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SUMMARY

A study was made, over the Mach number range from 1.42 to 1.92, of the
flow over the rear part of one surface of a wing, representing a reversed
wedge afterbody with an unswept trailing edge and a sonic ridge line at a
Mach number of 1.51.

Pressures were measured and oil flow studies made, The results showed
good agreement with exact inviscid flow theory in the expansion region in
the vicinity of the ridge line. In the recompression region downstream,
separation occurred and the flow was no longer conical so that no satisfactory
theoretical estimates could be made.
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1 INTRODUCTION

Many designs so far investigated in the search for efficient slender
aerodynamic shapes for supersonic aircraflt are so shaped that they are
within the scope of existing design methods. The class of bodies therefore
has been restricted to those for which

(a) disturbances are small so that the linearised equations of motion
may be used and implying no strong shock waves on the body surface; and for
which

(b) separation lines and shock waves originate from the trailing edge
at some design 1lift coefficient.

For such cases thin-wing theory or slender thin-wing theory can be
applied1successfully to give a reasonably correct pressure distribution, as
well as drag estimates, for any given shape. In particular the drag can be
estimated by the theories given by Warde and Lighthi113 if the appropriate
slenderness assumptions are made, It may be noted that the actual wave drag
values, at supersonic Mach numbers, may be well below those of the corres-
ponding optimum body of revolution of the same length and volume,

Griffith6, however, has suggested a slender forebody but short after-
body for which the above treatment is not adequate. He proposes an afterbody
consisting of a large number of facets bounded by near sonic ridge lines
which in the limit defines a smooth cylindrical surface.

If linearised theory is applied to such a shape it is found that the
estimated drag is very much greater than that of the corresponding body of
revolution of the same length and area distribution. However a much lower
drag is obtained when a less crude method of calculation is emplcyed. The
reason for this may readily be seen by considering the pressure distribution
in the vicinity of a near sonic ridge line. On the basis of linearised
theory one finds a suction that tends to infinity as 1/fn, where n is the
distance normal to the ridge line, when the ridge line is sonic., This con-
trasts with the region of uniform finite suction of exact inviscid theory
which corresponds to a Prandtl Meyer expansion at the ridge line.
Unfortunately, no exact inviscid theory exists for determining the pressures
following the expansion. Since this expansion directs the flow towards the
plane of symmetry there must follow a recompression process, possibly
involving a shock wave, so that the flow is turned into the plane of symmetry.
Fowell™ has suggested a criterion for the maximum deflection angle 6c in the

plane of symmetry for which a continuous recompression process is possible*.
This criterion for shock-free flow is given by
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* Such a flow field would have wholly unfavourable pressure gradients and
therefore it is improbable that such flow field can be realised in a
viscous fluid.



where M1 = Mach number ahead of the ridge line
¢ = angle between the ridge line and the stream ahead of the
ridge
v1 = Prandtl Meyer angle corresponding to M1
“2 = Mach angle corresponding to Vz
A = Sweepback of the ridge line

This limiting boundary is shown in Fig.1 for various sweepback angles
of the ridge-line,Bulekh- similarly suggests the existence of a shock wave
although he criticizes Fowell's criterion., The strength of the shockwave
cannot be found theoretically although an approximate method has been
suggested. This is to assume locally a plane shock wave normal to the sur-
face of the wing such that the uniform stream following it is parallel to
the plane of symmetry. Assuming no flow separation is encountered then such
a plane wave would be further outboard and stronger than the true conical
shock surface. The drag associated with a pressure distribution calculated
by this approximate method can be seen to depend on the extent of the after=-
body surface influenced by the expansion region, Griffith6, therefore,
points out the advantages to be gained by keeping this region as small as
possible by employing near-sonic ridge lines.

As mentioned above no theory is, as yet, available to estimate, with
eny real certainty, the pressure distribution if a shock wave exists, or
even to locate the position of the shock on the surface, Since there appears
to be large differences in the drags as estimated by the linearised theory
and by the approximate flow structure outlined above it was decided to
investigate the problem experimentally. The afterbody studied has been
teken in its simplest form to consist of a single plane surface,

A pressure plotting model was designed to check the ideas of
Refs. 4,5 and 6. In order to ensure the existence of a shock wave the
angles of the surfaces were chosen so that Fowell's critical angle Z% was

exceeded., Provision was made to vary the upstream Mach number normal to
the ridge line from 0.95 to 1.28 by choice of tunnel liners and by inclining
the model to the tunnel airstream.

2 DESCRIPTION OF THE MODEL AND TESTS

A drawing of the model is given in Fig.2 and its installation in the
tunnel is shown in Fig.3. The forebody has plane surfaces and is designed
to provide an approximately uniform Mach number distribution and boundary
layer thickness at the ridge line for the stations where pressures were
measured, The plane surface forming the afterbody makes an angle of 23° to
the planes of the forebody, the ridge lines formed at the intersection with
these two planes were designed to be sonic at Mach number M1 of 1.51. This

Mach number M1 ahead of the ridge line was varied using Mo = 1.51 and 1.87

liners. Intermediate Mach numbers were obtained by adjusting the incidence

of the model, The uniformity of the stream ahead of the ridge line, at the various
incidences, a, can be assessed from Fig.4 and from the oil flow photographs
Figs.%a-e. The influence of the disturbances from the side edges of the

model have, of course, to be ignored.



The static pressures were measured at 22 points situated at three
streanmwise stations 0.8, 1.4 and 2.0 in. downstream of the apex of the
afterbody. The spanwise location of the holes is given in Fig.2. Pressures
were recorded on a multibank mercury manometer which was read visually.

The incidence of the model was measured with a telescope fitted with & pro-
tractor eyepiece.

0il flow studies were made at M = 1.51 using titanium oxide in oil.
Photographs could only be taken of the surface flow patterns after the
removal of the model from the tunnel but, fortunately, only in certein small
regions was the flow pattern disturbed by the tunnel shock wave on shutting
down the tunnel. An attempt to locate the shock waves in the flow field was
made using a conical shadowgraph focused at the apex of the afterbody, but
attempts to photograph the image proved unsuccessful because of the awkward
position and poor definition of the image. Some of the pressure measurements
were repeated with transition fixed ahead of the ridge line using roughness
bands of carbcrundum,

The tests were made in the No.8 (9 in. x 9 in.) supersonic wind tunnel
at the R.4.,E. Farnborough. The mean Reynolds number was about O,4 x 10° per in.

3 DISCUSSION OF THE RESULTS

The measured spanwise pressure distributions are given in Figs,ba-n for
Mach numbers from 1.42 to 4.91. The pressure coefficients are based on g,
the kinetic pressure ahead of the ridge line. In calculating these and the
Mach number M1 the working section value of the stagnation pressure HO has

been used since, over the range of inclination of the model and the range
of Mach number, this procedure involves an error of less than 0,01 in Mach
number and less than 2% in the pressure coefficient.

Estimated pressure distributions have been included in Fig.6 where
possible. These have been made using the approximate method described in
section 1 and illustrated in Fig.7(b). This method is clearly better than
the linearised theory as can be seen from the typical example shown in Fig.8.
This is not surprising since the pressure coefficients are of the order of
0.5 and therefore the associated disturbances are large and can hardly be
expected to conform with the restrictions of a small perturbation theory.

Photographs of the surface streamlines are shown for a number of cases
in Figs.9(a)-(e). The interpretation of these results and of the pressure
distributions is given below.

3.4 Region of Prandtl-Meyer expansion

The pressures measured at the points 8 and 20 (see Fig.2) situated just
downstream of the ridge line are shown in Fig.5. These points are sufficiently
near the ridge line to be in a region where one would expect to have uniform
flow following a Prandtl-Meyer expansion.,

For Mach numbers M, ashead of the ridge line greater than 1.51

(i.e. supersonic velocity component normal to the ridge line) it is possible
to calculate exactly the pressure by simply resolving the velocities along
and normal to the ridge line. The Prandtl-Meyer relations are then applied
to the normal component of velocity whilst the tangential component is con-
served. It can be seen from Fig.5 that there is a remarkably close agreement
between the experimental and the calculated values. This agreement is note-
worthy since both the oil flow studies shown in Figs.9(a)-(e), and the span-
wise pressure distributions shown in Fig.6, indicate a considerable upstream
influence of the ridge line. It would appear from the pressure distributions
that the boundary layer thickness must start to decrease at a distance of the
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order of ten boundary layer thicknesses in advance of the ridge line, It
should be noted, however, that the pressure field in this expansion region
is wholly favourable sco that viscous effects are not normally expected to
be large.

The variation of the ratio of static pressures before and after the
expansion is also shown in Fig.5. It is interesting to note that this
ratio is sensibly independent of M1 over the range of the test conditions;

even for subsonic Mach numbers normal to the ridge line where the Prandtl-
Meyer relations cannot be applied.

The calculated flow directions are shown superimposed on the oil flow
pictures in Figs.9(d) and (e). It can be seen that the surface streamlines
after the Prandtl-Meyer expansion are more inclined to the undisturbed stream
before the ridge than the external streamlines, These flow patterns corres-
pond closely to patterns of limiting suggested streamlines for either wholly
favourable or wholly unfavourable pressure fields by Maskell and Webert.

5.2 Recompression region

As we have mentioned earlier, the flow following the Prandtl-Meyer
expansion is directed towards the plane of symmetry, so that by some
mechanism the flow has to be turned back parallel to the plane of symmetry.

For the large deflection angle considered in this experiment no gradual
compression is possible sc that the flow structure must embody strong shocks.
The case of M = 1,53 is considered in detail in Fig.7. If one considers the
flow to be turned by a single plane shock normal to the surface as suggested
by Fowell# and Griffith6, instead of by the conical shock that would exist in
an inviscid fluid, then its position would be as shown in Fig.7(b). As
mentioned in section 1 such a plane shock would be stronger and further out-
board than the trace of the true inviscid conical shock on the surface.
However comparison of Fig.7(a) and (b) clearly shows the compression to be
taking place outboard of the estimated plane shock position, There does not
appear to be any indication of a sudden compression although there are not
sufficient pressure points to define, with certainty, the pressure distribu-
tion at the commencement of compression. However, it does in fact appear
that the pressure distribution is not unlike that given by linearised theory
inboard of the spanwise station at which this equals the Prandtl-Meyer
value (Fig.8), although this result may be purely fortuitous.

The explanation of the premature compression is shown by the oil flow
patterns given in Fig,9{d). Here a separation line is clearly visible, A
flow structure consistent with the measured resulits is therefore likely to
be of the form shown in Fig.7(c). The existence of the shock wave in the
external stream was verified by using a conical form of shadowgraph focused
at the apex of the ridge. The quality of the image produced by the system
was not high and, possibly because of the non-conical nature of the separa=~
tion, no detail of the conditions at the foot of the wave could be observed.

The sepaeration line shown in Figs.9(a)-(e) is seen to be far from
straight. This departure of the flow from a conical form is to be expected
since the separation point will depend on the boundary layer conditions.
These in turn depend on a characteristic length which, in the case of this
experiment, is the length of the forebody ahead of the ridge line. It is
likely that the flow will become conical as the distance from the ridge line
become large compared with the forebody length.

The effect of artificially thickening the boundary by placing roughness
strips at the leading edge of the forebody is shown in Figs.10(a) and (b).
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The results are much the same for both subsonic and supersonic ridge line
conditions, The thicker boundary layer causes an earlier expansion and
compression,

3.3 Comparison of overall pressure drag with estimated values

P

Since the Tlow is not conical it is not possible, with the few pressure
measurements made, to give accurate comparison of the pressure drag of the
afterbody with the various estimates, If, however, we examine Fig.8 we can
readily see that linear theory will give an over estimate of the drag. Some
idea of the magnitude may be seen by considering the drag coefficients for
the station x = 2.0 in., defined as

1
C; = tan 5/ dey/s .

0O

The values of C. obtained by the various methods are given in the table
below for two typical cases

reues of G
Subsonic | Supersonic
Mach number pomtes anssers
1.45 1.71

Experiment 0.095 0.075
Linear theory 0.180 0.099
Linesar theory with a vacuum as limiting suction 0.107 0,090
Prandtl-iteyer expansion and a plane shock wave - 0.062
Linear theory with Prandtl-Meyer expansion value

limiting the suction L - 0.073

From the table it is seen that for the case of a subsonic ridge line
linear theory overestimates the drag by a factor of nearly two. This
discrepency is reduced somewhat if the minimum pressure coefficient is
limited to - 2/y 12 (i.e. a perfect vacuum), The use of the Prandtl-Meyer
expansion followed by a plane shock leads to an underestimate of the drag.
The best estimate is however to be obtained by using linear theory pressure
distribution but limiting the suction to the value given by the Prandtl-
Meyer expansion.

Overall drags for slender configurations having an afterbody similar
to the ones of these tests have been measured in free flight, These results,
which are reported separately, show drags which are similarly lower than the
linear theory estimates,

3.4  Further investigations to be made

The present paper has dealt with conditions following a discontinuity
in surface slope which was sufficiently large, on Fowell's criterion, to
produce a shock wave., It would, however, be of great interest to discover
conditions following a much smaller change in surface slope., Some information
on these conditions will be provided by tests to be made in the 8 ft x 8 ft
Supersonic Tunnel at R.a.E. Bedford on a model designed by Dr, A,A.Griffiths,
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This mcdel is designed by the method described in Ref.6 with an afterbody
without discontinuities in surface slope.

4 CONCLUSIONS

For the short afterbody simulated by these present tests the following
conclusions were reached.

(1) The measured pressures in the neighbourhood of the ridge line agree
well with the predictions based on the exact Prandtl-leyer relations
applied to the normal component of velocity.,

(2) The expansion around the ridge line is detectable ahead of the ridge
at a distance of the order of ten times the estimeted boundary layer
thickness.

(3) There is considerable departure from a conical flow structure in the
recompression région downstream of the expansion due to viscous separation.

(k) Linear theory is shown to overestimate the drag of the afterbody whilst
the approximate method assuming a plane shock wave underestimates the drag.

LIST OF SYMBOLS

1 n
Cy drag coefficient for a spanwise strip = tan § / CP a %)
ro \
P-p,
C pressure coefficient = =
P 94
H stagnation pressure
M Mach number
n distance along the surface normal to the ridge line
o static pressure
q kinetic pressure
] local semi-span of the afterbody
X,¥,2 rectangular co-ordinates shown in Fig.2
v ratio of the specific heats of air
) deflection angle at the ridge line in the plane of symmetry
50 critical angle & (Fowell's criterion see section 1)
A sweepback angle of the ridge line (in the plane of the afterbody)
K Mach angle
v Prandtl-Meyer angle
@ angle between the ridge line and the x axis
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LIST OF SYMBOLS (Contd)

Subscripts
0 Conditions in the tunnel working section
1 Conditions just ahead of the ridge line
2 Conditions downstream of the ridge line
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