Equations (II) are 
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‘a 
-- ; f 3 ^P L.+4.,-,Ln+R 

2 /& 4j??js1 J ell i-l = 0 *e** (53) 

The analysis is similar to that of Section 3o0 and leads to 
Equation (27) where the non-zero elements of G are 

Gll = 
-l.&) lge, , 
- . . . ..I- 

H&l sy- - 

2 a a a 
G.. 11 = ------ -*i-a ei-1 50 di 40 - 4ri-l - --- 40 i= 2 . . . n-l 

Hei- si-1 fki S-i-1 Q.-l 

p- = +&ag- 1 e, 4&l 4; e, 80 

H&n-1 511-l - 

-e-v- - 

H&n Sn-1 + 2rn-1 Q/n-l sn-1 &k-i 

% ,i+l 4-G-1 ef 40 i _ , = -- 
H&i si--l 

.*. n-l 

G- l+i,i = --- Hei si 
-CO* (54) 

The analysis of Section 3.0 between Equations (29) and (33) a,;ain a,-plies, 

Transient temperature differences have been calculated bJ Mercury 
digital computer for tapered disc specimens used in N.G.T.E. thermal 
fatigue tests,2 with edge radii of 0.0$3, 0.023, 0,030 and 0.0&O in,, 
which can be fitted by adjacent squares as shown in Table V. %aximum 
transient temperature differences for H&o = 0*05, 0.1 and 0,2 are shown 
in Table VI and plotted on Figure 7* The variations with heat transfer 
coefficient of the present results for tapered discs and analogue results 
for an aerofoil with 0.020 in, edge radius are very similar in shape. 
The variations with edge radius of tapered discs and aerofoils differ 
to some extent, As edge radius increases the maximum transient tempera- 
ture difference for the particular aerofoil decreases to a greater extent 
than for the tapered discs., 

5.0 Discussion .-...--___I 

It can be seen from Section 3.0 that when matrix operations have 
been carried out to the extent that Li-1 and Ri can be determined 
individually, the formulae for these are the finite difference equations 
which could have been written down immediately for the segment in ques- 
tion. However, use of aiot's method allows these equations to be 
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produced by automatic procedures, with various lengths taken correctly 
into account, and further, all the matrix operations crtn be processed by 
digital computer, so that the finite difference equations need never be 
produced explicitly. Use of Eiot's method indicates the validit:; of the 
finite difference equations by the extent to which the original selection 
of coordinates qi represents the actual haat flow, More accurate finite 
difference formulae, such as Simpson's rule, might-be used'. A mzzked 
advantage of this method is that it allows shapes of varied size to be 
used so that heat flow in a small region is as adequately represented as 
in a large region, Results can be obtained quickly by dipital computer; 
for instance, the resul'is shown on FiLe3?lre 7 (i,e. 12 cases ui required about 
one hour on Mercury digital computer. The method can be extended to 
cases with variable heat transfer coefficient round the periphery, time- 
depenient heat transfer coefficient and temperature-dependent material 
properties, as indicated by Biot'. 

In attempting to determine transient temperatures in an aerofoil 
for cyclic external temperature, the method has been taken to one of the 
limits at which it breaks down. It is thought tha% this is due to an 
inadequate representation of thickness-wise conduction and this may also 
account for the slight discrepancy between the calculated and analogue 
results sho~m on Figures 2 and L;, An approximate method of including 
thickness-wise conduction has been indicated in Section j,l but this is 
probably not realistic enough to produce valid results for cyclic 
external temperature, Another limit of the method of Section Jo0 wa.s 
reached in an attempt to apply it to a cooled blade whose cross-section, 
being a multiply-connected region, produces internal conduction terms Li 
on more than one side OP the squares. Taking the coordinates qi as the 
temperatures and surface heat flows leads to an unequal number of 
coordinates and equations, While Biot 's method, using another selection 
of coordinates qi, might apply t@ a cooled blade, this would not be a 
direct extension of the method of Section 3.0, The same applies to pro- 
blems treated two-dimensionally and to three-dimensional problems, An 
analogue computer for a particular three-dimensional problem has been 
designed at N.G.T.S,'3, 

One of the objects in considering cyclic external temperature was 
to enable eigenvalues for exponential or step change external temperature 
to be sepzrated out in analogue measurements, While eigenvalues could 
be separated out in analogue measurements for two adjacent squares, these 
were not obtained precisely, and for more than two exponentials the 
mathematical situation '4 is that even with results of high precision, 
exponentiala cannot be separated with any certainty, The same does not 
apply to the separation of cyclic components, to which electronic tech- 
niques can be applied, and since there are similarities in the formulae 
for exponential and cyclic external temperatures, as shown in Section 3.1, 
it was possible that a relationship between the two might be established. 
However, the frequency of all temperatures Ti-1 is the same as the exter- 
nal frequency so that only phase and amplitude differ, which is not the 
usual situation in the separation of periodicities, Thus the attempt to 
derive eigenvalues from measured temperatures fails because (i) the 
mathematical method is inadequate to produce restilts for cyclic external 
temperature, (ii) a cor,nection between exponential and cyclic external 
temperature ha s not been fully established and (iii) electronic tech- 
niques may not be applicable, 
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In a sense eigenvalucs and eigenvectors as discrete entities are 
fictitious and are due to the sub-divisicn of the cross-section into 
squares, The product of the matrix of eigenvectors with the matrix con- 
taining exponentials, vrith eigenvalues as coefficients of time, is how- 
ever meaningful and is a sum of discrete elements which could be replaced 
by an integral, 'There is often an eL&valence between systems of linear 
equations and iiitegrnl equations 15 so that for instance the eisenvalue 
formulations of Sections 3.0 and 3:l could Se replaced by Fredholm integral 
equations of the second kind, i,e. 0-f the type 

i 

1 
464 - h K(x,y) $b(y> dy = f(x) 0 ,< x s 1 

0 

with the operator p = 2. being treated as a constant, 
( ) 

Thus is may be 
dt; 

possible to formulate the problem more in keeping, analytically, with the 
integral expressions used by Eiot, although for numerical results it may 
be desirable to use systems of algebraic equations, However it is poss- 
ible that an integral formulation might lend some meaning to the product 
of the matrix of eigenvectors wi.th the matrix of exponentials, with eigen- 
values as coeffic<ents of time, all the terms of which are derived,although 
by several processes, from the shape of the cross-section. 

The programme on Mercury digital computer for temperatures could 
be extended to determine stresses allowin 
such as secondary creepy, or each 16 or all 7 

for various material properties 

(primary, secondary and tertiary), 
7 of the three creep components 18 

This is essentially a calculation added 
to the temperature calculation, but since Biot originally derived his 
results for visocelastic behaviour'y, the present methods may be applic- 
able at a deeper level to material behaviour, for instance to coupled 
thermal and stressing effects, as in thermoelastic damping, 

6.0 Conclusions mm- 

Transient temperatures in symmetrical aerofoil sections and tapered 
discs have been calculatcid using Biot 's variational method and a tiercury 
digital computer. (The computer proqrammes have been deposited in R.A,Z'. 
Mathematics Department Programme Library,) Cro ss-sections are repre- 
sented by lines of adjacent squares9 t~!~oee sizes are chosen to suit the 
local dimensions. After setting-up the potential, dissipation and sur- 
face dissipation functions, and selecting coordinates, the La,grange equa- 
tions lead, by automatic procedures, to an eigenvalue formulation in 
matrix form for the temperatures and their first time-derivatives, The 
computer time required for the solutions is about five minutes for each 
cross-section and heat transfer coefficient. 

Transient temperatures calculated for a particular aerofoil sec- 
tion for (i) a step change of external temperature and variation of heat 
transfer coefficient and (ii) external temperature depending exponentially 
on time agree fairly closely iG.th results obtained on an analogue computer, 

Maximum transient temperature differences have been evaluated for 
tapered discs (which are not amenable to analysis by a simple electrical 
analogue) for variation of edge radius and heat transfer coefficient. 
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F'ecullarities in the soluti.o_l for cyclic temneratSure external to an 
aerofoil over a l?afi,::e of frequencies indicate limitations in the mathema- 
tical formulation. n succcscfui solution for cyclic external temperaklre 
might enable eigenvslues to be separated Out in experimental measurements 
using electronic equipment, ani;L this might be extanded to exponential 
external tem;>eratur'e if a relationship between cyclic and exponential 
external temperature could be established. 

Eigenvslues 2nd ei\--envectors as discrete values arise fictitiously 
from the sub-division in-to squares and the possibilitSy of an integral 
formulation has been mentioned. 

There is a possible, but no-t immediate, extension to cooled blades, 
whose cross-sections are ~~~l.ti~ly--co,llzected regions, Transient stresses 
due to creep, 2nd viscoelasticity might be included,, 

T’ &dine oppOrtu2.t~ provided by the Royal Aircraft Establishment 
Mathematics Dzp;rtce::t to use their Mer-cury digital computel>, al4 assistance 
with its operation, are grateI‘ully acknowledged. Mr. W. A. Abbott of the 
National Gas 'I.'urbine Establishment is thanked for performing the calcuk- 
tiOliS 041 the analo+e computer. 
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TAX3 I --.-- 

Eigwwalues for eight ad,jacent squares 
of sides I9 0.9, 0.8 *., 0.3 for variation of 1140 

0.25 0,5 1.0 

1 : -66.938 -35.455 -19.778 

2 -37.033 . -19.902 -11.363 

3 . -24.205 -I3.184 - 7h86 

4 -17.051 - 9.444 . - 5*648 

5 -11.682 : - 6.756 - 4.245 : 

’ 6 - 6.876 - 4.364 - 3.030 

7 : - 3.325 - 2.505 - 2.004 

8 - I.288 - 1,224 - 1.166 

. ., ,I”.., .:‘,. :. . :.. , . , ,, 
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TABLE II 

Eigenvectors for tight ad;iscent squares 
of sides I9 0.9, 0.8 .,.* 0.3 and HZo = 0.5 

.  ,  . I  :  .  ,  .  

0 0.0006 '-0.0184 , 0.1371 [ -0.3389 i 0.4765 -0.6327 1.0000 
. . F . 1 . . . .: . . 1 .- . . ,. . . i . . . . . . . . . . . 

0 yo.0058 ; 0.1070 -0.5113 . 0.7508 :;-od+lgl : -0.1008 so.87y 
s.. 7"'"' . i . . .,. . . . (. . . . . ., . . . . , I . . - . . :, .l.. . . . . . 

1 -0.0006 ; 0.0377 i-O.3586 1 0.7907 -0.0886 ;- 0.7017 ; 005029 ; 0.7033 
I  .  .  .  .  .+. ,  .  .  i. .  .  .? .  .  , .  . .  .  .  . .  .’ :  I  .  .  .  .i.. .  .  .  ,  .  .  .  ,  

I  

:: 0.0055 $L1773 ; 0.7464 f -0.2807 .-0.7630 i-o.183o i 0.8846 : 005353 
I . . : ,,- . . .i I .“... . . : 

: -0.0499 f o/j498 $0.660, . -0.7253 -0.2779 ’ 0.5035 1 .oooo : 0.3951 
. . . : . . . . , . . , . . . ,. :” .‘“! ,. . -. 

0.261g I-0.9005 i-O.4441 : 0.0572 ; 0.5340 i 0.9146 . 0.9353 ; 0.285j 
.  .  .  . I  .  . ,  .  .  .  :  .  .  .  .  .a .  ,  * .  i... .  .  .  . . ,  .  .  

-0.8138 i 001583 : 0.5781 . 0.8106 i O.g7yg : 1.0000 . 0.7917 : 0.2126 
$ .  .  I . .  ,  .  ‘.. .  .  .  .  .  .  . )  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ,  3, 

1.0000 : i 1.0000 1.0000 1.0000 1.0000 . 0.8855 : 0.6356 ; 0.1603 
* , ,. . ‘. . :.; . ..T . .,. 

Mote : Colwms are eigenvectors 

Coefficients Ai.-1 for eight adjacent squares 

of sides 1, 0.9, 0.8 ..* a.3 for 
iii?, = 0.5 and step change 

of external temgeraturc 

0.0611 

: 0.0987 

0.2013 

. 0.4905 
1.2404 . 
,, I.. 
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Tim,3 v 

Edge 
radius 

Bore 

Square 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

11 

12 

13 

14 
Total 
radius 

i?epresentatioii of cross-section of tapered discs 
by adjacent squares 

0.010 in. 

0.0935 

1 , 0.138 

. 0.120 

0.097 

: 0.078 

. 0.06!+ 

0.050 

. 0.042 

: 0.034 

0.025 

0.022 

I 0.016 

; 0.013 

0.311 

0.010 

0.813 

0.020 in. 

0.0935 

0.138 : 

’ 0.124 

0.099 

I 0.081 

0.065 

. 0.055 

0.045 

0.037 

1 0.028 

0.024 

0.020 

. 0.810 : 0.812 

0.030 

: 0.0935 

! 0.133 

0.124 

. 0.100 

0.047 

0.038 

0.0: 

o.ojo 

3. 
- . . - - , . .I. .I. . 

. 0.040 in. 

. ,-. 

I 0.0935 

. 0.138 

~ 0.124 

0.103 

0.036 

0.073 

0.061 

. 0.052 

0.043 

. O.O$O 

0.813 

.,... _,. 

Note: The side of the smallest square is taken equal t ‘J the edge radius since the 
element then has the &me ratio of perimeter to area as the quarciramt of the edge 
which it represents. 
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(Co = maximum half-thickness of disc) 

,. 
0. 050 

: . . 

0.1 * 0.2% i 3.224 

. . . . . . . . . . . . 

. 0.030 in. O.Oi;O in. ' 
. - ti 

i 
i O.lj3 ; 0.114 '2 

?,, .,._ . . 

: 0.193 0.166 

1. . . . . 1 . . . . +, 

i 0,221 0. 2 : 0.374 ; G-296 

. . .I ., .. ,, ,,’ ‘..‘.’ :. . . : : . . . . . . . ‘., . .’ II. : :..,. :. .,‘.,. ,. 1;“....‘*..... ‘0 

, 



- 30 - 

a 

b 

C 

e 

f 

h 

4 

n 

A"?EK'DIX I 

coefficient Yor exponential external temperature 

amplitude of cyclic external temperature 

specific heat per unit volume 

determinant 

exponential 

coer'ficient for linear rate of change of external 
temperature 

heat transfer coefficient 

square root of -1, or suffix 

suffix 

material thermal conductivity, or suffix 

length of side of square 

vector or suffix denoting normal to surface 
(positive inwards) 

operational eqression for a 
at 

generalised coordinate 

radius of bore of tapered disc 

proportional to the volume of a ring of square 
cross-section , or a variable 

time 



V 

w 

x 

Yi 
z j 

A 

B 

D 

Dij 

Ds 

K 

L 

M 

N 

?JT .- 
at 

com?onent of sigenvector, or variable 

variable 

coefCicicnts 

heat flow VC-c:,or 

disoi~)a?.ion function 

DlatlXiCeS 

sUi?ace dissipstion function 

coefficients, for time-dependent external temperature 

h/k 

extra matrix, over step ch:>nge c53e, for time- 

dependent external temperature 

kernel of integral equation 

vector specifyin, (+ internal (chordwise) conduction 

matrix 

maivrix, or normal 



Q 

B 

S 

T 

Ta 

AT 
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JJ?F?ZNETX T. (cont'd) --I_ 

thermal force 

vector specifying heat flow across surface (positive 
inwards) 

surface area 

temperature 

external temper3,tur.e 

difference between initial temperature and external 
tem;?erature 

thermal potential 

matrix with eigenvectors as columns 

factor allowing for thickness-wise oon:',uction 

small change, or first variation 

mean area of two adjacent sqluares 

function in integral equation 

diffusivity k/c 

eigenvslue 

CA 
-9 h 

or iJ--l = (f@> $- 
( 1 

volume 

frequency of external temperature, or variable 

normal coordinates of temperature 



The equation of heat conduction for axially symmetrical heat flow 

is transformed Ly the substitution s = log r into 

The coordinates (s,z) are orthogonal and 
w an relectricnl network with capacities 
in the z direction proportion32 to r-%, 

this equation cayl be simulated 
proTortiona1 to r2 and resistances 

The further transformation w 
equation 

=: F leads approximately to the 

The coordinations (S,IJ) arc not orthogonal, but this equation is probab1.y 
valid where the transformation is nearly ortho;;onal, i,e, near z = 0, and 
the eq..,?tion can be simulateii by an electrical network with constant resis- 
tances and capacities proportional to PO Since ds = F and aW = F, 

individual squares of the (s,~)meshcorrespond to equal-sided figures on 
the disc Gross-section, the size of the latter be-ing g?oportional to r. 

The boundnr;:j condition is 

where n 1s the norms1 in the (r,z) plane, If N is the normal in the 
(a,~) plane, then dn = rdN where the transformation is almost orthogonal, 
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so that 

Hence heat transfer coefficients for -t&a disc are ;x~ltiplied by r to give 
heat transfer coefficients fw the a.nalo,ye. 

Siiice the mesh ou the tapered d.isc CL:‘OSS- Sc?Cti3i? consists of lines 
raiciating frcm the oriqin, togbther C.th lines along th? z direction to 
produce approximate squares, the appro;riw2ze squares are bit;gest near the 
thin edges, and at the surface of the tiiickest Forticn of the disc are 
leasr erthogonxl. Thus thris method of' using a cons::ant resistaxe mesh 
to determin? cransi:Jn,; temperazures rin tapered discs has several limita- 
tj ens D 

P 
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