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Summory

The methods suggested in Ref.1 for snalysing the behavicur of
linear systems are briefly reviewed, the numerical analysis being expressed
in terms of matrices., Possible applications of time series representation
to the study of aireraft stability cheracteristics are discussed end a
detailed numerical investigaticm of a simple one da%ree of freedcm undemped
system is made., For this system the Tustin method® of analysis in terms
of & units seems satisfactory, An alternative method based on the use of
Simpson's integration rule in conjunction with time series representation
is also described,

No definite conclusions can be drawm as to the advisability of
using the suggested method of analysis at this stage, as it is ocnsidered
that a detailed numerical stidy of the stability characteristics of @
perticular aireraft should be made in order to check fully tho accuracy of
the method.

{1+ Introduection

in a note entitled '"FPlight measurements of aircraft stability end
control", it is suggested by Boulton Paul ailreraft Limited that measurements
of alreraft respcnse due to knovm control displacements shculd be analysed
by means of time series, Any function depended on time is in this scheme
represented by a series of ordinates corresponding to the values of tho
funoticn ot equal time intervols &, wherc & is assumed to be small encugh
to ensure accurote represcntation, Such a procedure was used by
Professor Tustin in Ref. 1, but was not aspplied to aircraft response problems.
His methods of denling with time serles are briefly cutlined in this ncte,
and it is shown how the analysis can be conveniently expressed in matrix
notation. The numerical processes of 'serinl multiplicetion' end
‘seriel division' as defined by Tustin correspond to matrix multiplication
end inversion respectively. Certain operators used in Ref. 1 con also be
expressed concisely in matrix form,
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Over o period of time, any function would be represented in this
acheme by a lorge mumber of ordinates. Consequently, the numerical work
of annlysing the behaviour of a linear system might in certain cases be
rather laboriocus with ordinary calculating machines, This disadventage
could perheps be overcome by using special computing equipment.

An alternative mothod of approach is suggested in this note which
might in certain cases reduce the smount of computation without entailing
losa of accuracy. This scheme is based on the use of Simpson's integraticn
rule in conjunction with time series representation. The relative
accuracy of the two methods is i{llustrated by a very simple example of a
dne variable system with known response characteristics.

By the use of matrices the analysis for either methed can be
extended to deal with problema invelving mony degrees of freedom and the
results of flight tests, In flight, the response in eny degree of freedom
due to a known movement of a particular control can ususlly be measured..
The probvlem is then tc estimate tho response in each degrece vf freedom
due to a A unit input (or unit impulse) from the control. When these are
known accurately, the responses due to any other known input cen be
estimated. The responses in a number of degrees of freedom due to a
combination of inputs, such as from alleron and rudder, can be treated
simitarly.

It has been suggested that the rocts of the stability determinent
for the aircraft cen be deduced frem the numerically eguivalent form of the
oquations of moticn as derived by time serics represontation. This has
been done for the sirple exomple considered, but it is difficult %o judge
whether the method would apply in the case of a system with several degrees
of freedom. Since In practlce the onalysis would be based on dsta cbtained
from flight tests, the possibility of small errcrs in the measured responses
would also have to be considered as these would affect the calculated
respenses dus to A unit inputs (or wnit impulses) which have to be
determined by o process of inversion, as presumably such inputs cannot be
applied directly. 1In view of these difficulties it is thought that further
test calculations should be dene for a particular alreraft, toking inte
acccunt the appropriate degrees of freedom and assuming control inputs of a
form which ocon be applied in proactice. The informetion obtained from such
calculations should give a clear indicaticn as to the advisability, or
otherwise, of using the mothod of time series representation for dealing with
gtability problems,

2, Time Series Representation

In Tustin's peper! any function of time d(t) is represented
by a series of ordinates as shown in Fig.1.

Fige1 /
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'The owrve d(t) 4s flrst replaced by o polygen formed by Joining the
ordinates at regular timc intervals & , and this in turn-is replsced-by-a
system of isosceles triangles of height d4, d,, eto. and base 25.

If the interval § 4s sufficlently small the function da{t) will be
acourately represented by such a sories of ordinates and can be regarded
as being composed of superposcd A unite a8 indicated.

Let us suppose {d(t)‘} I3 { d..l’ dz, d3 o-oon}/

is the respcnse of a particular verisble due to & unit A input¥
Then, since any genoral input eoft) cen be represented by & number of
isosoeles triesngiles. as above, the response x(t) due to e(t) is
expressible in matrix notation in the alternative forms

{:} = & (Q) {;\e} = A(e) fa} , )

-

where irf , fe} and {d{ represent columns of ordinates and the metrix
operator

o a(a) /
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£ A A unit.is in the form of an/ ‘Lsogceles* triengle of unit height
and’ base 28.



Ix(d) = d1 0 0 0 0 * L4 . .

L] [ . -, * L] L] L] [ ] 000(2)

and A(e) is defined similarly, In general A is an infinite triangular
matrix, but in practice only a finite number of rows will be needed, For
a stable gystem d&y-» O when n is large.

Formula (1) above expresses in concise form the table for serial
multiplication given in Ref, 1. From (1) it follows by inversion¥*that

=1
[A(d);\ i EII} ees(3)

e

ﬂ1_
and {} = [ Afe) ] £ . eo o (1)
where 4~1 represents the inverse of 4 so that a 4A™1 = I, where I
represents tho unit uatrix.
Suppose
—1 r ~1
[A(d)] = 81 0 Q 0 [ . .’ .

an 81 0 0 . . . .
a} 82 81 O » [} L] -

EL 93 as a4 . . * .

Since 4 A™! = I, motrix multiplication immedistely yiclds the set of
squaticns

£ This corresponds to 'scrial division' in Ref. 1.
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ap 44 + aqdy = O
a3 d1 + apdp + oqdz = 0, veo(6)

and so on

When the elements &4, dp, dz otc. are known the elements

aq, 85, a3z, etc, can then be determifed successively, and {e} cen bo

colculoted from (3) whon {r} 4is known. Similarly when {4 e=nd {c}

are known, {d} , the response duc to unit A input, is given by (4).

It should be noted that (3) is the numericel equivalent cf the differentisl
d

equation defaning the motion, say f(pjr = e, where p s -:. The
d

above procedure avoids‘'serial division! as carried out by Tustin.

In goneral the response {x} and the input {e} are known,
or con be measured, and cne is faced with the problem of determining {a}.
This is given direotly by (4) or it cen be derived from the expended fomm
of (1). o ensure accurngy § must be smell, and this means heavy
mumerical work, particularly when several degrees of freedom are involved.
In the next seotion an alternative method is suggested which may in certain
casgs reduce the amount of computation without introducing inaccurescies.

3. Alternative Method

The exact fornmls for the response r(t) due to any input
funotion e(t) is

t
{(t) .-.j a(t~1) o (1)dr, oo o(7)
o]
where d(t) now represents the response due te a unit impulso.
dar
It is ossumed that » = = = 0 at t = O,
at-

Let us suppese that the range of integrotion is divided into n equsl
intervals &, Then, in serial numbors tho integrand a(tet) e (7) is
expressible in the form

{ d[(n"s)é] 6(36) } = {dneo’ %_101, seany doen } lna(8)
By the use of Simpson!s-integration rules® the value of r(n8) can be
caleulated /

——nqﬂ——h——--—-ud——“-nm----n--——----n--

A Thoe Y3 rule is mainly used but for r5, r7, g, eta, the integration
is rounded off by using the I8 th . Tule as Shown by (9).
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calculated scourately for eny value of n greater then unity. The serisl
numbers o, r3, r) ectc. are given by the following set of equations

&
r = ; (apeg + hdqeq + dge2)

36
r; = g-(d3eo+3d261 + 3dqen + doe3)
; 0o e(9)
r,+ = - (dh.eo + ll-dse-l + 2d292 + ).|-d163 + doeh-)
3
5 ( " 17 27 27 9 )
Ty = = 8 + 84 + == 285 + == A0z + == 48) + = 4 €
5 3d5o 41 * = 4% 8‘325 g Mol = G5
and 80 on.
In matrix notation {(9) yiclds
{ro, T3y T) oo} = g M(d) {eo, e4, 02 ceened (10)
= BM(S) {do’ d1, d2 .ocnno}
whero
(@ Lk q ]
M() g. | == b w= O O O O . . .
3 5 3
5 9 3
B IR U B 0 o «
3 8 8 8
2 L
B kB 22 od b, o L,
3 3 3 3 3
a5 ba, 1733 9% 94 3% 0
5o & 8 80 s (1)
Q% has 2q, Laz 292 bay g
3 3 3 3 3 5 3

end /



and g denotes d or e ss the case might be. In response problems,
however, when the time dependent varisbles correspond to displacements,
the initial value of da(t) is zero (d, = 0), and, except for inputs of
the unit step type, 6, = O oon alsc be assumed. Equations (10)
reduce to

{rz, T5 b oom W@ feqy ep weel)

- ree(12)
= M(G) {d1' d.z -o-o},
where the medified matrix operator
rh b
q
R(q) = — 0 0 0 O &
3
9a» 9q1
.i/- L] O O O L] [
8 8
Lg 2q, 4
.-_2 -nug —-q:l- 0 O [ ] [ ]
3 3 3 .o (13)
by, 179 9% 9y
3 2 8 8 )
»” . . ] . ’ .

snd g = 4 or o according to which form of (12) is the most convenient
to usa.

Equations (42) and (1) corrospond, Both A and B ore trienguler,
but the elemonts in the latter matrix operator are multiplied by certain
factors, It should be noted thot the clement Ty of the response function
{r(t)} is omittcad in (12).

If the input is zero after a finite time the serial numbers will
all be zero after a ocrtain valucs. Let correspond to the first
zerc value. The value of 1y for m 2 n will then be given by

5
I R R e Onet ] ore (1)

when n is even, and by
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&,
r, = ;[lg.dm__,l oy + 2%_262 + bdy 3 @3 + .0es
vee(15)
17 27 27
+ ”g Qnen+3 Cn-3 + “g A2 Ene2 t "g Grene 1 8 pmd ]

when n 18 odd. The corresponding matrix operator M(g) would for such

a case havo %o be modified. For instence, if e(t) = {e4, e2, @3, 0,0,0,044 o}
the response {r} will be gavep by (12) with R(d) end ﬁze) replaced
respectively by

ad il

hdq
3
9 9
2 M,
8 8
8 0 a(16)
)+d3 2dy l4.d1
3 3 5
th 2d5 hdy
3 3 3
and ﬁ.l\e) g | ke a
-—— 0 0 n 0 . .
3
9¢ %¢ {
b-g --1 5 0 0 . .
8 8
Le 2o Le
hos 20 oy
> 30 ves(47)
hes 202 kot
0 - — s ¢ . .
3 3 3 1
Le3 282 Ly
0 C —— e ——— » .
3 3 3
}. ] . [ ] L J 1] L )
]
b and 80 on.

When/
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When {r} and {e} are kmowm, {d} can eithor be obtained from the set
of equations represented by

{I‘z! I‘}c o'-o} = ﬁﬁ1(d) {91192’33} ’ ] ...(18)
or, direotly, from

{a} = ; (£, (o171 {2}, e (19)

Le Intepration and Differentiaticon

Let us considor the ocurve y('t) = {o,y1 22 ...} shown below.
[
}—'_'—’/-—-
/
o
y(t) -
\ g \ u
’ /o lyn
,/I 32\?\ 3 \\l a4
}\H / \\ \
o & 28§ 3B ©

In terms of 4 wunits it immedintely follows thet the integral

t ¥4 Y2 ¥
r(t) =jydt=6{—:y1+-:y1+y2+-‘§-,.....},
o} 2 2 2

and this is expressible in the matrix fomm.

5 -
(I‘}:"'"OOOUOQ{y}
202 1 0 0 o o o)
2 2 4 0 « o
2 2 2 1 o 4 ves{20)

Hence, /
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d
Hence, if p g =--, the differential operator, it can be shown that the
at
integrating opsrator,
1 &
- g = [T{1,2,2,.2..}], see(21)
el 2

where [T {aq, a2s 83) sesseeoas }]represents,in general, & trianguler
matrix with equal elemints along the principal diagonal and along any line
parallel to it, It can olso be shown that

{2 {1,222.....3] = [ {1,000 ...3] [T{ 4,114,151 «uu}]

= [ {1,1,0,0,0 oo }] [7{1,-1,0 0 0.}

Hence ! 5 ?- {2 {14,001 [T{ 1,4, 00 vvuuu. }]-1.
el 2
oo {22)
nd  p = E[T {1y-1, 00 1r {14, 00.....3]

Fram (22) it follows that

e = ;.*5 [T {1-2,100...}] [T{41,2,1, 00 +vuua}] " oes{23)

and, in general, when n is odd for instance,

2 [T {1) -n’ g&nil’ e n’ -1, 0 O tuulol}]

P = - o b . et 2 ] e e e e et e e et Y (221-)
5/ [r {1, n. Eagfi cora Ty 1 00 ersneal]

where the elemgnts in tho first columns of the numerator and the denomenater
are tho coefficients of x in (1=x)? and (1+x)B respectively.
By the use of (2L) any differential equation of the type

(ap™ + 41 + vereievse 8py) © = @ ves(25)
cen be expressed in seriel form by substitution for p end its powers.

It 18, however, clear that the integral of y will not be
given acourately by (20) unless & dis smell, If use is made of

Simpson's integration rules the following alternative fom may be
deduced, nemely

equation /
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19 -5 1 k
s N Z ;3;’5;000' . {74052 ees}
L5 1 0080, .,
3 3
8 9 3000 .e0
& 8 8
4 2 4100, .
505 33 o (26
L 17 9930, .
3 2 888
b2 L2k, .
35 3 3333

In the case, when yo # O, there is an additional column on the left hand
side of the matrix and the analysis would have to be extended as shown later.

Equation (26) can be oxprosscd more conveniontly as
{r} = 85 {5y} . oo (27)

Premultiplication of {r} by B where

0 0 0 0 1 o o o vse{28)
he b
yields /
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yields

Bfr} =35 |-«8 0 © 0 0 . .
L 1
- = 0 0 0 4« .
3 3
9 9 3
"'"""OO.-
8 8 8
L 2 L 1
- e m = 0y
3 3 5 3
L 47 9 9 3
3 2+ 8 8 3

and so on

which may be represented more concisely by

B{r} = 6K{y1; yor y3 l..} .

Since K is trienguler, K~1 is recdily detemmined,
relation

1

{Y1’ y2 -oo} = gK_1B{r1, 1'2 --c}

can be deduced, From (27} end (30), it follows that

1 1
- =88 p = -K'B
P 5

where § represents the matrix in (26).

In expanded form

ot iy

ees(29)
and from (29) the

vs+(30)

oo (34)

P

LR}
~



1 1 1 - 1
P = - -y -y — 0 C 0 . *
5 P 2 18
=2y 1, 2
- 0 C 0 » .
9
9 -9 13
-y -’ —— c 0 O . [ ]
2 2 (S
-80
-16 1L - 3 0 0 + «..(32)
9
73 =183 359 B8
bt - habiiag ‘9 - 0 ] L}
2 6 18 3
-130, 344, «£38, 30, 22 3
itom - -1 . .
3 9 3
L. L ] L ] [ ] [ ] * L ] lﬁJ

It should be remembered that the above operator has been derived
on the eassumption that y, = C. One should not therefore expect to get
correct slopes with the above form of p for tems of lower order then
t2, In scrial fom

3 = 82 {1, 14,9, ...}
end, by (32}, it follows that
p {t2} = 8{2 4 6, 8) aeu} oo (33)
= {2t} .
The above result is corroot and it can be shown that, 1a gencral

pn-1 ftmf is acourately represented provided m P n. For example,
let m = 4,

Then 9 = s% {4, 16, 81,256, ' ...}
p{th s 83 {4 32, 108, } '
= {ut3}
p® 4 = 4p (6} = wps3 {1, 8 27, 64 ..}
e 45%{ 3, 12y 27 ves } vee(34)
= 12 {3}

P = t2p82 {1, 4. 9. 16 ..}
2ub ﬂ92:3:1¢-.--}
a {t} A11 /

4]

n
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A1l the above results are correct but the process breaks down on further
differentiation. It is found that

p{t} = b {1y 2) 3s Lk eer}

= l:: E: 2 cinne } # {11 1, 11} .”(35)
3 3

This is because (26) is not true when y, # O

In Ref. 1, it is suggested that e differential equation of the
form

(aopn + B.1Pn'-1 + e an)r = a "'(36)

oan be represented in the serial form U {r} = {e} s where U is an
equivalent matrix operator formed by substitution for ®, o1 ete. and
summetion. It seems to the writer, in view of the precoeding results, that
such a representation might not be valid in gencral., This criticism also
applies to the operators used by Tustin since he obtains therssult,

p it}

fl

p6{1y 2, 3114-00-}

.o (37)
{2, 0, 2,0, 2. }

by the use of (22). Purther differentiation makes matters even worse.

This diffioulty cen, however, be partly overcome if y, 4 0 is
assumed, and (26) is repleced by

‘&'o,r1.r2. --} = b Y "BY 3Y < 0 0 0 . . . yo
9 19 -5 1
cr em e == 0 0 0 b e s ¥4
2h 24 24 24
1 L 1
- - - O 0 0 0 . » . Yy
3 3 3 2
5 9 9 3 | +++(38)
- - - « 0 0 0 . . . ' ¥
8 8 8 8 |

‘ 1 4 2 4 1 ,

- - - - = 0 0 4+ o . ! .
3 3 3 33 |
1 L 17 9 9 3
- - - - = = {J . » .
3 3 2. 8 8 8
1 b2 4L o2 L oA
3 0303 3333 ||

E 6 R {yo’ y‘lj Y23 co.}
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where Y is an arbitrary factor which is ecssumed to have tho valus 1
in the subsequent enalysis. The above fomm of R ves t g correc value
of r when 1y 15 14 1 ..} ’ {y} = {% ’ ?t

For v} {t3} s the value of vy 1is in error® 'but 9.11 the other
valuges are corroct. Henea, if we write

1 (N
- = GR, &nd § =1 - R Iy onl(39)
) b

where R 13 defined above and 12""i 13 the inverse matrax, it follows frem
(38) that

P {r} = { y} ’ -..(hO)
and P {t} = {1, 1 ¢ o » 1} . Unfortunately; howover,
when ¥ = 4 is essumed in (38)
5 1 101
52 {t} = {2, = = == —, s0uid voo(tt)
N 12 12

instead of zeros. However; 1t seemg that if ropeated differentiation of r
in {36) nevor leads to a function which 1s approximately constent over a
peI‘lOd of time, the differential equation (365) can bo represented in numerioal

d
form provided P = =-- is of the form given by (38).
dt
The matrix R~' ocorresponding to R as defined by (38) is

e -

1 3, -3 1
R-1 = b ] - -3 0 0 . . °

LY 2 3
-1 -1 1, -1
—— = ""‘, 0 0 . . [
12Y 2 6
1 "'1, 1 1
=" ) - ¢ 0 [ . .
12v 2 3
-1 3 ‘3’ 11
- -3 -y 0 G . . .
w2 ™
11 "‘5, 17 "23 3 ] O - - -

=Y Sy e

i-12 = 2 3
'y 23 - =59 103 =9, 8,
- --,, - - v— L . » .
12Y 2 . 3 6 3

E
L ) ‘Ad s0 on.
In /

o % m W oM m o e = e A e o W o m m o ow e w om - e m o o = owm e e ) -
’

% N.B. The crror in ro can be sliminated by taking more terms in the
first row. Tho elemaents are the coefficients in the expansion
of ¥(1-x)m,
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In practi?e, however, 1t would perhaps be more conveniont to
express R end R as ratios. This cen readily be done, for
premultiplication of R by T {1, -1, 000 ..-} leads to a triangular
matrix of gimpler form with zero elements in the bottom left hand corner.
The corresponding formm for p, however, 18 not gquite asz simple ag that
given in (22),.

5. Many degreces of fresdom

Tho analysis of paragrephs 2 and 3 can bo cxtonded to anclude
cascs where many degrees of freedam are inveolved as would nommally be the
caese in airoraft responsc and flutter resecarch. For simplicity, let
two degraees of freedom be sssumeds The dynamical cquetions of wmotlon for
such a system con be expressed in the form

(21407 + byyp + eqq)z + (2y00% + byop + 0508 = H(t) ,

voo(42)
(a21p2 + bo4b + 099)3 + (agpp? + DooP + 0pp)8 = G(t)
where z end © represent time dopendent variables and F and G
represent externel forces or inputs.
In metrix notation (42) reduces %o
(ap2 + op + o) r(t) = oft) veo(13)

where () = {z, 6} , and  ot) {7,G}

ity

Now let it bo supposed that z(t) and 9{t) have been measured in
flight for partioular forms of F(t) ond G(t):. Then, if & represents
the matrix operetor corresponding to unit 4 i1nputs (or unit impulses)
rcelations of the following form ere valad for lincar systems,

bq {F} + 249 {6}

oty
| 3]

——st
11

oo (L4)
where A = —511 byoi 2
1821 P22
and & etcs are triangular sub-matrices corresponding in form to the

operstgls A(d) or M(a) defined by {4) end (12) respectively. In a
more concise form (443 is expressed as

{r} s 4 {’3 } ’ ere (15)
and henoe e} = A~ {r}. eee(46)

Equation (46) is the mmerical oquivalent of (43) and it cen be shown in
this case that

{9 } = ’A'H ﬁ22 - A12A21 {-1 5\22, - 012 {I‘} oor(lb?)

Ak 844

and /
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and: that the following operators arce approximately equivalent,
it

21 by

Extension of the sbove analysis is relatively straight forward.
Tho numeracal work inorcases rapidly with the number of degrees of freedom
and 1f the response over a long period were required, it would be almost
prohibitive unless & could be tasken reasonably large. It may be,
however, that the operztor & ocen be represented as a ratic of two simpler
matrices, This would probably be possible for the elements in each column
of the sub-matrices setisfy certain recurrencs relations. If this were
g0, the numerical work would be reduced snd the acouracy of the analysis
improved (see peregraph 6).

6. Simple Appliocations

(i) Calculetion of Response

. In order to try out numericaliy the Tustin method and the
alternative scheme suggested, the following equation for an undemped system
was consiadsred, nemsly,

(P2 + TE2)r = £ .--(143)
d
where p 5 ==+ It can readily be established that the response
i at

a(a) due to a 4 wunit input is in this ocse given by

d(ﬂ) = {R1; R2“2R1: R3-2R2 + R'l’ 'ERY) Rﬂ— 1+Rn_2'-a-} .o-(50)

1 / nd Sin n ®o
whare Ry = = o D S + The rosponse dus to a unit ampulse
5\ w
is samply
ginwt
d(t) g """",k"'" o (51)

The response dus to e goneral input e(t) is then expressible in a form
similar to (1), nemely,

[rfala)}] o, ves(52)
or in the alternative fomm givan by (12), namely,
r = &M (a) e 000(53)

where M(d)y.is defined by (13) end (51)s Approximate veluss of ¥
given bx3L52ln&ﬁd {53} for particular inputs ars canpared with the true
response glven~by . ,

1
oL Trru = ;;f Sin'ﬂ; (t"’:) e (T) d'f,'
o)

!

ese(50)

in Figs. 4 end 5. T™wo cases are considered, ngmely.

- (a)/



-18-

(O.) e(t) = gin Tgt, svenss O< t< 1
= 0 t > 1 noo(55)
(o) o(t) = sin Tt  eeeres t> 6

for which the excot solutions ore

gin T ¢ t cos it
(a) r(t) L et bl shadadeshadest [ XN RN 0<t ( 1
2% 2 27
cog Wt
5 = memesuae R R Y R RN t } 1 .0.(56)
2T
sin nt t cosTm ¢
(b) r(t) - '--'""é" bl T T - ——— [ FENFYEEN] t > 0
2n 27

As far as the calculation of the response due to a perticuler input is
concerned, the alternative method suggested in this note eppears to gave
good agreement with the exaot veluss and to be slaghtly better then the
Tustin method, but for all practioal purposes the latter scheme segms to be
sufficiently accurate. It was olso found thet the responses d(A) and
d(t) duc to a A unit end & unit impulse respeotively could be dotermined
with ressonable accurscy from (52) and (53), when the exact volucs of

{t) and e(t) woere assumed, as shown in Figs. 6 and 7. In fl:ght tests,
both eé t) end r{t) would be measured and the problem would be to determine
a(a) (or a(t)) so that the reopomse due to any generel input oould be
estimated. Slight errors in r(t) and e(t) might, however, lead to
trouble duc to the form of the simultaneous equations which dotermine the
sorial ordinates representing d{4)s The cxponded form of (52) is

1‘2 = d2@1 + d.1@2 '0'(57)
r3 = d363.| + dzez + d163 and so on.

end it is clear that an error in d4+ for instance, would affect the value
of 4, and all the other ordinates. When r and e are approxamately
proportional, as might well be the cesc, the above set of equaetions

hecomes illwconditioned as 1 « d44e¢ would tend to zero emd the valuo
obtained for dp, for instance, would probably be ineccurates These
troubles ocould to some extent be evoldad if an input epproximating closely
40 the form shown below could be applied in flight and the response measured

t
3<t) = g!a-o«t@
3(¢) b
} \\‘ = 1l¢0't }6
Y

Flia 3
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If R(t) represents the rosponse due to such en input, the reponse due to
a A input vould be given by

a(a) = R(t) - R(t=5), vee(58)

but even in this case d(ﬂ) would be gilven as a differance and would in

the limit correspond to the slope of R(%). By drawing smooth ourves
through the measured valuss of R{t) before taking differences, -one might,
howevers be sble to get rensonsbly sccurats values for d{A). It is
thought, however, that the responsc at time t = nd, n » 2, dus to any

26
trensient inout e(t) such that a(t) dt = & would oorvespond closely

to the response due to a & unat. ° In flight it may therofore be
uneocessary to apply inputs of a purc & fom to get a good estiamate of

the response dus to 2 & unit input. If this reponse oould be measured
directly,s the numcrical difficulties arising from inversion would be avoided.
The reliability of the results obtained ocould be checked by making use of
the estimated d(A)'s to calculate the messured response due to some

more practical form of e(t) which could be applied an flight. A possible
form of input might be

1 - cosTl
(O) e(t) = m———————eem—1 L XN NN 0 <t<1
2
oo-(59)
= 1 t >
end for the simple system considered here the response to such sn input
is given to recscnable accuracy by the Tustin method {see Figek)e The
true response for this casc is
1 1 —ooaTt ¢ k
(t) = -- mmmmpmmmes - -sin Tt] , ... 0 €t €1,0
27 2
.o+ {60)
1 sinm t
= - - e ] seso e t .>/1!O
2 =
(ii) Cherseteristic roots
In general ths free motion of a2 system in any of 1ts degreaes
of frgedom oon be represented an the form
Mt Aot a3t
d(t) = A16 +A26 + Aje + sconesre 000(61)

where Aq» A, coto. are the cheracteristic roots and A4, Ay, eto. oconstants
determined b¥ the initaal condations. The corresponding serial fomm of
solution is

{dr} = A‘] {XJ} + Az w + Aj {zn} + ... oo.(62)
g0 h2d

where x = e 4 ¥y &8 @ eto., and the ocurly brackets denote ocolumis

of the values for n = 4, 2, 35 ess 0t0s It follows fram (62) that

aquation /
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X0y = dpq = A" (x-y) + A3z (x-y) + cto.
Fxdy ~ dped) = (xdpyq = dpep) = A32°[ y(x-y)-z] + eto.

and so on.
Henoe, in general, when the number of roots is finite the ordinates dn
will be lincarly related. When there are only two roots, for instance(53)
gives

ess(63)

d:n-|-2 = (x+y)dn+1 - xydn = 0 -.0(611-)

It follows from this that 1f the serial numbers d, satisfy a relatiom
of the fom

8odnem + 81 Gnem=1 * +se  Bpdy = O vos(65)
which has solutions &, = pn, then Xs ¥» 3y etos will be the roots
of

&me + ﬂ-‘pnl-‘t s v % eﬂl = O) '0'(66)
and since x = e116, ¥y = 61263 gtce the charaoteristiocs roots nN,A2,

etc, can be detemined provided & is sufficiently small.e If some
of the modes are highly demped, however, the order of (66) may be reduced
sines, in practice, O would not be infinitesimal,

For the sumple example considered & = 0.2 was assumed, and
it wes found that the ordinates of da{A) given by (50) satisfied the relation

Qpgp = 10618 &g + & = O s s (67)
The roots of the corresponding characteristio equation

P2 - 4.618p + 1 -= 0 ve.(68)
were found to be ‘

P = 0.6090% 0.58781 = ¢ T2TE vea(69)

as was expeeted.

(iii) Dafferential Equation

When the differential equation defining the motion is known, as
for instence in (49), it can be represented in time series fomm by
substituting for p. By (22)

2 T{1, -1, 000 ...}

p = - e n )" vee(70)
8 T{1, 1000 sesd}

and on substitution (49) yields in serial fomm

b4 T {1: -2, 1,00 u.}

s\ {r} = {e}s 0ee(71)

52 T {4, 2,1 00 varea}

where /
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where { r } and {e } represent columns of serisl ordinntes.
Premultaplication of both sides of (74) by T { 4, 2, 1, 0 0 0 444}
leads to an equation of the form

li_ -

"2 T{1’ "2, 1,00-.0} +752T {1; 2]1,00.-}{1‘} = {6‘} 2

&

eea(72)

which may be written

L 8 4

2 2 2
T - - - 2 - o 0 0 O [ XN = ? [ R X ]
62 + M=, 52 + Ty 52 + 0% Uy Uy {I‘} {0 }’ (73)

A typical equetion of the set represented by (73) is

L 8 4
(5—5 + 7'|.2 rn+2 - g§"2112 Tpeq t gé- +TL2 r, = 6;14-2 .-.(7&-)

ond, when o), = O is essumed end 1, = pB is substituted, (74) reduoes
to the gquadretic

8 - 22
— ;_;_;c_ég.é._ p + 1 = 0 000(75)

with the roots p = 0s82035 £ 0.57491 for & = 0.2

It will be’notiood that the roots obtained differ from the
exact values given by (69). Sinoo thc coefficient of p in (68) is
2 cos O, for exact agrecment, the rdntion

L - T2 52
CosT 6 T i b o e ...(?6)
o+ RS2

must be satisfied, and this is the case when & —s C.

In proctice, however, the differential squation defaning the
motion of a linear systam is usually unlnmown end one is faced with the
problem of determining 1ts characteristics from a knowledge of the
reponses dus to known inputs. -: For the particuldr example oonsidered the
raspmse and the iriput a7 relatBd’ inrt&€ms of & ‘units-by (1), and it is
shown in Pig. 6 that the Aa(A) resporse dus to unit & input cen be
gstimated with reascnable accuracy., If the eoxact valuss of d(A) as
given by (50) are substituted in A(Q) the-resulting triangular
matrix can be expressed fully ih the form

A(a) =/
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A(d) = 0.00654 0 0 0 0 0 . :ﬂ
0.,0362 0,00654 © 0 0 0 . o
0.0585 0,0362 0.00654 0 0 0 . e
0,0585 0,0585 0.0362 0.,00654 O 0 . e
0,0362 0.0585 0,0585 0,0362 0.,00654 O .

0 0.0362 0,0585 0,0585 0,0362 0.00654 .

-0.0362 © 0.0362 0,0585 0,0585 0.0362 . .
-0.,0585 -0,0362 O 0.,0362 0.,0585 0.,0585 .+
-0,0585 =0,0585 ~0.0362 0O 0,0%362 0.0585 o+
-0.0362 ~0,0585 -0.0585 =0,0362 0O 0.0362 &
0 ~0s0362 «0,0585 ~0,0585 =0,0362 O .

_ and so on B

g [T { 0.00654, 0.,0362, 0.0585, 0.0585 0.0362, O, ~0,0362,6tc.}
oo (77)

The inverse of the above matrix® is

[a@]™ = [T {153, -847, 3323, 12180, Luk4O0, 162200, 591000, ~2155000 eto.) ]
v++(78)
and the fact that the elaments incresase and alternate in sign should be noted,
The numerical squivalent of (L9) is
[a@ )1 r} = (o ves(79)
whera [ A( d) ]'1 is defined above. If o is assumed to be zero after a
finite time, sey ep = Oy r 23, then (79) yields the following set of

equations

33231 = 84Try + 15575 = O,

-12180ry + 3323r, = 847r5 + 1531, = O, .o (80)
W) Ory - 121801:'2 + 53231'3 - 84711'_ + 153:'5 = 0
and SO One
Ir /

# More signifiocant figures were kept ain the sotunl ecsloulations,.
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If r = o is assuned and p is substituted for 67‘6:
the above equetions yisld a set of polynomiel equations whicsh should lead
to the cheracteristic equation of the system namely

p2 ~1.6180 + 1 = O ves(81)

It should be noted that the characteristic roots are not given directly
by the polynamial form of (80)s However, if r4 and rp ere first eliminated
the true recurrenoc relation is obtained, nomely

r3 = 1.618x, + r; = O. ese(82)
Similarly, the n®M equation an (80) reduces after climination to
rp - 1.618rp,4 + T = O ves(83)
It then follows that the characteristic roots would be given by (81).
Alternatively, }A(d) can be expraossed ss A ratio of two simpler

motrices ond (81) can be derived directly, It can be shown
that

[T {1, 3.921, 150,0,0, eed} ]
aA{da) = 0,0065%4 --i-i------:--:---: ------ } «eo (8L}
[T {1, 1618, 1,0,0,0 4ss}]

and that

iy {1’ "‘1'618) 1’ 0; 0’ Op c-c}
155 --------------- e — 000(85)
T {1, 34921, 1, Oy 05 Oy ses}

[a(a)]™

1

When this oxpression is substituted for [A(a)]™' in (79) and the whols
equation is premultiplied by the dencminator, the following equation is
derived, namcly,

T {1, ~1.618, 1505005 ves § {r} = 0,00654T {41, 3.921, 1, 0y O, 05 }

e

This equation leeds directly to (81).

7+ Concluding Remarks

The simple exemple considered revesls some of the difficulties
which araise in the numerical anelysis of the bshaviour of a system and
shows the adventages of using matrix notation. Before gensral conclusions
cen be drovn ag to the advisability of using this teokmique in the study
of eircraft stability, however, further work will have to be done. It ds
suggested that a detailed numerical study of the lateral stability of
a particular aircraft be made where the stebility derivatives are assumed
to be known and where the responszes due to assigned inputs could be
calculated. The inputs would be chosen to correspond to such as can be
applied in practice and the calculated responscs could be regarded as

corresponding /
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corresponding to the rdsponscs meesured in flight. An attempt could

then be made to determine the stability choracteristios of the airoraft from
8 knowledge of the responses due to certain specified inputs as one would
have to do in enalysing flight test resultss In this ocase, however, the
truc characteristics would be known end the accuracy of the method of serial
representation could be checkeds Sultable data for such a oheck calculation
are given in Ref. 2. ‘
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