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The pioneer British hovercraft are presumably being designed on a 
model of the flow which is naturally a very crude one; little evidence is 
nvailable as to the accuracy of the performance estimates that follow from 
it; and no oritioal appraisal of the aerodynamics of the problem at its 
present level seems to have been published. In this situation the analysis 
given below may serve as a basis of research discussion in three respects:- 

(1) to give a rather clearer view of the assumptions and parameters 
involved in the crude theory, 

(2) to encourage a stricter comparison between prediction and ad boo 
test results as they become available, 

(3) as a point of departure in @nning basic experiments that would 
lead most economically to a better understanding of the matter. 
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1 INTRODUCTION 

It often happens in the earliest stage of the development of a useful 
machine that a few are designed and made to work on a combination of orude 
theory, sketchy experimental data, and guesses that may or may not be 
inspired. It is only much later that a full understanding of the principles 
of the matter is worked out. The aeroplane itself round about 1910 was a 
case in point. The hovercraft is now another and a rather more diffioult 
one, sinoe its basic problem - to determine the flow field when an annular 
jet issues from the perimeter of a base moving close to the ground - is 
essentially more complex. It is also rather more difficult for the research 
worker who starts to explore the hoveroraft field because, for various 
reasons connected with the organisation of design and production, much of 
the work actually being done is not published. Thus if there is at the 
moment a generally accepted hovercraft theory by which its performance can 
be roughly estimated, I know of no British paper that gives it adequate 
treatment*. 

Consequently it may help to work out in some detail what I take to be 
the crude theory of hoveroraft performance in the simplest case, that of 
horizontal flight over level ground at zero incidence. In the course of 
this I shall try to 

(1) keep an eye on the various simplifying assumptions leading to 
the crude model of the flow, 

(2) choose the various parameters in such forms as are most tractable 
to basic experimental work. 

2 STEPS FRO_M _THE REAL F&OW TO ITS CRUDE MODEL 

In the real flow, whether there is forward motion or not, the issuing 
annular jet entr,ains air from both sides on its way to the ground. It thus 
surrounds itself by two layers of turbulent flow, in which vorticity and 
total head are varying, in addition to boundary layers below the base and on 
the ground, Even in the hovering condition there is flow within the cushion. 
This situation being much too intractable vfe replace it by inviscid fla7 of 
a special kind, having the following features:- 

(1) There is no flow, but a constant pressure po, in the cushion. 

(2) Whatever the shape of the perimeter, and whatever the forward 
speed, the jet flow is axisymmetric in the sense that it is the same in any 
vertical plane perpendicular to an element of the perimeter of the base. In 
loose terms the jet flow is the same all round the perimeter, just as it 
would be in the truly axisymmetric flow out of a hovering circular base. 
Each element of the jet defined in this way has the same total head, mass 
flow and momentum flow. 

(3) But in forward motion the pressure will in general vary over the 
whole of the outer boundary of the jet. This being again too difficult, we 
replace it by a const,ant pressure p, averaged over the whole of the outer 

boundary. It seems that p, has usually been neglected. 

Thus by evading several important issues we have reduced the problem to 
that of a two-dimensional inviscid jet sust,aining a constant pressure dif- 
ference and ending up horizontally with the ground as a streamline, This can 

-_PU__r-r-*.-zc-- n__--s u__D__L 

*Since this was written St,anton Jones's IAS Paper No,61-&$, which covers 
some of the same ground, has reached me, 
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be solved by oonformal mapping2, but the solution is rather elaborate, 
involving jet boundaries that are not ciroular. We therefore abandon the 
ground streamline condition and look for solutions in which the jet 
boundaries are circular and the jet flow only 'touches' the ground. 

. 3 TWO-DIMENSIONAL CIRCULAR JET FLOW AFPROXIMATIONS 

The notation is shown in the sketch of Fig.1. Across the jet of 
thickness t at exit the total head H is constant and the pressure p, with 
atmospheric as datum, varies from p o to PO' v being the variable velocity. 
The energy equation across the jet at exit is 

p + &3v2 = H, p being constant. (1) 

Consider an element dz of the jet thickness across which the pressure rise 
is dp. If R is its radius of curvature at exit we have 

dp = +. 

We now assume that the element's horizontal momentum is changed from 
-pv2dT oos 8 to pv2dT in height h by the oonstant pressure increment dp, 
so that 

hdp = pv2dz(l + cos 0). (3) 

Then from (2),(3) 

R= h 
1 -I- c0i-z 

and so the oircle of ourvature is constant across the jet at exit and 
touches the ground. 

It follows from (l),(2) that 

“a=H 
p+z d% l 

(4) 

(5) 

3.1 Solution A 

A common approximation, a 
P 

parently introduced by Chaplin', is to 
replace the differenti‘als in (5 by the finite quantities already defined. 
In what follows a bar denotes mean value across the jet. We assume that 
the pressure variation across the jet of thickness t is linear and so 
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P = 5 = S(P, + P,) 

dP = PC - P, 

dT = t . 

If now we write x = t/K, (5) reduces to 

P, + PO PC - PO a--P_ + 
2 

-- = H. 2x 

Let q be the dynamic pressure of the forward sped V. Then with the 
substitutions 

o- = 5, 
PO 

= bq, 

C 

we have 

and equation (6) becomes 

and so 

From (I) we have 

and so from (8) 

(7) 

03) 
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73 
To this approximation we must also have G = (v ) , and so 

It is useful to introduoe the speed u defined by p. = $pu* so that (10) 
becomes 

It is commonly assumed that b = 0, in which ease we have the familiar 
formulae - 

v 

P 9z 2x 
H =K-Y 

j = -x_ 
1 +x 

-5 
ficL 1 
P, = x 

or i 
U =&* 

i 

! 

3.2 Solution B 

An alternative approach, introduoed by Stanton Jones, is to integrate 
(5) across the jet, with the boundary conditions 

P = bq at z = 0 

= PO z = t. 

The result is 

(11) 

(12) 
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and so 

or 22. 1 - ,-2x 
H=r - bG e-2x ' 

The mean values across the jet may now be obtainti 

integration. The result for the momentum flow pv2 
solution A, equation (y),sinoe it follows straight 
equation (3) in both oases. The other mean values 

from (I) and (12) by 
must be the same as for 
from the momentum 
are different:- 

* 

and when b = 0 these become 

-2x 
i = ,-u=- 

2x 

(13) 

I 
> 

I 
-X 

= An. 
U -2x T x(1 - e ) 

1 

3.3 Discussion of solutions A,13 

(34) 

(15) 

(16) 

It will be realised that these solutions are very loose approximations 
to the jet flow near the ground, sinoe the jet boundaries are two eFa1 
circles touching the ground (Fig.1). (The infinitely thin jet is the only 
one that really satisfies the flow conditions.) They are however rough shots 
at determining the conditions at the exit in terms of the thickness there 
and the basic radius R, solution B being the more exact. 

It is clear from their derivation that the two solutions become 
identical as x -f 0 and diverge when x is large. For ex,?mple it ccan be 
shown by expanding the exponentinls that 
0(x2) as x -t 0, but when x + co,p,/H 2 

p,/H + 0 in the same manner to 
+ ---- in solution A and +I in 

l+bcr 
solution B. Now an essential physical condition is that pc must be less 
than H. It therefore follows from equation (7) that solution A becomes 
invalid when x > 1 and from equation (13) that there is no such limitation 
in solution B. 
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It will be seen later that practioal values of x are small enough 
for the difference between the two solutions to be oomparatively small, 
and so, in view of the large errors probably occurring in other parts of 
the theory, the use of the simpler solution A may be justifiable. 

4 RESULTS FOR UNIT LENGTH OF THE JET ANNULUS 

Using the mean vnlues already obtained we oan now calculate 
thrust T,, mass flow m ,, momentum drag Dm 

1 
, and power required P,, = 

~utheus*. The basic relations are 

ml = pTt 

2 T, =pvt 

1 
D tm,V= 

0 
18*. 

ml ml Q I 
P, is the power required to produoe the jet and to overcome the momentum 
drag. Thus if the fraction aq of the dynamic pressure is recovered in 
the duot we have 

pl 
= %(H - aq) + D V 

ml 

= $ (H - aq) f y . 
J 

07) 

(18) - 

The algebra necessary to reduce these quantities to non-dimensional 
forms expressed in terms of the basic parameters x, C, a, b is tedious but 
straightforward. The results are as follows:- 

-- 

*There is a buried assumption in making this step, for in using a two- 
dimensional jet analysis for the element of the annular jet we assume that 
the radius of curvature of the perimeter of the base is everywhere muoh 
greater than R. Thus we should expeot the solution to break down at the 
bow and stern of a very slender craft, and at the corners of a rectangular 
one. 
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Solution A -I--- 

3-= 
1 

Pun 
[(, - bcr) $"' a j 

- 

T1 - = 1 - bc , (the same for B 
poR 

D 
ml - = [2cr(l 

PO" 
- bcr)x]' P g 

pl 
y$fG= $ (1 - b& [ (1 - b&c-+ f f 

where k = 2(2 - a) + b 5 2(2 - a) 

pl 
p = lw-- . : 

Solution &? -v- 

(I - b& L.=.=. E J 

(1 - e-2x) 

D 
ml -X 

- = 2[c(l 
PO” 

- bc)]& -!--:=--=--j~ P G 

(1 - e-2x)2 

p1 
gK= 

(1 - bo-+ .+rl -+ 1 
-X - bG e'2x 

(1 - ev2x) ' /,- 1 . em27 

J 

- IO - 



It may also be useful to tabulate the results for hovering, by 
putting Q = 0. 

Hovering 

Solution A Solution B 

L 
2x 

1 
-X 

-e 
7 
-2x * 

x(1 - e > 

1 

1 
-X 

-e 
--7 

(1 - e'&) 

5 PERFCRMANCE ESTIMATE 

We can now make a rough shot at the lift L, drag D, and power 
required P, of the whole system. 

Let the plan area be S, the perimeter s, and write 45 = S/s. 

Lift. This is derived from the major souroe pc, but there is also 
the vertical oomponent of the thrust and the suotion if sny on the upper 
surface of the craft, 

Thus L = poS+Tlsin0.sc6Sq 

where 8 is a ooefficient which must depend on some such quantity as h/4 
and csn only be got from experiment. 
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We now have 

L T1 

*q 
= 1+- 

PC? 
sin 0 + 6cY 

= 1 + y sin 0(1 - bc) + 8~ (21) 

where y = R/4 is another basic parameter of the system. 

We cannot reduce this equation further except to rtite it 

L 
- = I-+& 

*OS 
(22) 

where E is expected to be <<I because as will be seen later the second and 
third terms of the above equation will each be of this order in practical 
oases. 

The first approximation to the lift, which is always used in what 
follows, is therefore 

r  
1J - = 1. 

PO" 
(23) 

Drs. This is made up of the momentum drag Dm Land the rest, which we 

may oall the profile drag Do but cannot ocllculate. 

For the momentum drag we have 

Dm = Dm s 
1 

and so 
Dm -= = 
pas 

YG t solution A 

@I-) 

= YG Y solution B 

where g,G are given in equations (19,20). 

Do should be related to some easily measured drag, for instanoe the 
profile drag of the craft without jet and far from the ground. If this is 
CD Sq we therefore write 

0 
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Do = XCD sq 
0 

(25) 

where h is an unknown funotion of x,y. 

and so D . 
p,s= Yt? + "D c 9 A 

0 

= yG+XCDo‘, B. 
0 

Lift drag.ratio 

It follows from (22), (26) that this is given by 

2 . L = (yg + LCD CT) (I + E) , A 
0 / 

where for the first approximation E = 0. 

Power required 

This is given by 

and so 

But weight W = L = poS to first approximation 

Henoe P= 
wu yf + LCD g/2 , A 

0 

= yF + kCD 2' 2 
3 B 

0 

- 13 - 
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t 

(27) 
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and 2 = (J--kL 
WV wu 

= yfc4+hCDa , A 
0 

= yFc + LCD 0‘ , B 
0 

where f,F are given in equations (19),(20). 

PO the power required for hovering is given by 

pO 
Fl = yfo 9 A 

= YFo ? B 

where fo,Fo are given in (20a). 

Mass flow 

This is given by a = m,s, end so 

= yJ,B 

when j,J are given in equations (19),(20). 

It follows that 

=& ,B. 
UJ 

Jet velocity 

. 

5 has already been given by equation (IOa) for solution A and by 

equation (15) for solution B. 

(29) 

(30) 

(31) 
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6 DISCUSSION OF PAEUMETERS 

In what follows we shall be mainly oonoerned with drag and power. 
These have been expressed in terms of a number of parameters in the 
general funotional-forms:- 

z 
w = y;(x,a,b)+CDh4 

0 

2 
wu = YF ' (x, IT, a, b) + CD x$/* 

0 

where 2 p = 
0 

+I . 

(32) 

The funotions f,g are for solution A and F,G for solution B. 
g,G account for momentum drag, and f,F for the power required to produoe 
the jet and overoome the momentum drag. 

It must be admitted of course that a,b,h are not constant but 
themselves may depend on both x and y. In what follows a,b,h will be 
treated as funotions of y only, that is, as dependent on height but not 
on jet thickness. 

6.1 Power parameters 

The power fun&ions P/WV, P/Wu, besides being in what seems the 
simplest praotioal form, oan be used to oompare hovercraft performanoe 
with that of other aircraft operating out of ground effeot. 

For example, P/WV oan be related to its v,alue for an ordinary 
airoraft, which is simply its oruising D/L. Noting that d = l/CL to the 
hoveroraft approximation adopted here, we have for the ordinary airor,aft 

E 2 
L = CD”+: $ 

0 XA 

CD being the profile drag coefficient and A" the effeotive aspect ratio, 
0 

and SC 

2 0 
cDO 

3 
= 

L 
*-3/* - . 

min ( > 7CAX 
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Similarly P/Wu at hovering can be related to the ideal oase of a 
duoted fan in which there is no contraction. If the mass flow through 
disc of area S is m at speed w we have 

and so 

m = psw i 
W = mw '> 

: 

!? 2 2 = 
S pw = -&-pu from the definition of u 

It follows that L = 2-3/2 
wu for the ducted fan. 

Now for the hovercraft solution A 

% wu 
= f-312 y(x+ + x4) . 

the 

(33) 

(34) 

1 

Henoe y(x' + x-) is a measure of the hovering effioiency compared with a 
duo-ted fan. Its minimum value is 5 at x = 1. This comparison was 
introduced by Chaplin. 

6.2 Geom$rical parameters 

x = t/R and y = R/& are two ratios of the 3 lengths &,R,t. 4 = S/s is 
a linear dimension of the base area, It depends on the planform and can be 
related to the greatest dimension d by means of the fineness ratio n* To 
illustrate this it will suffioe to consider ellipses and rectangles. For 
the ellipse c&' axes d, nd (n < 1) 

S 2 nd2 = 4 

where 

S = 2dE 

754 1 

E = 

J' 

[I - (1 - n2> sin20]' de 

0 
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and so 

and for the circle 

k 1 
d = 4’ 

For the rectangle of sides d, nd 

4 
d 

= $ for the square, as for the circle, 

(35) -c 

t 

(36) 

$ is plotted against n for these two families in Fig.2, There is little 
difference between the two curves. 

R= h 
1 + cos 8 is the radius of the circle cutting the base at angle 8 

and touching the ground. It should be noticed that in the approximation 
used here, when the contribution of the thrust component to the lift is 
neglected, the jet exit angle 8 enters the problem only through R. For 
instsnoe, given R, any base up to height 212 will when equipped with a 
cons-knt jet strength rtt the appropriate exit angle 0, produce the same 
PC - PO9 and therefore the same p 

C 
and the same lift if p, remains the same 

as the height changes, see Fig.3. This seems v,slid for hovering, but not 
for forward speed, when p, must depend on 0. One of the crudities of the 
analysis is thus exposed. In the reel flow the jet exit angle must have a 
more pcwerful influence than it assumes here. 

Y = $ is very impor-kcnt because the power required for lift and 
momentum drag is directly proportional to it. We have therefore to decide 
how sm,all it can be in practice, 
lower limit to the height. 

a question which depends on the tolerable 
This may turn out to be Can operational problem. 

In some applications it may be possible to fix R lower limit to the height 
which is independent of the size of the craft. 
proportioncl to 4, 

In this case y is inversely 
and leads to the familiar claim that the efficiency of 

the vehicle will inorease with its size, but the argument is not a very 
convincing one. 

In other oases the lower limit may appear as the angular ground 
olearance to give the angles of pitch and roll necessary either for 
manoeuvre, for the production of thrust by pitch in steady flight, or for 
olearanoe of combinations of surfaoe roughness and waviness. 
this angle in relation to the maximum dimension d of the base. 

We may define 
If the 

angular clearance is (3 radians, assumed small, then 

. 
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P 
2h 

= T 

and we have 

s h 
y = e = 11 + co9 e>e 

Or 
1 d 

2(1 + 00s 07 z 
(37) 

where d/4 is given in Fig.2. 

If p is fixed, y deoreases as the jet angle decreases %d as the plan- 
form approaches a circle or a square. For example, if 8 = 45 

G 1.2 for n = 1 (circle or square) 

=: 1.8 r-l=&. 

The least tolerable 8 is ,anyone's guess at the moment. If it is of 
the order 0.1, the order of minimum y is between 0.j for n = I and 0.3 for 
n = $. 

Tne parameters x,y have arisen naturally in the analysis and have the 
virtue of producing drag and power functions that are linear in y (eqns. 32). 
On the other hand they do not seprate the basic variables R and t, which aon 
be done by using y = R/4 and z = xy = t/h at the expense of losing line,arity 
in y. This form is useful for studying the performance of a given design for 
then z is constant. The tr,ansformed expressions for solution A are 

JL = 
wu 

2 -3/2 (1 - b& 
c 

(I + kc& y + (1 - bo')z 
6 4 -i 3/2 y + hCD cY2 

0 

2 
W = [2a(l - bo')ya+ 

Ei 
W = [2(1 - bo)yr]' 

4 = (1 1 5 
U 

-bo)g . 

> (38) 
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6,3 Aerodynamic parameters 

V2 The speed parameter d = q/p0 = - is simply 
u* 

6 as usually defined 
L 

if the first approximation to the lift is used, but in this problem the 
use of C L merely confuses the issue, 

The parameter a expresses how much work we get from the forward 
speed dynamio pressure in producing the jet. It depends mainly on intake 
and duot design, and little, we may hope, on the geometrical parameters x,y, 

The parameter b is the mean pressure coefficient (referred to 
forward speed) over the whole of the outer surface of the jet. It is 
introduoed to allow for the faot that if for exaaple the base is elliptical, 
then the oushion pressure for flight along the major axis may be very dif- 
ferent from that for flight along the minor axis, everything else being 
supposed equal. Its magnitude and sign are unknown, and can only be 
obtained indireutly from experiment. We may guess that 

(1) it depends strongly on planform, decreases with aspect ratio 
and might be negligible for slender shapes, 

(2) it varies strongly with y (the height parameter), but not 
with x. 

the profile drag coeffiaient of the craft out of ground effeot 

and without jet,depends of course on the oleanness of its superstructure, 
which may be expected to vary greatly with the job it is designed for. 
The associated parameter h is primarily a function of y and may be less 
than unity if the loss of most of the base friction predominates, but it 
oan only be found from experiment. It seems worth while isolating CD 

0 
in this way, but for some purposes it is better to work with XCD = C say, 

0 

Summarising, it is good enough as a first step to consider a,c as 
functions of y only, and b as depending on both y and planform. 

7 COMPARISON OF SOLUTIONS A.B 

With the above as background, the solutions A and B can be compared 
by drawing a few ourves of the functions f,F and g,G (equations 19,20). 

The power functions f,F are shown in Figs.4 and 5 as functions of x 
for b =0, a=$andl, and CT ranging from 0 to 2, f and F tend to 
infinity in the same way as x + 0, they have well defiped minima a.t values 
of x < 1, and diverge for,large x, f tending to 00 as x2 and F having the 
asymptotic value (1 - bc)-ill + (2 - a)cr]. The minima of f are given by 

x = 1 - ba 
I + kc 

f = 

(39) 
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The momentum drag fun&ions g,G are shown in Pig.6 for b = 0: They 
tend to 0 as x -t 0 in the same way, but g tends to 00 as xZ and G has the 
asymptotic value 2[cr(l - bo)]n. 

In these diagr,ams, whioh cover the practioal range of x, CT and a, the 
difference between the two solutions is usually much less than I@. For this 
reason the more tractable solution A will be used henoeforward. The influence 
of b in the range 50.2 on the funotions f and g is shown in Pigs.? and 8, 
It may reach 2%. 

8 OFTIIvIAOF P/WV 

The minima of P/XV as a funotion of a,x can be found as follows, 
assuming that a,b,o are funotions of y only, and that (bcr)2 can be neglected, 
i.e. p, << p,. 

We then have 

PC a 
WV CT* fy + ou 

where 23/2 u+f = 3 x + 

The stationary conditions 

,i?ll&&Q. = i3liBQ = 0 
aG ax 

reduce respectively to 

(1 - ko)x + 1 + 4 bc(l - kax) = 25'2 63/2 x' ; (4-i 1 

(I +ko')x-1+(3-kox) = 0. (42) 

P The minima of E, and the values of CT and x at which they occur, are given 

by (401, (41>, (42), as funotions of a,b,c and y. 

When b = 0 the equations take the comparatively simple form:- 

*The curves are drawn up to x = 2 for the sake of comparison, but the 
A curves oease to be signific‘ant at x = I. 
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and so 

and 

4 23 
x 0 

c2 
- E 0 y (1 -5 x)3 = 0 

(1 + ko)x = 1 

It should be noted from (43) to (45) that as ' -* 0, 
Y 

x+0 like 

o-+00 like 

ksx+l 

CT240 like 
Y 

(43) 

w-) 
z 

(4.5) c 

The solution is plotted against o/y for a = 0 Cand a = 1 in Fig.9. 

The strength of the minima in x and d are shown respectively in 
Figs.10 and II, by curves of 

(4 L p - ag&nst x under the condition $o y WV = 0. 

b) LX 
Y WV 

against CT under the condition -& 5 
0 

= 0. 

The troughs :are sh,aUow between c/y = 0.25 and 1.0, but the x strength 
becomes large when o/y is small and the o strength large when C/y is large. 

It is useful also to know the values cf the jet velocity G and the 
mass flow m at the power minima. 
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Forb = 0 these are given by 

x 
U = (2x)4 

c 

and 1E 
Y w 

= (2x); 

and are plotted in Figs.12 and 13. 

IP '1 P FinsJ.ly - - = 8 cly z is shown in Fig.14. 
Y wu 

8.1 The effeot of b 

A rough approximation to a,x from the general equations (41) and (42) 
cCan be obtained by treating the terms in b as small quantities of the first 
order which produoe inorements 6cr, 6x in the solution for b = 0, 

We then have from (41) and (42) 

sic1 - ka)xj - 2 512 ; lj($i2 x.'12) + $ bc(l - kox) = 0 

(47) 

6{(1 + ka)x] +++kcsx) = 0 j 

where C,X satisfying (43) and (44) are to be used after differentiation. 

This oCa3culation yields the following values for a = 1 

0.25 -0*41 -1.37 

0.5 -0.34 -0.98 

1 -0.27 -0.71 

2 -0.22 -0.52 , 

the inorements 6cbeing small throughout. 

These results are plotted in Fig.15. 

The c&Lculstion clearly breaks down for small values of c/y. 
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9 FURTHER ANALYSIS OF FOWER REQUIRED 

Having studied the tot&l power required, we oan now go on to 
dissect it. The simple hoveroraft analysed here must have two jets*, 
the annular one providing the power FJ to produce the lift and another 

straight one producing:- 

PM to overcome the momentum drag 

PD to overcome the profile drag. 

But as we have seen the forward speed modifies PJ required for hovering 
by produoing a pressure reoovery aq at the annular jet exit and an addi- 
tional mean pressure bq over the outer surface of the annular jet which 
may be either positive or negative. Thus we may write 

FJ = I; + PJ 
0 cr 

suffix o denoting hovering cand (r the increment for the forward speed 
oondition. Eor the total power P we have 

P = (PJ + pJ > + CPM + 'D> 

0 o- 

the first bracket being supplied by the annular and the second by the 
straight jet, 

9.1 Power dissection forgiven design 

We first ccalculate these four components for a given design flying 
at a given height. In this case it is convenient to use the power function 
P/Wu sinoe u is constant. 

Starting from equations (40) we have 

1 & = 2’3/2 
Y wu 

and by separating the various terms it is easy to show that 

*In more advanced designs parts of the annular jets can be inclined backward 
to reduoe the momentum drag, and it may even become possible to arrange the 
annulus to supply all the power required. 
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Vhenb = 0 

so that 

I 
'JC+ 'M 

Y wu = 

(49) 

(50) 

and this is always positive. 

Pig.16 gives some idea of the relative value of the various items of 
power over the speed range, using as an illustration the vKLues 

x = 0.4, a = 0.5, b = 0, 9 = O& . 
Y 

9.2 Optimum power dissecti. 

As another illustration we can use the above equations,multiplied by 
c', to disseot the minimum power values shown in Pig.7. The results are 
plotted in Pig.15. One feature of these diagrams, which has already been 
pointed out by Stanton Jones, is the ratio of PJ the power to produce the 
lift to PD the profile drag power. 
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It follows from equation (48) that when b = 0 

pJ= 
pD 

5 (*&3/* [(I - *a& + x43. 

using the optimum conditions of equations (43) and (44)~ this 
reduoes to 

and so 

52 
pD 

= 2 + 4(1 - a)cr 

when a = 1 

= 2+4a a=0 

where Q is given as a funotion of c/y in Pig.9. 

Thus at optimum total power parameter, the power for lift is twioe 
the power for profile drag, when a = 1, as oan be seen from the upper 
diagram of Fig.17. This can be contrasted with the aeroplane where the 
optimum occurs when the drag due to lift is equal to the profile drag. 
When a= 0 the power for lift is much greater than twioe the power for 
profile drag (lower diagram of Fig.1 7). 

In making these points the large power required to counter the 
momentum drag, which is in fad part of the mechanism for the production 
of lift, should not be forgotten. The corresponding ratio at the optimum is 

These results apply only at b = 0. 

IO EXAMPLES OF PERFORMANCE ESTIMATES 

10.1 Design for minimum power 

To show how this analysis opn be used for rough performnoe Fstimates, 
consideroa hoveroraft with ‘an elliptic @anform of fineness ratio T cand jet 
angle 45 , with an angular clearcanoe of 0.11 radixans. It is to be designed 
for minimum power at a speed of 100 f.s., i.e. q = 11.9. 

From Fig.2, .3/d= 0.16 at n = $-, and so from equation (37), y = 0.2. 

Also s = g d* and so we have 
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h 
2 = 0.055 

t 
Ti = 0.585~ l 

We shall consider a large r,ange of profile drag coefficients, C going 
from 0.025 t0 0.2. b is negleoted throughout, 

Then using the minimum power values of Figs,9, 12 and 13 we have the 
following tables for a e 1 and a = 0. 

1, y = 0.2, v = 100 a= 

a = 0, y = 0.2, v = 100 

These tables yield the following solution for W = 10,000 (see Fig.18). 

Ct.= 1 

Horse Power 

Et= 0 
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Results for any other speed can be got from these tables by noting 
that 

-~ 

Lx-?- I 
v2 ! 

I 
d,h,t u + j 

Iz 
f 

u,G,P,m oc V i 

pc a v2 . 
I 
1 

Results for a rect,ulgle of the same fineness ratio can be simply 
deduced by noting from Fig.4 that 43/d at n = &- is praotically the same 
for rectangle and ellipse, and thus y remains at 0.2. Thus if we assume 
that rectangle and ellipse have the same profile drag at the same y, the 
solution is exaotly the same for the rectangle except as regards d,h,t. 

If d' is the longer side of the rectangle we have 

sinoe the areas are the same, and so 

.c 
d = 0.89. 

Thus d,h,t are to be multiplied by this factor to get the rectangle 
solution. 

10.2 Off-design performance -. 

Having optimised the design for minimum power at V = 100 we ocon go 
on to o;iloulate the performance in other conditions, for example 

(a) for other speeds n-t the same height, 

(b) for other heights at the same speed. 

Consider the optimum design for o = 0.1, a = 1 which has been 
obtained as 

w= 10,000, S = 513, d = 36.2, t = 0.52, u = 128. 

At v = 100, y = 0.2 we have seen that 

x = 0.45, G = 0.61, 5 = 135, h = I-99, m = 14.8, HP = 605. 

--27- 



L 

Some of these quantities mill change in what follows. 

(a) mm-n height 

In this case x and therefore T and m remCain constant Land we seek the 
variation of P with CT. This is obtained from the equation 

where u = 128, x = 0.45, y = 0,2, k = 2, c = 0.1, W = lO,m. 

Thus 

where 

,P = 19.6 + 12.2~7 e 12.8~ 3/2 
W 

2 CT=;, 0 
The result is shown in Fig.19 where H.P. is plotted against V, 

(b) Height variation at the design speed 

In this ease o remains constant snd the variation of x and y is such 
that 

xy = 2 = t/4 - oonstant. 

Using this relation to transform equation (51) we have 

and we have already seen that 

The constants in (51) to (53) are 

(52) 

(53) 

(54) 

u = 128, k = 2, o- = 0.61, z = 0.45 x 0.2 = 0.09, C = 0.1, w = 10,000. 
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The equations therefore beoome 

E = 3 W 151 y312 + 30.2 y + 6.15 

v = a 302 Y 

ii? W = 0.00331 f . 

The results are plotted in Fig.20 where the Curves have been con- 
tinued right down to y = 0 although the approximate theory must break 
downbefore this. The calculation is also questionable because no 
allowance has been msde for the unknown variation of o with y. 

The curves for oases (a),(b) are however useful in giving a rough 
idea of the power margins that may have to be provided. Expressions for 
the slo es 
and (51 P 

of the power curves, obtained by differentiating equations (50) 
, are:- 

2-5/2 u 
c 

(1 + lcc)x~ + 3x4 . 
3 

(55) 

i 

(56) 
* 

II SECOND APPROXIMATION TO LIFT 

The first approximation to lift (equation 23) has been used throughout 
to simplify the analysis. The seoond approximation can be added in the form 
of a correction A, using equation (21). For example we have 

A & = - & [y sin 0(1 - ba) + 6~3 
0 

and if b and 6 are neglected, thus including only the vertioal component of 
the thrust, the correction for typio‘al v‘alues of y and 0 is of the order I@. 

12 CRITICAL SPEED? 
7 

There must be forward speeds at which the actus1 flow ceases to bear 
any relation to that postulated in this analysis, but the model is so 
crude that it ocan hardly lead to a criterion, On the assumptions made here 
the pressure outside the annulus must approach q in the forward parts of the 
annulus, and so as q rises toward p, (G = 1) we should expeot the curvature 
of the leading jets to be reversed, Qualitatively there is clear evidence 
that the front jets ultimately get blown back as the speed rises. The 
prooess seems to be rather a gradual one than a sudden change to a different 
regime, but its mechanism is of course much more oomplex than would be 
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suggested by this approach. When this happens the momentum drag would be 
relieved, but what happens to the 1st and the profile drag rem2ins obscure, 
and so as far as m;r information goes it remains an open question whether 
the power required rises or falls, in relation to that calculated here, as 
the speed rises. It seems that this doubt can only be settled by onref'ul 
experiment. 

13 THE NEED FOR EXF?ERI~4RNT& CHECKS 

The analysis given here is defensible, if at all, only after alignment 
with experimentn3 results. Indeed it has been prepared mainly as a basis of 
discussion and use by exprimenters. This could be done in two ways, 

(a) The vehicles now being designed usuzlly have features, such as 
backward inclined main jets and stability jets, that are omitted in this 
analysis. Thus measurements of their performance could only be plotted on 
the diagrams suggested here after a good deal of adaptation. On the other 
hand there is probably much supporting work on simpler models, not yet 
published, that oould furnish spot checks at various points of this ,anclysis. 

(b) Hovercraft performance depends on so many interdependent quanti- 
ties that basic experiments tend to give w2y in favour of those in support 
of a particular design. The par,ameters used here are intended to give a 
clear view of the essentials of the crude flow model on which most onlcula- 
tions are, I take it, still based, They oan probably be used as the framework 
for the design of model experiments so chosen as to test the empirioism of 
current performanoe estimates in the shortest possible time. We should then 
begin to know where we are. 
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Geometry 

h height 2bove ground 

t 

6 

R 

NOTATION 

area 

perimeter 

S/S 

maximum dimension 

fineness ratio 

base 

thickness 

angle to horizontal, inwards 
\ * I/ Jet exit 

I 
radius of circle inolined at 0 

at jet exit and touohing ground I 
i 



Pressures 

Velocities 

Parameters 

Misoellaneous 

PO 

PO 

H 

P 

x = 

CT = 

a 

b 

C = 

= 

cDO 

k = 

L 

T 

m 

D 

Dm 

DO 

P 

pO 

PJ,' 

NOTATION (COPITD1 

cushion pressure 

mean pressure over outer surface of jet 

total head 
jet at exit 

pressure 

forward speed, dynamic pressure 4 

mean jet velooity at exit 

given by p. = $pu2 

t R t E,y=pz=xy=z 

fraction of q recovered at jet exit 

PO/q 

profile drag coefficient referred to S 

hCD 
0 

drag coefficient out of ground effects, jet off 

2(2 - a) + b G 2(2 - a) 

lift 

thrust at jet exit 

mass flow at jet exit 

drag 

momentum drag 

profile drag 

total power required 

tot,al power required hovering 

'Joy 'my PD parts of P, para. 

f,g,j 
F,G, J 3 

p8xn.4 

P angular olearrnce = 9 radians 

b para* 
w weight 
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