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SUMMARY

The Crocco-Lees method is applied to interactions between shocks
and boundary layers that remain laminar throughout. The underlying
assumptions of the method are critically reviewed, and the mathematical
analysis involved is presented. Results obtained by solving the resulting
equations with the aid of the N,P.L. DEUCE computer are discussed. They
are found to agree qualitatively with those of a more recent method.

Cooling the wall and the use of distributed suction are both found to reduce
the extent of regions of separation.

1. The Type of Problem to be Considered

Interactions between shock waves and boundary layers frequently
occur in practice, but often the flow configuration is complicated. A
basic understanding of such practical instances can, however, be gained by
studying relatively simple cases. The cases to be considered in the
present paper are those shown in Figs.] and 2. It is assumed that the
flow is two-dimensional, and that the boundary layer remains laminar
throughout the region of interaction. This latter is an important
assumption, since it is known that if transition occurs within the region
of interaction it greatly affects the flow. However entirely laminar
interactions are far from academic, since high~speed aircraft usually fly
high, with correspondingly low Reynolds numbers.

Heat transfer between the airstream and the surface often arises
in practice, and it can have a large effect on the interaction., Hence cases
with heat transfer are studied in the present paper. Distributed suction is
also considered as it may be of practical interest in the future.

2e Introductory Outline of the Crocco-Lees Methad

The theoretical method used in the major part of the paper is that
due to Crocco and Lees!s253s%,  An account will be given in this section of
the underlying approximations and physical assumptions of the method.

Consider the cases shown in Fig.] or Fig.2. Here the pressure
rise imposed on the boundary layer by the incident shock, or by the change
of wall slope, has an influence on the flow upstream of the shock or corner.
The pressure begins to rise above its upstream value, and this causes the
boundary layer to thicken, because near to the wall there is a region of
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low-speed subsonic flow. The thickening of the boundary layer deflects

the external flow outwards from its original direction, so generating a band
of compression waves. Clearly the boundary-layer thickening must be
matched to the associated compression waves, and finding the conditions
under which the two processes can be in equilibrium constitutes the
principal task of any theory of shock wave boundary-layer interaction,

According to the theory, the pressure distributions at the wall
upstream and downstream of the point of shock impingement in Fig.1 will be
identical with those upstream and downstream of the corner in Fig.2 if the
pressures and external-flow Mach numbers at large distances upstream and
downstream are the same. Experiment5 shows that in fact, the upstream
influence is considerably bigger for the case of Fig.1. Hence the
assumptions which imply the identity of the two cases are suspect., These
assumptions concern the nature of the flow near the point where the shock
strikes the boundary layer in Fig.1 or near the corner in Fig.2. Thus it
is assumed for Fig.2 that the profile of the velocity component parallel to
the wall is the same just downstream of the corner as just upstream of it,
though in reality it seems quite likely that the cormer would cause abrupt
proportional changes in the speed of the slowest-moving fluid, thus changing
the shape of the profile near the wall. Likewise in Fig.] it is assumed
that the shock reflects locally as an expansion, which is such as just ta
cancel the rise of pressure through the incident shock, Whilst this is
broadly true, the detailed manner in which the shock penetrates into the
layer and reflects from it is not reproduced in the analysis, which assumes
the process to be compressed into a point., Also the velocity profile is
assumed to suffer no abrupt changes on passing under the point of shock
impingement, and this assumption, like the corresponding one in the case of
Fig.2, may be in error.

It is easiest to discuss the method in connection with Fig.2,
though the arguments only require slight modification to be applied to
Fig.1. 1In inviscid flow a shock wave would spring from the corner in
Fig.2, but the boundary layer has a "softening" effect, so that near the
wall there is a band of compression waves, which only ceoalesce into a shock
further out. Hence outside the boundary layer, but near the wall, the
pressures and flow directions are related to each other by the simple-wave
flow relations. It is assumed that the boundary layer has a definite edge,
along which the simple-wave flow relations apply, and that between this edge
of the layer and the wall, the pressure is constant along lines perpendicular
to the wall. These assumptions are not strictly compatible close to the
corner, but they are nearly so if the change of wall direction at the corner
is fairly small., This would normally be the case for interactions
involving entirely laminar layers, since a large change of flow direction
would probably cause transition to occur befere the boundary layer
reattached., However, the assumption concerning the pressure within the
boundary layer is open to more serious obJjections, In reality the boundary
layer has no definite edge, so this is defined somewhat arbitrarily. If it
is chosen so as to include too great a proportion of supersonic flow, the
boundary layer so defined would grow thinner on encountering a rise in
pressure, because such a rise would cause the supersonic stream tubes to
contract. A thinning of the layer is incompatible with the generation of
compression waves in the external flow. In the terminology of Crocco and
Lees the boundary layer would be "supercritical", whereas if defined as
normally, so as to include a smaller proportion of supersonic flow, the
laminar boundary layer is "subcritical". The root of the trouble is the
assumption that within the boundary layer the pressure gradient is zero
normal to the wall, In reality the boundary layer merges gradually with
the inviscid outer flow, and in the outer, supersonic, part of the layer,
the pressure and the flow angle tend to be constant along Mach lines rather
than along lines perpendicular to the wall. It is because of this that the
outer-flow streamlines can converge whilst at the same time turning away from
the wall. A similar situation arises with regard to turbulent layers, where
there is little latitude in the definition of the edge, and the layer is
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nearly always "supercritical" according to the theory. This leads to an
apparent fundamental distinction between laminar (subcritical) and turbulent
(supercritical) layers, whereas in reality there is no such absolute physical
difference. For both types of layer, a rise of pressure causes the inner,
slow-moving, stream tubes to expand, and this deflects the outer flow away
from the wall,

Although the arbitrariness in the definition of the edge of the
laminar layer may seem from the above discussion to involve great
uncertainties in any results of the theory, it will be seen later that
"reasonable” choices for the edge give results that are in fair agreement.

It is necessary to relate the thickening of the boundary layer, and
the consequent deflection of the external flow, to the pressure distribution.
This is done by integrating the equations of continuity and momentum across
the layer. The resulting equations are combined, and put into a form
involving certain parameters. These parameters depend on the shape of the
velocity and temperature profiles, and accordingly they vary through the
region of interaction. Relations between the parameters are obtained as
follows. Suppose the considerations of the equilibrium between the outer
flow and the boundary layer, governing the pressure distribution, as discussed
above, could be set aside. Then if the wall temperature were the same at all
points, and a special form of pressure distribution could be imposed on the
layer, the profiles would not vary in shape with distance along the wall, but
only the thickness of the layer would vary. For incompressible flow the
distribution of external velocity needed to produce these "similar" profiles
is of the form U = kx%, and a more complicated family of pressure
distributions, related to the incompressible lower-law family by the
Stewartson transformation®, produces the same result in compressible flow.
For these special distributions, the parameters of the Crocco-Lees method
would take on values that would not vary with distance along the wall, but
would depend only on the index n of the equivalent power-law velocity
distribution, and on the ratio of the absolute temperature at the wall to
the stagnation temperature. This ratio would be unity for zero heat transfer,
since the Prandtl number is assumed to be unity. If there is distributed
suction through the wall, varying with position along the wall in such a way
as to maintain similar profiles, the parameters would, in addition, be
dependent on a factor related to the rate of suction. Thus, the parameters
in these circumstances could be regarded as functions of one of their number,
of the wall-temperature ratio, and of the suction factor. These same
relationships are assumed to apply for general types of pressure distribution,
and this assumption makes the integration of the equations possible. It is
thus, for example, assumed that the shape of the velocity profile at
separation is fixed, and is the same as that at reattachment.

Thus the essence of the Crocco-Lees method is seen to be this, that
by suitable manipulation the equations are reduced to a form involving as
unknowns certain parameters whose interrelationships can plausibly be assumed
to be relatively simple, This procedure differs in no essential respect from
the well-known method of Pohlhausen for low-speed flow, based on the von Kdrmdn
momentum integral equation. The parameters arising in that equation are
different from those of the Crocco-Lees method, but they are related in the,
same way to a one-parameter family of profiles, such as the similar-profiles
family. It may seem at first sight to be a fundamental difference between
the two methods that one of the parameters of the Crocco-Lees method should
be concerned with the entrainment of air from the external flow into the
boundary layer. This focusses attention on the way that the higher velocity
external-flow air mixes with the slower-moving air in the boundary layer, sa
giving up to it some of its momentum, and for this reason the theory was
originally described as a "mixing" theory. This fundamental physical process
may appear to be completely overlooked in the Pohlhausen method. However,
account is taken of it because a similar transfer of momentum takes place at
points within the boundary layer, as well as at its edge, and the von Kdrmdn
momentum integral equation is the mathematical expression of just this overall
process. ‘Thus no absolute fundamental difference is involved.
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There is, however, the following distinction. A usual feature of
methods of the Pohlhausen type is that not only the integral of the equation
of momentum across the boundary layer is satisfied, but also the equation
itself is satisfied at the wall. 1In this way the curvature of the velocity
profile at the wall is related to the local pressure gradient. The other
shape parameters of the profile are assumed to be related to the profile
curvature at the wall, 1In the Crocco-Lees method the equation of motion is
not satisfied at the wall, but in place of this there is introduced the
condition that the rate of entrainment of fluid into the boundary layer from
the external stream is related to the shape of the velocity and temperature
profiles. No parameter depending on the curvature of the velocity profile
at the wall is useds This is a point in favour of the method, since the
overall characteristics of the profile shape are far from uniquely related
to its curvature at the wall. On the other hand, the dependence of the
Crocco-Lees method on an arbitrary definition of the edge of the layer is an
unsatisfactory feature that is absent in methods of the Pohlhausen type.
Moreover, whilst it is not obvious which characteristic of profile shape
determines the rate of entrainment of the extermal fluid, it seems quite
likely to be associated with the curvature of the outer parts of the velocity
profile, so that it may be no more closely related than the curvature at the
wall to the broad, overall shape of the profile, as expressed by parameters
such as K.

The relationships between the Crocco-Lees parameters as used in
the N.P.L. calculations differ in an important respect from those proposed
originally, and used in earlier calculations/s o, The differences occur in
the values of +the parameters for separated leyers. Originally, the profiles
for such layers were treated as though there were an inner region of
motionless flow, whilst the outer part of the velocity profile was assumed to
be the same in shape as the profile at the separation point. However, amangst
the similar-profile solutions, there are certain profiles, called "lower-
branch" solutions, which resemble the profiles of separated layers, as they
have a region of reversed flow near the wall. Stewartson? first drvew
attention to the possible use of these solutions as a representation of the
flow in a separated region. They have been used in the present calculations
both because they seem better founded then the original forms, and because
they give rise to predicted pressure distributions whose general shape agrees
better with experiment. A further, but minor, difference between the N.P,L.
calculations and the earlier ones is that in our work viscosity is assumed to
be proportional to absolute temperature. This assumption is in any case
involved in the Stewartson transformation, which is used in deriving the
theory, and its adoption somewhat simplifies the analysis.

To summarize, then, the main assumptions and approximations of the
Crocco~Lees method are as follows¢

(1) Boundary-layer theory is applicable, the pressure being treated
as constant across the layer.

(2) Details at the point of shock impingement (Fig.1) or near the
corner of the wall (Fig.2) are only of local importance.

(3) The velocity and temperature profiles may be taken to belong to
a family of "similar solutions", from which the basic parameters
are derived.

(4) The equations which are to be satisfied are based on continuity
considerations, on a momentum integral relation, and on an
equation relating the thickening of the boundary layer to the
pressure distribution.

3. The Equations Used

Four basic parameters are used in the Crocco-Lees method, chosen
in such a manner that according to the Stewartson transformation the
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relationship between them will be independent of Mach number. The first
of- these parameters is K, which depends on the shape of the velocity and
temperature profiles, and is defined as

K= —, e (1)
mu
e

)
where I = / pu’3 dy,the momentum flux in the boundary layer,
o

6 _
n o= /‘ pudy, the mass flux in the boundary layer, suffix e derotes
o

conditions at the "edge" of the boundary layer, and & (equal to ye) is

the "total" thickness of the layer. A second parameter, C, is related to
the entrainment of fluid into the boundary layer from the mainstream, from
which entrainment is subtracted any removal of fluid from the boundary layer
by suction at the wall. C is defined by

- i (2)
¢ = s =ﬂ{*-¢—c} e (2
T . He & dx ° )’

where ¢ 1is the angle between the wall and the streamlines at the edge of

the boundary layer, Cy may be termed the "mixing coefficient", and CQ is

the suction coefficient, - pwyw/beue, where suffix w denotes conditions

at the wall. A parameter o, related to the ordinary coefficient of local
skin friction Cf, is defined as

S S ees (3)

A final "shape" parameter, ¥, depends on the Mach number at the edge of the
boundary layer and on the shapes of the velocity and temperature profiles,
and is equal to

Pelied
v = t(—-—--- ) vee (1)

m

where t is the ratio of the temperature at the edge of the boundary layer
to the free-stream stagnation temperature,

These four parameters, K, C, o and ¥, arise in the equations in
the following way.

It follows directly from the definition of Cy (equation (2)) that
dm
E; - Peuecm' b (5)

By integrating with respect to y from 0 to & +the momentum equation of
the boundary layer, viz. ‘

ou Ju due ) Ju
pu == + pv == = Pl =™ + = (P ";'> s

ox oy dx oy oy
and making use of the equation of continuity,

2
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a(pu) 3(pv)

+ = ’
ax oy
we obtain
dI dm due
;; = u ;; + bpeu.e :;: T+ peuch, eoe (6)

where T is the shear stress at the wall. It is assumed in deriving

equation (6) that & is sufficiently great for the shear stress at & to
be virtually zero and the velocity at & to be virtually equal to L

This sets a lower limit on 8. An upper limit is set by the requirement,
discussed in the previous section, that too great a region of supersonic flow
should not be included within the region, from y = O to y = &, over
which the pressure is assumed to be a function only of x.

From equations (1) to (6)
dK Bdm ¢ dw

ome T e emem o emen e

ax m dx wt dx

, vee (7)

where B = (1 -K)(1 -0) + CQ/CM, w = ue/h°’ (a reduced free-stream
velocity), and a° is the stagnation speed of sound.

Another basic equation can be regarded as arising from the
interaction between the boundary layer and the isentropic outer flow., It
states that the rate of boundary-layer growth, d6/dx, as calculated from
the free-stream deflection angle, must be equal to the value of dd/dx
calculated from the chosen boundary-layer parameters., As already discussed,
the boundary layer is considered to haye a well-defined edge 6, which is the
dividing line between it and the isentropic outer flow. From the definition
of the mixing-rate coefficient C,, in equation (2)

M
as

—~ = Gy + ¢ + Cpe oo (8
ax i < )

The angle ¢ 1is related to the supersonic outer—flow velocity by the simple-
wave~-flow equations. For these we use a second-order approximation, namely

¢ =<1_—§>(a+bg>, eee (9)

- 1
(MB - 1)§”b:

where a =
y=1 2 oyt 1 y+ a
b oz oeem (B 1P 4 om (B 1)F 4 (- 1),
L 2 4
w = value of w when ¢ = O,
M = Mach number corresponding to W.

Replacing ¢ in equation (8) from equation (9), we have our first
expression for d5/dx, in terms of the outer~flow velocity.

Before considering the second expression for d8/dx it should be
noted that in equation (9), when the analysis is applied to the situations of
Figs.1 or 2, there are two possible values of W, One of these, w,, is the

value/
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value of w corresponding to flow parallel to the wall upstream of the
shock or corner, and the other value, w_, corresponds to flow parallel

to the wall downstream of the shock or corner. Thus in Fig.1 the direction
of the W flow is the same as that of the W, flow, but W is less than

W, because of the incident and reflected shocks., In Fig.,2, on the other
hand, w is less than W because the direction of the w flow is

inclined upwards to that of the w_ flow., Upstream of the shock or
corner W, will be used for W in equation (9), and downstream, w ~owill
be used.

The second expression for d8/dx comes from the definition of the
paraneter ¥ in equation (4), which may be written

tpeue6
m = e————— . coe (10)

Since the external flow is isentropic, t = 1 ~ (y = 1)w/2 and
tdpe/dx = pW dw/dx. If ¥ is regarded as a function of K, we obtain,

by differentiating (10) with respect to x and eliminating dK/dx, from (7),

as § 1 dm ay Gy 1 dwp QY
- me—— {- --l:B —= =t (1=K )+ 1+t --:] F o | - é:B ,  ese (1)
dx Y+t Um dx aK CM wt dx dK

where J = ywy + Kt (W - t). Setting this equal to equation (8) gives
the required interaction equation. However, before writing this down we
proceed to define a dimensionless mass-flow variable

A s ees (12)

it}
1
i

where superscript o denotes free-stream stagnation conditions, and a
dimensionless x~wise distance

x = ol e (13)

where 65 is the boundary-layer thickness at the separation point, and X

the value of x there, In terms of these new variables the interaction
equation becomes

1 dw ay 142~ ab
— - \l.f""‘"JJ""-‘--[B"'""E] = 0, soe (11{-)
wt dX L. aK Z axl ak
3
where E = =+ t0 (1 = K) - V.
Cy
Finally, if we assume that W« T so that pe/p° = t, the

equations of continuity (5) and momentum (7) may be written

— 2 e - - eeo (15)
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-8 -
aK B dz ¥ dw

and oz e e e e e (16)
aX £ dX wtdX

L The Relations between the Parameters

As discussed in Section 2, the parameters of the Crocco~Lees
method, K, C, 0 and 1V, are treated as functions of one of their number,
and of the factors determining the wall temperature and the amount of suction.
The relationships between the parameters are obtained from the similar
solutions of the boundary-layer equations. These similar solutions can be
derived in a form which does not explicitly contain Mach number by means of
the Stewartson transformation®, which can be written

W1
a, (v P x,a_ \2L=
'§=___9_/ - dy, i’-‘/(-g)%dx,
adwfvd o py o\ ay
see (17)
98 pu ds pv [
o7 eglvy ox Palvg

Here s is a stream function, so that the continuity equation is satisfied,
and suffix d stands for some datum position. For a Prandtl number of 1,
the equations of motion and energy can be written

ou ou due d Ju
PU == + PV == Pelly —= + —-—( —-)

o0x oy dx oJy \ oy
oH oH 0 oH

and pu — + pv —— = —-(}1-—->,
ax dy oy dy

where H is the ratio of the total temperature, T + u""/ch, to the total

temperature in the free stream. If viscosity is proportional to absolute
temperature, so that pp is constant across the boundary layer, the
Stewartson transformation applied to these equations ylields

tenmien G W8 CeEEem

+ ;:y; voe (18)

e memy o=

%s 9s 9%s as 9%s 9s 3s
H
dydX 3§ 3y d% ( 0yox dy > e

ds dH s JH *H
and e mmen e e m - ——— [ X N (19)
0y 9X X 9y oy

Assume now that we can write

Gt e ’
S8 = ew—mer X F(n), §, = we————X G H = H(n),
v (n+1)2 v (n+1)’12'
}... (20)
1 n=1
i n+1 T —z-
where n = K < ---) X° 5y,
2
J
suffix w stands for conditions at the wall (n = 0), and
P',H+>1 as nm>w; F = F' = 0, H=HW at mn = O ...(21)
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These substitutions of course imply a special form of exterral-velocity
distribution, a special type of distribution of the suction velocity
through the wall, and a wall temperature that is constant. Under these
restrictive conditions the equations (18) and (19) reduce to

™ 4+ FF" + g(H - F*®) + GF" = O eeo (22)
and H" + (F + GH' = 0, ees (23)

where B = 2n/(n + 1). This shows that the assumption underlying relations
(20), that the profiles of s and H as functions of ¥ can be similar in
shape for all values of X, is in fact compatible with equations (18) and (19).
For the special conditions under which these similar solutions are valid, the
parameters of the Crocco-Lees method can be shown from the definitions given
in equations (1) to (4) and from equation (5) to be given by

ne 1 o ™
K = 3;1/ Fdn = 1-0'5/ F'(1 = F')dn
0 [0}
C = Fz * [ne-;n/w(H-‘l)dn—/w(H-—F')dn:la
° ° ?(24)
o = F'(o)/(1 —K)C%
Me _ifeo _ifw
¥ o= ngf Hdin -K % C2 (H—F')dn+02/ F'(1-F!)dn
(o} (¢} (o}
>

Also CQ/CM, involved in the term B of equations (14) and ‘(16), is given
by

C G
2. . vee (25)
CM Fe

The edge values, distinguished by suffix e, in equations (24) and (25) are
the values at m_, where F‘(ne) takes an arbitrary constant value close to

1. The usual value taken for F'(ne) is 0.95, as this is found? to give
the best agreement with Lighthill's asymptotic solution10 for the behaviour
at the upstream end of the region of interaction. Some calculations have
been done in the present paper, however, with F‘(ne) = 0.,98. There is no

theoretical reason why F'(ne) should be taken as constant throughout the

interaction region, though varying it would greatly increase the complexity
of the calculations., However, it will be seen later that re-calculating a
case using a constant value of 0,98 in place of the normal constant value of
0.95 makes little overall difference to the results. Hence it is reasonable
to assume that a constant value of 0.95 is satisfactory for general use.

It follows from (21), (22) and (23), that for the similar solutions
K, C, o, ¥ and CQ/CM are functions only of g, HW and G. Thus

K, ¢, o and CQ/CM can be regarded as functions of ¥, HW and G. These

relationships are assumed still to apply even when the conditions regarding
the external-velocity distribution, etc., necessary for similar solutions are
no longer satisfied. In this more general context Hw’ being the ratio of

the absolute temperature of the wall to the absolute stagnation temperature
of the free stream, still has a clear significance, but G becomes merely a
parameter related to the rate of suction, If G is treated as a constant,

as/
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as it is for any particular case in the present calculations, the suction

coefficient CQ will vary from point to point in a way that can only be

determined after the computations have been completed. This is discussed
further in section 6 below.

Solutions of equations (22) and ﬁ;) under the boundarg{
conditions (21) have been given by Hartree’!, Cohen and Reshotko 2, and
Stewartson’ and by other workers. Cohen and Reshotko give many results
for cases without suction but with various values of Hw' It is for

convenience in the use of Cohen and Reshotko's data that the approximate
forms have been included in equations (24): Cohen and Reshotko tabulate

o0 [+2] [+ 2]

the quantities / (H - 1)&n,/ (H -F')dn,/F'(1 - Ft)an and F"(o);
[0} (o] [s]

also PF'(n), from which it is easy to determine Nge

Some of the results tabulated by Cohen and Reshotko correspond to
so-called "lower-branch" solutions of equations (22) and (23). It is
found that for negative values of £ that are not too large in magnitude
there are two solutions of equations (22) and (23) having the correct
asymptotic bebhaviour for large values of mn. One of these solutions has a
lower value of skin friction than the other, and is called the lower-branch
solution. Such solutions have been investigated in detail by Stewartson
for the case H = 1, G = O, corresponding to zero heat transfer and
suction. Usually the skin friction is actually negative with lower-branch
solutions, so that there is a region of reversed flow near the surface, like
there is with a well-separated boundary layer. Values of the Crocco-Lees
parameters corresponding to lower-branch solutions can of course be
calculated just as easily as for the upper-branch solutions, and it seems
logical to use them between separation and reattachment. When the
Crocco-Lees theory was first formulated, however, it was argued that
between separation and reattachment K, C and ¢ would remain constant at
their separation values. This is equivalent to the assumption that the
velocity profile has a region of zero velocity close to the wall, joined on
to an outer profile which is of the same shape as the complete profile at
‘separation. Results obtained on this assumption differ markedly for well-
separated flows from those obtained using lower-branch values of the
parameters in the separated regions. The latter type of result is more in
line with experiment, and hence the majority of the calculations have been
carried out with parameter tables that include lower-branch values.

To compute the functions for cases without suction, the data given
by Cohen and Reshotko had to be supplemented by data drawn from Stewartson's
study”? of lower-branch solutions for the case HW = 1, With the edge of

the boundary layer defined in the usual way as the point where F' = 0.95,
K, C, o and ¥ were calculated and graphs drawn as in Figs.3 to 5, for the
five values of H_ (0, 0.2, 0.6, 1.0 and 2.0) considered by Cohen and

Reshotko. The curves for HW = 0.6 were extrapolated in conformity

with the adjacent curves, and values were read from the graphs and tabulated
as in Tables 1 and 2 for the conditions H = 1.0 and H = 0.6 for

which calculations have been done, The former condition corresponds to
cases with no heat transfer or suction, whilst the latter corresponds to
cases without suction but with the wall cooled to 0.6 times the absolute
stagnation temperature of the free stream.

One case was calculated using functions which were in accordance
with the original idea that K, C and ¢ nust remain constant between
separation and reattachment. The table used was almost the same as Table 1
between the constant-pressure and separation conditions, though there were

small/
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small diffefences due to attempting to make the curves Jjoin smoothly onto
the conditions of constant K, C and o beyond separation.

Another case was calculated for HW = 1, G = 0, as above,

but with a different edge definition, F' = 0.98 instead of 0.95. The
corresponding functions are given in Table 3.

Finally, cases with Hw = 1, i.e., no heat transfer, but with

distributed suction such that G = O.4 were considered. The data for
this condition had to be calculated from new solutions of the basic
equation (22), since existing solutions were not available.* The
computations were carried out by Mr. A. R. Curtis of Mathematics Division,
N.P.L., using the DEUCE computer to solve the differential equation by a
method of successive approximation. Separation was found to occur when
g = -0.3719, as compared with the value =-0,1988 without suction or heat
transfer. Table 4 shows the calculated Crocco-Lees parameters. Since
the term CQ/CM enters the equations (14) and (16), and is equal to

1
G/Te = @/C%, it was found more convenient to tabulate Fé’1(¢) than

C(¥), as this avoided an unnecessary square-root calculation at each step
in the integration of the equations. Also it was necessary to tabulate
(1 - K)o rather than o. This was because values of K above and below
1 were obtained for the case with suction, whereas without suction K is
always less than 1, at any rate over the range of the tablesj when

K = 1, o(¥) has a singularity, as can be seen from equations (24). The
values of K greater than 1 were obtained for lower-branch profiles with
large reversed-flow regions. In such a region F' is negative, and if

there is sufficiént reversed flow, /. F'(1 - F')dn can be negative, so

0
that K exceeds 1 by equations (24), despite the positive contribution to
the integral made by the outer part of the profile.

5. Details of the Computational Methods

5«1 Cases without suction

The equations to be solved, derived from equations (14) and (16),
are dealt with in the following form:

@ Brw o a mlBreE) e (26)
az  Z(IK* o+ ) az Z(I;* + ¥)
where t = 1-0,2Ww
J = 1w + Kt(w - t)

B = (1-K){(1-o0)

E = c*i;¢+ (1 =K)ot = ¥

(1 - W/ﬁ)(aﬁ+ bw/w) 1 1
b = 0.4 (F-1F + 0.2 (B-1)Z + 0.6 (B-1)7
a = (B -1)

©-
1

(S
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¥/

¥
It was subsequently discovered that a few solutions for G = O had
previously been found by Dr. L. Fox and quoted in an unpublished paper,
A.R.C.12,699, by Dr. B. Thwaites.
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M = w1 - 0.2%%) 2

W, upstream of shock in Fige1
or corner in Fig.2 (g < 41)

w o=
W, . domnstream of shock or corner (% > %, )
aK
K' = -=is derived from the table of K(Y)
dy
K, C, 0 are tabulated functions of
) -1
) ) o

This pair of non-linear ordinary differential equations for ¢ and w in
terms of ¢ involves a parameter (see below) which has to be determined so
as to satisfly the boundary conditions at infinity upstream and downstream
of the shock or corner. We have thus an "eigenvalue" problem, and the
large amount of computing required to determine the parameter necessitates
the use of automatic computing aids.

A particular case will be determined by specifying the free-stream
Mach number Mo’ the value és of Z at separation, and either (a) the

condition that the shock strength or change of wall slope is Jjust sufficient
to cause separation, so that separation and reattachment both occur at
L = és, at the point where the shock strikes the boundary layer in Fig.1

or at the corner in Fig.2, or (b) a value of w_ which defines the pressure

rise downstream of the shock or corner.

Considering first the region upstream of separation (Z < ZS),

the parameter to be determined is w_, the value of w at that point.
For various values of LA the corresponding solutions for ¢ and w

are found by stepwise integration upstream from separation.

The prescribed boundary condition is that dy/dz shall tend to
zero as ¢ becomes sufficiently less than ;s’ i.e., far upstream of the

interaction. This alone would not appear to define a unique solution for
LA but the solutions for V¥ +turn out to have the following characteristic

properties which do enable W to be determined uniquely, at least for

values in a physically meaningful range. § decreases monotonically
upstream and downstream from the shock, for values of w, sufficiently

close to the true one. If L is too large V¥ deviates t0 + w

exponentially after a certain stage; if w_ 1is too small ¢ deviates to
- o exponentially after a certain stage. w behaves in the same way.
The true solutions for w and V¢ lie below the positively deviating
solutions and above the negatively deviating ones, these being practically
coincident for longer ranges of & below és the more nearly the

corresponding initial values of L lie to the true value., Both ¥ and
w do in fact tend to virtually constant limiting values when LA is

sufficiently well determined, so that the boundary condition is satisfied
as far as possible. However, equations (26) show that ¢ and w cannot
remain perfectly constant over the whole distance between the leading edge
(2 = 0) and some point well upstream of the region of interaction

(see Section 6). For this would require B = E = O over this range
of ¥, and hence the product Z¢, which occurs in E, would have to be
constant, Hence ¢ would vary with %, which is incompatible with the

constancy of w.
The/
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THe upstream behaviour of the solution ¥ is exploited as
follows in determining L efficiently. An initial guess is provided

for Wos together with an initial correction & (not to be confused with
boundary layer thickness) to be applied to LA after the first integration

run. (8 expresses the most probable uncertainty in the initial guess, and
too large or too small a value of & can greatly increase the subsequent
amount of computation). After successive integration runs + & or - 9§
is added to w, as appropriate until the true L has been bracketed, which

is revealed by one solution going to + « and the next to ~ «, or vice
versa. At this stage & d1is halved on each successive run and its sign
changed as appropriate, until LA has been determined within a prescribed

accuracy 60, chosen in the light of experience so as to ensure that

has reached its upstream limiting value. To detect the onset of
exponential deviation by an automatic method use is made of a further
observed property of the solutions v, namely that ady/dZ is never
negative upstream of the shock for the true solution, so that a negative
value indicates positive deviation. Negative deviation is detected by
going below the range of the tabulated functions K(w), C(¢), G(¢), which is
well below the upstream limiting (constant pressure) value. An earlier
method of detecting deviation was based on the assumption that ay/dg
decreased in absolute value throughout a run, but this was found to be false
in many cases for the larger Mach number.

Having determined w_ and hence the functions w(Z) and W(é)
for Z < és by upstream integrations from the separation point there are

two distinct problems to be solved by stepwise integration downstream of

this point (i.e., for Z > 2 ). The first is to determine the parameter
w 80 that the shock streng%h or change of wall slope is Jjust sufficient
0

to cause separation, i.e., so that separation, shock or corner, and
reattachment all occur at és' This is quite analogous to the upstrean

problem, V¥ decreasing monotonically to a constant value if w  has been
co

correctly chosen and deviating exponentially to + o or = o according
as w_ was too large or too small., 1In the second type of downstream

problem a value of w  dis prescribed, somewhat less than that obtained
00
for the first problem, and one has to find a value of Z, » the position of

the shock or corner, such that V¢ tends to a constant value far downstream.
In this case V¥ increases from gs up to the shock or corner, at which

point the value of W is changed abruptly and ¥ begins to decrease
again. The parameter &  is adjusted so as to postpone the exponential

deviation of ¥ Just as before, an increase of & tending to produce
upward deviation of ¥ and a decrease of g a downward one.

The quantities of practical interest are not the variables
Zy ¥ and w convenient for the numerical treatment of the problem but

quantities related to the derived functions X = (x - x /BS (distance
downstream from separation as a ratio to the thickness of the boundary
layer at separation, P = p/p° (pressure ratio in terms of stagnation
pressure) and A = 6/6s (boundary layer thickness normalized to unity

at separation), To produce values of X the following third differential
equation obtained from equations (10), (12) and (15) is integrated at the
same time as the others.

eee (27)

where/
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where P = 1
A = cz(¥ + Kt)/Pw
¢ = (g (v, + Kt )/pw )
X = ¢X

The integration was carried out on the N.P.L. automatic computer
DEUCE, using floating~point arithmetic and a second-order Runge-Kutta
integration routine. The interval of integration in & was fixed for each
case and determined in the light of experience to give the accuracy required.
It was found adequate to use downstream of the separation point an interval
of twice that used upstream, and to increase the interval for increased
values of &g+ Downstream intervals of 4, 8, 8 were used for

és = 250, 560, 1250 respectively. Since the bulk of the work is in

calculating the quantities appearing in the differential equations at each
step and only rough data is available for the functions K, C, o it was
thought best to use a low-order Runge-Kutta formula for the sake of speed.
The quantities V¥, wand X at g, are obtained from their values at the

ad jacent integration steps by linear interpolation, to start the integration
downstream from the shock.

To save time the values of the quantities at successive steps are
not punched out from DEUCE until the parameter (ws or w_or g, as the

case may be) has been determined to the desired accuracy. At the end of
each trial run a single card is punched bearing the value of the parameter
used, the correction applied to it, and the values of 4 and ¥ at run
termination. TFinally, two complete sets of quantities for each step are
punched out, an "upper bound" solution with ¥ wultimately increasing
exponentially and a "lower bound" solution with V¢ ultimately decreasing
exponentially. For each step the quantities X, A, P, &, ¥, w are
available, punched on a single card in binary scale. Conversion to decimal
form is carried out on a separate run,

One programme was arranged to find W and automatically go on
to determine W for just separated flow,and another to find éi
corresponding to given w s using W, found by the first programme. A

simple modification to the second programme enabled it to be used to perform
a single integration run from separation to shock or corner (Z‘.1 specified)

which is very quick. This is all that is required in certain practical
cases where the onset of turbulent flow near the shock or corner renders the
downstream pressure- distribution of academic interest only.

The computing time was between one and two seconds per step.
With a good initial guess at L and w  the total time for the first

o
programme would be typically 20 minutes for 10 integration runs Eof 60 steps
each) finding w_ +to sufficient accuracy, 4 minutes for 8 runs (of 15 steps
each) finding w , and conversion to decimal would take another 13 minutes.
0o

It was found necessary to determine LA to better than four decimal places
and w to four in order to obtain a reasonably long downstream run before
24

deviation of ¥ and w. For the second programme the value of W
specified is critical ~ if it is too small V¢ goes above the range of the
table, or else reattachment may never take place (the overall pressure ratio
being too great) and much machine time may be wasted waiting for the run to
terminate; however, a typical run might take from 7 to 15 minutes for

7 runs finding &, plus 5 to 10 minutes for conversion.

In/
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In view of the very approximate nature of the data available
for the functions K(¥), C(¥), o(¥) and the necessity for referring to
them twice per step during the course of the calculations an attempt was
made to compress the tables into a small storage space on the machine.
Linear interpolation was used to reduce the computing time and the number
of instructions to be stored. The range of ¥ was divided into two parts
somewhere near the minimum value of K, the functions being stored at equal
intervals of ¢ in the two ranges. The lower range of V¥ corresponds
mainly to attached flow in which the second derivatives of the functions
with respect to ¥ are larger than in the separated region, so a smaller
interval of V¥ was necessary there. By storing only the increase of each
function above its minimum value in the range, to an accuracy of one part
in a thousand, one tabular entry for all three functions was accommodated
within 30 binary digits in a single "word" on DEUCE, and the 32 words of
one track of the magnetic drum store sufficed to contain the whole table.
K'(y) was calculated from the table of K(¥) wusing four adjacent tabular
entries. Each programme comprised 37 tracks of instructions and data.

5.2 Cases with distributed suction

The equations to be solved differ from those given under (5.1)
only in the addition of the term G/F_ to B. To avoid an unnecessary
square root caloulation at each step the function F ' (y) was tabulated
instead of C(V¥), as already mentioned in Section 4, §nd the formulae which
involved C or o were expressed instead in terms of F;f and (1 - K)o,

The behaviour of w and V¥ upstream of separation in these
suction cases was more abrupt than hitherto, and it was necessary to divide
the interval of integration by four. ¢" had a distinct negative region.
Downstream of separation it was sufficient to halve the interval.

A rather remarkable phenomenon appeared when a solution was
attempted using too large an interval, which would be noticed at once in
hand computation but gave a misleading impression using an automatic
computer until its possibility was appreciated. The solution showed
convergence of ¥ to a constant value in an apparently smooth fashion, and
slight changes of w_ from the apparently correct eigenvalue had the
‘appropriate effect on V¢. But the limiting value of ¢ was too high, as
revealed by halving the interval, and w_ was also too large. The second
order Runge-Kutte process derives the increment of V{ over each
integration step from a weighted average of derivatives computed at the
initial and two-thirds-step points. It turned out that in the spurious
solution ¥ approached the limiting value in such a way that the
derivatives at the initial and two-thirds-step points were large and of
opposite signs, so that they cancelled out to give a small increment for
over the whole step. In this case a table of differences of | suggested
the necessity for reducing the interval, although a graph did not.

6. The Relations for Reynolds Number, Displacement and Momentum
Thicknesses, Upstream and Downstream Pressures, and Suction
Coefficient ,

In the previous section it was shown how the DEUCE computer
produces values of P = p/p® and A = 6/5s as functions of

X = (x- xs)/ﬁs. It may be more useful to present the results in the
form of graphs of P, R&* and Re as functions of 'Rx, where the R's

are the Reynolds numbers pouoﬁ*/po, pouoe/uo and pouox/u , respectively.
Here suffix o denotes conditions in the free-stream flow parallel to the

[+
wall upstream of the shock or corner, &% = / (1 - EE%_> dy, the
o ee

displacement/



o0
displacement thickness, 6 = .[ L2 (1 - 5}-) dy, the momentum
[o]

thickness, and x is the distance from the leading edge.

From the definitions of 6% and 6 it follows that
* = & --m/peue and & = a(4 -K)/peue. Hence from equations (10)

and (12) and the fact that the exvernal flow is isentropic

w b ® gy - (1 - K)t]

R - Y] (28)
& wtt*B £
w % z(1 - k)
0 0
Ry = —wti's .~-t s eeo (29)
LASREE SN R ¢
and R, = R_+ °-2 eee (30)
w_t°® £
S S F)

where suffix s denotes the separation point.

As discussed in the preceding section, ¢ and w both tend to
approximately constant values upstream of the region of interaction. Since
w 1s almost constant, ¢ +tends to a close approximation to W s the value

for the constant-pressure boundary layer. However w is not qulte the same
as W, the value for flow parallel to the wall, because of the growth of the

boundary layer. The term E in equations (26) is approximately zero

c
upstream: hence ¢ 2 L [wc -1 - Kc) obto]. But since w 1s close

to w,,
) N w
$ ¢ (M2~1)2<1--—>.
w
(o]
W Cly -(1 =K )ot]
Hence — = 188 e °-. eee (31)
2
w, £, - 1)
This is only a slowly varying function of ¢ if % is large.
Corresponding to equation (31)
P e v, - (4 -k ot ]
—_ = 14 2.2 eee (32)
P, é(l\f-‘l)z

This expression can also be derived from equation (28), since

P ¥V as*
O - ) I :l
P, (8 -1)7L ax ¢

if £ 4is large, p 1is only slightly greater than Py unless Mo is very

large, when the "hypersonic leading-edge effect" occurs. Equations (31)
and (32) also apply far downstream of the region of interaction, if suffix o
values are replaced by the corresponding suffix o« ones.

From/
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Prom equation (45)

pa® 4 ZdZ
x = / .
yp® Jo  PCw

Hence upstream of the region of interaction, where ¢ % ¢  and w is
c
not very different from LA

L o
x L X )
Ho 2cct2 2C,

The formula only applies upstream. Denoting such a position by suffix u,
we have, by combining with equation (30),

o Grofr wtt gl vEIE X))

X 2C w the5 £
C S 8 S

Both terms on the right-hand side of this equation vary with Xu’ which may be

chosen arbitrarily in the upstream region where the pressure is virtually
constant. However it is found that the sum of the two terms remains
unaffected by the choice of Xu’ as is of course to be expected.

For cases with suction it follows from equations (2), (12), (24)
and (25) that the suction coefficient, CQ’ is given by

‘ 1
Cq = GtC2Lt, ee. (35)

A
Hence upstream of the region of interaction C, % GtoC§ZTi, and from

Q
equation (33),

C. = ==, ees (36)

The cases with suction in the present paper have all been calculated with a
constant value of G equal to O.4. This is for convenience. If, by
contrast, CQ were kept constant, the labour of the computation would be

greatly increased because it would be necessary to solve equation (35)
concurrently with equations (26) to determine G, which would now be variable,
and also the basic similar profiles would have to be computed over a range of
values of G, and the appropriate Crocco-Lees parameters found by interpolation
at every step in the calculations, With G kept constant the distribution of
su$tion velocity is rather artificial, the suction velocity varying as

% upstream of the region of interaction. However equation (35) shows that

does not vary greatly over the region of interaction. The average rate

X
%
of mass flow per unit area sucked into the ?a111between the leading edge and
separation is, from equation (36), about 2§GR;§ times the rate of mass flow
per unit area in the free stream, whilst 1oca}1y over the region of interaction
the ratio of the mass-flow rates is about 2 QGK;E. Thus we may say that the

case calculated is roughly equivalent to a case with uniform suction with a
" suction coefficient CQ, where

2°GR 2, ees (37)

7./
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7. Results

The cases that have been computed by the Crocco-Lees method are
set out in Table 5.

Case 1, with Mo = 2, 1s the same as a case computed by Bray7,

except that in parts of his analysis he does not assume the Prandtl number

to be 1, or the viscosity to be proportional to absolute temperature, though
other parts of his analysis imply these simplifying assumptions, which are
made consistently throughout the present paper. The table of functions used
by Bray and for Case 1 is that originally proposed by Crocco and Lees, and
differs from Table 1 beyond separation, where it was originally assumed that
K, C and o remain constant, no account being taken of the lower-branch
similar solutions. It can be seen from Figs.6 and 7 that the present results
agree fairly well with Bray's, despite the slight differences in the equations
used. The points S, C and R in these and subsequent figures denote the
position of separation, of the corner in Fig.2 or the point where the shock
strikes the boundary layer in Fig.1, and of reattachment. The Reynolds
number RXS at separation is usually specified beforehand in the examples

worked out, and C 4is then that position of the corner or shock which

provokes separation at S for the given overall pressure ratio, (i.e., for

the given change of wall slope at C). Thus in Figs.6and 7 w = 1.3615
-]

and w = 1.4907, corresponding to an incident shock (Fig.1) with a flow-

deflection angle of about 4° or a change in wall slope (Fig.2) of about 8°.
For other cases with incipient separation, where the calculation is to find
W Just small enough to cause separation, the points C and R coincide

with s.

It can be seen from the curves for Case 2 in Figs.6 and 7 that
the use of the parameters given in Table 1, based on lower-branch values,
rather than the original table of parameters, leads to a large difference
in the shape of the pressure distributions when as in the present instance,
there is an extensive region of separation. The lower~branch parameters
give rise to a much more rapid falling off of pressure gradient downstream
of separation, In Fig.6 the pressure gradients in fact become negative
upstream of the shock or corner. Downstream of this point the pressure
gradients become quite steep again, whereas with the original functions the
pressure gradients are much smaller here. Experimentally it would be
difficult to obtain an entirely laminar interaction with the same sort of
Reynolds number at separation and such an extensive region of separation as
in Fig.6. However for more modest regions of separation, the shape of the
pressure distribution as predicted using the lower-branch fumctions of
Table 1 is in better agrecment with experiment than that obtained using the
original functions., The latter give rise to pressure gradients in the
vicinity of reattachment that are much too small relative to those in the
vicinity of separation.

The pressure gradient changes abruptly at the shock or corner
according to the lower-branch parameters, but remains continuous according
to the original ones. Experimental results?s 1351315 snow that there is
no discontinuous change, but there is a fairly rapid change of gradient if
the thickness of the region of reversed flow near the wall is not too great
a proportion of the total boundary~layer thickness. The theoretical change
of gradient is due to the term K'E din the numerator of equation (26) for
dw/d%Z. ©E decreases discontinuously at the shock or corner, where W
changes from Y, to w , so that ¢ changes from positive to negative.
Hence since K' is posTtive for the lower-branch functions in a region of
separation, dw/dZ decreases abruptly and thc pressure gradient
correspondingly increases. For the original functions K' is zero so
that the gradient remains continuous. In physical terms the rates of
change of the shapes of the velocity and temperature profiles change abruptly

at/
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at the shock or corner, and for the lower-branch parameters this means a
discontimious change in dI/dx, the gradient of the momentum flux in the
boundary layer, and a corresponding change in the pressure gradient.

Figs.8 to 11 show results for Cases 3 and 4, which are at a
Mach number M0 of 3 and a Reynolds number at separation of about O.5x1da.

Case 3 is for incipient separation, and Case 4 is with w = 1.71,
e

corresponding to a change in wall slope in Fig.2 of about 7°. These
results are shown in some detail because they are used as the basis of
comparison with various other cases, discussed below. It will be noticed
that the displacement thickness changes much more violently in proportion
than the momentum thickness. This is because the outer part of the
velocity profil? t?ﬁds to maintain a roughly constant shape, as observed
experimentally, 35 The momentum thickness depends mainly on the outer
part of the profile, the region of low-velocity air near the surface

usually only making a small contribution to it.  The displacement thickness,
on the other hand, is very much affected by the low-velocity region, which
becomes thick in the separated region, and reaches a maximum thickness at the
position of the shock or corner.

Detailed comgarison with experiment is not easy because the
available data?s13,14,15 ror entirely laminar interactions do not correspond
exactly to the cases worked out here. However, as regards the order of
magnitude of the upstream influence, pressure rise to separation, etc., the
theoretical results seem to agree with experiment.

Fige12 shows the results for Case L4 compared with those for Case 5,
which is for the same conditions, but calculated according to the parameters
of Table 3 rather than Table 1. Table 3 is based on the 0.98 definition of
the edge of the boundary layer, whereas Table 1 is based on the usual 0,95
value. It can be seen that the two curves agree quite well in general
shape, but upstream of separation the predicted pressure gradients are
considerably steeper for the 0.98 definition than for the normal one. The
biggest differences in the pressure gradients would be expected to occur
here for two reasons. In the first place, the inclusion of rather more
supersonic flow in the boundary layer, involved in the 0,98 definition, is
‘probably more important where the layer is attached than where it is
separated. This is because the separated layer has a large region of slow-
moving fluid, and the expansion of these low-speed stream tubes in an adverse
pressure gradient will swamp any effects due to the contraction of the
supersonic stream tubes. The second reason is that all definitions of the
edge of the layer would give the correct answers, and hence agree with each
other, if they all happened to require the pressure distribution acting on
the boundary layer to be of the same form, a form leading to similar profiles.
Fig.13 shows that for the results of Case L4 the factor B, equal to 2n/(n+1),
whare n 1s the index of the equivalent low-speed power-law velocity
distribution, varies much more rapidly upstream of separation than downstream
of it. Thus, downstream of separation the pressure distribution seems to be
closer to that required to give similar profiles, and better agreement between
the two sets of results might be expected, These considerations, and the
results of Fig.12, are an encouraging indication that the arbitrariness in
the definition of the edge need not in practice lead to serious errors.

Fig.14 shows a comparison of the results of Cases 3 and 6. The
latter case is for the same conditions as Case 3, but C in the table of
parameters has been arbitrarily doubled. € is proportional to the
entrainment of fluid from the mainstream into the boundary layer, and Fig.1lL
verifies that this is indeed a significant physical process, since the
results are considerably dependent on the magnitude of C, the pressure
coefficient at separation, for example, being increased by about 23% by
doubl%ng C. (It had been suggested that the results might be insensitive
to C).

Fig.15/
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Flg.15 shows in the full-line curve the result for Case 3 again.
Compared with this is the result for Case 7, the incipient separation of a
boundary layer at the same Mach number and approximately the same Reynolds
number gt separation, but with a cooled wall, whose absolute temperature is
maintained at 0.6 times the stagnation temperature of the mainstream. It
requires a somewhat higher pressure to cause separation in the cooled layer.,
Also the upstream influence is less, the pressure gradients upstream of
separation being somewhat steeper with cooling, Experimental observations16,17
show little effect of heat transfer on the pressure gradients. The thickness
of the boundary layer is reduced by cooling, the displacement thickness of the
cooled layer just upstream of the region of interaction being about 2/3 that
of the layer with zero heat transfer,

A similar comparison is shown in Fig.16 for the results of Cases 4
and 8, though here the overall pressure ratio is specified such that
w = 1.71. This corresponds %o a change of wall slope in Fig.2 of about

(-4

7°. The upstream effect is greatly reduced by cooling, by a much greater
proportion than the proportional reduction in the displacement thickness of
the upstream boundary layer No experimental data are available to check
this conclusion: +the data é’ ! mentioned above, in connection with the
pressure gradients at separation, are for cases where the boundary layer is
laminar at separation but turns turbulent before reattachment, whereas the
present calculations assume entirely laminar flow. They are thus not
comparable as regards the magnitude of the upstream effect, a point discussed
further below,

Suction has a similar effect to cooling, as can be seen from
Figs.17 and 18, showing Case 9 compared with Case 3 and Case 10 with Case ).
The suction cases, shown in the dotted curves, are calculated with the suction
parameter G of the basic similar profiles equal to O.4. Thus they
correspond roughly, according to equation (37), to cases with uniform suction
with a suction coefficient between 0.0004 and 0,0008. It can be seen that,
as it happens, the pressure distribution with this particular rate of suction
in Pig.18 is almost the same as that with the particular degree of wall
cooling in Fig.16. The displacement thickness of the boundary layer with
suction just upstream of the region of interaction is about 73% of the value
for the corresponding case without suction. The predicted effect of suction
on the pressure distribution is in qualitative accord with experiment'+.

The remaining cases calculated can be disposed of briefly.
Fig.19 shows results for Cases 11 and 12, the same as Cases 3 and 4 except
that the Reynolds number is lower. It can be seen by comparison with Fig.8
that due to the lower Reynolds number the pressure at separation is higher,
and the upstream effect for a given overall pressure ratijo is less. These
effects of Reynolds number are observed experimentally5’ 2, The overall
shape of the pressure distribution calculated for Case 12 is much more
typical of the shapes obtained experimentally than is the predicted shape
for Case L. It would not be easy to obtain experimentally a laminar
interaction under the conditions of Case L4, because of the relatively high
Reynolds number and overall pressure rise.

Figs.20 to 22 show results of Cases 13 to 17 for the "laminar
foot" at various Reynolds numbers, both with zero heat transfer and with the
wall cooled to 0.6 times the stagnation temperature of the mainstream. The
laminar foot5'corresponds to that part of the pressure~distribution curve
upstream of the shock or corner and also upstream of transition, if this
occurs within the region of interaction. It is easier to obtain
experimentally interactions which are laminar at separation but turn
turbulent before reattachment, rather than entirely laminar ones. The
shape of the laminar foot is thus of considerable practical interest. If
transition occurs, the position of the shock (Fig.1) or corner (Fig.2)
relative to separation cannot be predicted as a function of the overall
pressure rise. However the predicted shape of the laminar foot, calculated
as far as some arbitrarily specified position downstream of separation, can

be/
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be compared with experiment, as far as the {oo? extends in any partibula?
experimental case. Such a comparison5:13$ 5,16,17 with Figs.20 to 22
shows that whilst the theory is qualitatively all right at the lower
Reynolds numbers, though predicting rather too large an effect of wall
temperature on the pressure distribution, it becomes increasingly
unsatisfactory in well-separated regions at high Reynolds numbers, where

it predicts a strongly falling pressure downstream of a pressure maximum

on the laminar foot. This effect is accentuated by cooling the wall., In .
reality the laminar foot has a level plateau region, provided the wall is
flat as assumed in the present calculations. If the original type of
parameters had been used, the pressure gradients would have remained
positive, but would not have fallen off as sharply downstream of separation
as they do in reality, so that the plateau region would have been much too
high. The predicted pressure maximum in Figs.20 to 22 is at about the
same level as the experimental plateau pressure 15 and decreases with
increasing Reynolds number in a similar way.

Finally, Fig.23 shows a further example with suction, Case 19,
compared with the corresponding Case 18 without suction. The upstream
Mach number is 1.4, the Reynolds number at separation is about 0.5x1CP,
and the conditions 4re for incipient separation. The suction parameter
G is again 0.4 'so that, by equation (37), the case is roughly equivalent
to one with uniform suction with a suction coefficient of between 0.000L
and 0.0008. Qualitatively the results are similar to those of Fig.17, at
a higher Mach number.

8. Comparison with Other Methods

The Crocco~Lees method gives results that are qualitatively
reasonable in many respects for interactions between shock waves and
entirely laminar boundary layers, including effects of heat transfer and
suction. Once the method has been programmed for automatic computation
on a computer such as the N.P.L. DEUCE, its application is reasonably
speedy. However the algebraic complexity of the method makes the
programming a difficult matter, and it was a long time before all the
difficulties and snags were sorted out in the present work. Therefore,
since the results’are still of only qualitative validity, the question
arises as to whether there may be other approximate methods, not dependent
on automatic computation, which might be better for general application.
Hitherto the available alternative methods have been more restricted in
scope, being limited, for example, to cases with little separation or with
no heat transfer or suction. Thus Stratford's methodﬂa, as modified by
Gadd!? for use in cases with compressible flow, ceases to work
satisfactorily much beyond separation. However it gives results
comparable to those given by the Crocco-Lees method for the effect of heat
transfer on the shape of the pressure distribution in the vicinity of
separation. Fig.2} shows such a comparison for the cases shown in Fig.21.
It can be seen that the Stratford-Gadd method predicts a marked effect of
wall temgerature on the pressure gradient, the predicted variation being

as T;fl s Where 'I‘W is the absolute temperature of the wall. This is a

larger var%%tion than is predicted by the Crocco-Lees method, so that since
experiment »17 shows little effect of wall temperature on the shape of the
pressure distribution, the Stratford-Gadd theory is worse than that of
Crocco-and Lees in this respect. It appears, however, to give rather more
accurate results for the pressure rise to separation in cases with zero heat
transfer. The pressure coefficient 2(p - po)/bodz atiseParation is

predicted to be given by the simple formila 1,130 - 1)a Rgcs, and according
to the experi¥en§al results of Ref.13 for zero heat transfer, it is equal to
0.93(, - 1) 4R 1 approxinmately.

A simple new method which, like that of Crocco and Lees, is
applicable to cases with extensive separation, can be developed on the lines

of/
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of the well=known Pohlhausen method for incompressible flow, and is closely
related to the methods of Refs. 14,20,21 and 22, In its simplest form it is
as follows:

Put ~ - ), M = fy Z dy. coe (38)

u, 0 P,

Then the displacement and momentum thickness are

0 T u
w - [(g-0)
(¢] Te ue
o U u
and 0 =/ ..<1--->ax.
0 u u
e e

But by definition,

the total-temperature ratio. Hence

T y -1 y=-1 @
-_— = (1 F —— M“> H = ———— Wé _— ves (39)
T, 2 2 v
o* y -1 y -1

and -— = (1 + —— M’;) T 4 M, eee (40)
0 1

where r, / (H— ;u- /[o 1 - --) a . eee (1)

As an alternative to (39), we may assume that approximately

T y -1 u T u
-...=1+.._.__..u2<_......_)+(_1’_X1_.._>, veo (42)
T 2 u ui T u

e e

€ €

If the Prandtl number is 1, this approximation is accurate upstream of the
region of interaction, where the pressure gradient is zero, but it is not
acourate elsewhere unless there is zero heat transfer, However its use
slightly simplifies the analysis, as will be seen below. According to

relation (42

o* T, y -1
—-m - r 4 memeucmes M° sne (2}-3)
] I, 2
where r, = / 1--- / 1---)&1. oo (k)
o o u,
In cases without heat transfer r, = r , and (40) is the same as (43).

£/
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if viscosity is proportional to absolute temperature it follows
from equations (38) and the momentum equation,

ou Ju dp 9 ou
w2 B2,

ox oy dx dy oy
that at the wall
ap pu T ?f of
R RICIN
dx ¢ 1T L\ at® Jw 3¢ /w
where ¢ = A/0 and N = peueGCQ/he = - pwvaAJe' Also, from a first-

order approximation to the simple-wave-flow relation,

dp pod; & o*

& Of -1)7 @l

. oo (46)

We assume that M_ and 0 in equations (40) and (43) are
virtually constant through the region of interaction. Typically Me does
not differ very greatly from Mo since it is impossible to have an entirely
laminar interaction with a large pressure rise, unless the Reynolds number

Rxs at separation is very low. With regard to 60, inspection of the

von Karman momentum integral equation, i.e.,

ae 1 due S dpe T
4 =S (20 4 8%) 4 —= 2 = -2 . Cys eoe (47)
dx ue dx pe dx Peufa

suggests that gg is unlikely to be much greater within the interaction

region than it is upstream of it. Hence if the length of the interaction
region is not too large a fraction of the distance from, say, the separation
point to the leading edge, 6 shou%d not change enormously through the
region of interaction. Experiment 3514 confirms this. So also does
Fig.11, a case calculated by the Crocco-Lees method, even though for this
case the extent of the separated region is quite large (larger than could
easily be obtained experimentally). We accordingly substitute for 6 in
equations (40) and (43) the constant value 0, as determined from the

momentum integral equation (47) with ug, B, and p_ set constant at the
values Ugs Moo and P, corresponding to free-stream flow parallel to the
wall upstream of the region of interaction, and with x put equal to Xy
the distance of the separation point from the leading edge. The equation

becomes
¥t (if) _N]
dx pouoe ¢ /wc

where (af/bb)wc is the value of (3f/0¢) at the wall at constant pressure.

Hence
4, of . X,
o, = 2[(=) -n [, e )
oL /we R;s

if/
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if N 4is assumed to be constant., This assumption is equivalent to making
the suction parameter G constant in the Crocco-Lees analysis. Thus it
follows from equation (36) that

N

(5). ]

From equations (40), (43), (45) and (46),

ﬂif _ 'I.Qo(l’; - 1)—12-'355 [( aaf> . N( af> ]
= - - ’
ax® T;A?egnxs 282 /w 3k /w

where if equation (4LO) is used r = r, and

= G. eee (49)

94

e - % 1 1 -1
A = (1 + ZE- Mg) ™ /12 H.?, and if equation (43) is used, r = =1,

a2r af -
and A = 1, We assume that < — ) and ( --) are functions
3? /w 3 /w

only of r for a given value of N and a given ratio Hw of the wall

i)

temperature to the free-stream stagnation temperature. Hence

i
b
dr 1+ T (M = 1) x2@2
[o— - 122 .--.Q. 03 ; 5 ase (50)
dx TWA eﬂRé
S X8

where Q

r *f. af \ -
[ (), () ]
r, 36® /w 3¢ /w
and r, is the value of r at constant pressure. Upstream of the shock

in Fig.1 or corner in Fig.2 ©&0* increases with x, and hence the positive

sign must be taken in (50), but downstream &* decreases, and the negative

sign must be used. From equations (46) and (48) it follows that upstream
1

= A
P - P, 2 yME AQ*
= oce (51)
P, Lo, o L
- (5 )
o /we
and downstream
1
- 1
P_=7DP Z‘yM%AQ2
= 11 1 "
P =< (~, of =
© ()
-\ 9¢ /wc
Thus the shock or corner must occur at that position where p = %(po+Pm),

i.e., where the pressure rise is half the overall pressure rise. The shape
of the pressure distribution is symmetrical about this point, reflected in
the two axes of symmetry as shown in Fig.25. Upstream of the shock or
corner it follows from (50) that
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3
af 2
X =X tr A ‘: > :] r dr
—————— 2 - T sae (52)
*s To (M% - 1)ZR2 Ty Q®

where r_ is the value of r at separation. Equations (51) and (52)

determine the shape of the pressure distribution,

This solution could of course be regarded merely as a first
approximation, from which more accurate solutions of equations (45), (46),
and (47) could be obtained by iteration. However this would be laborious.
It might be thought that some converse process of simplification could be
applied to the Crocco-Lees method, reducing it to a single equation from
which results could be obtained simply, without necessarily using automatic
computing aids. However this does not_appear to be possible except for
cases with very large Reynolds numbers.

Due to the approximation made in the present Pohlhausen-type of
method that © is constant, the small rate of thickening of the boundary
layer upstream of the shock is neglected. Hence, as can be seen from
equation (51), the pressure upstreanm is predlcted to tend to P, instead
of to a value a little greater than Pys a8 in equation (32) of the
Crocco-Lees method.

The relations between the parameters involved in (51) and (52),

o°f of
namely < —-—-) s < -—‘> and r, can be obtained from the similarity
Y LY

solutions. If there is no suction, so that N is zero, then upstream of
the region of interaction, f as a function of ¢ is independent of heat

af
transfer, and r, is similarly independent, so that < —-) and Tpe
Gl

are constants, 0.221 and 2,59 respectively. As an approximation we can
assume that everywhere f is a function only of ¢ and r,, independent

of heat transfer. Thus Q as a function of 1r, 1is assumed to be

independent of wall temperature, and can accordingly be determined from the
similarity solutions for zero heat transfer. Then since A = 1 if
equation (42) is used, it can be seen from (51) and (52) that the only
effect of heat transfer on the shape of the pressure distribution is to
stretch the x-co-ordinates proportionally to TW, so that the pressure

gradient varies as T'i 3A& mentioned above the Stratford-Gadd theory
2

predicts a variation as T Even the variation as T;f is considerably

larger than is observed experimentally.

We shall refer to the above method of solution as method A for
heat transfer. A second, theoretically preferable, method, method B,

involves the use of the accurate temperature relation (39). Then r must
Pf

be put equal to r,, and the relation between,< — ) and r must be
ae?

found from the similarity solutions corresponding to the particular value
of HW for the case being investigated. The predicted effect of heat

transfer on the shape of the pressure distribution is accordingly less
simple than that found by method A.

In/
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In cases without heat transfer, r, = 1, = r, even if there is
of
suctions Q as a function of r, r, and ( — ) can be found from the
od /we

similarity solution with zero heat transfer but with the suction appropriate
to the particular value of N, which gives G by equation (49). This
procedure may be described as method B for suction cases. It may, however,
be more convenient to use what we term method A, in which it is assumed that
the family of velocity profiles is the same as that calculated from the

similar solutions without suction. Then, in virtue of condition (45), r.

af - of
and ( —~') are the values of r and ( - ) corresponding to the
ol /we 00 /w

’Pf of
profile for which ( ———‘> + N ( —-> = 0., This equivalent zero-
3e? Jw 3¢ /w
pressure—gradient profile with suction will actually be a profile without
suction, but with a favourable pressure gradient. By this artifice it is
possible to obtain approximate solutions for cases with suction, without
first solving the accurate similarity solutions for the particular value of
N being considered*., However, both with method A and with method B,
equations (51) and (52) show that the pressure distribution is not related
to the corresponding one without suction by any simple stretching of the
co~ordinates. Thus the solutions with suction are not quite so simple as
the method A solutions with heat transfer,

or i
The relations between the parameters r, < - ) and < - > ,
oL /w ae? Jw
as derived from the similarity solutions for zero heat transfer and suction,
are presented in Table 6, This is applicable not only to cases without
heat transfer or suction, but generally, in the method A approximation
For the case with suction at G = 0,4, the equivalent constant-pressure

or 3*r
conditions are r, = 2,36, < -— > = 0,302, and < —— > = -0, 0465,
¥ /we 3£® Jwe
According to the actual similarity solutions with suction the values are
2.39, 0.290 and -0,0L432 respectively, so that the errors are not large. 1In
other words, the true-constant pressure velocity profile with suction is
very similar to the profile without suction but with the appropriate
favourable pressure gradient,

Although the similar solutions with suction with G = O.4 have
been worked out in connection with the Crocco-Lees parameters, the present.
application was unfortunately not foreseen, so that for method B with suction

of Pf.
some of the data necessary for the calculation of r, ( - ) , and ( — > P
3¢ /w 3L? Jw

are not readily available., Hence in the present paper cases with suction can
only be calculated by method A, and not by method B. For cases with heat
transfer with HW = 0.6, however, both method A and method B can be used,

since Cohen and Reshotko12’21 give sufficient data for the calculation of the
parameters which are given in Table 7. As was the case with the Crocco-Lees
parameters, some interpolation between the results for different rates of
heat transfer was necessary to obtain the lower-branch values beyond

separation.

1 r dr
The calculated results for Q% and /‘ -+ , the main quantities
r Q¢
s
to be determined in equations (51) and (52), are shown in Tables 8 to 10 as

functions/

; .
A similar procedure can of course be used to obtain the Crocco-Lees
mamamodarne Parn Arnecce with ciietdian and wae oo 11ced in Retf . 3.
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functions of r — L From thesc tables it is possible to calculate

rapidly a wide variety of cascs with different Reynolds numbers and Mach
numbers. Sample calculated results for the laminar foot are shown in
Figs.26 and 27. The cases shown are all for a frece-stream Mach number of
3 and Reynolds number R _ at separation of 0.5x10° .  They are thus

comparable with Figs.16 and 18. The predicted effect of heat transfer in
Fig.26 is, according to method A, simply to vary the pressure gradients
proportionally to T;i as mentloned above., ° According to method B heat

transfer has a smaller effect on the pressure gradients, but the pressure
rise to separation is somewhat increased by cooling. Thus method B is

more in line with the predictions of the Crocco-Lees method than is method A.
Also, since method B predicts a smaller effect on the overall shape of the
pressure distribution than method A, it is less discordant with experiment.
For cases with suction, the effects shown in Fig.27 are broadly similar to
those found by the Crocco-Lees method in Fig.18.

The predicted pressure coefficient at separation with zero heat
transfer or suction (orlmdfh heat transfer according to method A), is

equal to 0,94 (M% ~-1) 4I€is, almost exactly in agreement with the

experimental results of Ref.13. These data, (which may be subject to
inaccuracies due to the practical difficulties of determining the precise
position of separation), show that the pressure rise to separation is
s1ightly more than half that to the plateau at the top of the laminar foot.
This ratio is rather bigger than that given by the present Pohlhausen-type
of method, and considerably smaller than that predicted by the Crocco-Lees
method, especially at high Reynolds numbers.

According to the results of Figs.26 and 27 the plateau pressure
with zero heat transfer or suction is about 1.34 times the upstream pressure.
Thus the overall pressure ratio cannot exceed about 1.68, This happens to
be approximately equal to the pressure ratio assumed for the Crocco-Lees
calculations of Figs.16 and 18, Thus the present Pohlhausen-type of method
would predict a very large upstream effect for this pressure ratio, and for
any larger ratio it would predict that the separation point must move right
forward to the leading edge. This prediction cannot readily be checked
experimentally because in practice as the pressure ratio is increased there
comes a point where transition to turbulent flow takes place within the
region of interaction, and the theories no longer apply. Thus transition
would very likely occur in practice before the conditions of Figs.16 and 18
could be attained, For a smaller specified overall pressure ratio it is
clear from Figs.25, 26 and 27 that cooling and suction would reduce the
upstrean effect of the interaction, just as they do according to the
Crocco-Lees method,

9. Concluding Remarks

. The results of the Crocco-Lees method, although in general
qualitative agreement with experiment, are probably no better than those
obtained much more readily by a Pohlhausen type of method, Thus there
seems little point in doing any further calculations by the Crocco-Lees
method, However, what has been done has probably been worthwhile since
it justifies the approximations of the Pohlhausen-type of method
presented in Section 8, and it is always desirable to check the findings
of different approximate methods against each other as well as against
experiment, where this is possible,

The main qualitative results of the approximate theories now
avallable for intcractions between shocks and laminar layers are as follows:

(1)/
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The géneral shape of the pressure distribution, and the pressure
levels, are predicted satisfactorily on the whole, though in some
cases the results become unrealistic beyond a little way
downstream of separation. Lowering the Reynolds number is found
to increase the pressure rise to separation and to decrease the
upstream influence if the overall pressure rise (related to the
incident shock strength in Fig.1 or change of wall slope in
Fig.2) is specified. This is qualitatively in accord with
experiment.

Cooling the wall, according to some theories, greatly increases
the pressure gradients in the vicinity of separation, leaving the
pressure at separation unchanged, but according to others, the
pressure rise to separation is somewhat increased whilst there is
only a modest steepening effect on the gradients. All the
theories predict a bigger effect on the overall shape of the
distribution than is observed experimentally. The upstream
effect for a given overall pressure ratio is predicted to be
reduced by cooling. There is no experimental evidence on this
point to date.

(3) Suction is predicted to have a qualitatively similar effect to

wall cooling. This appears to be confirmed by the available
experimental data.
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A

1
L

constant equal either t ; Y= 1 W ZTE TE H

s £ ° <1 2 (o] O/ w w ?

nj=

or to 1

speed of sound

1 -6)1 -0) + cQ/cM

mCM/he, one of the basic Crocco-Lees parameters
coefficient of local skin friction, 27 /p
mixing rate coefficient, d5/dx - ¢ + pwvw/peue
specific heat at constant pressure

suction coefficient, - pwvw/beue

t¢/CM + to(1 =K) -

F non-dimensional stream function for similar solutions:

£

G

see equation (20)
u/u
e
suction parameter for similar solutions: see equation (20)

H/
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ratio of total temperature to its value in the free stream
)

momentum flux, /. pu? dy

o}
v+ Kt(v - t)
A/

Mach number

o
mass flux,f pudy

0

peueOCQﬂue

index of similar-solutions power-law velocity distribution:
see equation (20)

/p°
pressure
integral defined in equation (50)

Reynolds number based on X, pouoxyho
Reynolds number based on displacement thickness, pouoﬁ*/bo
Reynolds number based on momentum thickness, Pouoe/ho

equal to r, or =,

[E-2)efa(-2)e
[

strean function in Stewartson transformation: see equation (17)

o }ﬁ
~
ﬁ\
'O\
8

o= ie
N

1

mggﬁ
~

&

absolute temperature

ratio of the temperature at the edge of the boundary layer to
the free-stream stagnation temperature

velocity component parallel to wall
velocity component normal to wall
ue/é°

(x - xs)/&S

distance from leading edge measured parallel to wall

related to x by the Stewartson transformation, equation (17)

v/



- 30 =

distance from wall measured normal to wall

y

7 related to y by the Stewartson transformation, equation (17)

B 20/(n+1)

Yy ratio of specific heat at constant pressure to that at constant
volume: assumed to equal 1.4

b 8/5

5
& total thickness of'boundary layer

o0 N
6%  displacement thickness of boundary layer, /. (1 - ”E%f‘) dy
0 e e

gz w/u®

1 non-dimensional co-ordinate for similar solutions: see equation (20)

w
0 momentum thickness of boundary layer,j[ Y (1 - é£‘> dy
o Pe¥e e

K  L/Mu_, one of the basic Crocco-Lees parameters

y
A /-P—dy
ope

K viscosity

density
o me/2(1 - K)Cue, one of the basic Crocco~Lees parameters
T  viscous shear stress

¢ angle between the wall and the streamlines at the edge of +the
boundary layer

¥ t[(peue6/h) - K], one of the basic Crocco-Lees parameters

¢ denotes values of the boundary-layer parameters for constant-
pressure conditions

e denotes conditions at the edge of the boundary layer
w denotes conditions at the wall

denotes conditions at the separation point

4]

0 denotes conditions in the free stream for flow parallel to the
wall upstream of the shock or corner

o denotes conditions in the free stream for flow parallel to the
wall downstream of the shock or corner

Superscript:

o) denotes free~stream stagnation conditions
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Table 1

Crocco~Lees parameters for zero heat transfer or suction,
with usual edge definition

¥ K K! c o Remarks
1,033 | 0,704 95 | = 0.1440 | 2.240 14350
1.083 | 0.698 60 | - 0.1172 | 2.420 1.002 Constant pressure
1133 | 0.693 23 | = 0.1050 | 2,579 0.789
1.183 | 0.688 10 | - 0.1025 | 2,700 0.641
14233 | 0.682 97 | - 0.0952 | 2,770 0.523
1.283 | 0.678 58 | - 0,0830 | 2.830 0.430
1333 | 0.674 67 | - 0.0732 | 2.885 0.350
1.383 | 0.671 25 | = 0.0586 | 2.930 0.275
1.433 | 0.668 81 - 0.0415 | 2.965 0.211
1483 | 0.667 10 | -~ 0.0293 | 2.990 0,158
1.583 | 0.664 91 - 0.0146 | 3.020 0.068
14633 | 0,664 42 | - 0,0049 | 3.03%0 0,033
1.683 | 0.664 42 0 3.040 0 Separation
1.733 | 0.664 42 0 3,040 | = 0,029
1.783 | 0.664 42 | + 0,0024 | 3,030 | - 0.051
1.833 | 0.66L 66 0.0073 | 3.015 | - 0.070
1.883 | 0,665 15 0.0146 | 3.000 | - 0,090
1.933 | 0.666 13 0,024 | 2,984 | = 0,111
1.983 | 0.667 59 0.0366 | 2,970 | = 0,131
2.033 | 0,669 79 0.0439 | 2.950 | = 0,141
2.633 | 0.705 L3 0.0669 | 2,760 | = 0,291
34233 | 0.750 11 0.0730 | 2,550 | = 0,359
3.833 | 0.793 08 0.,0682 | 2.420 | - 0.440
L.433 | 0,831 90 0.0590 | 2,300 | ~ 0449
5.033 | 0.863 88 0.0476 | 2,200 | = 0.480
5.633 | 0.889 03 0.0321 2,130 | - 0,500
Note: +the last decimal places in this Table are not significant
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Table 2

Crocco-Lees parameters for zero suction, but with a cooled wall,
with HW = 0.6

¥ K Kt C o Remarks

0.1196 24239 1289
0.1196 | 2.419 1.000 Constant pressure
0.1099 | 2.534 0.793
0.1099 | 2.650 0.641
0.1099 2.755 0.520
0.1001 2.847 0.420
0.0903% 2.919 0,340
0.0708 | 2.974 0.275
0.0610 3,021 0.221
0.0391 | 3.069 0.168
0.0195 | 3.110 0.119
1.270 0.659 00 0.0098 3.740 0.076
1320 0.659 00 0.0098 3.159 0,035
1.370 | 0.659 98 0.0195 | 3.169 0 Separation
1.420 | 0.660 95 0.0195 | 3.150 | -~ 0.027

0,720 | 0.703 92
0.770 | 0.698 06
0.820 | 0.691 96
0.870 | 0.687 08
0.920 | 0.680 97
0.970 | 0.676 Q9
1.020 | 0,670 96
1.070 | 0.667 06
1.120 | 0.663 88
1.170 | 0.660 95
1.220 | 0,659 98

2 T T S N TN U R B SN B

1.470 | 0.661 93 0.,0201 | 3.130 | - 0.051
1.670 | 0.668 03 0.0427 | 3.021 | - 0.119
1.870 | 0.679 02 0.0598 | 2.919 | - 0.178
2,070 | 0.691 96 0.0775 | 2.819 | - 0,225
2.270 | 0.710 03 0.0928 | 2,720 | = 0.260
2.470 | 0.729 07 0.0977 | 2,620 | = 0,289
2,670 | 0,749 09 0.1025 | 2.523 | - 0,316
2,870 { 0.770 08 0.1025 | 2.431 | - 0,340
3,070 | 0,790 10 0.0995 | 2,341 | - 0.361
3,270 | 0.809 88 0.0995 | 2,249 | - 0.381

Note: the last decimal places in this Table are not significant.
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Crocco=-Lees parameters for zero heat transfer or suction,
with velocity ratio at edge taken as 0.98

...35...

Table

¥ K K? c o Remarks
0.820 | 0.768 77 |- 0.1611 | 3.750 1.181 Constant pressure
0.870 | 0.760 96 | = 0.1440 | L4.051 0.880 0.850
0.970 | 0.748 51 | -~ 0.1099 | 4.350 0.540
1,020 | 0.743 38 | = 0.0952 | L.430 0.431
1.070 0.738 98 ~ 0.0806 4.4 500 0.329
1,120 | 0.735 32 | = 0.0659 | k.54 0.249
14170 | 0.732 39 | = 0.0464 | L.590 0,190
1.220 | 0.730 68 | = 0.0269 | 4.619 0.130
1.270 0.729 71 - 0.,0146 | 4,631 0.079
1.320 | 0.729 22 | - 0,0073 | L.641 0.040
1.370 | 0.728 97 0 L,650 | - 0.001 Separation
1.420 0.729 22 | + 0.0098 | L.641 - 0.040
1.470 | 0.729 95 0.,0220 | L4.631 - 0,069
1.520 | 0.731 42 0.0317 | L.619 | = 0.101
1.570 0.733 153 0.0391 L..609 - 0.120
1.620 0.735 32 0.0488 4.+600 - 0,149
1.670 | 0.738 O1 0.0537 | 4580 | - 0.171
1.720 | 0.740 69 0.0586 | 4.560 | - 0.190
1770 | 0.743 87 0,068 | o541 - 0,200
10820 007)4-7 53 000681 )-1-‘519 - 0.220
2,270 | 0.785 62 0.074,0 | 4.301 - 0,329
2,720 | 0.821 50 0.0674 | 44,100 | = 0.399
3.170 | 0.853 00 0.0576 | 3.930 | = 0,460
3.620 00879 12 OoOll-88 30779 - O.l]—89
4.070 | 0.901 83 0.0435 | 3,660 | = 0,520
L.520 0.922 58 0.0413 3.580 - 0,540
Note: +the last decimal places in this Table are not significant.
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Table L4

Crocco~Lees parameters for zero heat transfer, but with suction,
With G‘ = o.l{-

Basic solutions computed by A. R, Curtis: values in brackets
obtained by interpolation

¥ K (1 = K)o i Jej Remarks

0.,9206 | 0.733%7 0.5796 0. 7460 0 Constant pressure
0.9353 | 0.7313 0.5383 0.7341
0.9523 | 0.7286 0.4959 0.7216
0.9723 | 0.7256 0.4520 0,7089
0,9962 | 0,7222 0,4062 0.6960
1,0255 | 0,7182 0. 3580 0.6829
1,0626 | 0.7136 0. 3061 0.6696
1.71122 | 0,7080 0.2486 0.6559
1.,1860 | 0.7011 0.1806 0.6418
1.3346 | 0.6919 0.0818 0.6274
1.4379 | 0.6888 0.03152 | 0.6232
(1.5160) {(0.6880) 0 (0.6221) |(
1.6046 | 0.6889 0.0302) | 0.6232
1.7611 |.0.6940 0.0736 0.6276
2,1415 | 0.7209 0.4428 0.6471
2.4830 | 0.7568 0.1785 0.6693
2,84.88 | 0.8018 0.2005 0,694
3.2697 | 0.8570 0.2129 0.7229
3,7835 | 0.9243 0.,2168 0.7555
Loy5h3 | 1,0068 0.2112 0.7936
5.4265 | 1.1098 0.1933 0.8392
74717 | 1.2437 0.1541 0.8967
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Table 5

Cases calculated by the Crocco-Lees method

Case 5
No. M o Hw G ;s 107 Rxs Remarks
1 ]2 1 0 L45.3 1.26 w o= 1.3615. Repeat of Bray's
calculations using original type of
parameters (not lower branch)
2 |2 1 0 L4453 1.26 As 1, but lower-branch functions
used (Table 1)
313 1 0 560 4.87 Find W just to separate (Table 1)
» {3 |4 |o 560 487w =171 (Table 1)
5 13 |1 0 AL he92 W = 1.71 (Table 3)
6 |3 1 0 560 - Find w_ Jjust to separate: parameters
as in Table 1 but with C doubled
7 13 (0.6|0 560 4.90 | Find w_ just to separate (Table 2)
8 |3 |0.6][0 560 490w =171 (Table 2)
9 |3 |1 |0.4| 480 490 | Find w_ just to separate (Table 4)
10 |3 |1 0.4 | 480 490 |w =1.71 (Table 4)
11 |3 1 0 250 0.9% |Find w_ just to separate (Table 1)
12 13 |1 0 250 0,9h |w =1.71 (Table 1)
13 | 3 1 0 250 0.94 Extension of laminar foot of cases
11 and 12 (Table 1)
A% |3 ]0.610 250 0.95 |Find laminar foot (Table 2)
15 | 3 0.6 {0 560 4..90 Extension of laminar foot of cases
7 and 8 (Table 2)
16 |3 |1 |0 |1250 2.8 Find laminar foot %Table 1%
17 | 3 0.6 |0 1250 24.8 Find laminar foot (Table 2
18 | 14 |1 0 1130 497 Find w_ just to separate (Table 1)
19 | 14 |1 0. | 970 497 Find w_ just to separate (Table 4)
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Table 6

Parameters for method of Section 8, from the similarity
solutions for zero heat transfer or suction

of *f
r ( — > ,...> Remarks
3 /w 32 /w
2.16 0.389 0.1063
2.17 0. 381 0.1000
2.22 0,360 0.0855
2.30 0.325 0.0611
2.41 0.280 0.0333
2.59 0.221 0 Constant pressure (with
no suction)
2.80 0.164 0.0266
3,09 0.105 0.0488
4,03 0 0.0682 Separation
552 - 0.0540 0.05k9
742 - 0.0663 0.0378
12.63 - 0.0546 0.0150
" 28.7 - 0.,0257 0.0028
59.3 - 0.0107 0.0005
Table 7

Parameters for method of Section 3, for zero suction,
but with a cooled wall, with H = 0.6

of
< - > = 0,221
o /we
Pr
r, < -—;-) Remarks
0d” /w
0.759 - 0.,1040
1.185 - 0.0433
1.556 0 Constant pressure
2,034 0.0369
2.399 0.0495
2.679 0.0537
3,063, 3.,04,1% 0.0531, 0,0540% Separation
3.623 0.0491
6 0.0309/
8 0.021 g
10 0.0146

*
There appear to be slight inconsistencies in Cohen and Reshotko's

data, and alternative methods of estimation give alternmative answers.

Zoo

tained by extrapolation.
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Table 8

1 r dr
Q% and / —+ for cases with zero suction. method A
r

Qz'

5

1 r d4r 1 r dr

r-r, Q2 / -x r-r_ Q° / -t
T Q r, Q

0.2 0.0529 - 8.59 13,0 0.6460 22,35
0.6 0.1400 - L..16 134 0.6490 22,96
1.0 0.2083 - 1.85 13.8 0.6521 23.58
1ol 0.2648 - 0.16 1.2 0.6550 2,19
1.8 0.3119 + 1.23 14..6 0.6577 24..80
2.2 0.3517 2.43 15.0 0.6600 2543
2.6 0.3852 3,52 154kt 0.6625 26.01
3.0 04334 L.52 15.8 0.6648 26.61
3.4 0.4377 5.46 16.2 0.6672 27.21
3.8 0.4588 6.35 16.6 0.6693 27.81
L2 04775 7.21 17.0 0.6712 28.41
L6 0.4950 8.03 174 0.6732 29.01
5.0 0.5091 8.83 17.8 0.6749 29.60
5l 0.5226 9.60 18.2 0.6767 30.19
5.8 0.5350 10.36 18.6 0.678L 30.78
6.2 0.5462 11.10 19.0 0.6801 31.35
6.6 . 0.5563 11.82 194 0.6816 31.96
7.0 0.5655 12,5l 19.8 0.6830 32,54
o 0.5744 13,24 20,2 0.6843 33413
7.8 0.5819 13.93 20,6 0.6855 33.71
8.2 0.5892 1,67 21,0 0.6867 34,30
8.6 0.5929 15429 21,4 0.6878 34..88
9,0 0.6021 15.96 21.8 0.6890 35.46
9.4 0.6080 16.62 22.2 0.6900 36,04
9.8 0.6133 17.27 22,6 0.6913 36,62
10.2 0.6183 17.92 23.0 0.6923 37.20
10.6 0.6229 18.57 23.4 0.6934 37.77
11.0 0,627} 19.21 23.8 0,691, 38.35
1.4 0.6316 19.84 2.2 0,695l 38.93
11.8 0.6354. 20.47 24,6 0.6962 39.50
12.2 0.6392 21.10 25.0 0.6970 40,07

12.6 0.64.29 21.72
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Table 9

1 r dr
Q" and /1 -+ for cases with cooled wall, method B

r, Q=
- 1 r dr
r-r Q7 / -1
(o] rs Q?__
0.2 0. 0474 - 9.75
0.6 0.1255 - 4.83
1.0 0,1873 - 225
1.4 0.2378 - 0.37
1.8 0.2789 + 1.18
2.2 0.3126 2.53
2.6 0.3407 3.76
3.0 0.3648 4.89
3ok 0.3858 5.95
3.8 0.4041 6.97
4.2 0.4205 T o9k
L6 0.4.350 8.86
5.0 0.4482 9.78
54 0.4599 10.66
5e8 0.4706 11,52
6.2 0.4802 12.36
6.6 04890 13.18
7.0 0.4970 14..00
7 ol 0.5042 14.79
7.8 0.5109 15.58
8.2 0.5170 16.36
8.6 0.5226 17.13
9.0 0. 5280 17.89
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Table 10

1 r dr
Q% and f for cases with suction, method A

_12_ r dr 1 r dr
r-r Q - r-r Q= / -
c /];S _;. c rs Qiz'
0.2 0.0730 - 7.78 13.0 0.5895 22,56
0.6 0.1697 = 440 13,4 0.5899 22,57
1.0 0.2358 - 2.43 13.8 0.5901 23,25
1.4 0.2886 - 0.90 1.2 0.5902 23.93
1.8 0.3332 + 0.39 1%4..6 0.5903 2y .60
2.2 0.3711 1.52 15.0 0.5902 25.28
2.6 0.4032 2.55 15.4 0.590 25.96
3.0 0.4293 3.51 15.8 0.5899 26.6l
3.l 0.4510 L2 16.2 0.5895 27.22
3.8 0.4693 5.29 16.6 0.5891 27.99
L2 0.4850 6.11 17.0 0.5884 28.67
4.6 0.4985 6494 174 0.5877 29.35
5.0 0.510L 8.19 17.8 0.5870 30.03
Sely 0.5207 8.48 18.2 0.5865 30.62
5.8 0.5295 9.25 18.6 0.5856 31,40
6.2 0.5372 10,00 19.0 0.5848 32,08
6.6 0.54414 10. 7L 19.4 0.5837 32.77
7.0 0.5501 11.47 19.8 0.5825 33,45
7okt 0,555 12.19 20.2 0.5816 Bl
7.8 0.5605 12.91 20,6 0.5805 3483
8.2 0.5647 13.62 21.0 0.5796 35.52
8.6 0.5686 14..33 214 0.578k 36.21
9.0 0.5721 15,03 21.8 0.577h 36,90
9 0.5753 15.73 22,2 0. 5761 37.59
9.8 0.5779 16.42 22,6 0.5748 38.29
10.2 0.5803 17.11 23,0 0.5734 38.99
10,6 0.5822 17.80 234 0.5721 39.68
11.0 0.5840 18.49 23.8 0.5708 40,38
1.4 0.5855 19.17 24,2 0.5695 41,08
12,2 0.5881 20.53 25,0 0.5669 41.82
12.6 0.5888 21.21
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