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SUMMARY

The pioneer British hovercraf't are presumebly being designed on a
model of the flow which is naturally a very crude one; little evidence is
available as to the accuracy of the performance estimates that follow from
it; oand no critical appraisal of the aerodynamics of the problem at its
present level seems to have been published. In this situation the analysis
given below may serve as a basis of research discussion in three respects:-

(1)  to give a rather clearer view of the assumptions and parameters
involved in the crude theory,

(2) to encourage a stricter comparison between prediction and ad hoo
test results as they become available,

(3) as a point of departure in planning basic experiments that would
lead most economically to a better understanding of the matter.
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1 INTRODUCTIL ON

It often happens in the earliest stage of the development of a useful
machine that a few are designed and made to work on a combination of crude
theory, sketchy experimental data, and guesses that may or may not be
inspired, It is only much later that a full understanding of the principles
of the matter is worked out. The aeroplane itself round about 1910 was a
case in point, The hovercraft is now another and a rather more diffioult
one, since its basic problem - to determine the flow field when an annular
jet issues from the perimeter of a base moving close to the ground - is
essentially more complex. It is also rather more difficult for the research
worker who starts to explore the hovercraft field because, for various
reasons connected with the organisation of design and production, much of
the work actuslly being done is not published. Thus if there is at the
moment a generally accepted hovercraft theory by which its performance can
be roughly estimated, 1 know of no British paper that gives it adequate
treatment*,

Consequently it may help to work out in some detail what I take to be
the crude theory of hoveroraft performonce in the simplest case, that of
horizontal flight over level ground at zero incidence., In the course of
this I shall try to

(1)  keep an eye on the various simplifying assumptions leading to
the crude model of the {low,

(2) choose the various parameters in such forms as are most tractable
to basic experimental work,

2 STEPS FROM THE REAL FLOW TO ITS CRUDE MODEL

In the real flow, whether there is forward motion or not, the issuing
annular jet entrains air from both sides on its way to the ground, It thus
surrounds itself by two lgyers of turbulent flow, in which vorticity and
total head are varying, in addition to boundary layers below the base and on
the ground., Even in the hovering condition there is flow within the cushion.
This situation being much too intractable we replace it by inviscid flow of
& special kind, having the following features:-

(1) There is no flow, but a constant pressure P> in the cushion.

(2) Whatever the shape of the perimeter, and whatever the forward
speed, the jet flow is axisymmetric in the sense that it is the same in any
vertical plane perpendicular to an element of the perimeter of the base. In
loose terms the jet flow is the same all round the perimeter, just as it
would be in the truly axisymmetric flow out of a hovering circular base.
Each element of the jet defined in this way has the seme total head, mass
flow and momentum flow.

(3) But in forward motion the pressure will in general vary over the
whole of the outer boundary of the jet, This being again too difficult, we
replace it by a constant pressure P, averaged over the whole of the outer

boundary., It seems that P, has usually been neglected,

Thus by evading several important issues we have reduced the problem to
that of a two-dimensional inviscid jet sustaining a constant pressure dif-
ference and ending up horizontally with the ground as a streamline, This can

#3ince this was written Stanton Jones's IAS Paper No,61-451, which covers
some of the same ground, has reached me,

-l -



be solved by conformal mappingz, but the solution is rather elaborate,
involving jet boundaries that are not circular, We therefore abandon the
ground streamline condition and look for solutions in which the jet
boundaries are circular and the jet flow only 'touches' the ground.

3 TWO~-DIMENSIONAL CIRCULAR JET FLOW APPROXIMATIONS

The notation is shown in the sketch of Fig.1. Across the jet of
thickness t at exit the total head H is constent and the pressure p, with
atmospheric as datum, varies from P, to Por V being the variable velocity.

The energy equation across the jet at exit is
1.2 .
p+ zpv- = H, p being constant, (1)

Consider an element dt of the jet thickness across which the pressure rise
is dp, If R is its radius of curvature at exit we have

2 d
ap = E¥_dE (2)

We now assume that the element's horizontal momentum is changed fronm

-pvzdw cos O to pvzdm in height h by the constant pressure increment dp,
so that

hdp = pv2d¢(1 + cos 6). (3)
Then from (2),(3)
hu—g-
R = 1 + cos © ()

and so the circle of curvature is constant across the jet at exit and
touches the ground,

1t follows from (1),(2) that

el
+
N1 =<
513
n
fasd
L ]

(5)

344 Solution A

A common approximation, apparently introduced by ChaplinB, is to
replace the differentials in (5) by the finite quantities already defined.
In what follows a bar denotes mean value across the jet, We assume that
the pressure variation across the jet of thickness t is linear and so



p = p = 2(p, + p)

dp

n
a3

v = t .
If now we write x = t/R, (5) reduces to

p,+ D P, - P
c 0 c o _
5 * = H, (6)

Let g be the dynamic pressure of the forward speed V. Then with the
substitutions

- Sl =
o = D, s PO bqg ,
we have
P
= = bo
o
and equation (6) becomes
Pe 2%
L?[T = (1 + X) - bo’(‘] - X)‘ (7)
and so
D . (1 +bo)x
H (1 +x) ~bo(1 -x) °* (8)

From (1) we have

zpv. = H=-p
and so from (8)
2
ey _ l-Xbo (9)
Pe X



N2

To this approximation we must also have v = (v2) , and so

(- (=

It is useful to introduce the speed u defined by P, = %pu2 so that (10)
becomes

- (‘ ;xb"f : (108)

It is commonly assumed that b = O, in which case we have the familiar
formulae

i<l

Eg _2x |
H = 1 +x
. X
H 1 +x i
3 (11)
2 |
v, . A !
¥ 4
or T o= T
(2x)*

3.2 BSolution B

An alternative approach, introduced by Stanton Jones, is to integrate
(5) across the jet, with the boundary conditions

Pp = bg at 1 = O
= pc T = t-
The result is
- 2%
R - 1-<1-%‘1>e R (12)



and s0

P -
or -f;c’ - u—l-sr e 5% (13)
1 -~boe

The mean values across the jet may now be obtained from (1) and (12) by

integration. The result for the momentum flow pv2 must be the same as for
solution A, equation (9),51nce it follows straight from the momentum
equation (3) in both cases, The other mean values are different:-

- -2X
2__1_'1—'b0’ 1 -~ e - (14)

H X b o X

~-X
- €

1 = bag 1-e (15)

1 - e-2x

e i<
T
N
|
E
\\wﬁgé

-~
E]

snd when b = 0 these becone

misi
1
—
1

(16)

~

e ig1
1

x(1 = e-2x)

3.3 Discussion of solutions A,B

It will be realised that these solutions are very loose approximations
to the jet flow near the ground, since the jet boundaries are two equal
circles touching the ground (Flg.1) (The infinitely thin jet is the only
one that really satisfies the flow condltlons.) They are however rough shots
at determining the conditions at the exit in terms of the thickness there
and the basic radius R, solution B being the more exact.

It is clear from their derivation that the two solutions become
identical as x » O and diverge when x is large, For example it can be
shown by expanding the exponentials that jo /H - 0 in the same menner to
O(X ) as x » O, but when x > 00, P /H - Tjggg_ln solution A and -1 in
solution B, Now an essential physical condition is that P, must be less

than H., It therefore follows from equation (7) that solution A becomes
invalid when x > 1 and from equation (13) that there is no such limitation
in solution B,
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It will be seen later that practical values of x are small enough
for the difference between the two solutions to be comparatively small,
end so, in view of the large errors probably occurring in other parts of
the theory, the use of the simpler solution A mey be justifiable,

b RESULTS FOR UNIT LENGTH OF THE JET ANNULUS

Using the mean values already obtained we can now calculate

thrust T1, mass {low m, momentum drag Dm1, and power required P1, for

unit length of the jet annulus*, The basic relations are

=]
1]
)
<
d-

H
i}

-
“nl
ot

~

(17)

P, is the power required to produce the jet and to overcome the momentum

1
drag. Thus if the fraction aq of the dynomic pressure is recovered in
the duct we have

+d
u

; vit(H - aq) + Dm1V ‘L

2m1q J (18)
5 .

H

™
ry (H - aq) +

The algebra necessary to reduce these quantities to non-dimensional
forms expressed in terms of the basic parameters x, o, a, b is tedious but
straightforward, The results are as follows:-

*There is a buried assumption in meking this step, for in using a two-
dimensional jet enalysis for the element of the annular jet we assume that
the radius of curvature of the perimeter of the base is everywhere much
greater than R, Thus we should expect the solution to break down at the
bow and stern of a very slender craft, and at the corners of a rectangular
one,

-0 -



Solution A

i
m —
1 [ iﬂQ
ez 1 -bo) 3 5 ]
T1
;;i = 1 -bo, (the same for B)
D
III'1 . 1
—= = [20(1 ~bo)x]? = g
pR
c
o 1 G : -4
= 1 -D - z f
5 23/2( N2 [(1 + ko)x2% + (1 - bo)x 2]
where k = 2(2 -a) +b % 2(2 - a)
P
—_— s .l
SRV - fo <. J
Solution B
m 1 - -X
-=%§= (1 =b0)2 =28 = 3
P (1 -e 2x)2
Dm1 3 4 -e*
ﬁ = 2[c(1 ~ b0)]? ~—————— = G
c (1 - e-Zx)
P 1 _oX - -2%
;u = (1 - bo)* 1-e ~ep I bo‘fZX + (2 - a)&jls F
PO (1 - e"2X)2 L 1 =€ k A
P1 _%

- 10 -
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It may also be useful to tebulate the results for hovering, by
putting o = O,

Hovering
Solution A Solution B h
2 2x -
H 1 +x
ol 1
2 2x 2x
u
v 1 1 ~e*
E ‘—‘”1; =T
(2x) x(1 - e~2x)
T1 > (20e)
Y 1 1
PR
m 4 e
A <3_<.>2 —lnel
puR 2 D 2
(1 - &™)
P 1 1 X
A 1 z 7\ - 1 ~-e = F
p,uR 2372 (% + x %) = fo oy 2 0
(1-e )
J

5 PERFORMANCE ESTIMATE

We can now meke a rough shot at the lift L, drag D, and power
required F, of the whole systenm,

Let the plan area be S, the perimeter s, and write & = S/s,

Lift., This is derived from the major source Pos but there is also

the vertical component of the thrust and the suction if any on the upper
surface of the craft,

Thus L = pcS + T, sin 0,5+ 0Sq

1

where & is a coefficient which must depend on scme such quentity as h/e
and cen only be got from experiment.

-1 -



We now have

T
“ég = 1 4 «lz sin 6 + 8o
Py Py
= 1 +y sin 6(1 - bo) + &0 (21)

where y = R/4 is another basic parameter of the system.

We cannot reduce this equation further except to write it

= 1 + & (22)

where € is expected to be <<1 because as will be seen later the second and
third terms of the above equation will each be of this order in practical
cases.

The first approximation to the 1ift, which is always used in what
follows, is therefore

= 1. (23)

Drag. This is made up of the momentum drag Dm and the rest, which we

may call the profile drag Do but cannot calculate,

For the momentum drog we have

u

and so —— yg , solution A

(2k)

yG , solution B

where g,G are given in equations (19,20).

D, should be related to some easily measured drag, for instance the

profile drag of the craft without jet and far from the ground, If this is
CD Sq we therefore write
o

-12 -



where A is an unknown funotion of x,y.

Thus

and so

Lift drag ratio

It follows from (22),(26) that this is given by

2
L

i

(yg + KCDooz/Q1 +e) , A

(y& + kCDooz/Q1 +e) , B

Do = XCD Sq
o

Do

— = AL _ O

pOS Do

where for the first approximation € = O,

Power required

This is given by

and s0

P = IHS + DOV
P M1 oRs, Do ¥
Su pRu S * P u
Po c o

But weight W =1L = ;ES to first approximation

Hence

£
Wu

¥E + 20, &2

o

P + N0 /2 | B
o]

-13 -
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(26)

(27)

(28)

a



iy

‘2

2 . szR
and WS o a
-1
= yfo?+ My o, A 1
0
\ (29)
= yPo 2+ Myo , B
)
where f,F are given in equations (19),(20).
Po the power required for hovering is given by
P
[ yfo » 4
(30)
= yF0 s B
where f ,F  are given in (20a).
Mass flow
This is given by m = m, S, end so
m .
P yi o, A
= yd , B

when j,J are given in equations (19), (20).

It follows that

i
>4
[N

=i
e

(31)

]
¥
oy
-
t

Jet velocity

% has already been given by equation (10a) for solution A and by

equation (15) for solution B.

- Al -



6 DISCUSSION OF PARAMETERS

In what follows we shall be mainly conocerned with drag and power,
These have been expressed in terms of a number of parameters in the
general functional forms:=-

=lo

y g (x, o, b) + Cy Ao
0

= = yg(x,o', a,b)+CDloj/2

(o}

™

1
P 2

£
Wu

where p = '%puz.

The funotions f,g are for solution A and F,G for solution B.
g,G account for momentum drag, and f,F for the power required to produce
the jet and overcome the momentum drag.

It must be admitted of course that a,b,\ are not constant but
themselves may depend on both x and y. In what follows a,b,\ will be
treated as functions of y only, that is, as dependent on height but not
on jet thickness,

6.1 Power parameters

The power functions P/WV, P/Wu, besides being in what seems the
simplest practical form, can be used to compare hovercraft performence
with that of other aircraft operating out of ground effect,

For example, P/WV can be related to its value for an ordinary
aireraft, which is simply its oruising D/L. Noting that o = 1/CL to the

hovercraft approximation adopted here, we have for the ordinary airoraft

D 2 1
T = 6p9*r—x %
o wA

CD being the profile drag coefficient and A* the effeotive aspect ratio,
0
and sc

Nj-

C

(.. - @ -

- 15 =
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Similarly P/Wu at hovering can be related to the ideal oase of a
ducted fan in which there is no contraction. If the mass flow through the
disc of area S is m at speed w we have

m = pSw
W = nw ; (33)
P = 3 mw2 J
and so g = pw~ = %pu” from the definition of u
Loz
Viw 2.
It follows that 2 . %2 por the ducted fan. (34)

Now for the hovercraft solution A

o .,

__'12_
Wu )

1
y(x® + x

.S s
Henoe y(x® + x 2) is a measure of the hovering efficiency compared with a
ducted fan, Its minimum value is 2y at x = 1., This comparison was
introduced by Chaplin,

6.2 Geometrical parameters

x = t/R and y = R/£ are two ratios of the 3 lengths £,R,t. £ = S/s is
a linear dimension of the base area. It depends on the planform and can be
related to the greatest dimension d by means of the fineness ratio n. To
illustrate this it will suffice to consider ellipses and rectangles, For
the ellipse of axes d, nd (n < 1)

.2
S = T nd
s = 2dE
/2 4
- 2 . 2,42
where E = [1 - (1 -n") sin®8] 4@
o

- 16 -



and so

£ _m
d -~ B8E
and for the circle F (35)
£ _ 1
a = 4 °

For the rectengle of sides d, nd

£ n
d T {[+n)

(36)
% for the square, as for the circle,

1]

g is pletted against n for these two families in Fig.2. There is little

difference between the two curves,

R = T+ cos 8 18 the radius of the circle cutting the base at angle 6

and touching the ground. It should be noticed that in the approximation
used here, when theé contribution of the thrust component to the 1ift is
neglected, the jet exit angle 6 enters the problem only through R, For
instanoe, given R, any base up to height 2R will when equipped with a
constont jet stremgth at the appropriate exit angle 6, produce the same

P, = Pys and therefore the same P, and the same 1ift if P, remains the same

as the height changes, see Fig.3. This seems valid for hovering, but not
for forward speed, when P, must depend on 0. One of the crudities of the

analysis is thus exposed. In the real flow the jet exit angle must have a
more powerful influence than it assumes here,

y = % is very importont because the power required for 1lift and

momentum drag is directly proportional to it. We have therefore to decide
how small it can be in practice, a question which depends on the tolersble
lower 1imit to the height., This may turn out to be an operational problem,
In some applications it may be possible to fix & lower limit to the height
which is independent of the size of the craft, In this case y is inversely
proportional to ¢, and leads to the familiar claim that the efficiency of
the vehicle will inorease with its size, but the argument is not a very
convincing one,

In other cases the lower limit may appear as the angular ground
clearance to give the angles of pitch and roll necessary either for
manoeuvre, for the production of thrust by pitch in steady flight, or for
olearance of combinations of surface roughness and waviness, We may define
this angle in relation to the maximum dimension d of the base, If the
angular clearance is B radians, assumed small, then

-17 -
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and we have

R _ h
¢ - (1 + cos 8)¢

1 d
oF % = 2(1 +cos 6) £ (37)

where 4/ is given in Fig.2.

If B is fixed, y decreases as the jet angle decreases apd as the plan=-
form approaches a circle or a square, For example, if 6 = 45

At

1,2 for n =1 (circle or square)

J
B

=
.

1.8 n=

L1

The least tolerable B is anyone's guess at the moment, If it is of
the ?rder 0.1, the order of minimum y is between 0,1 for n = 1 and 0.3 for
n="2_.

The parameiers x,y have arisen naturally in the analysis and have the
virtue of producirg drag and power functions that are linear in y (eqns. 32).
On the other hand they do not separate the basic variables R and %, which ocan
be done by using y = R/4 and z = xy = t/¢ at the expense of losing linearity
in y. This form is useful for studying the performance of a given design for
then z is constant. The transformed expressions for solution A are

1 1A -t

L o 22 (1 - po)? {(1 + k0)z%y% + (1 - bo)z 2y3/2} + 20y o2
(o]

D 1
7 ° [20(1 - bo)yz]?

1 (38)
5= [2(1 = vo)ya]?

1
i = | (4 - bo) X |®
u °) %37 °
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6.3 Aerodynamic parameters

2
The speed parameter o = q/pc = 25 is simply é— as usually defined
u L

if the first approximation to the 1lift is used, but in this problem the
use of CL merely confuses the issue,
The parameter a expresses how much work we get from the forward
speed dynamic pressure in producing the jet, It depends mainly on intake
and duct design, and little, we may hope, on the geometrical parameters x,y.

The parameter b is the mean pressure coefficient (referred to
forward speed) over the whole of the outer surface of the jet, It is
introduced to allow for the fact that if for example the base is elliptical,
then the cushion pressure for flight along the major axis may be very dif-
ferent from that for flight along the minor axis, everything else being
supposed equal, Its magnitude and sign are unknown, and can only be
obtained indirectly from experiment, We may guess that

(1) it depends strongly on planform, decreases with aspect ratio
and might be negligible for slender shapes,

(2) it varies strongly with y (the height parameter), but not
with X.

C the profile drag coefficient of the craft out of ground effect

D 2

o
and without jet,depends of course on the cleanness of its superstructure,
which may be expected to vary greatly with the job it is designed for.
The associated parameter N\ is primarily a funotion of y and may be less
than unity if the loss of most of the base friction predominates, but it
can only be found from experiment, It seems worth while isolating CD

0
in this way, but for some purposes it is better to work with %CD = C 88Y.
)

Summarising, it is good enough as a first step to consider a,c as
funetions of y only, and b as depending on both y and planform.

7 COMPARISON OF SOLUTIONS A,B

With the sbove as background, the solutions A and B can be compared
by drawing a few ourves of the functions f,F end g,G (equations 19,20).

The power functions f,F are shown in Figs.4 and 5 as funotions of x
for b =0, a = % end 1, and o ranging from O to 2, f and F tend to
infinity in the same way as x - 0, they have well defiped minima at values
of x < 1, and diverge for large x, f tending to « as x2 and F having the
asymptotic value (1 = bo)2{1 + (2 -~ a)o}. The minima of f are given by

> (39)

- 19 =
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The momentum drag functions g,G are shown in Fig.6 for b = 0s They
tend to O as x » O in the same way, but g tends to oo as 2 and G has the

asymptotic value 2[c{1 - bo)]Z.

In these diagrams, which cover the practical renge of x, o and &, the
difference between the two solutions is usually much less than 10%. For this
reason the more tractable solution A will be used henceforward, The influence
of b in the range *0.2 on the functions f and g is shown in Pigs.7 and 8,

It may reach 20%.

8 OPTINA OF P/WV

The minima of B/WV as a funotion of o,x can be found as follows,
assuming thet a,b,c are functions of y only, and that (boﬁz can be negleoted,

is8s P << Pye

We then have

> (w0)

The stationary conditions

a(p/wy) _ apAwn) _

ou ox

reduce respectively to

(1 - ko)x + 1 +%b0'(1 - kox) = 25/2 03/2 xE-% (44)
(1 +ko)x =1+ 2 (3 - kox) = 0, (12)

The minima of %%, and the values of o and x at which they occur, are given

by (40), (41),(k2), as funotions of a,b,c and y.

When b = O the equations tecke the comparatively simple form:-

*The curves are drawn up to x = 2 for the seke of comparison, but the
A ourves cease to be gignificant at x = 1,

- 20 -



@ a0 -0 @)

(1 +ko)x = 1 (42 t
1B %, o8 -
7 W (20x) +os . (45)

It should be noted from (43) to (45) that as =§; + 0,

\

Zz

x >0 like <-°=>
y

q
¥
3
]._l
b
o
<D
AN
-

y
kox —» 1 » (46)
i -
z
and so o250 like 2
y y
z
1 P k
and 7 W - <2> R

The solution is plotted against ¢/y for a = O and o = 1 in Fig.9.

The strength of the minima in x and o are shown respectively in
Figs.10 and 11, by curves of

1 P A
(a) e ageinst x under the condition o7 (W‘V) = 0,
1P o3 [P\
(b) 7 W 869inst o under the condition - <WV> = O, ]

The troughs are shallow between c/y = 0,25 and 1.0, but the x strength
becomes large when ¢/y is small and the o strength large when ¢/y is large., z

It is useful olso to know the values of the jet velocity v and the
mass flow m at the power minima,

- 21 =
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A¥ ]

For b = O these are given by

(20)7%

[«3 3]
il

of=

and

7 = (=)

<

and are plotted in Figs.12 and 13,

L
Pinelly = = = 07 is showmn in Fig.dh.

ol
y wv

i

8.4 The effect of b

A rough approximetion to o,x from the general equations (41) and (42)
can be obteined by treating the terms in b as smoll quantities of the first
order which produce inorements 8¢, 8x in the solution for b = O,

We then have from (41) and (42)

§]

8{(1 - ko)x] ~ 29/2 g 82 x1/2) + 2 bo(1 - kox)

° |
(u7)

0

i

8§(1 + ko)xi + %9_‘ (3 - kox)

\—_—~»\

where o,x satisfying (43) end (44) are to be used after differentiation.

This calculation yields the following values for a = 1

c/y 8x/b 5 (4 '%)vﬁ>/ b

\¥
0.25 ~0.444 -1.37
0.5 =04 34 -0.98
1 ~0.27 -0, 71
2 ~0.22 0,52 ,

the inorements 00 being small throughout.
These results are plotted in Fig.15.

The calculation clearly bresks down for small values of e/y.
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9 FURTHER ANALYSTIS OF POWER REQUIRED

Having studied the total power required, we can now go on to
dissect it, The simple hoveroraft analysed here must have two jets¥,

the annular one providing the power E& to produce the 1ift and another

straight one producing:-
Pﬂ to overcome the momentum drag
PD to overcome the profile drag.

But as we have seen the forward speed modifies PJ required for hovering

by producing a pressure recovery aq at the annular jet exit and an addi-
tional mean pressure bq over the outer surface of the annular jet which
may be either positive or negative, Thus we may write

suffix o denoting hovering and o the increment for the forward speed
condition, For the total power P we have

P = (P, +P,)+ (P, +P)) .
3, Js M D

the first bracket being supplied by the annular and the second by the
straight jet,

9.1 Power dissection for a given design

We first calculate these four components for e given design flying
at a given height. In this case it is convenient to use the power function
P/Wu since u is constant.

Starting from equations (4O) we have

i F
y Wu

1 -t
2_3/2r<‘1+k0'-§{-0’2>x2+ 1-‘3-)0‘ x 2 +-?-05/2
L 2 2 y

and by separating the various terms it is easy to show that

“

it

*In more advanced designs parts of the annular jets can be inclined backward
to reduoe the momentum drag, and it may even become possible to arrange the
annulus to supply all the power required,
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ts

J 4 1
1 2o _ ;732 2 z
7 T - 2 (x* + x 2)
PJ 1 1
1 g 3 (2&25 . 2 x’%) o
y Wu 2
(48)
P 1
1 Mo 5 _bo
1A - () (1 N
1 e /2,
y Wu oy
Vhen b = O
P 1 A
1% LR,
y W \.2
F (49)
P
U 2
7 o T (2x)% o )
so that
P. + P
J M 1
1< - - z
I <1 2) (%)% (50)

and this is always positive,

Fig.16 gives some idea of the relative value of the various items of
power over the speed range, using as an illustration the values

X = O.ll-, a = 035’ b = O’ = O.LF .

£
y

9.2 Optimum power dissection

As another illustration we caon use the above equations, multiplied by

075, to dissect the minimum power values shown in Fig.7., The results are
plotted in Fig.15. One feature of these diagrams, which has already been

pointed out by Stanton Jones, is the ratio of PJ the power to produce the

1ift to PD the profile drag power.
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It follows from equation (48) that when b = O

P 1 ~L
2 = %)Y (1 - 2000+ xE]
D

Using the optimum conditions of equations (43) and (44), this
reduces to

< - 2. 4(1 - a)o
P
D
Py
and so =~ = 2 when a =1
Pp

i}
o

2 + 4o a

]

where o is given as a function of ¢/y in Fig,9,.

Thus at optimum total power parameter, the power for 1ift is twice
the power for profile drag, when a = 41, as ocan be seen from the upper
diagram of Fig.17. This can be contrasted with the aeroplane where the
optimum occurs when the drag due to lift is equal to the profile dreg,
When a = O the power for 1lift is much greater than twice the power for
profile drag (lower diagram of Fige17),

In meking these points the large power required to counter the

momentum drag, which is in fact part of the mechanism for the production
of 1ift, should not be forgotten, The corresponding ratio at the optimum is

P,
'P-M' = )-Fo_o
D

These results apply only at b = O,

10 EXAMPLES OF PERFORMANCE ESTIMATES

10,1 Design for minimum power

To show how this analysis ocan be used for rough performance estlmates,
consider a hovercraft with an elliptic planform of fineness ratio % and jet
angle 457, with an angular clearance of 0,11 radians., It is to be designed
for minimum power at a speed of 100 f.S., i.€s q = 11,9,

From Fig,2, £/d = 0,16 at n = &, and so from equation (37), y = 0.2.

Also S = % d2 and so we have

- 25 =
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We shall consider a large range of profile drag coefficients, ¢ going

from 0,025 to 0,2, b is neglected throughout,

Then using
following tables

<8 1=

=let

[ea)

1.

L2

= 0,05

i

5

0.585}(: .

the minimum power values of Figs.9, 12 and 13 we have the
for a =1 and a = 0,

o

= 1,

y = 0,2, V=100

S W s | E N

° vy | * 19 |5 |% | VW Wl &
0,025| 0,125 | 0,26| 1,50 7.9 {81.,8]|414 ! 25,6 |0 0.57 | 0,152
0,05 | 0.25 | 0.36] 0.88 | 13.5 (107 1426 29,4 | 0 0.0k | 0,216
0.1 | 0,5 |05 0,611 19.5 [128 14135] 33.2|0 0.36 | 0,26k
0.2 |1 0.55! O.44 | 29.0 [456 1149 38,00 0,30 | 0,322

n=0, v=0,2, V=100

c W e P L X

© v x O |PoTEIL Y VY W | &
0.025| 0,125 | 0,16 | 1,30 | 9.15| 89 |156 | 33,2 [ 0,041 | 0.48 | 0,093
0.05 | 0,25 | 0.24 | 0,78 | 15.3 | 113 163 | 36,6 | O 0,41 | 0,140
0,1 0.5 06315| 0,53 | 22,4 | 137 {173 (40,0 {0 0.3h | 0,183
0.2 |1 0,40 | 0,36 | 37,0 | 167 {187 | 44O | O 0,28 | 0,23k

These tables yield the following solution for W = 10,000 (see Fig.18).

a =1
c 8 d h t Horse Power mg (1b/seo)
0,025 1260 5647 312 0.47 466 566
0.05 740 43,6 2,40 0.51 535 510
0.1 513 36,2 1,99 0.52 605 475
i 0.2 345 29.7 i 1.63 0.53 690 430
g = 0
L__'o ] a h t Horse Power ng(1b/sec)
0,025 1095 48,3 2,66 0,25 605 412
0.05 655 40,9 2.25 0. 31 665 392
0.1 LL5 33.8 1.86 Ou3h - 725 373
{ 0e2 305 | 27.9 1 1.53 | 0.36 800 345




Results for any other speed can be got from these tebles by noting
that

<RJA

a,h,t o

<=

1

u,v,Pm o« V

Results for a rectangle of the same fineness ratio can be simply
deduced by noting from Fig.1 that £/d at n = % is praotically the same
for rectangle and ellipse, and thus y remains at 0,2, Thus if we assume
that rectangle and ellipse have the same profile drag at the same y, the
solution is exaotly the same for the rectangle except as regards d,h,t.

If 4' is the longer side of the rectangle we have

L
52 _ 4’
8 -2
since the areas are the same, and so V
ar
T = 0.89.

Thus d,h,t are to be multiplied by this factor to get the rectangle
solution,

10,2 Off-design performance

Having optimised the design for minimum power at V = 100 we can go
on to calculate the performance in other conditions, for example

(a) for other speeds at the same height,

(b) for other heights at the same speed.

]

Consider the optimum design for ¢ = 0,1, a = 1 which has been
ocbtained as

W= 10’0009 S = 515) d = 36'2, t = 0.52, u = 128.

At V = 100, y = 0.2 we have seen that
x = 045, o =061, v=13, h=1,99, m= 148, HP = 605,

S =27 =



(3]

Ty

(¥

Some of these quantities will change in what follows,

(a) Speed variation at the design height

In this case x and therefore v and m remain constant and we seek the
variation of P with o, This is obtained from the equation

% - 272 Y{U + ko‘)xz * x"%} s oo /2 (51)

where u=128, x =045, y=0,2, k=2, ¢=0,, W= 10,000,

Thus = 19.6 + 12,20 + 12.80‘3/2

2
where o = <-‘-f> .
u

The result is shown in Fig.19 where H.P. is plotted against V,

=l

(b) Height variation at the design speed

In this ocase o remains constant and the variation of x and y is such
that

xy = z = t/¢& = oconstant.

Using this relation to transform equation (51) we have
14 L
7% = 2 5/2 {(1 + ko)z%y? + 3 zyB/Z} + 00'3/2 (52)

and we have already seen that

()% = (20)7%" (53)

i<t
1

Nf-

(202 L = (2P L, (5)

]

=is

The constants in (51) ta (53) are

u=128, k=2, o= 0,61, 2 = 0,45 x 0,2 = 0,09, ¢= 0,1, W= 10,000,
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The equations therefore become

1
% = 151 372 4 30,2 3% 4 6,15
- A
v = 302 y°
n z
Vo 0.00331 y< .

The results are plotted in Fig.,20 where the curves have been con-
tinued right down to y = O although the approximate theory must break
down before this, The calculation is also questionable because no
allowance has been made for the unknown variation of ¢ with y.

The curves for cases (a),(b) are however useful in giving & rough
idea of the power margins that may have to be provided., Expressions for
the slopes of the power curves, obtained by differentiating equations (50)
end (51), are:-

/ R
-5‘37,&% = 22 kx? 6%y + 300 (55)
3 /B . 2'5/2 (1 + kc)i% 3 -z (56)
aYKW = u + 95X »

11 SECOND APPROXIMATION TO LIFT

The first approximation to 1lift (equation 23) has been used throughout
to simplify the analysis, The second approximation can be added in the form
of a correction A, using equation (21). For example we have

A (%) = ~& {ysin 6(1 - bo) + 0] (57)

and if b and & are neglected, thus including only the vertical component of
the thrust, the correction for typical values of y and 6 is of the order 10%.

12 CRITICAL SPEED?

There must be forward speeds at which the actual flow ceases to bear
any relation to that postulated in this anclysis, but the model is so
crude that it can hardly lead to a criterion, On the assumptions made here
the pressure outside the annulus must approach q in the forward parts of the
annulus, and so as g rises toward P, (o= 1) we should expect the curvature

of the leading jets to be reversed, Qualitatively there is clear evidence
that the front jets ultimately get blown beack as the speed rises, The
process seems to be rather a gradual one than a sudden change to a different
regime, but its mechonism is of course much more complex than would be
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suggested by this approach., When this happens the momentum drag would be
relieved, but what happens to the 1lift and the profile drag remains obscure,
and so as far as my information goes it remains an open question whether
the power required rises or falls, in releation to that cnlculated here, as
the speed rises. It seems that this doubt can only be settled by careful
experiment.,

13 THE NEED FOR EXPERIMENTAL CHECKS

The analysis given here is defensible, if at 2ll, only after clignment
with experimental results. Indeed it has been prepared mainly as & basis of
discussion and use by experimenters. This could be done in two ways.

(a) The vehicles now being designed usuzlly have features, such as
backward inclined mein jets and stebility jets, that are omitted in this
anczlysis. Thus measurements of their performance could only be plotted on
the diagrams suggested here after a good deal of adaptation., On the other
hand there is probably much supporting work on simpler models, not yet
published, that could furnish spot checks at various points of this anclysis,

(b)  Hovercraft performance depends on so meny interdependent quanti-
ties that basic experiments tend to give way in favour of those in support
of a particular design. The parameters used here are intended to give a
clear view of the essentials of the crude flow model on which most calculo=
tions are, I take it, still based., They can probably be used as the framework
for the design of model experiments so chosen as to test the empiriocism of
current performance estimates in the shortest possible time, We should then
begin to know where we are,
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NOTATION
Geometry S aren R
s perimeter
) 8/s > base
d maximum dimension
n fineness ratio y

h height above ground

% thickness

6 angle to horizontal, inwards ¢ det exit
R radius of circle inclined at ©
at jet exit and touching groumij

a}O -



Pressures

Velocities

Paremeters

Misoellaneous

NOTATTON (CONTD)

Py cushion pressure
P, mean pressure over outer surface of jet
H total head

} jet at exit
P pressure

V') forward speed, dynamic pressure q
v mean jet velocity at exit

. 1.2
u given by P, = ZpU

x—;t- ——-E 2 = ---1;-
"R,y"e, —Xy"&
o = qo/p,
a fraction of q recovered at jet exit
b r/a
¢ = profile drag coefficient referred to S
= XCD
0

C drag coefficient out of ground effects, jet off

k = 2(2-a)+b%2(2-a)

L 1lift

T thrust at jet exit

m mass flow at jet exit

D drag

Dm momentum drag

DO profile drag

P total power required

P° total power required hovering

PJ ’ EJ s Pm’ ?D parts of P, para,9
(o} o

BEs ] pero

B angular clearcnce = %F radians

8,6  para.b
W weight
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4 CRUDE THEORY OF HOVERCRAFT PERFORMANCE AT ZERO TILT.
Gates, SeBe November, 1961,

The pioneer British hovercraft are rresumadbly being designed on a
model of the flow which is naturally a very crude one; little evidence {s
avallable as to the accuracy of the performance estimates that follow from
it; and no critical appraisal of the aerodynamics of the problem at its
present level seems t0 have been published, In this situation the analysis
glven below may serve as a basis of research discussion in three respects:=

(1) to glve a rather clearer view of the assumptions and parameters
involved in the crude theory,

(2) to encourage a stricter comparison between prediction and ad hoc
test results as they become available,

(3) as a point of departure in planning basic experiments that would
lead most economically to a better understanding of the matters
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The pioneer British hovercraft are presumably belng designed on a
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