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SUMMARY

The note generalizes the optimization of ballistic trajectories to
cover initial points higher than the aiming point. This new optimum is
compared with that used in previcus notes, and shown tc be only slightly
different., Some advantages in simplicity arc suggested for ihe new method
of optimizing. The work aims at providing a basic description of the
optimum trajectories on which a variational analysis can be built in a
later note.
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1 Introduction

1.1 The work in references 1 and 2 has been based on vacuum ballistic
trajectories for which the c¢limb angle is chosen to maximize the range
from ground to ground. In practice, the boost phase of a rocket flight
will occupy an appreciable part of the flight, covering perhaps 5% of the
maximum range attained by the ballistic missile., The missile will actually
set out on its ballistic trajectory when motor thrust ceases at the cut-off
point high above the earth surface. It appears reasonable to maximize the
range from the cut-off point to the ground rather than including an
ilwnaginary portion of the trajectory traced backwards from the cut-off point
to the ground.

Maximizing the range covered over Jjust the free flight (ballistic) pert
of the trajectory will not give the greatest range from launch teo impact.
A slightly lower climb angle at cut-off enables more ground to be ceovered
during the boost phase with very little loss in range over the ballistic
part of the trajectory. However, maximum range between launch and  impact
may not be required. In some schemes of radar guidance, it is possible that
a ground staticnmay be sited roughly below the cut-off point. Since such
a ground station would necessarily lie on friendly ground and ahead of the
launching site, the operational range would be measured most effectively
from cut-off to impact.

Trajectories optimized from cut-off to impact offer two simplifications
which may Jjustify their substitution for the ground optimized trajectories
used previously (references 1 and 2). In the first place, since the range
from cut-off to ground is a maximum, error3 in range are insensitive to
errors in the climb angle at cut-off, depending on only second order terms.
This may be expressed in the manner of reference 2 by saying that the
critical direction for the velocity lies along the direction of the desired
velocity. It means that if the climb angle is adjusted to be approximately
correct (within say 3 mils), only the speed of the missile need be measured
in order to determine the range to impact.

The second advantage lies in the partial separation of the problems of
optimizing the boost trajectory and optimizing the ballistic trajectory.
The analysis of the ground optimized trajectories used in references 1 and 2
is somewhat complicated by the rather artificial concept of the range from
ground tc ground. In corder to find the velocity required to cover a given
range frem o given cut-of f point it is necessary to solve a cubic
equation for the ground optimized trajectory. This and similar difficulties
are overccome by optimizing the ballistic trajectory from cut-off to ground.
Unless otherwise indicated in the remainder of this note, the term optimum
trajectory will be used in the sense that the climb angle at cut-off is
chosen tc give meximum range from cut-off to impact.

1.2  Apart from the different method of optimizing the trajectories the
assumptions are the same as in references 1 and 2. The work deals with
vacuum ballistic trajectories about a spherical ncn-rotating earth, The
cut-off point will be well above the atmosphere so that drag caused by the
air will be entirely negligible until the missile re-enters the atmosphere
near the target. Terminal deflections of the missile from a vacuum ballistie
trajectory caused by the atmosphere are ignored here, It has been shown in
reference 1 that the mean of such deflections is amall compared with the
total ground range traversed.

The trajecteories are considered about a non-rotating spherical earth.
Asllowance may be made for earth rotaticn between particular end-points but
since the correction is in a variable direction with respect to the trajec-
tory, it is more convenient to ignore the spin of the earth in this simple
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general treatment. Allowance for earth rotation will be considered in a
later note.

In harmony with the assumption of a spherical earth, the acceleraticn
due to gravity is assumed to be that of a uniform sphere. Thus the force per
unit mass exerted by the earth on the missile is directed towards the centre
of the earth and varies inversely as the square of the distance from the
centre of the earth. The ageoeleration due to gravity at the earth surface
has been taken as 32 ft/ sec®. The radius of the earth is assumed to be
3437.75 n. miles so that one nautical mile at the earth surface subtends one
minute of arc at the ocentre of the earth.

The notation is basically the same as that in references 1 and 2. Most
of the mathematics is contained in three appendices, through which equations
are numbered consecutively. A few properties of optimum trajectories are
outlined in the main text and summarized in the conclusions.

2 Vacuum ballistic trajectories and their envelope

2.1 Appendix I contains a derivation of the trajectory of a ballistic
missile in a vacuum. The equations of moticn have been obtained in more
detail in reference 1, and the onalysis follows closely on that of references
1 and 2. Same of the earlier work is reproduced in order to maintain some
independence. The later parts of the argument procced differently due to
discarding the ccncept of range from ground projection to impact.

2.2 Certain salient features of vacuum ballistic trajectories may be pointed
out in consequence of results in the Appendix. The results are most easily
expressed in terms of a speed parameter p (8ee equation (8)) which is non-
dimensicnal and equal to

rv

832

where r is the distance of the missile from the centre of the earth, v is the
missile speed, g is the acceleration due to gravity at the earth surface and
R is the radius of the earth.

Any vacuum ballistic trajectory takes the form of an ellipse with one
focus at the centre of the earth. The length of the major axis is

—2-2:% see equation (18)
in which formula any instantaneous values of the varisbles r, p may be
substituted., In particular the initial values may be used, so that given the
initial height and the speed of the missile, the length of the major axis of
its trajectory is determined., The initial point on the ballistic trajectory

is the point at which all motor thrust ceases, and sc will be referred tc in
general as the cut-off point.

The constancy of the expression for the major axis may be deduced from
the principle of conservation of energy. The only acceleration of the missile
is assumed to be due to the attraction of the earth of magnitude

a.lf.
2
r
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acting towards the centre of the earth. By integration, it follows
that an expression for the potential energy of the missile at a range r
from the centre of the earth is

_ &R
r

per unit mass of the missile, Since the kinetic energy of the missile per
unit mass is 5v° , the total energy of the missile is

B =’12"V2-g’§—"

and this remains constant along the trajectory. But by the definition of
P in equation (8),

°
> - ERD
r
Thus 2Er = gR°p - 2gR°
. 2
l.e. 2r _ . .BR
2-p E

Since the values of g, R and E are all constant along the trajectory, it
follows that the fraction

2=p

also remains constant over the trajectory. As mentioned above, it represents
a length which may be identified with the major axis of the orbit.

It may be observed that the diuensionless parameter p takes the form
of twice the quotient of the kinetic and potential energies of the missile.

2.3 Another quantity associated with the elliptical trajectory is the length
of the latus rectum which is quoted as

2rp cosze

(see equation 19) where the angle © is the climb angle between the missile
velocity and the local horizontal, and is measured positively in the

upwards sense, This quantity may be shown to remain constant over the
trajectory by the principle of constancy of angular momentum about the centre
of the earth., The length of the latus rectum depends not only on the speed
and position of the missile but also on the direction of the velocity.

2.4 A convenient way of determining the greatest distance which can be

travelled starting from a certain cut-off point is to study the envelope of
trajectories, It is assumed that the cut-off point and cut-off speed are
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specified, but that the trajectory may be altered by cholce of the climb angle
at cut-off, The envelope of the trajectories in such circumstances has been
derived at the end of Appendix I where it is shown to be an ellipse called the
bounding ellipse.

Through any point inside the bounding ellipse, it is possible to find
a trajectory starting from the cut-off point with the stated speed. Points
outside the bounding ellipse camnot be reached, and points on the bounding
ellipse can just be reached by a missile with the given cut-off conditions.

The bounding ellipse has one focus at the centre of the earth and the
other focus at the cut-off point. The size of the bounding ellipse is
typified by the length of the major axis and this is

2+p1

T
1
2-p,l

where the suffix 1 denotes values at cut-off., For varying values of the speed
parameter p, the corresponding bounding ellipses form a con-focal system.

Por example, when the value of p = 2/3, the length of the major axis of the
bounding ellipse is 2r1 so that the missile is able to reach a point which
is a distence r, from both the cut-off point and the centre of the earth.

This means that the missile is capable of traversing an arc of sixty degrees
over the earth surface between two points both at a "height" r (measured
from the centre of the earth). The following table shows the cut-off speed
required to satisfy the relation p = 2/3 at three heights above the earth.

Cut-off speed when p = 2/ 3

Height (n. miles) ! 0 50 100
Speed  ft/sec 21,116‘20,964 20,816
, m. p. h. | 397 14,290 | 14,192

When the value of p = 1, the length of the major axis of the bounding ellipse
is 3r, so that the missile is able to reach a point distance r, from the

centre of the earth at the opposite side of the world. The fol}.owing table
shows the cut-off speed required to satisfy the relation p = 1 at three heights
above the earth.

Cut-off speed when p = 1

Height (n. miles) 0 50 100
| Speed  ft/sec 25,862 25,676 | 25,494
; m. poh. 17,633 117,506 | 17,382

As the value of p tends towards 2, the bounding ellipse degenerates into the
circle at infinity, with the consequence that the missile can reach any point

in space,
are shown in the table below.

The necessary speeds are v2 times those in the previous table and
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Cut-off speed when p = 2

Height. (n. miles) o | s0 | 100
Speed  (£t/sec) 36,575 | 36,312 | 36,054
m.p.h. : 21*-,937 24’757 ! 214-,582

2,5 By a well-known property of an ellipse, the sum of the distances
from any point on the ellipse to the two focl is a constant (equal to the
length of the major axis), Hence if in Fig.1(b) a missile is capable of
just reaching a point Q on the earth surface from the cut-off point P, the
length of the major axis of the bounding ellipse must be

R+ 4

where R is the radius of the earth and 4 is the distance PQ. If the missile
were fired vertically upwards with the same speed from the same cut-off point,
it would reach a maximum height of h' above the earth surface where
2(R + h') -r, = R+d
ie€, h' = -12-(1'1 +d - R)
= %(a+hn)

where h is the height of the cut-off point above the earth surface. TFor
example a missile capable of travelling 2300 n. miles from a cut-off point
100 n. miles high would reach a height of 1200 n. miles if it were
directed vertically.

3 Optimum ballistic trajectories

3.1 The geometrical properties of the bounding ellipse may be used to
deduce the form of the optimum ballistic trajectory. In Pig.1(b), let P
be the cut—-off point and Q the desired impact point which the missile must
Jjust reach. It follows that the cut-off speed must be chosen so that the
bounding ellipse with foci at P and the centre of the earth O shall pass
through Q. The tangent to an ellipse bisects the angle between the focal
lines, the lines from the contact point on the ellipse to each of the two
foci. Thus the directicn of the bounding ellipse at the impact point @
must bisect the angle between the lines PQ and 0Q. Now at the point Q, the
optimum ellipse from P to Q touches the bounding ellipse which forms its
envelope, and so the tangent to the optimum trajectory at Q coincides with
the tangent to the bounding ellipse. Thus the tangent at @ to the optimum
trajectory alsc bisects the angle between the lines PQ and 0Q. But the
trajectory from P to Q is an ellipse with one focus at the centre of the
earth O, Since the tangent at impact Q to the optimum trajectory must
bisect the focal lines, it follows that the second focus of the optimum
trajectory lies cn the line PQ.

Thus the optimum trajectory from P to Q is the ellipse which has one
focus on the straight line joining P to Q.
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This property of optimum trajectories has been noted in reference 1 for
the particular case in which both P and Q lie on the earth surface at equal
distances from the earth centre.

3«2 Since the second focus ¥ of the optimum trajectory lies on the line PQ,
it follows that the lines PQ and OP are focal lines from the cut-off point P.
Hence the climb angle at cut-off on an optimum trajectory is such that the
veloclity bisects the angle between the straight line PQ to the target and the
upward vertical OP,

It has been suggested (by Mr. G,H. Seaton of Convair, U.S.4.) that a
profitable trajectory during the later part of boost might be one on which the
missile always climbs at such an angle as to be the optimum should free flight
comuence at that instant. If the optimum climb angle is interpreted as that
required to reach a given target Q, the missile would fly in such a direction
as tc bisect the angle between the lines PQ and OP. It follows from the
geometry of the ellipse that this locus would be an ellipse with foci at the
centre of the earth O and at the impact point Q. It can be shown that such a
locus would not demnnd very large sideways acceleration. For example, just
before cut-off at a height of 100 n. miles, a missile guided towards a target
2400 n. miles away (in a straight line) would require 5g acceleration normal
to the trajectory.

3¢3 The position of the second focus F is deduced in Appendix II. If the
cut-off point is at a height h in excess of the height of the impact point
(i.e.« h = r, - rz), the position of F is at a distance h from the mid point
of PQ towards the cut~off point P. Given the two foci at F and O, the centre
of the earth, the optimum trajectory may be sketched readily, since it passes
through P and Q.

Various other properties of optimum trajectories are deduced in Appendix IT
including explicit formulae for the cut-off speed and climb angle required to
fea;:h 8 given impact position. The speed at cut-off v, is given by equation

29) as

where d is the straight line distance from cut-off to impact,
h is the height of the cut-off point in excess of the impact height

and s is the semi-perimeter of the triangle formed by the cut-off point, the
impact point and the centre of the earth,

The variables 4, s, h appear to be the most natural to use in work on
optimum trajectories since formulae often take their simplest form when
expressed in their terms. Possibly one exception is the climb angle at cut-
off, 6, which equation (33) expresses as

where r, r, are the distances of the cut-off point P and the impact point Q
from the centre of the earth, and the angle @2 is the angle subtended at the
centre of the earth by PQ. The corresponding formula (37) in terms of the
variables d, s, h is .
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1
6 = arctean {L&éﬁﬂl}z

1 s(d+h)

The equation of the optimum ellipse is quoted in the Appendix as
equation (40).

3,4 Alternatively it may be required to find how far a missile with a
given speed will travel from a given cut-off point if the climb angle is
chosen for optimun range. The distance PQ is shown by equation (55) to be

where P, =

Also the optimm climb angle is, by equation (57)

I‘2 "-é.P1 (I'1 + rz) :}Jf
1

0, = arctan {%p1. :

3,5 The final Appendix ITI comprises analysis to find an expression for the
time of flight from cut-off to impact. This is shown by equation (69) to be

{ Sd?_gs;21 }5[1 i {d(:»d) }15 areten (;%&')E:]

where s = 3 (v I d) the semi-perimeter of the triangle formed by the
cut-off point, impact point and the centre of the earth.

3.6 Since the condition which optimizes the trajectory from P to Q is
symmetrical in terms of the points P and Q, the same trajectory is also the
optimum from Q to P (when traversed in the opposite sense). It is proper
to speak of the optimum trajectory between P and Q since the path is unique
and does not depend on the direction of motion. Since the velocities at
any point are the same in magnitude and direction and merely differ in
sense with the way the missile is flying, the speed at impact at Q on
arrival from P is the same as the speed at Q needed to reach P on the
optimum trajectory. Thus the speed and dive angle at impact may be
calculated from the same formulae as for cut-off merely by interchanging
tl)m distances relating to cut-off and impact (i.e. reversing the sign of
h).

The locus of cut-off points from which the missile just reaches the

target with a given speed is the same as the locus ‘of points which can
just be reached by projecting the missile from the impact position with an
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equal but opposite speed. This is a bounding ellipse described asbout the
impact point and centre of the earth as foci. Since the energy at impact is
determined by the speed, and the energy remains constant along a vacuum
ballistic trajectory, the locus may be described in another way. The locus

of cut-off points at which the missile has thc same minimum energy needed to
carry it tc the target at @ is the bounding ellipse with foci at O and Q. This
same elliplical locus has been noted above in section 3.2 as a possible boost
trajectory along which the climb angle is always the optimum for reaching the
target at Q.

4 Discussicn snd numerical examples

L. One immediate question posed by the new method of cptimization is what
difference there is between the new optimum trajectories and the former ground-
optimized trajectories of references 1 and 2. This may be answered by a
numerical exsmple. On a trajectory optimized between two points on the ground
2500 n. miles apart, a point 100 n. miles high is at a ground range of 2350 n.
miles from the target, If cut-off were chosen at 100 n. miles high so as to
use such a ground optimized trajectory, the cut-off wvelocity would be 17,691
ft/sec at an angle of 32.1 degrees to the local horizantal. On the other
hand, if an optimum trajectory is chosen from the same cut-off point to the
same target at a ground range of 2350 n. miles, the velocity required is
17,680 i‘t/ sec at 34 degrees to the local horizontsl. Hence over an impact
range of 2500 n. miles, the difference in optimization is likely to amount to
10 ft/sec in speed (about 0,06%) and sbout twe degrees in climb angle. Maxi-
mizing the range from launch to impact rather than cut-off to impact is likely
tc lead to cut-off climb angles a little nearer the horizontal.

4.2 It is instructive to find what speed is required tec reach the target
when the cut-off climb angle varies on either side of the optimum. The relev-
ant formula is equation (17) in the Appendices. The following Table shows
values of the speed for the same example as ebove, with the cut-off point

100 n. miles high and a target at a ground renge of 2350 n. miles away.

Variation of cut-off speed with climb angle

Clinb angle (degrees) 22 24 26 28 30 32
Cut-off speed (ft/sec) | 18,266 |18,082 | 17,933 | 17,822 | 17,74 | 17,697
Climb angle (degrees) 3l 36 38 40O L2 Ly
Cut-off speed (£t/sec) § 17,680 17,695 | 17,743 | 17,822 | 17,933 | 18,081

From this table it appears that climb angles within a couple cf degrees
of the optimum do not require much more speed, at cut—off, and the cut—off speed
remains within one per cent of the optimum over an interval of +6 degrees.

From the formulae developed in the Appendices, some numerical examples
have been computed and graphs drawn. Where a typical cut-off height has been
required, a value of 100 n. miles has been token. Ranges to impact have been
chosen in steps of five hundred miles out te a value of 5500 n, miles, which
represents roughly a quarter of the circumference of the earth. Where a
typical impact range has been required, a value of 2500 n. miles has been
used as it is roughly the meon range considered in this note. It should be
remarked that the definition of impact range is the ground range frem below
the cut-off point to impact and differs frem the ground-to-ground range of
reference 2.

b3
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L, The first few graphs show the variation of missile velocity and
height along a number of trajectories. For all these graphs, the cut-off
height is tszken to be 100 n. miles. Fig.2 shows the variaticn cof missile
speed with ground range over eleven trajectories with impact ranges from
500 to 5500 n. miles. Becouse the cut-off occurs at a greater height
than impact, the speed is less at cut-off than at impact, and the curves
are nct symmetrical about the mid-points. The lack of symmetry beccomes
less obvicus as the impact range increases but remains appreciable. These
curves moy be compared with the correspending curves in Fig.1 of refcrence 2
for which the cut-off height was taken equal to the impact height. The
formula used in computing the results is shown as equaticn (42).

In Pig.3, the same data have been plotted slightly differently as
functions of the fractional range to the torget, the guotient of the
ground range to the impact range., This permits more accurate reading of the
speeds in many circumstances.

In Fig.4k values of the climb (and dive) angle have been plotted along
the same trajectories as for the speed above. The results are pletted against
fractional ground range cnly as overlapping causes too much confusion if
the curves are shown similarly to Fig.2. The formula for the climb angle
is quoted as equation (47). It may be cbserved that when the impact renge
approaches the order of magnitude of the cut-off height (4100 n. miles)
there is a considerable displacement of the curve compared with the remeinder
of the family. All the curves of climb angle for impact renges of 1000
n, miles and greater pass through a value close to 6 degrees at O.4 of the
way to the target. In order to distinguish neighbcouring curves, the lines
have been drawn alternately full and brcken.

In Figs.5 and 6, the height of the trajectories above the earth
surface has bcen plotted in the same woay as the speed in Figs. 2 and 3.
The formula for the missile height is equation (40). These curves may be
compared with Pigs.4 and 5 of reference 2 in which the cut-off is assumed
to occur on the ground. It will be noticed that for impact ranges greater
than 5500 n. miles, the greatest height attained on the trajectory starts
to decrease as the impact range increascs,

4eb Pig.7 shows three graphs te illustrate how the cut-off velocity and
the time of flight vary with the cut-off height. A stondard impact range
of 2500 n. miles has been chosen, For all three curves of cut-off speed,
cut-off climb angle and time of flight, the relation with cut-off height is
nearly linear, but all three curves show slight concavity upwards. An
increase in the cut-off height of 1 n., mile requires a decrease in the cut-
off spced of 6.2 ft/sec and a decrease in the clirmb angle of 0.01 degree.
Also an increase of 1 n. mile in the cut-off height increases the flight
time by 0.27 seconds., In order to cover a range of 2500 n, miles from a
cut-off point 100 n. miles high, the missile needs a velocity of 18,096
ft/sec at an angle of 33.5 degrees to the horizontal. The time of flight
from cut-off to impact is 1207.6 seconds.

4.6 The remaining three figures 8-10 show the variation of the same three
variables (cut-off speed, cut-off climb angle and time of flight) as func-
tions of impact range. In each figure threec curves are drawn for cub-coff
heights of 0, 50 and 100 n. miles. The values for the curves with zerc
cut-off height may be determined by the formulee in reference 2. However,
the formulae given in the Appendix are true for any height at cut-off
including zero height as a particuler case. The appropriate formulae are
equaticn (29) for the cut-off speed, equation (33) for the climb angle

and equation (69) for the flight time.
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The curves of climb angle in Fig.9 are worthy of comment since it is
apparent that there is a wide divergence for short impact ranges, between cut-
off on the ground and cut-off at some height. This may be understcod by
remembering that the optimum direction for projection bisects the cngle between
the line of sight to the target and the upward vertical. To reach a point at
the same height, the optimum angle of projection is 45 degrees over ranges
sufficiently short for neglecting curvature of the earth. However, if, the
target is at a lower height, the missile is able to drop on it and very small
angles of projection mayb e the best, For impact ranges much greater than the
cut-off height, the optimum climb sngle at cut-cff differs little from that
at zero cut-off height. As shown in reference 2, this climb angle is

—}l- (7‘ - @2)
where @2 is the angle subtended by the trajectory at the earth centre.
5 Conclusion

The note proposes optimizing the range covered between cut-off and
impact showing that this leads tc results very similar te those previously
cbtained. Simple formulae are developed for the speed and clirb angle
required te reach a specified aiming point. The climb angle bisects the angle
between the straight line to the target and the upwerd vertical. Some numeri-
cal values have been ccmputed and are shown as graphs for impact ranges up to
5500 n. miles.

In order to cover a ground range of 2500 n. miles from a cut-off point

100 n. miles high, the cut-off velocity should be 18,096 ft/sec at an angle
of 33.5 degrees to the horizontal. The flight time is 1207.6 seconds.

Jlossary
Suffix 1 denotes values of wvariables at cut-off
Suf fix 2 denotes values of variables at impact

Impact range is defined as the range measured over the earth surface
from below the cut-off point to the impact point

a length of the semi-major axis of elliptical trajectory

A quotient of eccentricity and semi-latus rectum of elliptical
trajectory: see equations (4) and (14)

b length of the semi-minor axis of elliptical trajectory

B eccentric eangle used in parametric representation of ellipse:
see equations (65) and (67)

d straight line distance from cut-off to impact

eccentricity of elliptical trajectory

]

acceleration due to gravity at earth surface (32 ft/secz)

o S
1}

= T, -7 height of cut-off point in excess cf impact point
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Glossary (Cont'd.)

H angular momentum per unit mass of missile about centre of
earth (see equations (3) and (6))
0 climb angle; inclinaticn of trajectory to loczl horizontal
o) angle subtended at centre of earth between missile and the
apogee of the trajectory
$ angle subtended at centre of earth between missile and cut-off
point
rv2
P parameter related to missile speed: equals )
see equation (8) gR
o} parameter related to climb angle: equals tan ©
see equation (9)
r distance of missile from centre of the earth
R radius of the earth (taken as 3437.75 n. miles)
s = + (r1 + T, o4 d) : semi-perimeter of triangle formed by cut-off,
impact and centre of the earth
t time
1
u o=
r
v speed of missile
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APPENDIX I

Envelope of ballistic trajectories in a vacuum

Let (r, ®) be the polar coordinates of the missile with respect to the
centre of the earth as origin. Fig.1(a) shows a diagrem intended to
illustrate some of the notation. The only force assumed to act on the missile
is that due tec gravity, directed towards the centre of the earth and varying
inversely with the square of the distance to the centre of the earth.

Let g be the acceleration due to gravity at the earth surface, and R
be the radius of the earth (assumed spherical). The force acting on the
missile per unit mass is

RZ
-85 along the radius
r

As quoted in reference 1, the equations governing the motion of the missile
are

2
F-r, - - g . BE- (1)
r
1,4 (2 o
and il (r" . 8) = 0 (2)

where t denotes the time, and differentiation with respect to time is
dencted as usual by a dot.

Bquation (2) may be integrated at once to give
r . ¢ = H (3)

where 0 is a constant depending on the initial conditions. It may be noted
that equation (3) may be deduced immediately from the principle of conservation
of anguler momentum about the centre of the earth., Thus the constant H equals
the angular momentum in the trajectory per unit mass of the missile.

As shown in reference 1, the differential e quation (1) may be solved in
terms of

1
u =
r
to give
1 R2
u = — = &% 4 A cos (8-93) (4)
r H2 0

where A, ¢ are constants of integration to be determined from the initial

conditionsS The equation (4) represents an ellipse with one focus located
at the origin, the centre of the earth.
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From equations (3) and (4) it may be shown that

du

r-_—?"H.aE

Thus by differentiating equation (4),
r = HAsin (2-¢) (5)

Let the initial motion of the missile be with velocity v, inclined at an

angle 6, to the local horizontal. 1

By equation (3), the initial value of the horizontal component of
velocity which equals r . is

i
Ty

and by equation (5) the initial value of the vertical component of velocity
which equals r is

= v1 cos 61

- HAsin & = Vv, sin ©
o] 1

1
choosing & = O along the line from the centre of the earth tc cut-off.

Hence H = r, v, cos 6, (6)
tan 61
and A gin @ = - (7)
o r,

As in reference 2, write

I‘V2 ( )
P = r 8
g

Then substituting for H from (6) into cquation (4) gives

2
1. gR -
- = 5 + A cos (@ @o)

2v2 s 6
ry vy o 1

: 1
i.e. = = + A cos (& - @0) (10)

Py %4

using the definitions of p and q from equations (8) and (9). Take as the
initial position of the missile r = r, and & = O. Substituting these in

1
equation (10) leads to

2
1 1 + q1
r

1

-
o)
O
43]
e
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M

1-24+9]
i.e. A r, cos = - ———— (11)
o] p1

From the definition of ¢ in equation (9), it is possible to write equation
(7) as
A r, sin @o = = q, (12)

Dividing equation (12) by equation (11) gives

Py 4

ten & = . 5 (13)
Py
Squaring and adding equations (11) and (12)
2
22 (U NV, 2
4 = D Yy
1
1-+q2
1.e. Brt o= (1) (-2 4 (14)
1 1 2 P
A 1

If the initial velocity and position of the missile are given, the
subsequent positions may be determined from the equation (10) of the
trajectory. In particular, if the distance r, from the centre of the earth
of the impact point is known, the impact position may be determined from

@2 where

2

r, 1+q1

Lr, cos (¢, =8¢ ) = — -
1 2 o] 5 Py

(15)

In this equation the values of py q r, may be calculated from the
initial conditions by means of equations 28) and (9), and the values of
&, A are calculable from equations (13) and (14).

Equation (10) may be expanded and written in the form

r 1 2
1 +

+Ar
r Py 1

il

cos ® cos ® + Ar, sin & .sin &
Q 1 o)

By substitution from equations (11) and (12)

1+ﬁ 1+ﬁ
+ <j -

4
— cos ® - g, sin @
T Py Py 1

.-16-.



1+q‘3

Py

i.ce

r
;} = (1 = cos @) + cos & ~ q, sin @ (16)

This is the equation of the missile trajectory on which the missile sets
of f from initial conditions such that the position is (r, O) and the velocity

is determined by (p1, qﬂ) through equations (8) and (9).

If it is desired that the trajectory shall pass through a certain point
(r2 @2) besides the initial position (r1 0) the relation between the initial

conditions is

1‘*q§ T
5 (1 - cos éz) = ;; - cos 2, + q, sin @,
2
(1 +95) (1 =cos 2,) sec 6, (4 ~ cos &)
ie. B = 1 £ - “ : (17)
*u 1 T, - r,
;; - cos &, + q,sin g, (;;) cos 6, - cos (61 + @2)

This is a relation between the initial speed and the initial climb angle
determined by the parameters Py and a, when the missile is set on a trajectory

passing through the point (r2, 52).

As shown in reference 2, it may be proved that the length of the major
axis of the elliptical trajectory is

21%

(18)

2-p1

and the length of the latus rectum is

2r, p
0032 61 = 11 (19)

2r 5
1+ 9y

1 P4

This last relation follows from equation (4) which shows that the
length of the latus rectum is

snd hence by equations (6) and (8), the expression (19) may be deduced,

Consider the envelope of the trajectories expressed in equation (16)
when the missile starts from a fixed initial position (r1, 0) with a fixed

initial speed Vs but at a varisble climb angle. Since the initial speed

- 47 -
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and position are fixed, equation (8) shows that p 4 is fixed, Hence
of the parameters in equation (16), only qy = tan 6, varies,

Differentiate equation (16) with respect to q,

2 q,
= (1 ~cos &) = sin @ (20)
1

This may also be expressed in the form

P
@ 1
tan 3 = 5o > (21)

The interpretation of these equations is that the point at which
equaticn (16) meets its envelope also lies on the curve represented by (20)
or (21). Thus the point at which the trajectory (16) meets its envelope is
the point of intersection of the equations (16) and (20); i.e. at the angle
& defined by equations (20) or (21), the trajectery cf the missile meets the
envelepe of trajectories. At such a point, the range from the initial point
is a maximum for the particular initial speed. The ground range measured over
the earth surface in this maximum range condition is

R® = 2Rarctan =—— (22)

Equation (20) may be written as an equation for g,

P, sin &

q
1 2(1 - cos @)

where the value of @ is understood to be that at which the trajectory meets
its envelope., Hence the equation of the envelope is obtained by substitut-
ing for q, from eqaticn (20) in the equation of the trajectory (16)

/equation (23)

—18_



2 . 2 . 2
Ty (1 = cos 8) {, py sin” @ py sin” &
- = + + cos & ~

Py L(1 - cos ) 2(1 = cos &)
. . 2 2
Since sin“ ® = 1-cos“ @ = (1 -cos &) (1 + cos @),
r, 1 - cos & P, (1 + cos %) P, (14 cos @)
— o m———— % + cos & -
r Py L 2
bp, T
171 2 2
= _4—4msé—p1-p1cos@+4p1 cos ¢
2 2
= 4 - py -cos® (b-4p,+ )
r (2 = p)(2 +0p) 2-p
. 1 1 1 1
i.e. - = T, {1 - ( 2+P1) cos Q} (23)

This is the equation of the envelope of the trajectories.

When p, < 2, this equation represents an ellipse with one focus at the

centre of the earth (the origin).

The length of the latus rectum follows from equation (23) as

8p1 r,
(2-p,)(24p,)
The eccentricity of the ellipse is
2= Py
2+ Py

The ratio of the squares of the major and minor axes is

2-p4\2 8p1
ey
1 (2+p,)

Hence the length of the major axis of the ellipse is

(2%)

i



(»

(25)

2
8]g>J1 r, (2+p1) <2-1-p1 \
: - v (7 )
(2 -p1)(2+P1) 8}')1 2 P1

The distance between the foci of the ellipse is the product of the
eccentricity (24) and the length of the major axis (25).

Thus the distance between the two foci is r1.

When Py < 2, it follows that the envelope of trajectories obtained by

varying the initial climb angle is a bounding ellipse with foci at the centre
of the earth and at the initial point and with major axis of length

2+p, »
1
i <2’P1) (25)

The length (25) depends on the initial speed and the initial "height" r,
through the equation (8).

The locus of points which can Jjust be reached with a given initial
speed corresponding to Py is the bounding ellipse defined above. 4s the
speed varies upwards, from values corresponding to py = O up to Py = 2,

the bounding ellipses grow in size and form a confocal system. When
pq =1, the length of the major axis of the bourding ellipse is 3::'1. Since

the distance between the foci is r4, the missile is capable of travelling
right round the earth. When py = 2, the bounding ellipse degenerates into

the circle at infinity, which means that a trajectory can be found passing
through any point in space.
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APPENDIX I3

Properties of optimum ballistic trajectories

It is shown in the text that the optimum trajectory between two points
P and Q is an ellipse with one focus at the centre of the earth O and the
second focus F on the line PQ (See Fig.1(b)). Fram a well known property
of the ellipse the sum of the focal distances from any point on an ellipse
equals the length of the major axis. Hence the perimeter of the triangle
OFQ equals twice the length of the major axis.

The length of the majeor axis of the optimum ellipse is
2a=s=1§(r1+r2+d) (26)
where d is the straight line distance between the initial and final points

P and Q con the trajectory.

It follows that the second focus F lies at a distance (s = r,l) along
the line PQ from P; that is at a point

h = r, -1r (27)

where h is the height of the initial point P in excess of the final point Q.

With the knowledge of both the foci and the length of the major axis
s from equation (26), the optimum ellipse may be sketched readily.

Consider the initial velocity required at a point P, (r,,0) in order
Just to reach another point Q distance T, from the centre of the earth O and

at a distance d from the initial point P. The length of the major axis of
the optimum ellipse is stated above at equation (26)

s = —12—(1'1+r2+d)

But it is stated in expression (18) that the length cf the major
axis of any elliptical trajectory is

2-—p1

_21—



Thus d+r, +r

p1 = 2 = — (28)
1

using the definitions (26) and (27) of 4 and h.

Hence the initial speed v,, may be found from the definition of P, in
equation (8) leading to

2 2
gR p gR“(d -h)
- L (29)

I‘1 I‘1 8

V2
1

This expression is probably the most simple form of the initial speed but is

not readily expressed in terms of ground range R @2. The straight line distance

d between P and Q appears the more fundamental measure of range and must
necessarily be calculated at some stage of work on optimum trajectories. By
some manipulation, equation (28) for p, may be expressed in terms of the angle

at the centre of the earth @2 as follows.

2 (a-n) 2 (d-h) (r1+r2-d)

p =
1 d+r1 +r2 ( 5 5
r, +r2) -d
2 pd 2
Now & = ri+rx, - 2 r,r, cos ) (30)

from the cosine formula applied to triangle 0PQ.

i 2 {a (r +T, +r,‘--r2)-d.2-(r1 +T,) (r1-r2)}

) 1
- Py = )
Ty

2 2 2
+ 2 r1r2 +r2 --r1 ~r2+2 r1r2 cos ¢

2 2 2 2
2 T, d-r1 -T, +2 r1r2 cos @-r,] +r2

r,r, (14 cos 8)

2 (d-r1 +r, cos 3)

r, (1+ cos @)

(31)

i. €. p1 =

Thus the speed may be expressed in terms of the angular range ¢ by substi-
tution for d from equation (30). The expression (31) is that already quoted
in reference 3.
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The value of the initisl speed may alse be found from the geometry of
the bounding ellipss. Since it is required to Just reach the point § from
the initisl point P, the bounding ellipse about the point P must pass
through Q. The sum of the distances from any point on an ellipse to the
two foci equals the length of the major axis., Since O and P are foci of
the bounding ellipse which passes through Q, the length of the major axis
of the bounding ellipse must equal 0Q + PQ. Thus from expression (25)

24P
AN )
r, <2“'P1> = 1, +4d (32)
) ) d~r1+r2
1eCo p = 2
<it+r1 +r2

which agrees with equation (28) above.

The direction of the initial velocity from a point P which suffices

to just reach a point @ is shown in the main text to bisect the angle between

PG and the upward verticel at P. ILet the inclination of the trajectory to
the horizontal at P be © 1 Then it follows that in the triangle OPQ, the

angle 0PQ = 2 © 40 Hence by the sine formula applied to triangle OPY,

i) i
sin 2 6, sin (2 6, + 2,)
s (33)
r, sin
tan2 6, = 2 2 -
1‘1 - I‘Z cOoSs )

This expresses the initial climb ongle 61 directly in terms of the angular
range @2.

It may perhaps be more convenient to express the direction of the
initial velocity in terms of the distance PQ = d. This may be accomplished
as feollows,

From the cosine formula applied in triangle OFQ,

r% + d2 - rg
cos 2 61 = 2r1 3 (34)

Adding unity to both sides of the equation gives
(r,l +d)e - 2

2
1 2r1d

2 0032 5]

fl

(r1+d-—r2) (r,‘ +d+r2)
1 L,.r,]d

A]

i

cos ©

i.e. 0052 6, = 2(d+h) (35)



Similarly by subtracting both sides of equation (34) from unity

5 (r2~r1+d)(r2+r1~d)
sin 61 = M r1d
i.e. sin’ 6, = (s"g)rgdd‘ h) (3€)

Dividing equation (36) by (35) gives

2 s - -
tan® 6, = o = (safi) 2 (37)

This expresses the initial climb angle 0, in terms of the distance PQ = d and
the "heights" r, and r, by way of emations (26) and (27).

The optimum trajectory is completely determined by the positions of the
two focli O and F and the length of the major axis s, from equation (26). Other
guantities may be expressed readily in terms of known distances by standard
properties of the pure and analytical geometry of the ellipse.

From expression (19), the length of the latus rectum is
2
2 ry Py cos 61

and so by equations (28) and (35) equals

d-h\ s (d+h)
2r1<s> 2 r,d

1
2 .2 2
d ~=h h

The ratio of the squares of the minor and major axes is equal to the ratio of
the latus rectum to the major axis and from expression (38) this equals

where s is given by (26).

It follows that the eccentricity of the optimum ellipse is

\

a®-1° \}
( -y (39)

&3
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The equation of the optimum ellipse may be derived from equation (16)
by substitution for p, and g, from equations (28) and (37). Since the
length of the latus réctum has been deduced already as expression (38),
the equation of the ellipse may be written down readily as

9

24 v
ik} = i (1 - cos &) + cos ¢ - { (s-4) (d—h)} sin @ (%0)

T 4 nl s (d+ h)

The speed at a general point on the optimum trajectory may be deduced as
follows. The length of the major axis is given by expressions (18) and
also by (26) leading to the equation

Thus p = 2 (1 - g—) (41)

at any general point on the optimum trajectory, and so it follows from the
definition of p in equation (8) that

W@ = 2g%° (l - i) (42)

r )

where v is the speed at any point in the trajectory. The distance r may be
determined in terms of ground range by equation (40).

Under the initial conditions, whenr =1 " the formula gives the speed

v, as
1

2
2 zgR (S'-'I‘,l)

h'a =
1 r1s

which agrees with the value already derived at equatiocn (29) since it
follows from the definition (26) of s that

2 (s-r,) = d-h (43)

The climb angle at a general point on the optimum trajectory may be derived
in various ways. The following methed is probably the most direct. From
equation (3), the horizontal component of the velocity at any peint is

29
r

v cos 8 = rZ} =

From equation (5), the vertical component of the velocity at any
point is

vsin® = r = Hisin (2 - &,)

- 25 =



Dividing these two equations to eliminate v gives
tan 8 = Arsin (8- @) (44)

The partigxllar form of this equation when & = O has been used already in
equation (7). Bquation (44) may be expanded into the form

tan 6 = r { A cos <I>o.sin'l>-A sin @o.cos 8}

Comparison of equations (10) and (40) shows that

{
|
|

(45)

A cos &
o

il

okl e }E (46)
L

3 L
arny A sin QO 1 = (d+1)

Substitution of equations (45) and (46) into (44) gives

1

2d ¢ . ~F -
C - - N2
tom 6 = —— 1 - — ; sin @ + | (s d2<d b | cos @ (&7)
Ty a“~h L s (@+h)

from which the dependence of © on @ may be deduced by substitution for r from
equation (40).

Bxpression (47) may be expressed in o simpler form which may not be
convenient for accurate camputing. Thus from equatien (10)

2
1 1+

’

o e 3 - !
yos TENES + cos ( éo) (48)

But from the form of equation (10), the constant A must be the quotient of the
eccentricity of the ellipse and the semi-latus rectum which has length

Py Ty
5 . Hence it fcllows that
1 +q1
2
1+q1 1
e
A Py Ty

where e is the eccentricity of the ellipse.



Now an expression for the eccentricity was derived as expression (39).

Thus equation (48) leads to

2 2 -k
! ( -4-h ) + cos (;’e—@o) (49)

sd

Substituting for Ar from equation (49) into (44) gives

sin (8 -~ ¢ )
tan 8 = 2 . (50)
a2 42 -
(1 - > + cos (Q-q’?o)

A value for ¢ may be derived by division of equations (46) and (45) giving

la

N

(s-da)(d-h)
o

s (d+h)
tan @o = 24 T,

By symmetry of the relations, the velocity at impact which is governed
by (p2, q,) may be found by interchanging r, and T, i.€e TEVErsing the sign

of h.
Hence from equation (28)
d+h
P, = (52)
and frem equation (37)
2 (s=-a)(a+h)
= s (d-‘h) (53)

According to the sign convention used in references 1 and 2, the

angle of climb 6 is taken positive before apogee is reached, ond negative
Thus in equation {37) the positive square root is

from the apogee onwards. ;
required for ay but in equation (53) the negative square rcct should

be taken for dye
It may be observed that from equation (21)

/equation
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tan (3 8,)

nj-=

4 ((a=-1)% s(dasn)
z }

2 (s=d)(d=-h)

It follows fram symmetry that the equation of the trajectory, equation
(40), may alse be written as

N
ot
2]

-

r
2 2 - ( (s-a) (a+n))* _. .
= = 2,2 {1 = cos (@2~§)} + cos (92~@) - t : d—k1+ } sin (@2—®) (54)

The preceding formulae have been developed in a form suitable when the
initiel and final points P and () are given. They may be swanarized as
follows.

The optimum trajectory is an ellipse with one focus at the centre of the
earth and the other on the join PQ at a distance % (d-h) from P.

Here d is the distance PQ and h = T, = r2,
The length of the major axis of the ellipse is

s = —12—-(1'1 + T, 4 a) by ecuatien  (26)

The speed v at a general point on the traijectory is given by equaticn

(42) es
v? = 2gR° /1-1>

r S

The initial speed 1s v, where

1
2
-h)
v? - &R m d=h) by eguation  (29)

1 ]

which may be expressed more directly in terms of the angular range ¢ as
equation (31).



The climb angle 6 at a general point on the trajectory is given by
either equation (47) or equation (50).

The climb angle at cut-off O, is given by equation (37) as

1

(s-a)(a-h)
s (d+h)

ta.n2 61 =

which may be expressed in terms of the angular range @2 in equation (33)
as
T, sin @2

r1 - rz cos @2

tan 26‘1 =

Corresponding values at impact may be derived by interchanging r 4 and r,
and. changing the sign of h.

Similar formulae may be developed to show the range covered from a
given set of initial conditions; from the position (r,l,O) and the velocity
governed by (p 1 q,]) which is assumed to be optimum,

By eaquation (32), the distance PQ which can be covered is
/2 + P
{ 1
d = &2-p1> r, - T, (55)

This equation effectively determines the maximum range. The variation of
speed climb angle and height slong the trajectory may be deduced by
substituting the value of A given by equation (55) in the formulae
developed above.

The angular range sbout the centre of the earth may be determined
explicitly. By re-arrangement of equation (30),

r 4+ e - d°
1 2
cos @2 = P
172
1 ~ cos & 3% - (r, - r )2
2 4 2 1 2
Thus tan” 3 @2 = 3 pear el 5 S
+eos % (r, + r,)" -4

Eliminate d by substitution from equation (55),

/equation
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br, - 2(2-—p,|) r,
b 2(2-p)r,-2p,7,

il

4
P r + 3 P, T
1 1 172 (56)

'tanz v &, = 2
= T
272 2 T, -7 0P (r1+r2§

The direction in which a certain speed densted by p, should be directed
80 as to give maximum range is most easily determined from equation (21).

can 61 = Ci’l = "E'

and by equation (56) this may be expressed in terms of p,; ¥, and r, by

2irp TpmERy (rem) g
tan 51 = "é"? — s +.L = v}
L P4 ot 2Py 5y
e rz"—‘;’f P.] (I‘1 +I‘2) -12—
lees tam 0, = (T P, = T }
L SRR

...30-
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APPENDIX ITT

Time of flight on optimum ballistic trajectory

As shown in reference 2, Appendix VI, the time of flight from the
apogee of a ballistic trajectory to any point is given by

%—?—(ﬁ-»esinﬁ)

where a, b are the lengths of the semi-major and semi-minor axes of the
ellipse, e is the eccentricity emd P is the ecoentric angle. The eccentric
angle B is related to the polar angle ¢ through the relations

rcos ¢ = ae + a cos P

rsing = b sin B

where ¢ is measured in the same manner as @ but from zerc at the apogee.

The total time of f£light from point P to peint Q is expressed by

%_%J— 2(62 - B1) + e (sin B, - sin 61)} (58)

From the equation of the trajectory (&), the length of the semi-latus
rectum is

S
a gRa
N
Ha gR

ab aj \‘-%
T (;-3) (59)

Now by equaticn (26), s = 2a on en optimum ballistic trajectory, where

23=r,1+r2+d.,

ab 53 %
Thus T = (—8-—§> (60)

.-31.—



B+ By B, =By
Now sin 82 - sin 31 = 2.c08 ( 12 2) sin <_§§_;%) (61)
\

Substituting equations (60) and (61) in expression (58), the total time
of flight is

3 i 3 B 8, -
<f—3—:—;2->2 {52- 8, +Zecos<1; 2) sin(zzﬁ-l)} (62)

It may be shown (e.g. reference 2, equation (60)) that

r = a (1 + e cos B)

In a similar way,
PP = a (1 -6 cecs ;’31)
F = a(1-ecosB,)

W

Hence, by addition,

d

1

F+F = B

= a(2—e(cos{31+oosﬁz:’}

B, +B B, -8B
i.e. d = 2a {1—ecos<1o 2>. 005(22 1)? (63)
“ \ J

In parametric form, related to the principal axes of the ellipse, the cartesian
equation of an ellipse is

X = acos B; Y = b sin B

Thus the equation of the join PQ is expressed by

X Y 1
‘acos,e,‘ bs:i.nﬁ1 1 = 0
i
i -

§acosB2 bsin{%2 1{

which may be reduced to

-—32_
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B, +B B+ By B,~-B
§c03<1 2>+-Y~sin<12 2)=cos<12 2>

Since this line PQ passes through the focus F, the peint (ae, 0) it follows
that

B, + B, B, - B
e cos <~—1—E——-—§-> = COS (_1__2____2) (én)

Substituting for e from equaticn (64) in equaticn (63),

B, - B
d 23, {1 - c032 (—-2-—2-—-1—> }

a {1 - cos (52 - 51)}

[t}

i

Qu

cos (52 - 51) = -=

&

But from equation (26), s = 2a aad so

o — — - 2—?‘— = .§.....:....2_§'.. 4
cos (BZ [31) =1~ = - (65)

By similar analysis te that used in deriving equations (35), (36) and (37)

8, - B \Z
(25 - (749 @

Hence it may be shown that

{no

sin (8, - 8,) = 2{a (s - )} (67)

Substitute for (B, + [32) in expression (62) from equation (64). The time of
flight from P to Q is

...33...



3\ - B 8, - B,
~ B, - B, + 2 sin —-—-——-—" oos(—-———————)}
QgR2> { 2 ! ( ) 2

(8.3/;2 B)+51n (B 4‘)}
g

This expression may be expressed in a more rezdily computed form by
equations (66) and (67).

The time of [flight from P to Q is

o
R2

B, - B N
sin (62 - B,]) {1 + - 2 _161) j

sin (52

w

:{Sd s -4 §{1+ a.rctan<
2R fa (s - a)lz S

[NES

By relation (26)
s (r + T, + a)

and s0 the time of flight may be calculated.

BT onoa 0P ROAH. K2 e PrimteAd 4m n1lanAd

(68)

-y
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