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SUMMARY

Graphs show the structure weight of typical fighter and bomber
aircraft for ranges of design diving speed and maximum narmal acceleration,
Variations of wing loading and geometry, and the use of spar or box~beam

wing construction are investigated,
The calculations of structure weight are based upon methods developed

at the R.A.E.
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1 Introduction

The specificd values of design diving speed and moximum normal
scocleration form the foundation of aircraft strength and stiffness
requirements, and thus affect both airworthiness and structure weight.
The aim of this report is to glve a general picture of their effect on
structure weight for use in project investigations.

Graphs show the structure weight of typical fighter and bomber
aircraft for ranges of design diving speed and normal acceleration, at
gseveral values of wing loading, aspect ratio, thickness/chord ratio end
teper ratio. Changes in structure weight for various conditions are
deduced. The effects of aircraft size and of spar or box-bsam wing con-
struction are considered. The effects of wing sweep-back are also
considered.

The caleculatioms of struclure weight are based upon methods developed
at the R.A.E. and are doscribed in an Appendix. Similar graphs may be
constructed for cases not covered by this report.

2 Procedure

The structure weights of %wo "standard"# aircraft, a fighter and a
bomber, are caloulated for renges of design diving speed and factored
maximum nomel acceleration coefficient. The calculations are repcated
with alternative values of some characteristics vhich mey vary and alter
the structure weight. These are wing loading, aspect ratio, thickness/
chord ratio, taper ratio and sweep. The standard values, and the other
values investigated, are listed in Table I,

A1l aircraft are assumed to be of conventional aluminium-alloy
construotion. Two types of wing construction are investigated. First
the "spar" type for which the material providing bending strength is
oconcentrated in spar flanges, and is separate from the cover material
vhich provides torsional stiffness. The second is the "box~beam" type
for which the material providing bending strength is distributed along
part of the top and bottom surfaces, so that the seme material provides
both bending strength and torsional stiffness.

The tobtal structure weight is given by the sum of wing, fuselage,
tail unit and undercarriage structure weighis. The calculations of oom-
ponent structure welghts are based upon methods developed at the R.AE123,
Detodils are given in Appendix I.

The airoraft investigated are described throughout as the "fighter"
and the "bomber", but the graphs rcpresent the trends for aircraft with
any duty whose characteristics are similar to those assumed. In particular
the curves derived for the bomber apply to many civil and military trans-
port aircraft. Curves for aircralt with characteristics not similar to
those investigated can be constructed by the seme methods.

3 Results

The results of the celowlations are plotted in Figs.1 - 8, and are
discussed below.

L "Standard" siroraft are defined as those with characteristics
gimilar to fighters and bombers coming into production in 1952,
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The lighter form of wing construction, spar or box-beam, is assumed
in each case. The change fram spar to box~beam construction is marked on
Pigs.1 - L4 and is characterised by an abrupt reduction in slope of the
curves. The abrupt inoreascs in slope occur when the weight of cowver
required for torsional stiffness first exceeds that required for local
strength and stiffness under airloads, ard when the weight of shear webs
required for torsional stiffness first exceeds that for vertical shear
strength.

L Design Speed (Vp) and Normsl Acceleration (N)

Pigs.1A ond 3A give the structure weights of the standard fighter
and bomber respectively, for ranges of Vh and N, The curves for
total structure weight show these features:-

(a) structure weight increases with both Vp and N ,

(b) the slope of the curves , Which gives the rate of change of
structure weight with Vp , inoreases as Vp increases, but
is not greatly affected by the value of N .

(c) the spacing of the curves, which gives the rate of change of
structure weight with N , is the same for all values of TV
and N when spar construction is used, but is reduced with
increase of Vy when box-beam construction is used,

At average values of Vp (600 knots for the fighter, LOO kmots for
the bamber) a change in structure weight of 1% of the aircraft weight
corresponds to a change of about:-

(i) 35 knots in Vp , or 1.5 in N for the standard fighter,

(i1) 35 knots in Vp , or 0.8 in N for the standard bomber.

5 Wing Loading and Gecmetry

Figs.1B, C and D, and 3B, C and D give curves similar to those
of Figs.1A and 3A respectively, but with values of wing aspect ratio,
thickness/chord ratio and taper ratio other than the standard values.

Figs.2A and C, and LA and C give similar curves for other values
of ving loading, Figs.1A and 3A are reproduced as Figs.Z2B and 4B for
convenienoe.

These curves all show the general features noted in paragraph 4
for the standard aircraft, but the actual weights of the wing and total
structure are greatly affected by wing loading and geometry. This is
illustrated by Table II, vhich gives changes in structure weight, expressed
as a percentage of the alroraft weight, for given changes in Vp and N
under various conditions., The changes in structure weight increase rapidly
for increased aspect ratio, and for reduced wing loading amd thickness/
chord ratio.

Table II also illustrates the increasing importance of TV , relative
to that of N , as Vp dis increased.

6 Sweepback

In the method used for calculating wing weight, the weight of cover
material required for torsioral stiffness, which depends on Vp , is
independent of sweep, so that variations of structure weight with Vp
are not affected.
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The weight of bending material, which depends on N , does very,
and Fig.5 shows how the wing, tail unit and total structure weight vary
with sweepback for the standard fighter. These curves should be regarded
as approximate because the method docs not allow for the high flexural
stiffness whioch may be neccssary for adequate stability and control for
scme wings of high sweep and aspect ratio.

7 Type of Construction

At low velues of Vp the wing cover is thin, and the lightest way
to provide bending strength is to use concentrated spar flanges. As Vp
is increased the cover weight ropidly hecomes greater, because the required
torsional stiffness inoreases with Vp“ , and above some "oritical' value
of Vp it is lighter to rcinforce the cover to provide the bending strength
(i.e. to usc box=beam construction). The critical valuc of Vp is reduced
as N , wing lcading and ’chickness/ chord ratio are reduced, Fig.6 shows
the full spar and box-beam curves for three values of thiokness% chord ratio,
The critical value of Vp dis lower for the bamber than for the fighter,
because there is a larger proportion of relief loads in the bamber wing,
and because, as size increases, the weight of material required for torsion
increases more rapidly than that required for btending.

These facts cxplain several features noted in paragraph 4. For spar
construction the bending material, affected by N , and the torsion
material, affected by VDZ , ave separate. The curves have the same slope,
which increases as Vp is increased, and the same spacing. For box-beam
construction bending and torsion material are common, Usually the outer
part of the semi-span is designed by torsional requirements, and the inner
part by tending. The outer part has a reserve of strength in vending and
a given change in N involves less ohange in structurc weight than for
spar construction. The curves thus tend o converge above the critiocal
value of Vp o

8 Aircraft Size

The total structure weight, expressed as a percentage of the aircraft
weight, varies as the aircraft size is varded. The relative weights of the
variocus strucbural oamponents also change. Carc is thercfore neccssary in
applying the results of this report to aircraf't of sizes different from
those extamined.

The struchure weights of a family of fighters and a family of bombers
are oaloulated as a guide and shown on Figs.7 and 8 respectively. These
aircraft have varying wing area but "standard" characteristics in other
respects, i.e, the some Vp , N , w , 4, t/c , )\, and the same proportion
of reliel lo=de, fusclage and tail areas, ete.

The ourves suggest that the total structure weight of similar air-
oraft varies with (sircraft weight)1+20, instead of (aircraft weight)?.50
as suggested by the thearetical "square-oube" law, wherely airoraf't weight
varies with the square, and the structure weight with the cube of the
linear dimension.

9 Conclusiong

(1) A change in atructure weight of 1% of aircraft weight ocorres-
ponds to change of aboub:-

(i) 35 knots in Vp , or 1.5 in N for the "standard" fighter,

(ii) 35 lmots in Vp , or 0.8 in N for the "standard" bomber.
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(2) These values are greatly affected by variations in wing
loading and geometry, and by the value of Vp at vhich the changes are
made.

(3) The importance of Vp , relative to that of N , incroases
as Vp 1s increased.

() Spar type wing construction is lighter than box=-beam for
low values of Vp . Above same value, which depends upon wing loading
and geometry, and aircraft size, box~beam construction is the lighter.

(5) The structure weight of similar aircraft is calcu%atgd to
vary with (aircraft weight) *2C, instead of (aircraft weight)l*0 as
suggested by the theoretical "square-cube" law.
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APPENDIX I

Details of Structure Weight Calculations

1 Wing Weipght
1
1.1 The method used is substantially due to Ripley , but with some
simplifications in the treatment of relief loads and welght allowances
for special features. It is described as briefly as possible except for
the departures from the full method.
The wing structure weight is given by

Vg = X Vg

vhere Wyp = weight of basioc wing struoture
Wy = weight of ocover material

weight of bending material

&
il

WS = weight of shear material

Wig = weight of internal structure

weight of special features
welght of basic wing structure

by
1

-
It

The use of the factor k is the first simplification of the full
method. The weight of the spccial features is calculated by multiplying
the weight of the basic wing by a factor based upon experience of wings
gimilar to that under investigation, not by individual assesament.

1.2 The weight of cover material for both spar and box~beam construc-
tionsg isg given by

T

¥ \rC = vaC e W‘RC

welght of torsion box cover

it

where ‘V‘I‘G

weight of remainder of cover

|t}

Wra

The unifoxrm vrb/ sq.ft (CT) of the torsion box cover is given by
Equation 3.15%, provided that Cp ¢4 Op as given by the "smooth finish®
ourve of Fig.25. The uniform wts/sq.£t (Cr) of the leading edge and
trailing edge are obtained from Fig.25, using the "smooth finish" curve
for the leading edge.

The torsion box is assumed oontinuous across the fuselage, but the
leading and trailing edges are removed.

" A1l references in this Appendix to Equations, Paragraphs and Figures
are to those of Ref.1.
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1.3 The welght of bending material (Wp) for spar type construction is
obtained from Equations 2.15, 2,22 and a simplified fomm of 2.21, wvhich
is

. . Iz
Es = N (W-WR)T.1~ Ig

where Wp = weight of wing group (i.e. structure, engines fuel,etc.).

This is the second simplification, It is assumed that the spanwise
weight distribution of the items which relieve the airloads on the wing
is the same as that of the airloads. Account of the relief loads is then
teken by subtracting their total weight (Wy) fram the aircraft weight in
the equation for K5 .

The "two spar" curve of Fig.24 is used.

For box~beam type construction the spanwise distribution of the
material required for bending and the torsion material effcective in
bending are plotted as in Sketch 4.3. The weight of bending material
(W) is the additional material required for bending and shown hatched
on Sketch 4.3. The spanwise distribution of the net material required
for bending is given by a modification of Equation 2,09.

BB=K1\T(W-W)E-%IIJ
7 R T5 49 th Ok

The spanwise distribution of the torsion material effective in
bending is obtained by assuming that three-quarters of the total *orsion
box cover is effective in bending.

1.4 The weight of material (Ws) required for vertical shear strength
is calculated from Equations 5.10, 5.15 and 5.13 modified. The modifica-
tion to Equation 5.13 is to introduce the same assumption on distribution
of relief loads vwhich was made for the bending material. The equation
beoames

6.2 -
K, = o b N sec A (V ~Wp) Ig

This value of Wy 1is used unless over-ridden by that required in
the webs for torsional shear stiffness. This is given by

Vg = (p+ q & l—té?——?\- b sec A Cp

where p and q are the ratios of the depth of the aerofoil section at
the f{ront and rear web positions b0 the maximum depth.

1.5 The weight of internal structure (Wrg) is caloulated as given in
paragraph 3.7.

2 Fuselage Weight

2.1 The method used is a simplification of the method given by Burt
and Phillips?, Exemination of the components of the fuselage structure
of a number of fighters and bombers shows that, for the purpose of this
report, fuselage structure weight may be expressed as

=0w



W = a’f"G-;-'bW

vhere W, = gross fuselage shell weight, calculated as in Ref.2 and
a, b are constants obtained from examination of existing aercplanes.
Their values are given in Table I.

3 Tail Unit Weight

3.1  The tail unit structure weight is calculated by Ripley's method3 .
Allovwance is mnde for sweepback and 15% added to the total for mass~
balance welghts,

L Undercarriage Welght

L.1 The undercarriage weight is assumed to be 0.05W in all cases.
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IABIE 1

CHARACTERISTICS OF AIRCRAFT I'WESTIGAIED

: Fighter Aircraft Bowber Alrcraft
Iten Symbol | erandard | Other Values | Standard | Other Values
Value Considered Value Considerad
Wing Area 8q¢.it. s 300 100, 200 2,000 500, 1000
500, 700 3000, 4000
Wing Loading 1b/sq.ft. bow 50 25, 100 50 25, 100
Afrcraft Welght 1lb [ W 15,000 100,000
Design Diving Speed knots E.A.S. Vy 600 400, 500 400 200, 300
700, 800 5C0, 600
Factored Maximum Normal Acceleration N 2.0 6.0, 9.0 4.5 3,0
Coefficient at Welght W 8.0, 7.5
(Manoceuvre or gust)
Aspect Ratio A 4 2, 6 5 3, 7
Thickness/Chord Ratio Yie 10% 5%, 15% 10% %, 15%
Taper Ratio A 0.5 10.25, 0.75 0.5 0.25, 0.75
Sweepback (on 0.25 chord line) A 40° 0°, 20°, 60° | 25°
Torsion Box Forward ) 0.2 o 0.2 ¢
and Aft Limits ) ' o.6¢c 0.8 ¢
{
Effective Bending Depth ) Spars Y 0.85 0.85
Maximum Local Wing Depth ) Box-Beam 0.54 0.94
Welght of Wing Group WR -
- 0. 4
Aeroplane Weight : L - 0
|
Welght of Special Features ;
k- 0.40 0.
Basic Wing Welght % ! 35
Fuselase Area i ?
Wing Area , 1.60 1.25
e
Fusclage Finenass Ratio ! - 2.2 2.5
'B + H
i
Constants in Fuselage Weight :oa 1.50 1.55
Equaticn, appendix I b 0,02 0.02
Fuselage Width at Wing Level ft. : 4.0 10.0
i
Tallplane and Elevator Ared 5
Wing Area | 0.16 0.16
Fin ang Rudder Area 2 f 0.08 ' 0.08 |
Wing Area ! ‘ {
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Changes in Structure Veight (Percentage of Aircraft Weight) for Changes in Design

TABLE IT

Diving Speed (Vp) and Tactored Nomal Acceleration Coefficient ()

Changes in Change in Changes in Change in
Vn at W from 9 Vy, &t N from 3
FICHTER L‘-Olg = 1%00 to 12 BOMBER 22'0: !.T. _goo to 4.5
Enin! £V I * .
ATRCRAFT o to A _:“D A.‘l}j.}; ATECRAFT to i to A‘meD At—VD
500 | 800 = = 300 ! 6 = et
s Ths LOO k&s 800 kts Tts f KEs 200 kts 600 kts
r 3
Sbandard 1.4 | 2.8 2.0 2.1 Standard 1.7 | L6 1.9 1.3
Aspect Ratio 2 1.3 1.9 1.1 1.2 Aspect Ratio 3 1.6 2.6 1.3 1.0
6 2.5 4.2 3.0 3.2 7 3.4 6.7 2.7 1.4
Thiclmess/Chord 5% | 4.0 | 4.9 3.1 2.7 Thickness/Chord 5500 n3 4.3 3.1 0.k
Ratio Ratio
15% 1.3 2.0 1.7 1.7 15% 1.6 2.6 1.6 1.4
Taper Ratio 0.25 1.3 2.7 1.6 1.6 Taper Ra%sio C.25 1.6 L.7 1.6 0.6
0.75 1.7 3.2 2.9 2.3 0.75 1.5 5.0 2.1 1.6
Wing Loading 25 2,6 5.9 2.1 1.8 Wing Loading 25 3.4 10.9 2.4 0.8
100 | 0.7 | 1.4 1.9 1.9 100 | 0.8 | 1.7 1.8 1.k
| |
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FORWARD =3

E

FIG.22. STARBOARD INNER WING, SECOND TEST
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PANEL BOLT HOLE RIVET HOLE g FORWARD
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FIG.23. PORT INNER WING, SECOND TEST

FIG.22 & 23. TENSION BOOM FRACTURE



FIG.24. STRIATIONS ON THE FRACTURED SURFACE OF THE B.S.L.65 BOOMS

FIG.25. STRIATIONS FROM INDIVIDUAL GUST LOAD CYCLES
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FIG.3| & 32 TENSION BOOM FRACTURES
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