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SUMMARY 

The Crocco-Lees method is applied to interactions between shocks 
and boundary layers that remain laminar throughout. The underlying 
assumptions of the method are critically reviewed, and the mathematical 
analysis imolved is presented. Results obtained by solving the resulting 
equations with the aid of the N.P.L. DEUCE computer are discussed. They 
are found to agree qualitatively with those of a more recent method. 
Cooling the wall and the use of distributed'suction are both found to reduce 
the extent of regions of separation. 

I. The Type of Problem to be Considered 

Interactions between shock waves and boundary layers frequently 
occur in practice, but often the flow configuration is complicated. A 
basic understanding of such practical instances can, however, be gained by 
studying relatively simple cases. The cases to be considered in the 
present paper are those shown in Figs.1 and 2. It is assumed that the 
flow is two-dimensional, and that the boundary layer remains laminar 
throughout the region of interaction. This latter is an important 
assumption, since it is known that if transition occurs within the region 
of interaction it greatly affects the flow. However entirely laminar 
interactions are far from academic, since high-speed aircraft usually fly 
high, wi,th correspondingly low Reynolds numbers. 

Heat transfer between the airstream and the surface often arises 
in practice, and it can have a large effect on the interaction. Hence cases 
with heat transfer are studied in the present paper. Distributed suction is 
also considered as it may be of practical interest in the future. 

2. Introductory Outline of the ,Crocco-Lees Method 

The theoretical method used in. the major part of the paper is that 
due to Crocco and Lees1r2, 394. An account will be given in this section of 
the underlying approximations and physical assumptions of the method. 

Consider the cases shown in Fig.1 or Fig.2. Here the pressure 
rise imposed on the boundary layer by the incident shock, or by the change 
of wall slope, has an influence on the flow upstream of the shock or corner. 
The pressure begins to rise above its upstream value, and this causes the 
boundary layer to thicken, because near to the wall there is a region of 

low-speed;l ----------------------------------------------------------------,--------- __ 
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low-speed subsonic flow. The thickening of the boundary layer deflects 
the external flow outwards from its original direction, so generating a.ba.nd 
of compression waves. Clearly the boundary-layer thickening must be 
matched to the assOciatea compression waves, and finding the conditions 
under which the two processes can be zin equilibrium constitutes the 
principal task of any theory of shock wave boundary-layer interaction, 

AcoorGng to the theory, the pressure distributions at the wall 
upstream and downstream of the point of shock impingement in Fig.1 will be 
identical with those upstream and downstream of the Corner in Fig.2 if the 
pressures and external-flow Mach numbers at large distances upstream and 
downstream are the same. Experiment5 shpws that in fact, the upstream 
influence is considerably bigger for the case of Fig.l. Hence the 
assumptions which imply the identity of the tw9 cases are suspect. These 
assumptions concern the nature of the flow near the point where the shock 
strikes the boundazy layer in Fig.1 or near the corner in Fig.2. Thus it 
is assumed for Fig.2 that the profile of the velocity component parallel to 
the wall is the sIlIile just downstream of the corner as just, upstream of it, 
though in reality it seems quite likely that the corner would cause abrupt 
proportional changes in the speed of the slowed+moving fluid, thus changing 
the shape of the profile near the wall. Likewise in Fig.1 it is assumed 
that the shock reflects locally as a.n expansion, which is such as just ta 
cancel the rise of pressure through the incident shock. Whilst this is 
broadly true, the detailed manner in which the shock penetrates into the 
layer and reflects from it is not reproduced in the analysis, which assumes 
the process to be compressed into a point. Also the velocity profile is 
assumed to suffer no abrupt changes on passing under the point of shock 
impingement, and this assumption, like the carresponding one in the case of 
Fig.2, may be ti error. 

though the 
It is easiest to discuss the method in connection with Fig.2, 

Fig.1. 
arguments only require slight modification to be applied to 

In inviscid flow a shock wave would spring from the corner in 
Fig.2, but the boundary layer has a "softening" effect, so that near the 
wall there is a band of compression waves, 
further out. 

which only coalesce into a shock 
Hence outside the boundary layer, but near the wall, the 

pressures and. flow directions are related to each other by the simple-wave 
flow relations. It is assumed that the boundary layer has a definite edge, 
along which the simple-wave flow relations apply, and that between this edge 
of the layer and the wall, the pressure is constant along lines perpendicular 
to the wall. These assumptions are not strictly compatible close tQ the 
corner, but they are nearly so if the change of wall direction at the corner 
is fairly small. This would normally be the case for interactions 
involving entirely laminar layers, since a large change of flow direction 
would'probably cause transition ta OCCUT before the boundary layer 
reattached. However, the assumption ooncertig the pressure within the 
boundary layer is open to more serious objections. In reality the boundary 
layer has no definite edge, so this is defined somewhat arbitrarily. If it 
is chosen so as to include too great a proportion of supersonic flow, the 
boundary layer so defined would grow thinner on encountering a rise in 
pressure, because such a rise would cause the supersonic stream tubes to 
oqntract. A thinning of the layer is incompatible with the generation of 
compression waves in the external flow. In the terminology of Crocco and 
Lees the boundary layer would be "supercritical", whereas if defined as 
normally, so as to include a smaller proportion of supersonic flow, the 
laminar boundary layer is "subcritical". The root of the trouble is the 
assumption.that within the boundary layer the pressure gradient is zero 
normal to the wall, In reality the boundary layer merges gradually with 
the inviscid outer flm, and in the outer, supersonic, part of the l&yer, 
the pressure and the flow angle tend tQ be constant along Mach lines rather 
than along lines perpendicular to the wall. It is because of this that the 
outer-flow streamlines can converge whilst at the same time turning away from 
the wall. A Similar situation arises with regard to turbulent layers, where 
there is little latitu&e in the definitfon of the edge, and the &yer is 



-3- 

nearly always flsuperc~riticaltl according to the theory. This leads to an 
apparent fundamental distinction between laminar (subcritical) and tunbulent 
(supercritical) layers, whereas in reality there is no such absolute physical 
difference. For both types of layer, a rise of pressure causes the inner, 
slow-moving, stream tubes to expand, and this deflects the outer flow away 
from the wall. 

Although the arbitrariness in the definition of the edge of the 
laminar layer may seem from the above discussion to involve great 
uncertainties in any results of the theory, it will be seen later that 
"reasonable"choices for the edge give results that are in fair agreement. 

It is necessary to relate the thickening of the boundary layer, and 
the consequent deflection of the external flow, to the pressure distribution. 
This is done by integrating the equations of continuity and momentum across 
the layer. The resulting equations are combined, and put into a form 
involving certain parameters. These parameters depend on the shape of the 
velocity and temperature profiles, and accordingly they vary through the 
region of interaction. Relations between the parameters are obtained as 
follows. Suppose the considerations of the equilibrium between the outer 
flow and the boundary layer, governing the pressure distribution, as discussed 
above, could be set aside. Then if the wall temperature were the same at all 
points, and a special form of pressure distribution could be imposed on the 
layer, the profiles would not vary in shape with distance along the wall, but 
only the thickness of the layer would vary. For incompressible flow the 
distribution of external velocity needed to produce these "similar" profiles 
is of the form U = kxn, and a more complicated family of pressure 
distributions, related to 
Stewartson transformation6 

the incompressible lower-law family by the 
, produces the same result in compressible flow. 

For these special distributions, the parameters of the'crocco-Lees method 
would take on values that would not vary with distance along the wall, but 
would depend only on the index n of the equivalent power-law velocity 
distribution, and on the ratio of the absolute temperature at the wall to 
the stagnation temperature. This ratio would be unity for zero heat transfer, 
since the Prandtl number is assumed to be unity. If there is distributed 
suction through the wall, varying with position along the wall in such a way 
as to maintain similar profiles, the parameters would, in addition, be 
dependent on a factor related to the rate of suction. Thus, the parameters 
in these circumstances could be regarded as functions of one of their number, 
of the wall-temperature ratio, and of the suction factor. These same 
relationships are assumed to apply for general types of pressure distribution, 
and this assumption makes the integration of the equations possible. It is 
thus, for example, assumed that the shape of the velocity profile at 
separation is fixed, and is the same as that at reattachment. 

Thus the essence of the Crocco-Lees method is seen to be this, that 
by suitable manipulation the equations are reduced to a form involving as 
unknowns certain parameters whose interrelationships can plausibly be assumed 
to be relatively simple. This procedure differs in no essential respect from 
the well-known method of Pohlhausen for low-speed flow, based on the von K&m& 
momentum integral. equation. The parameters arising in that equation are 
different from those of the Crocco-Lees method, but they are related in the. 
same way to a one-parameter family of profiles, such as the similar-profiles 
family. It may seem at first sight to be a fundamental difference between 
the two methods that one of the parameters of the Crocco-Lees method should 
be concerned with the entrainment of air from the external flow into the 
boundary layer. This focusses attention on the way that the higher velocity 
external-flow air mixes with the slower-moving air in the boundary layer, SQ 
giving up to it some of its mgmentum, and for this reason the theory was 
originally described as a "mixing" theory. This fundamental physical process 
may appear to be completely overlooked in the Pohlhausen method. However, 
aCCQUIIt is taken of it because a similar transfer of momentum takes place at 
points within the boundary layer, as well as at its edge, and the von K&m&n 
momentum integral equation is the mathematical expression of just this overall 
prooess. 'Thus no absolute fundamental difference is involved. 

There/ 
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There is, however, the following distinction, A usual feature of 
methods of the Pohlhausen type is that not only the integral of the equation 
of momentum across the boundary layer is satisfied, but also the equation 
itself is satisfied at the wall. In this way the curvature of the velocity 
profile at the wall is related to the local pressure gradient. The other 
shape parameters of the profile are assumed to be related to the profile 
curvature at the wall. In the Crocco-Lees method the equation of motion is 
not satisfied at the wall, but in place of this there is introduced the 
condition that the rate of entrainment of fluid into the boundary layer from 
the external stream is related to the shape of the velocity and temperature 
profiles. No parameter depending on the curvature of the velocity profile 
at the wall is used. This is a point in favour of the method, since the 
overall characteristics of the profile shape are far from uniquely related 
to its curvature at the wall. On the other hand, the dependence of the 
Crocco-Lees method on an arbitrary definition of the edge of the layer is an 
unsatisfactory feature that is absent in methods of the Pohlhausen type. 
Moreover, whilst it is not obvious which charaoteristic of profile shape 
determines the rate of entrainment of the external fluid, it seems quite 
likely to be associated with the curvature of the outer parts of the velocity 
profile, so that it may be no more closely related than the curvature at the 
wall to the broad, overall shape of the profile, as expressed by parameters 
such as K. 

The relationships between the Crocco-Lees parameters as used in 
the N.P.L. calculations differ in an important respect from those proposed 
originally, and used in earlier calculations7*8. The differences Occur in 
the values of the parameters for separated layers. Originally, the profiles 
for such layers were treated as though there were an inner region of 
motionless flow, whilst the outer part of the velocity profile was assumed,to 
be the same in shape as the profile at the separation point. However, amongst 
the similar-profile solutions, there are certain profiles, called "lower- 
branch" solutions, which resemble the profiles of separated layers, as they 
have a region of reversed flow near the wall. Stewartsony first &ew 
attention to the possible use of these solutions as a representation of the 
flow in a separated region. They have been used in the present calculations 
both because they seem better founded than the original forms, and because 
they give rise to predicted pressure distributions whose general shape agrees 
better with experiment. A further, but minor, difference between the N,P.L. 
calculations and the earlier ones is that in our work viscosity is assumed to 
be proportional to absolute temperature. This assumption is in any case 
involved in the Stewartson transformation, which is used in deriving the 
theory, and its adoption somewhat simplifies the analysis. 

To summarise, then, the main assumptions and approximations of the 
Crocco-Lees method are as follows! 

(I) Boundary-layer theory is applicable, the pressure being treated 
as constant across the layer. 

(2) Details at the point of shock impingement (Fig.1) or near the 
corner of the wall (Fig.2) are,only of local importance, 

(3) The velocity and temperature profiles mey be taken to belong to 
a family of "similar solutionsn, from which the basic parameters 
are derived. 

(4) The equations which are to be satisfied are based on continuity 
considerations, on a momentum integral relation, and on an 
equation relating the thickening of the boundary layer to the 
pressure distribution. 

3. The Equations Used 

Four basic parameters are used in the Crocoo-Lees method, ChQsen 
in such a manner that according to the Stewartson transformation the 

relationship/ 



relationship between them will be independent of Mach number. The first 
of these parameters is K, which depends on the shape of the velocity and 
tempkrature profiles, and is'defined as 

I 
K = --- , . . . (I) 

mu e 

I 
6 

where I = p$dy,the momentum flux in the boundary layer, 
0 

I 

6 
m= pudy, the mass flux in the boundary layer, suffix e denotes 

0 

conditions at the "edge" of the boundary layer, and 6 (equal to ye) is 
the "total" thickness of the layer. A second parameter, C, is related to 
the entrainment of fluid into the boundary layer from the mainstream, from 
which entrainment is subtracted any removal of fluid from the boundary layer 
by suction at the wall. C is defined by 

c = ” CM = ” 
pe I 

clci 
--‘$-cQ Y 

pe dx 
I 

. . . (2) 

where 16 is the angle between the wall and the streamlines at the edge uf 
the boundary layer, CM may be termed the %ixing coefficient", and C Q is 
the suction coefficient, - pwvdpeuey where suffix w denotes conditions 

at the wall. A parameter o, related to the ordinary coefficient of local 
skin friction Cf, is defined as 

cr = mCf ------w-v 
20 - @ccl, 

l *a (3) 

A final "shape" parameter, $, depends on the Mach number at the edge of the 
boundary layer and on the shapes of the velocity and temperature profiles, 
and is equal to 

JI = t( !i$L-), . . . (4) 

where t is the ratio of the temperature at the edge of the boundary layer 
to the free-stream stagnation temperature, 

These four 
the following way. 

It follows 

parameters, K, C, d and $, arise in the equations in 

directly from the definition of 'CM (equation (2)) that 

dm 
-- = PUC 
dx e e M' ..* (5) 

By integrating with respect to y from 0 to 6 the momentum equation of 
the boundary layer, viz. 

au au 
pu -- + pv -- = peue 

ax a7 
, 

and making use of the equation of continuity, 

a (PU), I-- 
ax 
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a(pu) a(f.4 
-w-w + w-u- = 0 9 

ax dY 

we obtain 

dI dm dU 
I = u 
dx 

- t speue -2 - Tw + 
edx 

p SC 
ax 

e e Q' 
. . . (6) 

where r is the shear stress at the wall. 
W 

It is assumed in deriving 
equation (6) that 6 is sufficiently great for the shear stress at 6 to 
be virtually zero and the velocity at 6 to be virtually equal to ue. 
This sets a lower limit on 6. An upper limit is set by the requirement, 
discussed in the previous section, that too great a region of' supersonic flow 
should not be included within the region, from y = 0 to y = 6, over 
which the pressure is assumed to be a 

From equations (?) to (6) 

aK B&l 
a = w-m 
ax mdx 

where B = (1 - K)(l - cr) t c 
d 

CM, 
velocity), and a0 is the stagnation 

function only of x. 

rlr aw +-- 
wtax’ 

*** (7) 

w = ue/sO, ( a reduced free-stream 
speed 0f soma. 

Another basic equation can be regarded as arising from the 
interaction between the boundary layer and the isentropic outer flow. It 
states that the rate of boundary-layer growth, W% as calculated from 
the free-stream deflection angle, must be equal to the value of d6/dx 
calculated from the chosen boundary-layer parameters. As already discussed, 
the boundary layer is considered to have a well-defined edge 6, which is the 
dividing line between it and the isentropic outer flow. From the definition 
of the mixing-rate coefficient CM in equation (2) 

as 
-- = 
ax 

CM + $b + CQ’ . . . (8) 

!l!he angle # is related to the supersonic outer-flow velocity by the simple- 
wave-flow equations. For these we use a second-order approximation, namely 

where a E (ii@ -,+-b, 

Y-1 
b E + --- (2 - I)& + y’1 ($L ,)d, 

4 2 4 

6 9 value of w when $ = 0, 

k m Mach number corresponding to %. 

Replacing 9 in equation (8) from equation (P), we have our first 
expression for d6/dx, in terms of the outer-flow velocity. 

Before considering the second expression for d6/dx it should be 
noted that in equation (P), when the analysis is applied to the situations of 
Figs.4 or 2, there are two possible values of f. One of these, wo, is the 

value/ 
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value of w corresponding to flow parallel to the wall upstream of the 
shock or corner, and the other value, wz? corresponds to flow parallel 

to the wall downstream of the shock or corner. Thus in Fig.1 the direction 
of the w flow is the same as that of the w. flow, but w is less than 

wO becauie of the incident and reflected shocks. In Fig.Zjmon the other 

hand, w is less than w because the direction of the w 
0 

flow is 

inclinedWupwards to that of the w Upstream of themshock or 
corner e used for % i8 Euston (9) , and downstream, w will 
be used. 

w. willb 
W 

The second expression for d6/dx comes from the definition of the 
parameter $ in equation (4), which may be written 

Qeue6 
m= ------ . *.. (10) 

$ + Kt 

Since the external flow is isentropic, t = ? - (y - ?)v?/,Z! and 
tdpe/dx = - pew dw/dx, If $ is regarded as a function of K, we obtain, 

by differentiating (10) with respect to x and eliminating %/dx, from (7), 

+$-to( 1 -K)+ttt 

where J E y?qJ t Kt (2 - t). Setting this equal to equation (8) gives 
the required interaction equation. However, before writing this down we 
proceed to define a dimensionless mass-flow variable 

. . . (12) 

where superscript 0 denotes free-stream stagnation conditions, and a 
dimensionless x-wise distance 

x s 
(x - “,I 
-------m 

6 ’ 
. . . (13) 

S 

where hs is the boundary-layer thickness at the separation point, and xs 
the value of x there. In terms of these new variables the interaction 
equation becomes 

w 
where E 3 -- + ta (1 - K) - JI. 

cM 

Finally, if we assume that -1 a~ T so that ~,/~" = t, the 
equations of continuity (5) and momentum (7) may be written 

ai: YGsPO P cw 
mm = -L-II mm WL 0.0 (15) 
dx p”ao PO Z 
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. . . (16) 

4. The Relations between the Parameters 

As discussed in Section 2, the parameters of the Crocco-Lees 
method, K, C, CJ and $, are treated as functions of one of their number, 
and of the factors determining the wall temperature and the amount of suction. 
The relationships between the parameters are obtained from the similar 
solutions of the boundary-layer equations. These similar solutions can be 
derived in a form which does not explicitly contain Mach number by means of 
the Stewartson transformation6, which can be written rc 

a$vd’o Pd JO \ aa/ 

at3 PU 
- = u-m- _ 

as PV -0 = 0-0 
aY ax PdYVd 

Here s is a 
and'suffix a 

stream function, so that the continuity 
stands for some datum position. For a 

the equations of motion and energy can be written 

!’ l ** 07) 

au au du a au 
PU --+pv-- = peue -A+-- /$-- 

ax aY dx ( > aY aY 

aH aH a aH 
pu - + pv -- = -- c’ - , 

ax ay ( > aY aY 

equation is satisfied, 
Pradtl number of I, 

where H is the ratio of the total temperature, ‘JI + $/2Cp, to the total 

temperature in the free stream. If viscosity is proportional to absolute 
temperature, so that pp is constant across the boundary layer, the 
Stewartson transformation applied to these equations yields 

a% as a 
--- 
a;jaz a? 

-;;; = H(;mf-;;)e+; 

as aH as aH aaH 
-0 -0 0 -0 -0 = -I . 
ay ai, a% ay a7 

l . . (18)  

. . . (19)  

Assume now that we can write 

& ~ n+l && n+l 
--..a*‘ z I \ -T"- - 

s-s = = H(V), 1 
W (n+,>~ ~~ - F\'Q), sw = . .- _ 

*.. (20) 

where 5, 

suffix w stands for conditions at the wall (q = 0), and 

F', H+ 3 as q + cpj F = Ft = 0, H = Hw at TJ = 0 . . . (21) 

These/ 
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These substitutions of course imply a special form of external-velocity 
distribution, a special type of distribution of the suction velocity 
through the wall, and a wall temperature that is constant. Under these 
restrictive conditions the equations (18) and (19) reduce to 

I?" + FF" + fi(H - Faa) + GF" = 0 . . . (22) 

and H" -I- (F + G)H' = 0, ..a (23) 

where p z 2n/(n + I), This shows that the assumption underlying relations 
(20), that the profiles of s and H as functions of y can be similar in 
shape for all values of Z, is in fact compatible with equations (18) and (19). 
For the special conditions under which these similar solutions are valid, the 
parameters of the Crocco-Lees method can be shown from,the definitions given 
in equations (1) to (4) and from equation (5) to be given by 

/c = F-," 
J 

'e 
F"dn + 1 - C+ OF'(1 - F')dq 

0 

o- = F"(o)/(l - K)C+ 

Also c CM, a/ 
involved in the term B of equations (14) and '(I 6), is given 

by 

” = 4 

‘I Fe 

q.0 (25) 

The edge values, distinguished by suffix e, in equations (24) and (25) are 
the values at q,, where F'(q,) takes an arbitrary constant value close to 

1. The usual value taken for F'(TJ,) 7 is 0.95, as this is found to give 

the best agreement with Lightkill~s asymptotic solution 
10 for the behaviour 

at the upstream end of the region of interaction. Some calculations have 
been done in the present paper, however, with F'(q,) = 0.98. There is no 

theoretical reason why F'(q,) should be taken as constant throughout the 
interaction region, though varying it would greatly increase the complexity 
of the calculations. However, it will be seen later that re-calculating a 
case using a constant value of 0.98 in place of the normal constant value of 
0.95 makes little overall difference to the results. Hence it is reasonable 
to assume that a constant value of 0.95 is satisfactory for general use. 

I 

It follows from (21), (22) and (23), that for the similar solutions 
It, C, 6, JI and C 

d 
CM are functions only of p, H, and G. ThUS 

K, C, CT and C 
d 

CM can be regarded as functions of jr, Hw and G. These 
relationships are assumed still to apply even when the conditions regarding 
the external-velocity distribution, etc., necessary for similar solutions are 
no longer satisfied. In this more general context Hw, being the ratio of 
the absolute temperature of the wall to the absolute stagnation temperature 
of the free stream, still has a clear significance, but G becomes merely a 
parameter related to the rate of suction. If G is treated as a constant, 

4 
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as it is for any particular case in the present calculations, the suction 
coefficient C 

Q 
will vary from point to point in a way that can only be 

determined after the computations have been completed. This is discussed 
further in section 6 below. 

Solutions of equations (22) and 
Pf ) 

3 under the bounda 
conditions (21) have been given by Hartree 72 

StewartsonS and by other workers. 
, Cohen and Reshotko , and 

Cohen and Reshotko give #any results 
for cases without suction but with various values of H W* 

It is for 

convenience in the use of Cohen and Reshotko's data that the approximate 
forms have been included in equations (24); Cohen and Reshotko tabulate 

the quantities 
i 

co(H - I)% 
i 

w(H - F')~Q ;'(I - F+)dn and F"(o); 
0 0 s 0 

also F'(v), from which it is easy to determine ye. 

Some of the results tabulated by Cohen and Reshotko correspond to 
so-called "lower-branch" solutions of equations (22) and (23). It is 
found that for negative values of p that are not too large in magnitude 
there are two solutions of equations (22) and (23) having the correct 
asymptotic behaviour for large values of 77. One of these solutions has a 
lower value of skin friction than the other, and is called the lower-branch 
solution. Such solutions have been investigated in detail by Stewartson 
for the case H = I, G = 0, corresponding to zero heat transfer and 
suction. Usually the skin friction is actually negative with lower-branch 
solutions, so that there is a region of reversed flow near the surface, like 
there is with a well-separated boundary layer. Values of the Crocco-Lees 
parameters corresponding to lower-branch solutions can of course be 
calculated just as easily as for the upper-branch solutions, and it seems 
logical to use them between separation and reattachment. When the 
Crocco-Lees theory was first formulated, however, it was argued that 
between separation and reattachment K, C and (r would remain constant at 
their separation values. This is equivalent to the assumption that the 
velocity profile has a region of zero velocity close to the wall, joined on 
to an outer profile which is of the same shape as the complete profile at 

*separation. Results obtained on this assumption differ markedly for well- 
separated flows from those obtained using lower-branch values of the 
parameters in the separated regions. The latter type of result is more in 
line with experiment, and hence the majority of the calculations have been 
carried out with parameter tables that include lower-branch values. 

To compute the functions for cases without suction, the data given 
by Cohen and Reshotko had to be supplemented by data drawn from Stewartson's 
study9 of lower-branch solutions for the case H = I. 

W 
With the edge of 

the boundary layer defined in the usual way as the point where F' = 0.95, 
K, C, CT and 31 were calculated and graphs drawn as in Figs.3 to 5, for the 
five values of Hw (0, 0.2, 0.6, 1.0 and 2.0) considered by Cohen and 

Reshotko. The curves for H 
W 

= 0.6 were extrapolated in conformity 
with the adjacent curves, and values were read from the graphs and tabulated 
as in Tables 1 and 2 for the conditions Hw = 1.0 and Hw = 0.6 for 
which calculations have been done. The former condition corresponds to 
cases with no heat transfer or suction, whilst the latter corresponds to 
cases without suction but with the wall cooled to 0.6 times the absolute 
stagnation temperature of the free stream. 

One case was calculated using functions which were in accordance 
with the original idea that K, C and u must remain constant between 
separation and reattachment. The table used was almost the same as Table 1 
between the constant-pressure and separation conditions, though there were 

small/ 
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small diffe?ences due to attempting to make the curves join smoothly onto 
the conditions of constant K, C and d beyond separation. 

Another case was calculated for H = I, G = 0, as above, 
W 

but with a different edge definition, F' = 0.98 instead of 0.95. The 
corresponding functions are given in Table 3. 

d 

Finally, cases with H 
W = I, i.e., no heat transfer, but with 

distributed suction such that G = 0.4 were considered. The data for 
this condition had to be calculated from new solutions of the basic 
equation (22), since existing solutions were not available.* The 
computations were carried out by Mr. A. R. Curtis of Mathematics Division, 
N.P.L., using the DEUCE computer to solve the differential equation by a 
method of successive approximation. Separation was found to occur when 
P = -0.3719, as compared with the value -0.1988 without suction or heat 
transfer. Table 4 shows the calculated Crocco-Lees parameters. Since 
the term C d CM enters the equations (14) and (16)) and is equal to 

G/!F, = G/C', it was found more convenient to tabulate Fe-"($) than 

w, as this avoided an unnecessary square-root calculation at each step 
in the integration of the equations. Also it was necessary to tabulate 
(1 - K) Q rather than o. This was because values of K above and belou 
I were obtaFned for the case with suction, whereas without suction K is 
always less than I, at any rate over the range of the tablesi when 
u = I, c(q) has a singularity, as can be seen from equations (24). The 
values of K greater than I were obtained for lower-branch profiles with 
large reversed-flow regions. In such a region F' is negative, and if 

i 

a0 
there is sufficient reversed flow, F'(1 - F'h can be negative, so 

0 
c that K exceeds I by equations (UC), despite the positive contribution to 

the integral made by the outer part of the profile. 

5. Details of the Computational Methods 

5.1 Cases without suction 

The equations to be solved, derived from equations (14) and (16), 
are dealt with in the following form: 

dlf JB + $E dw wt(- B + K'E) 
-- = -----I---m 
a ?gJK' -I- l/r) ' 'ii 

= --w--v.d------c 
a* + $1 

.e. (26) 

where t = l- 0.2 # 

J = 1.4Jlvja + Kt(g- t) 

B = (1 - K)(l - <r) 

E = C-'2;# + (1 -K)crt -$ 

# = (1 - wfi)(a + bwfi) 

b = ii 0.1 (F- I) + 0.2 (i?- I)* + 0.6 (i?- I)-& 

a = (2 -1+-b 

It was subsequently discovered that a few solutions for G = 0.4 had 
previously been found by Dr. L. Fox and quoted in an unpublished paper, 
A.R.C.42,699, by Dr. B. Thwaites. 
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iI = q1 - 0.22>-- : 

wO I upstream of shock in Fig.1 

ii = 
or corner in Fig.2 (2: < ci) 

pv, , downstream of shock or corner (z > &) 

dK 
K' = -- is derived from the table of K(JI) 

dlf 

K, C, 6 are tabulated functions of JI 

W 
0 

= Mo(l + 0.2hbdo)-' 

This pair of non-linear ordinary differential equations for $ and w in 
terms of z involves a parameter (see below) which has to be determined so 
as to satisfy the boundary conditions at infinity upstream and downstream 
of the shock or corner. We have thus an "eigenvalue" problem, and the 
large amount of computing required to determine the parameter necessitates 
the use of automatic computing aids. 

A particular case will be determined by specifying the free-stream 
Mach number MO, the value Z$ of ;: at separation, and either (a) the 

condition that the shock strength or change of wall slope is just sufficient 
to cause separation, so that separation and reattachment both occur at 
c = cs, at the point where the shock strikes the boundary layer in Fig.? 

or at the corner in Fig.2, or (b) a value of w ce which defines the pressure 
rise downstream of the shock or corner. 

Considering first the region upstream of separation (z < c,), 
the parameter to be determined is 
For various values of ws 

ws, the value of w at that point. 
the corresponding solutions for $ and w 

are found by stepwise integration upstream from separation. 

The prescribed boundary condition is that d$/dZ, shall tend to 
sero as g becomes sufficiently less than z,, i.e., far upstream of the 
interaction. This alone would not appear to define a unique solution for 
ws, but the solutions for $ turn out to have the following characteristic 
properties which do enable ws to be determined uniquely, at least for 

values in a physically meaningful range. $ decreases monotonically 
upstream and downstream from the shock, for values of ws sufficiently 

close to the true one. If ws is too large $ deviates to + o. 

exponentia.lly after a certain stage; ir ws is too small $ deviates to 
- Q) exponentially after a certazin stage. w behaves Fn the same way. 
The true solutions for w and J! lie below the positively deviating 
solutions and above the negatively deviating ones, these being practically 
coincident for longer ranges of Z: below cs the more nearly the 

corresponding initial values of ws lie to the true value. Both JI and 

w do in fact tend to virtually constant limiting values when ws is 

sufficiently well determined, so that the boundary condition is satisfied 
as far as possible. However, equations (26) show that $ and w cannot 
remain perfectly constant over the whole distance between the leading edge 
(G = 0) and some point well upstream of the region of interaction 
(see Section 6). For this would require B = E = 0 over this range 
of z, and hence the product @, which occurs in E, would have to be 
constant. Hence $ would vary with ;rS, which is Incompatible with the 
constancy of w. 
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TFie upstream behaviour of the solution $ is exploited as 
follows in determining ws efficiently. An initial guess is provided 

for ws, together with an initial correction 6 (not to be confused with 

boundary layer thickness) to be applied to ws after the first integration 

run. (6 expresses the most probable uncertainty in the initial guess, and 
too large or too small a value of 6 can greatly increase the subsequent 
amount of computation). After successive integration runs + 6 or - 6 
is added to ws as appropriate until the true ws has been bracketed, which 
is revealed by one solution going to + OB and the next to - OD, or vice 
versa. At this stage 6 is halved on each successive run and its sign 
changed as appropriate, until ws has been determined within a prescribed 
accuracy So, chosen in the light of experience so as to ensure that $ 
has reached its upstream limiting value. To detect the onset of 
exponential deviation by an automatic method use is made of a further 
observed property of the solutions $, namely that d$/e is never 
negative upstream of the shock for the true solution, so that a negative 
value indicates positive deviation. Negative deviation is detected by $ 
going below the range of the tabulated functions K(q), C(q), 0(q), which'is 
well below the ,upstream limiting (constant pressure) value. An earlier 
method of detecting deviation was based on the assumpti.on that dh'% 
decreased in absolute value throughout a run, but this was found to be false 
in many cases for the larger Mach number. 

Having determined w and hence the functions w(Z) and $(z) 
for rS -t Z& by upstream integhtions from the separation potit there are 
two distinct problems to be solved by stepwise integration downstream of 
this point (i.e., for z > ;= ). The first is to determine the parameter 
W so that the shock streng%h or change of waEl slope is just sufficient 
t: cause separation, i.e., so that separation, shock or corner, and 
reattachment all occur at ijs. This is quite analogous to the upstream 
problem, $ d ecreasing monotonically to a constant value if w has been co 
correctly chosen and deviating exponentially to + M or - a, according 
as w was too large or too small. 
probl:m a value of w 

In the second type of downstream 
is prescribed, somewhat less than that obtained 

for the first problem: and one has to find a value of &, the position of 
the shock or corner, such that $ tends to a constant value far downstream. 
In this case $ increases from rJ, up to the shock or corner, at which 
point the value of % is changed abruptly and $ begins to decrease 
again. The parameter .& is adjusted so as to postpone the exponential 
deviation of Jr just as before, an increase of & tending to produce 
upward deviation of $ and a decrease of q a downward one. 

The quantities of practical interest are not the variables 
G, $ and w convenient for the numerical treatment of the 
quantities related to the derived functions X = (x - xs /6s P 

roblem but 
(distance 

downstream from separation as a ratio to the thickness of the boundary 
layer at separation, P = p/p0 
pressure) and A 

(pressure ratio in terms of stagnation 
= 6/Ss (boundary layer thickness normalized to unity 

at separation). To produce values of X the following third differential 
equation obtained from equations (IO), (12) and (15) is integrated at the 
same time as the others. 

ti z 
-- = m-m x 9.. (27) 
a&i CPW ' 

= 0 at g = ijs 

where/ 
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7 

P = i? 

The integration was carried out on the N.P.L. automatic computer 
DEUCE, using floating-point arithmetic and a second-order Runge-Kutta 
integration routine. The interval of integration in g was fixed for each 
case and determined in the light of experience to give the accuracy required. 
It was found adequate to use downstream of the separation point an interval 
of twice that used upstream, and to increase the interval for increased 
values of zs. Downstream intervals of 4, 8, 8 were used for 

?3 = 250, 560, 1250 respectively, Since the bulk of the work is in 
calculating the quantities appearing in the differential equations at each 
step and only rough data is available for the functions K, C, c it was 
thought besf to use a low=order Runge-Kutta formula for the sake of speed. 
The quantities $, w and X at q are obtained from their values at the 
adjacent integration steps by linear interpolation, to start the integration 
downstream from the shock. 

To save time the values of the quantities at successive steps are 
not punched out from DEUCE until the parameter (ws or w, or & as the 
case may be) has been determined to the desired accuracy. At the end of 
each trial run a single card is punched bearing the value of the parameter 
used, the correction applied to it, and the values of i: and $ at run 
termination. Finally, two complete sets of quantities for each step are 
punched out, an "upper bound" solution with $ ultimately increasing 
exponentially and a "lower bound" solution with $ ultimately decreasing 
exponentially. For each step the quantities X, A, P, .?& Jr, w are 
available, punched on a single card in binary scale. Conversion to decimal 
form is carried out on a separate run. 

One programme was arranged to find ws and automatically go on 
to determine w m for just separated flow,and another to find $ 
corresponding to given w-, using ws found by the first programme. A 
simple modification to the second programme enabled it to be used to perform 
a single integration run from separation to shock or corner (& specified) 
which is very quick. This is all that is required in certain practical 
cases where the onset of turbulent flow near the shock or corner renders the 
downstream pressuredistribution of academic interest only. 

The computing time was between one and two seconds per step. 
With a good initial guess at w 

S 
and w the total time for the first 

programme would be typically 20 minutes Tar IO integration runs of 60 steps 
each 

1 
finding ws to sufficient accuracy, 4 minutes for 8 runs t of 15 steps 

each finding w , and conversion to decimal would take another 13 minutes. 
It was found necrssary to determine w s to better than four decimal places 
and w to four in order to obtain a reasonably long downstream run before 

deviat:on of $ and w. For the second programme the value of w 00 
specified is critical - if it is too small JI goes above the range of the 
table, or else reattachment may never take place (the overall pressure ratio 
being too great) and much machine time may be wasted waiting for the run to 
terminate; however, a typical run might take from 7 to I5 minutes for 
7 run6 finding Z+ plus 5 to 10 minutes for conversion. 
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iii view of the ver approximate nature of the data available 
for the functions Kc($), C($T, cr(JI) and the necessity for referring to 
them twice per step during the course of the calculations an attempt was 
made to compress the tables into a small storage space on the machine, 
Linear interpolation was used to reduce the computing time and the number 
of instructions to be stored. The range of $ was divided into two parts 
somewhere near the minimum value of K, the functions being stored at equal 
intervals of $ in the two ranges. The lower range of $ corresponds 
mainly to attached flow in which the second derivatives of the functions 
with respect to Jr are larger than in the separated region, so a smaller 
interval of JI was necessary there, By storing only the increase of each 
function above its minimum value in the range, to an accuracy of one part 
in a thousand, one tabular entry for all three functions was accommodated 
within 30 binary digits in a single l'wordlt on DEUCE, and the 32 words of 
one track of the magnetic drum store sufficed to contain the whole table. 
K'(q) was calculated from the table of K(I)) using four adjacent tabular 
entries. Each programme comprised 37 tracks of instructions and data. 

5.2 Cases with distributed suction 

The equations to be solved differ from those given under (5.1) 
only in the addition of the term G/F to B. To avoid an unnecessary 
square root calculation at each step %he function til($) ms tabulated 

instead of C($), as already mentioned in Section 4, &a the formulae which 
involved C or o were expressed instead in terms of Fe1 and (I - K)cr, 

The behaviour of w and $ upstream of separation in these 
suction cases was more abrupt than hitherto, and it was necessary to divide 
the interval of integration by four. \Ir" had a distinct negative region. 
Downstream of separation it was sufficient to halve the interval. 

A rather remarkable phenomenon appeared when a solution was 
attempted using too large an interval, which would be noticed at once in 
hand computation but gave a misleading impression using an automatic 
computer until its possibility was appreciated. The solution showed 
convergence of $ to a constant value in an apparently smooth fashion, and 
slight changes of ws from the apparently correct eigenvalue had the 

bappropriate effect on *. But the limiting value of $ was too high, as 
revealed by halving the interval, and ws was also too large. The SeCQnd 

order Runge-Kutta process derives the increment of $ over each 
integration step from a weighted average of derivatives computed at the 
initial and two-thirds-step points. It turned out that in the spurious 
solution $ approached the limiting value in such a way that the 
derivatives at the initial and two-thirds-step points were large and of 
opposite signs, so that they cancelled out to give a small increment for $, 
over the whole step. In this case a table of differences of $ suggested 
the necessity for reducing the interval, although a graph did not. 

6. The Relations for Reynolds Number, Displacement and Momentum 
Thicknesses, Upstream and Downstream Pressures, and Suction 
Coefficient 

In the previous section it was shown how the DEUCE computer 
produces values of P = p/p0 and A = 6/hs as functions of 

x = (x - xs)&. It may be more useful to present the results in the 

form of graphs of P, Rg+ and RC as functions of 'Rx, where the R's 
are the Reynolds numbers P~U$*/P~, pOuO~/~, =a pouodtio respectively. 

Here suffix o denotes conditions in the free-stream flpw parallel to the 

wall upstream of the shock or corner, 6" = low(l - ---:) ay, the 

displacement/ 



- 16 - 

displacement thickness, 0 = lo= p"; (1 - 9) dy, the momentum 

thickness, and x is the distance from the leading edge. 

From the'definitions of 6* and 0 it follows that 
6* = S-m/pu e e and 6 = ~(1 - K)/p u . e e Hence from equations (IO) 
and (12) and the fact that the ex-vernal flow is isentropic 

and 

woeo- 5 a$ - (1 - Khl 
-L--w- 

Rs” = Wtl.5 
-------------- 

I? 

w em5 z:(l - K) 
------ ..------w 

Re = y.5 t P 

RX = Rxs 

wot’o’” cs64fs + Ksts >x 
+ ---a-- ---------m---- 

ws es* = P 
s 

.,. (28) 

-a* (29) 

l a* (30) 

where suffix s denotes the separation point. 

As discussed in the preceding section, jr and w both tend to 
approximately constant values upstream of the region of interaction. Since 
w is almost constant, $ tends t o a close approximation to Jro, the value 
for the constant~-pressure boundary layer. However w is not quite the same 
as w o, the value for flow parallel to the wall, because of the growth of the 
boundary layer. The term E in equations (26) is approximately zero 

upstream: hence $ * - But since w is close 

9 f (aa”o-l)+ I--“- . 
( > W 

0 

This is only a slowly varying function of c df z is large. 
Corresponding to equation (31) 

P YffC [if -(I-K)rtl 
-- = 1 + --O"--",,,,,,-~,,",", 

PO z(@o - 1)" 

. . . (31) 

. . . (32) 

This expression can also be derived from equation (28), since 

P 
- = I+ 

PO 

if t: is large, p is only slightly greater than p, unless MO is very 
large, when the "hypersonic leading-edge effect" occurs. Equations (31) 
and (32) also apply far downstream of the region of interaction, ir suffix o 
values are replaced by the corresponding suffix QJ ones. 
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FYom equation (15) 

p”ao 

i 

G zs% 
x = ---- -- . 

ypo 0 PCW 

Hence upstream of the region of interaction, where $ + Jr, and w is 
not very different from wo, 

po”ox z= 
R = 

(1 + 0.2h$O)=g= 
m-m-- * -u_- = I---L--------- 

X 
PO 2CC% 2cc 

l ** (33) 

The formula only applies upstream. Denoting such a position by suffix u, 
we have, by combining with equation (30), 

Rx = 
(I + 0.2M7=z; wo’i’05 r;s[$s f rcstsl(x - xu> 
----------w--- + __---- --------------------- . 

l mm (34) 

2c C 
ws ty5 5 

Both terms on the right-hand side of this equation vary with Xu, which may be 

chosen arbitrarily in the upstream region where the pressure is virtually 
constant. However it is found that the sum of the two terms remains 
untifected by the choice of X u, as is of course to be expected. 

For cases with suction it follows from equations (2), ('12), (24) 
and (25) that the suction coefficient, C 

Q' 
is given by 

Hence upstream 

equation (33), 

/ 

cQ 
= G&l. l *a (35) 

of the region of interaction C 
Q 

and from 

The oases with suction in the present paper have all been calculated with a 
constant value of G equal to 0.4. This is for convenience. If, by 
contrast, 

CQ 
were kept constant, the labour of the computation would be 

greatly increased because it would be necessary to solve equation (35) 
concurrently with equations (26) to de-term&e G, which would now be variable, 
and also the basic similar profiles would have to be computed over a range of 
values of G, and the appropriate Crocco-Lees parameters found by interpolation 
at every step in the calculations. With G kept constant the distribution of 
suytion velocity is rather artificial, the suction velocity varying as 
xd” upstream of the region of interaction. However equation (35) shows that 

cQ 
does not vary greatly over the region of interaction. The 'average rate 

of mass flow per unit area sucked into the yll,between the leading edge and 
separation is, from equation (36), about 2'Gf&ig times the rate of mass flow 

per unit area in the free stream, whilst loca+ly yver the region of interaction 

the ratio of the mass-flow rates is about 2-%3Ii', Thus we may say that the 

case calculated is .ro~~&ly equivalent to a case with uniform suction with a 
suction coefficient C Q9 where 

. . . (37) 
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7. Results 

The cases that have been computed by the Crocco-Lees method are 
set out in Table 5. 

Case 1, with MO = 2, is the same as a case computed by Bray7, 
except that in parts of his analysis he does not assume the Prandtl number 
to be I, or the viscosity to be proportional to absolute temperature, though 
other parts of his analysis imply these simplifying assumptions, which are 
made consistently throughout the present paper. The table of functions used 
by Bray and for Case I is that originally proposed by Crocco and Lees, and 
differs from Table I beyond separation, where it was originally assumed that 
K, C and Q remain constant, no account being taken of the lower-branch 
similar solutions. It can be seen from Figs.6 and 7 that the present results 
agree fairly well with Bray's, despite the slight differences in the equations 
used. The points S, C and R in these and subsequent figures denote the 
position of separation, of the corner in Fig.2 or the point where the shock 
strikes the boundary layer in Fig.1, and of reattachment. The Reynolds 
number R xs at separation is usually specified beforehand in the examples 
worked out, and C is then that position of the corner or shock which 
provokes separation at S for the given overall pressure ratio, (i.e., for 
the given change of wall slope at C). Thus in Figs.6 and 7 w = 1.3615 
and w. = '1.4907, oorresponding to an incident shock (Fig.1) wi; a flow- 
deflection angle of about 4” or a change in wall slope (Fig.2) of about 8O. 
For other cases with incipient separation, where the calculation is to find 
W co just small enough to cause separation, the points C and R coincide 
with so 

It can be seen from the curves for Case 2 in Figs.6 and 7 that 
the use of the parameters given in Table I, based on lower-branch values, 
rather than the original table of parameters, leads to a large difference 
in the shape of the pressure distributions when as in the present instance, 
there is an extensive region of separation. The lower-branch parameters 
give rise to a much more rapid falling off of pressure gradient downstream 
.of separation. In Fig.6 the pressure gradients in fact become negative 
upstream of the shock or corner. Downstream of this point the pressure 
gradients become quite steep again, whereas with the original functions the 
pressure gradients are much smaller here. Experimentally it would be 
difficult to obtain an entirely laminar interaction with the same sort of 
Reynolds number at separation and such an extensive region of separation as 
in Fig.6. However for more modest regions of separation, the shape of the 
pressure distribution as predicted using the lower-branch functions of 
Table 1 is in better agreement with experiment than that obtained using the 
original functions. The latter give rise to pressure gradients in the 
vicinity of reattachment that are much too small relative to those in the 
vicinity of separation.' 

The pressure gradient changes abruptly at the shock or corner 
according to the lower-branch parameters, but rem 
to the original ones. Experimental restilts5~ 13, tgt5cg;$;;; ;;;;:y 
no discontinuous change, but there is a fairly rapid change of gradient if 
the thickness of the region of reversed flow near the wall is not too great 
a proportion of the total boundary-layer thickness. The theoretical change 
of gradient is due to the term K'E in the numerator of equation (26) for 
dw/ar: l E decreases discontinuously at the shock or corner, where i? 
changes from w 
Hence since Kto 

to w, so that # changes from positive to negative. 
is pos?tive for the lower-branch functions in a region Of 

separation, dw/aZ; decreases abruptly and the pressure gradient 
correspondingly increases. For the original functions IGt is zero so 
that the gradient remains continuous. In physical terms the rates of 
change of the shapes of the velocity and temperature profiles change abruptly 

at/ 
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at the shocR or corner, and for the lower-branch parameters this means a 
discontinuous change in dI/dx, the gradient of the momentum flux in the 
boundary layer, and a corresponding change in the pressure gradient. 

Figs.8 to II show results for Cases 3 and 4, which are at a 
Mach number MO of 3 and a Reynolds number at separation of about O.~X?#. 
Case 3 is for incipient separation, and Case 4 is with w = 1.71, 
corresponding to a change in wall slope in Fig.2 of aboutmTO. These 
results are shown in some detail because they are used as the basis of 
comparison with various other cases, discussed below. It will be noticed 
that the displacement thickness changes much more violently in proportion 
than the momentum thickness. This is because the outer part of the 
velocity profil t 

P3,E 
ds to maintain a roughly constant shape, as observed 

experimentally. The momentum thickness depends mainly on the outer 
part of the profile, the region of low-velocity air near the surface 
usually only making a small contribution to it. The displacement thickness, 
on the other hand, is very much affected by the low-velocity region, which 
becomes thick in the separated region, and reaches a maximum thickness at the 
position of the shock or corner. 

Detailed corn arison with experiment is not easy because the 
available data5913314935 for entirely laminar interactions do not correspond 
exactly to the cases worked out here. However, as regards the order of 
magnitude of the upstream influence, pressure rise to separation, etc., the 
theoretical results seem to agree with experiment. 

Fig.12 shows the results for Case .!t compared with those for Case 5, 
which is for the same conditions, but calculated according to the parameters 
of Table 3 rather than Table 1. Table 3 is based on the 0.98 definition of 
the edge of the boundary layer, whereas Table I is based on the usual 0.95 
value. It can be seen that the two curves agree quite well in general 
shape, but upstream of separation the predicted pressure gradients are 
considerably steeper for the 0.98 definition than for the normal one. The 
biggest differences in the pressure gradients would be expected to occur 
here for two reasons, In the first place, the inclusion of rather more 
supersonic flow in the boundary layer, involved in the 0.98 definition, is 

*probably more important where the layer is attached than where it is 
separated. This is because the separated layer has a large region of slow- 
moving fluid, and the expansion of these low-speed stream tubes in an adverse 
pressure gradient will swamp any effects due to the contraction of the 
supersonic stream tubes. The second reason is that all definitions of the 
edge of the layer would give the correct answers, and hence agree with each 
other, if' they all happened to require the pressure distribution acting on 
the boundary layer to be of the same form, a form leading to similar profiles. 
Fig.13 shows that for the results of Case 4 the factor ,@, equal to 2n/(n+l), 
where n is the index of the equivalent low-speed power-law velocity 
distribution, varies much more rapidly upstream of separation than downstream 
of it. Thus, downstream of separation the pressure distribution seems to be 
closer to that required to give similar profiles, and better agreement between 
the two sets of results might be expected. These considerations, and the 
results of Fig.12, are an encouraging indication that the arbitrariness in 
the definition of the edge need not in practice lead to serious errors. 

Fig.14 shows a comparison of the results of Cases 3 and 6. The 
latter case is for the same conditions as Case 3, but C in the table of 
parameters has been arbitrarily doubled. C is proportional to the 
entrainment of fluid from the mainstream into the boundary layer, and Fig.14 
verifies that this is indeed. a significant physical process, since the 
results are considerably dependent on the magnitude of C, the pressure 
coefficient at separation, for example, being increased by about 23% by 
doubling C. 
to c). 

(It had been suggested that the results might be insensitive 

F&+15/ 
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Fii.g.15 shows in the full-line curve the result for Case 3 again. 
Compared with this is the result for Case 7, the incipient separation of.a 
boundary layer at the same Mach number and approximately the same Reynolds 
number at separation, but with a cooled wall, whose absolute temperature is 
maintained at 0.6 times the stagnation temperature of the mainstream. It 
requires a somewhat higher pressure to cause separation in the cooled layer. 
Also the upstream influence is less, the pressure gradients upstream of 
separation being somewhat steeper with cooling. Experimental observationsi6,'7 
show little effect of heat transfer on the pressure gradients. The thickness 
of the boundary layer is reduced by cooling, the displacement thickness of the 
cooled layer just upstream of the region of interaction being about 2/3 that 
of the layer with zero heat transfer. 

A similar comparison is shown in Fig.16 for the results of Cases 4 
and 8, though here the overall pressure ratio is specified such that 
W = d.71. 
7:. 

This corresponds to a change of wall slope in Fig.2 of about 
The upstream effect is greatly reduced by cooling, by a much greater 

proportion than the proportional reduction in the displacement thickness of 
the upstream boundary layer No experimental data are available to check 
this conclusion: the datald,17 mentioned above, in connection with the 
pressure gradients at separation, are for cases where tkr;e boundary layer is 
laminar at separation but turns turbulent before reattachment, whereas the 
present calculations assume entirely laminar flow. They are thus not 
comparable as regards the magnitude of the upstream effect, a point discussed 
further below. 

Suction has a similar effect to cooling, as can be seen from 
Figs.17 and 18, showing Case 9 compared with Case 3 and Case 10 with Case 4. 
The suction cases, shown in the dotted curves, are calculated with the suction 
parameter G of the basic similar profiles equal to 0,4. Thus they 
correspond roughly, according to equation (37), to cases with uniform suction 
with a suction coefficient between O.OOO!+ and 0.0008. It can be seen that, 
as it happens, the pressure distribution with this particular rate of suction 
in Fig.18 is almost the same as that with the particular degree of wall 
cooling in Fig.16. The displacement thickness of the boundary layer with 
suction just upstream of the region of interaction is about 73% of the value 
for the corresponding case without suction. The predicted effect of,rtion 
on the pressure distribution is in qualitative accord with experiment . 

The remaining cases calculated can be disposed of briefly. 
Fig.19 shows results for Cases II and 12, the same as Cases 3 and 4 except 
that the Reynolds number is lower. It can be seen by comparison with Fig.8 
that due to the lower Reynolds number the pressure at separation is higher, 
and the upstream effect for a given overall pressure ratio is less. 
effects of Reynolds number are observed experimentally5,'5. 

These 
The overall 

shape of the pressure distribution calculated for Case 12 is much more 
typical of the shapes obtained experimentally than is the predicted shape 
for Case 4. It would not be easy to obtain experimentally a laminar 
interaction under the conditions of Case 4, because of the relatively high 
Reynolds number and overall pressure rise. 

Figs.20 to 22 show results of Cases 13 to 17 for the "laminar 
foot" at various Reynolds numbers, both with zero heat transfer and with the 
wall cooled to 0.6 times the stagnation temperature of the mainstream. The 
laminar fo&corresponds to that part of the pressure-distribution curve 
upstream of the shock or corner and also upstream of transition, if this 
occurs within the region of interaction. It is easier to obtain 
experimentally interactions which are laminar at separation but turn 
turbulent before reattachment, rather than entirely la&car ones. The 
shape of the laminar foot is thus of considerable practical interest. If 
transition occurs, the position of the shock (Fig.1) or corner (Fig.2) 
relative to separation cannot be predicted as a function of the overall 
pressure rise. However the predicted shape of the laminar foot, calculated 
as far as some arbitrarily specified position downstream of separation, can 

be/ 
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be compared-with experiment as far as the oo extends in any part,i&lar 
experimental'case. Such a~comparison5,13,P5,46r17 with Figs.20 to 22 
shows that whilst the theory is qualitatively all right at the lower 
Reynolds numbers, though predicting rather too large an effect of wall 
temperature on the pressure distribution, it becomes increasingly 
unsatisfactory in yell-separated regions at high Reynolds numbers, where 
it prediCtS a strongly falling pressure dQwnstream of a pressure maximum 
on the laminar foot. This effect is accentuated by cooling the wall. In 
reality the laminar foot has a level plateau region, provided the wall is 
flat as assumed in the present calculations. If the original type of 
parameters had been used, the pressure gradients would have remained 
positive, but would not have fallen off as sharply downstream of separation 
as they do in reality, SQ that the plateau region would have been much too 
high. The predicted pressure maximum in Figs. 22 is at about the 
same level as the experimental plateau pressure 5 

O,~O 
I and decreases with 

increasing Reynolds number in a similar way. 

Finally, Fig.23 shows a further example with suction, Case 19, 
compared with the corresponding Case 18 without suction. The upstream 
Mach number is 1.4, the Reynolds number at separation is about 0.5x1@, 
and the conditions are for incipient se aration. 
G is again 0.4'so that, by equation (37 P 

The suction parameter 
, the case is roughly equivalent 

to one with uniform suction with a suction coefficient of between 0.0004 
and 0.0008. Qualitatively the results are similar to those of Fig.17, at 
a higher Mach number. 

8. Comparison with Other Methods 

The Crocco-Lees method gives results that are qualitatively 
reasonable in many respects for interactions between shock waves and 
entirely laminar boundary layers, including effects of heat transfer and 
suction. Once the method has been programmed for automatic computation 
on a computer such as the N.P.L. DEUCE, its application is reasonably 
speedy. However the algebraic complexity of the method makes the 
programming a difficult matter, and it was a long time before all the 
difficulties and snags were sorted out in the present work. Therefore, 
since the results'are still of only qualitative validity, the question 
arises as to whether there may be other approximate methods, not dependent 
on automatic computation, which might be better for general application. 
Hitherto the available alternative methods have been more restricted in 
scope, being limited, for example, to cases with little separation or with 
no heat transfer or suction. Thus Stratford's method'8, as modified by 
GaddgY for use in cases with compressible flow, ceases to work 
satisfactorily much beyond separation. However it gives results 
comparable to those given by the Crocco-Lees method for the effect of heat 
transfer on the shape of the pressure distribution in the vicinity of 
separation. Fig.24 shows such a comparison for the cases shown in Fig.21. 
It can be seen that ther Stratford-Gadd method predicts a marked effect of 
wall tern erature % on the pressure gradient, the predicted variation being 
as T3' 

W 
, where Tw is the absolute temperature of the wall. This is a 

larger var tion than is predicted by the Crocco-Lees method, so that since 
experiment $8 9'7 shows little effect of wall temperature on the shape of the 
pressure distribution, the Stratford-Gadd theory is wors,e than that of 
Crocco-and Lees in this respect. It appears, hOwever, to give rather more 
accurate results for the pressure rise to separation in cases with eero heat 
transfer. The pressure coefficient 2(p - p,)/~o$~ atIse aration is P 
predicted to be given by the simple formula f.1 3(Ifo - +)i Ris, and acoor&ng 

to the experiflen$al results of Ref.13 for zero heat transfer, it is equal to 

w33(@o - l)-"Rii approximately, 

A simple nem method which, like that of Crocco and Lees, is 
applicable to cases with extensive separation, can be developed on the lines 

of/ 



- 22 - 

of the well&own Pohlhausen method for incompressible flow, and is closely 
related to the methods of Refs. l4,2O,2l and 22 In its simplest form it.is 
88 follows: 

Put ,"_ = f(h), h = -- dy. 

'e I 

Y P 

O p* 
0.9 (38) 

1 Then the displacement and momentum thickness are 

6* = i,"( ; - ;, aA 

and e = joy.<1 -5) dx. 

But by definition, 

(, + %)/(CpTe + $) = H, 

the total-temperature ratio. Hence 

and 

T 

Te 

6* 
-9 
8 

where r1 

As an alternative to 

T 
-9 = I+ 

Y -1 I? 
= 1 H - ---- “Be F 

2 e 

Y -1 Y -1 
=: ( 1 + ----- bge > r + ---- 

2 i 2 
de, 

= /oyH-f,a/j-oyl-f.pA. 
(39), we may assume that approximately 

. . . (41) 

If the Fkandtl number is I, this approximation is accurate upstream of the 
region of interaction, where the pressure gradient is zero, but it is not 
acourate elsewhere unless there is zero heat transfer. However its use 
slightly sim lifies 

P 
the analysis, as will be seen below. According to 

relation (4.2 

6* T Y -1 
-- = 2 r2 + ---- tie l e* (43) 

where r, = /oaiI - ;) &joW :(I 0:) dx. . . . (46) 

In cases'without heat transfer rL = rs, and (40) is the same as (43). 

If/ 
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. 
I? viscosity is proportional to absolute temperature it follows 

from equations (38) and the momentum equation, 

au au ap a au 
pu -- + pv -- = - -- + -- p I- , 

ax aY ax ( > aY ay 

that at the wall 

aP 
-- = 
ax 

!$z Z;[( f!L!z)w+N(~~)w], ..* (45) 

where 4 = X/f3 and N = peueOC /J 
d e = - pwvw8/~e. Also, from a first- 

order approximation to the simple-wave-flow relation, 

pou”o aas* 
ea. (46) 

We assume that Me aa 8 in equations (40) aa (43) are 
virtually constant through the region of interaction. !Cypically M e does 

not differ very greatly from MO since it is tipossible to have an entirely 
laminar interaction with a large pressure rise, unless the Reynolds numbeS 
B xs at separation is very low. With regard to 8, inspection of the 
von K&m& momentum integral equation, i.e., 

ae 1 au 
-- + -I mm- e (20 + p) + _e_ dpz = LL - CB, 
ax ue ax 

pe dx Pe% 
l ** (47) 

de suggests that s is unlikely to be much greater within the interaction 
Yegion than it is upstream of it. Hence if the length of the interaction 
region is not too large a fraction of the distance from, say, the separation 
point to the leading edge, 0 sho 
region of interaction. +t 

Ja Ttt change enormously throu&,the 
Experiment 9 confirms this. So also does 

Fig.11, a case calculated by the Crocco-Lees method, even though for this 
case the extent of the separated region is quite large (larger than could 
easily be obtained experiment&Lly). We accordingly substitute for 0 in 
equations (40) and (43) the constant value Bs as determined from the 
momentum integral equation (47) with ue, pe9 and p, set constant at the 
values Uo’ cl03 ana PO corresponding to free-stream flow parallel to the 
wall upstream of the region of interaction, and with x put equal to xs, 
the distance of the separation point from the leading edge. The equati.Qn 
becomes 

de 
- = 
ax 

where Ofhe Iwo is the value of (af/ae) at the wall at constant pressure, 
Hence 

es = 2’[( 3, -NT2 , 
xs 

l *m (48)  



-a-- 
if N is assumed to be constant. This assumption is equivalent to making 
the suction parameter G constant in the Crocco-Lees analysis. Thus it 
follows from equation (36) that 

-w----e----  = G .  

From equations (40), (b-3), (45) and (46)) 

l *m (49) 

where if equation (40) is used r = 1; and 

A = (I + 5' $.)'Tvi = U-w',sand if equation (43) is used, r = re 

and A = 1. We assume that ( $), and ( z)w are functions 

only of r for a given value of N and a given ratio Hw of the wall 
temperature to* the free-stream stagnation temperature. Hence 

a.. (50) 

where 

and r is the value of r at constant pressure. 
in Figyq or corner in Fig.2 6* 

Upstream of the shock 
increases with x, and hence the positive 

sign must be taken in (50)) but downstream S* decreases, and the negative 
sign must be used. From equations (46) and (J&S) it follows that upstream 

P - PO 2$tio~Q+ 
-v--e = ---------we --L-----w-- 

PO ("B, - ,)';$(~;) - N-j 

.0* (51) 

WC 

and downstream 

P, - P 2 Y@~J~Q~ 
-a-- = ----------------L----_C___ . 

PO (q -,)iFg( df) -3 
' ae wo 

Thus the shock or corner must occur at that position where p = &(po+pol), 
i.e., where the pressure rise is half the overall pressure rise. The shape 
of the pressure distribution is symmetrical about this point, reflected in 
the two axes of symmetry as shown in Fig.25. 
corner it follows from (50) that 

Upstream of the shock or 

x-x 
--e-e “/ 

xs 
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x-x 
S ---e-m = 

; TwA [( z), - "1: /r dr 
-..,m --------------w- 

($, - l)$R$s 
-?I J -94 (52) 

X 
s To rs 9’ 

where rs is the value of r at separation. Equations (51) and (52) 

determine the shape of the pressure distribution. 

This solution could of course be regarded merely as a first 
approximation, fran which more accurate solutions of equations (45), (46), 
and (47) could be obtained by iteration. However this would be laborious. 
It might be thought that some converse process of simplification could be 
applied to the Crocco-Lees method, reducing it to a single equation from 
which results could be obtained simply, without necessarily using automatic 
computing aids. However this does not7appear to be possible except for 
cases with very large Reynolds numbers, 

Due to the approximation made in the present Pohlhausen-type of 
method that 0 is constant, the small rate of thickening of the boundary 
layer upstream of the shock is neglected. Hence, as can be seen from 
equation (51), the pressure upstream is predicted to tend to po, instead 
of' to a value a little greater than p,, as in equation (32) of the 
Crocoo-Lees method. 

The relations between the parameters involved in (51) and (52), 

namely and r, can be obtained from the similarity 

solutions. If there is no suction, so that N is zero, then upstream of 
the region of interaction, f as a function of 4 is independent of heat 

af 
transfer, and ra is similarly independent, so that -- 

( > 
and r 

ae WC 20 

are constants, 0.221 and 2.59 respectively. As an approximation we can 
assume that everywhere f is a function only of 4 and rz, independent 

of heat transfer. Thus Q as a function of rs is assumed to be 

independent of wall temperature, and can accordingly be determined from the 
similarity solutions for zero heat transfer. Then since A = 1 if 
equation (4-2) is used, it can be seen from (51) and (52) that the only 
effect of heat transfer on the shape of the pressure distribution is to 
stretch the x-co-ordinates proportionally to Tw, so that the pressure 
gradient varies as rw', 3 As mentioned above the Stratford-Gadd theory 
predicts a variation as Ti' Even the variation as Tw' is considerably 

larger than is observed experimentally. 

We shall refer to the above method of solution as method A for 
heat transfer. A second, theoretically preferable, method, method B, 
involves the use of the accurate temperature relation (39). Then r must 

aa, 
be put equal to rt, and the relation between --- 

( > 
and r must be 

at? w 
found from the similarity solutions corresponding to the particular value 
of H, for the case being investigated. The predicted effect of heat 
transfer on the shape of the pressure distribution is accordingly less 
simple than that found by method A. 
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In cases without hcat transfer, ri = rs = r, even .if there is 
af 

suction. Q as a function of r, rc and -- 
( ) 

can be found from the 
ae WC 

similarity solution with zero heat transfer but with the suction appropriate 
to the particular value of N, which gives G by equation (49). This 
procedure may be described as method B for suction cases. It may, however, 
be more convenient to use what we term method A, in which it is assumed that 
the family of velocity profiles is the same as that calculated from the 
similar solutions without suction. Then, in virtue of condition (45), rc 

af . af 
and -- 

( > 
are the values of r and -- corresponding to the 

ae WC ( ) ae w 

profile for which ( z:)w + N ( s), = 0. This equivalent aero- 

pressure-gradient profile with suction will actually be a profile without 
suction, but with a favourable pressure gradient. By this artifice it is 
possible to obtain approximate solutions for cases with suction, without 
first solving the accurate similarity solutions for the particular value of 
N being considered*. However, both with method A and with method B, 
equations (51) and (52) show that the pressure distribution is not related 
to the corresponding one without suction by any simple stretching of the 
co-ordinates. Thus the solutions with suction are not quite so simple as 
the method A solutions with heat transfer. 

The relations between the parameters I‘, ( f >, d, ( f;)w, 

as derived from the similarity solutions for zero heat transfer and suction, 
are presented in Table 6. This is applicable not only to cases without 
heat transfer or suction, but generally, in the method A approximation 
For the case with suction at G = 0.4, the equivalent constant-pressure 

af aaf 
conditions are r C = 2.36, -- 

( > 
= 0.302, ad --- = -0.0465. 

ae wc ( > aP WC 

According to the actual similarity solutions with suction the values are 
2.39, 0.290 and -0.0432 respectively, so that the errors are not large. In 
other words, the true-constant pressure velocity profile with suction is 
very similar to the profile without suction but with the appropriate 
favourable pressure gradient, 

Although the similar solutions with suction with G = 0.4 have 
been worked out in connection with the Crocco-Lees parameters, the present 
application was unfortunately not foreseen, so that for method B with suction 

some of the data necessary for the calculation of ry (;);-d (;;), 

are not readily available. Hence in the present'paper cases with suction Qan 
only be calculated by method A, and not by method B. For cases with heat 
transfer with Hw = 0.6, however, both method A and method B can be used, 

since Cohen and Reshotko 
12,21 give sufficient data for the calculation of the 

parameters which are given in Table 7. As was the case with the Crocco-Lees 
parameters, some interpolation between the results for different rates of 
heat transfer was necessary to obtain the lower-branch values beyond 
separation. 

The calculated results for Q' and 
i 

rdr 
-?I 9 the main quantities 

rs Q" 

to be determined in equations (51) and (52), are shown in Tables 8 to IO as 

functions/ 
sr _--_-_--______-_______________I_________------------------------------------- 
A similar procedure can of course be used to obtain the Crocco-Lees 

parameters for cases with suction, and was so used in Ref.>. 
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functioli:; of s - r 
C* 

From thcsc tables it is possible to calculate 

rapi.dI.~ a wide variety of casts with different Reynolds numbers and Mach 
numbers. Sample calculated results for the laminar foot are shown in 
Figs .26 and 27. The cases shown are all for a free-stream Mach number of 
3 and Reynolds number R xs at separation of 0.5X1@. They are thus 

comparable with Figs.16 and 18. The predicted effect of heat transfer in 
Fig.26 is, according to method A, simply to vary the pressure gradients 
proportionally to Tw' as mentioned above. - According to method B heat 
transfer has a smaller effect on the pressure gradients, but the pressure 
rise to separation is somewhat increased by cooling. Thus method B is 
more in line with the predictions of the Crocco-Lees method than is method A. 
Also, since method B predicts a smaller effect on the overall shape of the 
pressure distribution than method A, it is less discordant with experiment. 
For cases with suction, the effects shown in Fig.27 are broadly similar to 
those found by the Crocco-Lees method in Fig.18. 

The predicted pressure coefficient at separation with zero heat 
transfer or suction (oriwi$h heat transfer according to method A), is 

equal to 0.94 (Id", - l)-aR~s, almost exactly in agreement with the 

experimental results of Ref.1 3. These data, (which may be subject to 
inaccuracies due to the practical difficulties of determining the precise 
position of separation), show that the pressure rise to separation is 
slightly more than half that to the plateau at the top of the laminar foot. 
This ratio is rather bigger than that given by the present Pohlhausen-type 
of method, and considerably smaller than that predicted by the Crocco-Lees 
method, especially at high Reynolds numbers. 

According to the results of Figs.26 and 27 the plateau pressure 
with zero heat transfer or suction is about 1.34 times the upstream pressure6 
Thus the overall pressure ratio cannot exceed about 1.68. This happens to 
be approximately equal to the pressure ratio assumed for the Crocco-Lees 
calculations of Figs.1 6 and 18, Thus the present Pohlhausen-type of method 
would predict a very large upstream effect for this pressure ratio, and for 
any larger ratio it would predict that the separation point must move right 
forward to the leading edge. This prediction cannot readily be checked 
experimentally because in practice as the pressure ratio is increased there' 
comes a point where transition to turbulent flow takes place within the 
region of interaction, and the theories no longer apply. Thus transition 
would very likely occur in practice before the conditions of Pigs.16 and 18 
could be attained. For a smaller specified overall pressure ratio it is 
clear from Figs.25, 26 and 27 that cooling and suction would reduce the 
upstream effect of the interaction, just as they do according to the 
Crocco-Lees method. 

9. Concluding Remarks 

The results of the Crocco-Lees method, although in general 
qualitative agreement with experiment, are probably no better than those 
obtained much more readily by a Pohlhausen type of method. Thus there 
seems little point in doing any further calculations by the Crocco-Lees 
method. However, what has been done has probably been worthwhile since 
it justifies the approximations of the Pohlhausen-type of method 
presented in Section 8, and it is always desirable to check the findings 
of different approximate methods against each other as well as against 
experiment, where this is possible. 

The main qualitative results of the approximate theories now 
available for interactions between shocks and laminar layers are as follows: 
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(1) The general shape of the pressure distribution, and the pressure 
levels, are predicted satisfactorily on the whole, though in some 
cases the results become unrealistic beyond a little way 
downstream of separation. Lowering the Reynolds number is found 
to increase the pressure rise to separation and to decrease the 
upstream influence if the overall pressure rise (related to the 
incident shock strength in Fi 
Fig.2) is specified. 

6.1 or change of wall slope in 
This is qualitatively in accord with 

experiment. 

(2) Cooling the wall, according to some theories, greatly increases 
the pressure gradients in the vicinity of separation, leaving the 
pressure at separation unchanged, but according to others, the 
pressure rise to separation is somewhat increased whilst there is 
only a modest steepening effect on the gradients. All the 
theories predict a bigger effect on the overall shape of the 
distribution than is observed experimentally. The upstream 
effect for a given overall pressure ratio is predicted to be 
reduced by cooling. There is no experimental evidence on this 
point to date. 

(3) Suction is predicted to have a qualitatively similar effect to 
wall cooling. This appears to be confirmed by the available 
experimental data. 
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C 
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P 

cQ 

E 
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f 

G 

Ito 
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&r 1 
constant equal either to 1 TVT; = H-w', or to ? 

speed of sound 

(I - K)(l - o-) + CQ/CY 

mCM/ie9 one of the basic Crocco-Lees Parameters 

wefficient of local skin friction, 2~pdp~u"~ 

mixing rate coefficient, aS/dx - 9 + pwvJpeue 

specific heat at constant pressure 

suction coefficient, - Pwvvipeue 

tq5& f ta(1 - K) - jr 

non-dimensional. stream function for Similar solutions: 
see equation (20) 

U/Ue 

suction Parameter for similar solutions: see equation (20) 
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Q 

Rx 

R&k 

R0 

r 

ratio of total temperature to its value in the free stream 

I 

6 
momentum flux, PU2ti 

0 

yvja$*+ kt(vja - t) 

h/O 

Mach number 

6 
ma3s flux, PUaY 

Pe”eoC @e d 

index of similar-solutions power-law velocity distribution: 
see equation (20) 

P/P" 

pressure 

integral defined in equation (50) 

Reynolds number based on x9 PoUo4Jo 

Reynolds number based on displacement thickness, pouoh*/p 0 

Reynolds number based on momentum thickness, pouoO/~, 

equal to r$ or r2 

stream function in Stewartson transformationt see equation (17) 

absolute temperature 

ratio of the tempemture at the edge of the boundary layer to 
the free-stream stagnation temperature 

velocity component parallel to wall 

velocity component normal to wall 

u a* e/ 

(x- s XsW 

distance from leading edge measured parallel to wall 

related to x by the Stewartson transformation, equation (17) 
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M 

h 

CI 

P 

o- 

7 

9 

* 

Sflfices: 

C 

distance from wall measured normalto wall 

related to y by the Stewartson transfWma%ion, equation (17) 

ratio of specific heat at constant pressure to that at constant 
volume : assumed to equal 1.4 

total thickness of boundary layer 

displacement thickness of boundary layer, lw(l - ;$:) w 

non-dimensional co-ordinate for similar solutions: see equation (20) 

momentum thickness of boundary layer, /owpiy; (1 - <) Q 

I/haue, one of the basic Crocco-Lees parameters 

viscosity 

density 

mCf/2(l - QGc1,, one of the basic Crocco-Lees prameters 

viscous shear stress 

angle between the wall and the streamlines at the edge of the 
baudary layer 

t[ (peueS/m) - K], 9ne of the basic Crocco-Lees parameters 

denotes values of the boundary-layer parameters far constant- 
pressure conditions 

denotes conditions at the edge of the boundary lwer 

denotes conditions at the wall 

denotes conditions at the separation point 

denotes conditions in the free stream for flow parallel to the 
wall upstream of the shock or corner 

denotes conditions in the free stream for flow parallel to the 
wall downstream of the shock or corner 

Superscript: 

0 denotes free-stream stagnation conditions 
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Table 1 

Crocco-Lees parameters for zero heat transfer or suction, 
with usual edge definition 

K K' C 

1,033 0.704 95 
1.083 0.698 60 
I.133 0.693 23 
l.f83 0.688 lo 
I.233 0.682 97 
1.283 0.678 58 
I.333 0.674 67 
1.383 0.671 25 
I.433 0.668 81 
I.483 ,0.667 10 
1.533 0.665 88 
I.583 0.664 yl 
1.633 0.664 42 
1.683 0.664 42 
A.733 0.664 42 
I.783 0.664 42 
'1.833 0.664 66 
1.883 0,665 15 
4.933 0.666 -I3 
I.983 O-667 59 
2.033 0.669 79 

- 0.1&O 2.24-o 
- 0.1172 2.420 
- 0.1050 2.579 
- 0.1025 2.700 
- 0.0952 2.770 
- 0.0830 2.830 
- 0.0732 2.885 
- 0.0586 2.930 
- 0.0415 2.965 
- 0.0293 2.990 
- 0.0220 3.008 
- 0.0146 3.020 
- 0.0049 3.030 

0 3.040 
0 3.040 

+ 0.00~ 3.030 
0.0073 3.015 
0.0146 3.000 
0.0244 2.984 
0.0366 2.970 
0.0439 2.950 

2.633 0.705 43 0.0669 2.760 
3.233 0.750 II 0.0730 2.550 
3.833 0.793 08 0.0682 2.420 
4.433 0.831 90 0.0590 2.300 
5.033 0.863 88 0.0476 2.200 
5.633 0,889 03 0.0321 2.130 

. 

o- 

I.350 
I.002 
0.789 
0.641 
0.523 
0.430 
0.350 
0.275 
0.211 
0.158 
0.109 
0.068 
0.033 
0 

- 0.02y 
- 0.051 
- 0.070 
- 0.090 
- 0.111 
- 0.131 
- 0.141 

- 0.291 
- 0.359 
- 0.410 
- wt4-9 
- 0.480 
- 0.500 

l- Remarks 

Constant pressure 

Separation 

-- 

Note I; the last decimal places in this Table are not sJ,gAficant 
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Table 2 

Grocco-Lees parameters for zero suction, but with a cooled wall, 
with Hw = 0.6 

JI K K' C 

0.720 0.703 92 - 0.1196 2.239 
0.770 0.698 06 - 0.1196 2.419 
0.820 0.691 96 - 0.1099 2.534 
0.870 0.687 08 - 0.1099 2.650 
0.920 0.680 97 - 0.1099 2.755 
0.970 0.676 09 - 0.1001 2.847 
1.020 0.670 96 - 0.0903 2.919 
1.070 0.667 06 - 0.0708 2.974 
I.120 0.663 88 - 0.0610 3.021 
1.170 0.660 95 - 0.0391 3.069 
1.220 0.659 98 - 0.0195 3.110 
1.270 0.659 00 - 0.0098 3.140 
1.320 0.659 00 e 0.0098 3.159 
I.370 0.659 98 0.0195 3.169 
1.420 0.660 95 0.0195 3.150 
1.470 0.661 93 0.0201 3.130 

1.670 0.668 03 0.0427 3.321 
I .870 0.679 02 0.0598 2.919 
2.070 0.694 96 0.0775 2.819 
2.270 0.710 03 0.0928 2.720 
2.470 0.729 07 0.0977 2.620 
2.670 0.749 09 0.1025 2.523 
2.870 0.770 08 0.1025 2.431 
3.070 0.790 10 0.0995 2.341 
3.270 0.809 88 0.0995 2.24-Y 

. 

c Remarks 

1.289 
1 .ooo 
0.793 
0.641 
0.520 
0.420 
o.yto 
0.275 
0.221 
O.A68 
0.119 
0.076 
0.035 

Constant pressure 

- E.027 
- 0.051 

- 0.119 
- 0.178 
- 0.225 
- 0.260 
- 0.289 
- 0,316 
- 0.3.40 
- 0.361 
- 0.381 

Separation 

Note : the last decimal places in this Table are not significant. 
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Table 3 

CroccoLLees parameters for zero heat transfer or suction, 
wi-t;h velocity ratio at edge taken as 0.98 

JI 
0.820 
0.870 
0.920 
0.970 
I .020 
1.070 
1.120 
I.170 
1.220 
1.270 
1.320 
I.370 
I.420 
1.470 
1.520 
1.570 
I.620 
1.670 
I .720 
I.770 
1.820 

2.270 
2.720 

;*z:o” 
4:070 
4.520 

K K' c o- 

:*g ;z 
i754 37 
0.748 51 
0.743 38 
0.738 98 
0.735 32 
0,732 39 
0.730 68 
0.729 71 
0.729 22 
0.728 97 
0.729 22 
0.729 95 
0.73-f 42 
0.733 d3 
0.735 32 
0.738 01 
0.740 69 
0.743 87 
0.747 53 

- 0.1611 
- O.lc!+!+O 
- 0.1245 
- 0.1099 
- 0.0952 
- 0.0806 
- 0.0659 
- 0.0464 
- 0.0269 
- 0.0146 
- 0*0073 

0 
-+- 0.0098 

0.0220 
0.0317 
0.0391 
0.0488 
0.0537 
0.0586 
0.0684 
0.0681 

3.7510 
4.051 
4.221 
4.350 
4.430 
4.500 
4.541 :* 2; 
4:631 
4.641 “4’ z:: 
4:631 
4.619 
4.609 
4.600 
4.580 
4.560 
4.541 
4.519 

1.181 
0.880 
0.681 
0.540 
0.431 
0.329 
0.249 
0.190 
0.130 
0.079 
0.040 

- 0.001 
- 0.040 
- 0.069 
- 0.101 
- 0.120 
- 0.149 
- 0.171 
- 0.190 
- 0.200 
- 0.220 

0.785 62 0.0740 4.301 - 0.329 
0.821 50 0.0674 4.100 - 0.399 
0.853 00 0.0576 3.930 - 0.460 
0.879 12 0.0488 3.779 -o&39 
0.901 83 0.0435 3.660 - 0.5et.I 
0.922 58 0.0413 3.580 - 0.540 

Remarks -. 
Constant pressure 

at Ji = 0.850 

Sepal*ation 

Note: the last decimal places in this Table are not significant. 
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4 Table 

Crocoo-Lees parameters for zero heat transfer, but with suction, 
with G = 0.4 

Basic solutions computed by A. R. Curtis: values in brackets 
obtained by interpolation 

4-f 
-. 

0.9206 
0.9353 
0.9523 
0.9723 
0.9962 
1.0255 
1.0626 
I.1122 
1.1860 
I.3346 
-1.4379 

‘1’ l E’ 
I:7611 
2.1415 
2.4830 
2.8488 
3.2697 
3.7835 

f’$g r 

7:1717 
---- 

K 

0.7337 
0.7313 
0.7286 
0.7256 
0.7222 
0.7182 
0.7136 
0.7080 
0.7ou 
0.69-I~ 
0.6888 
,0.6880) 
0.6889 
0.6940 
0.7209 
0.7568 
0.8018 
0.8570 
0.9243 
1.0068 
1.1098 
I.2437 

(I - K)o 

0.5796 
0.5383 
0.4959 
0.4520 
0.4062 
0.3580 
0.3061 

Ez%: 
0:0818 
0.03152 
0 

- 0.03024- 
- 6.0736 
- 0.1428 
- 0.1785 
- 0.2005 
- 0.2129 
- 0.2168 
- 0.2112 
- O.jP33 
- 0.1541 
_-.-----___. 

ET-,” P 
-__.-- __--__ 

0.7464 0 
0.7341 - 0.04 
0.7216 - 0.08 
0.7089 - 0.12 
0.6960 - 0.16 
0.6829 - 0.20 
0.6696 - 0.24 
0.6559 - 0.28 
0.6418 - 0.32 
0.6271 - 0.36 
0.6232 - 

10.6224) 
0.37 

G 0.3719) 
0.6232 - 0.37 
0.6276 - 0.36 
0.6471 - 0.32 
0.6693 - 0.28 
0.6944 - 0.24 
0.7229 - 0.20 
0*7555 - 0.16 
0.7936 - 0.12 
0.8392 - 0.08 
0.8967 - 0.04 

Remarks 
. -..~ _--_- _-_- --_-- __-__ 

Constant pressure 

Separation 
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Table 5 

Cases calculated by the Crocco-Lees method 

Case M H G 
No. 0 w % I@ R xs 

1 2 I 0 445.3 1.26 

2 

7 
8 

9 

IO 

II 

12 

13 

14 
15 

16 
I-7 
18 

19 

2 

3 
3 
4.4 

1.4 

1 

I 

4 

I 

i-t 
0.6 

0.6 

I 

I 

I 

I 

I 

0.6 
0.6 

I 
0.6 
I 

I 

0 445.3 

0 560 

0 560 

0 714 

0 560 

0 560 
0 560 

0.4 480 

0.4 480 

0 250 

0 250 

0 250 

0 250 
0 560 

0 12.50 
0 1250 
0 1130 

0.4 970 

I 

1.26 

4.87 

4.87 

4.92 

4.90 

4.90 

4.90 

4.90 

0.94 

0.94 

0.94 

0.95 
4.90 

24.8 
24.8 
4.97 

4.97 

I W = 1.3615. Repeat of Bray's co 
calculations using original type of 
parameters (not lower branch) 

As g, but lower-branch functions 
used (Table 1) 

Find w just to separate (Table I) 

w = IT71 (Table I) co 
w = I.74 (Table 3) 

Fkd w, just to separate: parameters 
as in Table 1 but with C doubled 

Find w, just to separate (Table 2) 

W = 1.71 (Table 2) 
FTnd w just to separate (Table 4) 

W = I:71 (Table 4) 

Fkd w just to separate (Table I) 

w = I:71 (Table 1) 
gtension Of laminar foot of cases 

II and 12 (Table I) 
Find laminar foot (Table 2) 
ExtensiOn of laminar foot 9f cases 

Fz$s.&%:;'t;;;;; ;) 

Find w, just to separate (Table I) 

Find pv, just to separate (Table 4) 

Table 6/ 
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Table 6 

Parameters for method of Section 8, from the similarity 
solutions for zero heat transfer or suction 

r 

2.16 0.389 - 0.1063 
2.17 0.381 - 0.1000 
2.22 0.360 - 0.0855 
2.30 0.325 - 0.0611 
2.41 0.280 - 0.0333 
2.59 0.221 0 

2.80 0.164 i- 0.0266 
3809 0.105 0.0488 
4.03 0 0.0682 
5.52 - 0.0540 0.0559 
7.42 - 0.0663 0.0378 

12.63 - 0.0546 0.0150 
28.1 - 0.0257 0.0028 
59.3 - 0.0107 0.0005 

df 

( > il w 

aaf 

( > 5 w 
Remarks 

Constant pressure (with 
no suction) 

Separation 

Table 7 

Parameters for method of Section 8, for zero suction, 
but with a cooled wall, with Hw = 0.6 

af 
-- ( > = 0.221 
a.3 we 

rl 

aa f 
e-w ( > aJa w 

Remarks 

0.759 - 0.1040 
1.185 - 0.0433 
1.556 0 
2.034 0.0369 
2.399 0.0495 
2.679 0.0537 

3.063, 3.041" 0.0531, 0.0540" 
3.623 0.0491 

6 
8 

IO 

0.0309 f 
0.021 o+ 
0.0146 f 

Constant pressure 

Separation 

There a,p]Jear to be slight inconsistencies in Cohen and Reshotko's 
data, and alternative methods of estimation give alternative answers. 

f Obtained by extrapolation. 



Table 8 

.- 
Qi and -_+- for cases with zero suction. method A 

r-r c 

0.2 
0.6 

2: 
1.8 
2.2 

::: 

;=ki . 

::6" 
5.0 

::k 
6.2 
6.6 
7.0 
7.4 
7.8 
8.2 

;:: 

9':: 
10.2 
10.6 
II,0 
II .h. 
11.8 
12.2 
12.6 

1 
Q2 

0.0529 
0.1400 
0.2083 
0.2648 
0.3119 
0.3517 
0.3852 
0.4134 
0.4377 
0.4588 
0.4775 
0.4950 
0.5091 
0.5226 
0.5350 
0.5462 
0.5563 
0.5655 
0.5741 
0.5819 
0.5892 
0.5929 
0.6021 
0.6080 
0.6133 
0.6183 
0.6229 
0.6274 
0.63?6 
0.6354 
0.6392 
0.6429 

I 

r&C 
-g 

rs Q 

- 8.59 
- 4.16 
- 1.85 
- 0.16 
-I- 1.23 

2.43 
3.52 

‘;‘$ 
6:35 
7.21 
8.03 
8.83 
9.60 

lo.36 
11.10 
11.82 
12.54 
13.24 
13.93 
14.61 
15.29 
15.96 
16.62 
17.27 
17.92 
'18.57 
19.21 
IV.84 
20.47 
21.10 
21.72 

r-r 
C 

13.0 
13.4 
'13.8 
14.2 
14.6 
15.0 

:;*; 
16:~ 
16.6 
17.0 
17.4 
17.8 
18.2 
18.6 
19.0 
19.4 
19.8 
20.2 
20.6 
21.0 
21.4 
21.8 
22.2 
22.6 
23.0 
23.4 
23.8 

$2 
25.0 

0.6460 
0.6490 
0.6521 
0.6550 
0.6577 
0.6600 
0.6625 
0.6648 
0.6672 
o. 6693 
0.6712 
0.6732 
0.6749 
0.6767 
9.6784 
0.6801 
0.6816 
0.6830 
0.6843 
0.6855 
0.6867 
0.6878 
0.6890 
0.6700 
0.6913 
o.6923 
0.69% 
o.6%4- 
0.69% 
0.6962 
o. 6970 

i 

rdr 
--; 

rs Q 

22.35 
22.96 
23.58 
24.19 
24.80 

%1 
2616-l 
27.21 
27.81 
28.41 
29.01 
29.60 
30.19 
30.78 
31.35 
31.96 
32.54 
33.13 
33.71 

~*~ 
35i-6 

;Et 
37:20 
37.77 , 
38.35 
38.93 
39.50 
40.07 
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-r for cases with cooled wall, method B 
Jr s Q’ 

r-r 
C 

_-_- ..-. ___ 

0.2 
.0.6 

i:: 

4.8 
2.2 
2.6 

;:: 

3.8 

;*z . 

2:: 

2-E 

6:6 
7.0 

;:ti 

iii:: 

9.0 
---. 

Q-1 : 

0.0474 
0.1255 
0.1873 
0.2378 
0.2789 
0.3126 
0.3407 
0.3648 
0.3858 
0.4041 
0.4205 
0.4350 
0.4482 
0.4599 
0.1+706 
0.4802 
O.@YO 
0.4970 
0.504-2 
0.5109 
0.5170 
0.5226 
0.5280 

- 9.75 
- 4.83 
- 2.25 
- 0.37 
-I- 1.18 

2.53 
3.76 
4.89 

2;i: 

-p; 

9:78 
10.66 
Il.52 
12.36 
13.18 
14.00 
-14.79 
15.58 
16.36 
17.13 
17.89 

----___ 
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Table 10 

cj+ and -T for cases with suction, method A 

r-r 
C 

OS? 
0.6 
1.0 

::i 
2.2 

::: 

;:: 

z . 

2: 

2; 

6:6 

7.0 
7.4 
7.8 

i:: 

;:i 

10:2 
10.6 
11.0 
11.4 
11.8 
12.2 
12.6 

O.f697 
0.2358 
0.2886 
0.3332 
0.3714 
0.4032 
0.4293 
0.4510 

K$;?? 
0:4985 
0.5104 
0.5207 
Q.5295 
0.5372 0.544-l 
0.5501 
0,5554 
0.5605 
0.5647 
0.5686 
0.5721 
0.5753 
0.5779 
0.5803 
0.5822 
0.5840 
0.5855 
0.5868 
0.5881 
0.5888 

- 

. - 7.78 
- 4.40 
- 2.43 
- 0.90 
+ 0.39 

1.52 
2.55 
3.51 
4.42 

z 
6:94 
8.49 
8.48 
9.25 

10.00 
10.74 
II.47 
12.19 
12.91 
13.62 
14.33 
45.03 
15.73 
16.42 
17.11 
17.80 
18.49 
19.17 
19.85 
20.53 
21.21 

r-r 
0 

j3.a 
13.4 
13.8 
14.2 
14.6 
15.0 

:z*: 
16:2 
76.6 
17.0 
17.4 
17.8 
18.2 
'18.6 
19.0 

19.4 
19.8 
20.2 
20.6 
21.0 

2j .4 
21.8 
22.2 
22.6 
23.0 
23.4 
23.8 
24.2 
24.6 
25.0 

I 
rdr 

rs $ii 

0.5895 22.56 
0.5899 22.57 
0.590-l 23.25 
0.5902 23.93 
0.5903 24.60 
0.5902 25.28 
0.590-i 25.96 
0.5899 26.64 
0.5895 27.22 
0.5891 27.99 
0.5884 28.67 
0.5877 29.35 
0.5870 30.03 
0.5865 30.62 
0.5856 31.40 
0.5848 32.08 
0.5837 32.77 
0.5825 33.45 
0.5816 34.14 
0.5805 34.83 
0.5796 35.52 
0.5784 36.21 
0.5774l 36.90 
0.5761 37.59 
0.5748 38.29 
0.5734 38.99 
0.5721 39.68 
0.5708 40.38 
0.5695 41.08 
0.5681 41.78 
0.5669 41.82 

ws 
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The laminar foot with and without coolina at kin = 3 
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