

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

Note on Wind-Tunnel Measurements of Yawing Moment, Rudder Fixed and Free, on Models of Three Aircraft

By

J. E. ADAMSON, B.A., E. C. Brown, and R. H. ALLEN

Crown Copyright Reserved

LONDON: HIS MAJESTY'S STATIONERY OFFICE

1951

THREE SHILLINGS NET

Note on Wind-Tunnel Measurements of Yawing Moment, Rudder Fixed and Free, on Models of Three Aircraft

By

J. E. ADAMSON, B.A., E. C. Brown, and R. H. ALLEN

COMMUNICATED BY THE PRINCIPAL DIRECTOR OF SCIENTIFIC RESEARCH (AIR),
MINISTRY OF SUPPLY

Reports and Memoranda No. 2534*

July, 1941

Summary.—Reasons for Enquiry.—In considering the lateral stability characteristics of an aircraft, values of the derivatives l_v and n_v with rudder free are needed. Since the effect on n_v of freeing rudders having different types of balance was not known quantitatively, measurements of n_v with rudders fixed and free were made on three aircraft having rudders with set-back hinge and horn balance.

Range of Investigation.—Yawing moments and rudder power were measured with rudder fixed and free on models of the Sunderland, Halifax and Lancaster. In some cases rolling moment and side force were measured, the latter quantity being useful for calculations of flat turning radii.

The tests include variations of rudder balance. The fin and rudder data have been compared with previous results for single and double fins and rudders.

Conclusions.—The effect on n_v of freeing the rudders is small for those rudders with set-back hinges or with shielded horn balance but large with unshielded horn balance; n_v was more than doubled by freeing a rudder with a 9.5 per cent. unshielded horn. Any destabilising effect of freeing the rudder is likely to be greatest when the rudder is closely balanced by a geared tab, with no horn and little or no set-back of the hinge.

1. Introduction.—The lateral stability characteristics of an aircraft depend mainly on the derivatives l_v and n_v , and some criterion of the relation between l_v and n_v to give satisfactory stability is needed. In normal cruising flight the conditions to be assumed in considering l_v and n_v are probably considerably nearer those of rudder free than fixed. Many model tests have been made of n_v when the rudder is fixed but none at the Royal Aircraft Establishment with rudder free. It may be noted that the effect of freeing the rudders is almost entirely confined to n_v , since the fin and rudder contributions to l_v is usually not very large.

In order therefore, to provide data on the effect of freeing the rudder on n_v , yawing moment, and in some cases rolling-moment measurements were made with rudders fixed and free on models of the Sunderland, Halifax and Lancaster.

Rudder power and side force were also measured. Besides testing the standard rudders for these aircraft, the effects of modifications to the rudder balance were found.

2. Details of Tests.—The tests were made at 122 ft./sec. in the $11\frac{1}{2}$ ft. \times $8\frac{1}{2}$ ft. wind tunnel at the Royal Aircraft Establishment during February, 1941. Details of the models are given in Tables 1, 2 and 3, and Figs. 1 to 6. The rudders when free were mass-balanced; when the

^{*} R.A.E. Report No. B.A. 1674—received 4th September, 1941.

aerodynamic balance was changed the rudders were not re-balanced, since it was shown that the effect of the out-of-balance weight moments was negligible. Three fin and rudder units were tested on the Lancaster (Fig. 6). Two of those had shielded horn balance, and the third had an unshielded horn. The effect of adding the central fin shown in Fig. 5 was also measured.

Yawing moment with rudders fixed and free, rolling moment, side force and rudder power were measured at two values of C_L , 0.2 and 0.8, corresponding approximately to top speed and climb conditions.

3. Results.—The effect on n_v of freeing the rudder at $C_L = 0.2$ is summarised in the following table:—

Aircraft	Type of balanc percentage bala	e and ance*	Rudder fixed $n_v imes 10^3$	Rudder free $n_v \times 10^3$	Reference to Tables and Figures
Sunderland, Shorts	Set-back hinge	$21 \cdot 3$ $24 \cdot 8$ $28 \cdot 0$ $32 \cdot 0$	76.8	$66 \cdot 1$ $61 \cdot 0$ $62 \cdot 9$ $66 \cdot 4$	Tables 1 and 1(a). Figs. 2 and 7.
Halifax, Handley Page	Set-back hinge	23·8 29·0	49.5	42·0 47·9	Tables 2 and 2(a). Figs. 4 and 9.
Lancaster, A. V. Roe	Inset horn Inset horn Unshielded horn	14·5 7·6 9·54	53·7 55·8 40·0	49·9 57·5 108·7	Tables 3 and 3(a). Figs. 6 and 11.

^{*} Percentage balance = Area of rudder ahead of hinge/Total area of rudder.

A table of the lateral stability derivatives measured for all three aircraft is given in Table 4.

It can be seen therefore that the effect of freeing the rudders on n_v is small when the rudders have a set-back hinge or a shielded horn balance, but when the horn is unshielded the effect is most marked, n_v being more than doubled by freeing the rudder with a 9.5 per cent. unshielded horn balance.

The effect of freeing the rudders can be expressed mathematically as follows.

$$n_v$$
 (rudder fixed) $= \left(\frac{\partial C_{nB}}{\partial \beta}\right) + a_1 \bar{V}^{"},$
 n_v (rudder free) $= \left(\frac{\partial C_{nB}}{\partial \beta}\right) + a_1 \left(1 - \frac{a_2}{a_1} \frac{b_1}{b_2}\right) \bar{V}^{"},$

where C_{nB} denotes yawing moment with fin removed; a_1 , a_2 , b_1 and b_2 are the usual constants associated with the fin and rudder; β is angle of sideslip; and \overline{V}'' fin and rudder volume coefficient.

These equations do not strictly apply to single-fin tail units, since in this case a sidewash factor should be taken into account. They serve however to show the type of change which occurs due to freeing the rudders.

The directional stability with rudder free is increased when b_1/b_2 has a negative value, or since b_2 is always negative unless the rudder is overbalanced when b_1 is positive.

From the results of the present tests a_1 , a_2 , and b_1/b_2 have been determined from the yawing moment measurements. These values are given in Table 5 from which it can be seen that, while b_1/b_2 is small and positive for set-back hinge and shielded horn-balanced rudders it may be large and negative for unshielded horn-balanced rudders. The values of b_1/b_2 agree very well with the curves of Ref. 1.

It may be noted in passing that if, with rudders having no horn and little or no set-back of the hinge, a close balance (small $-b_2$) is obtained by means of a geared tab, b_1 is then likely to be negative and the positive value of b_1/b_2 may be large. There will be a considerable reduction of the n_v due to fin and rudder on freeing the rudder. In such cases, and where as often happens the body n_v is unstable, freeing the rudder may make the aircraft as a whole directionally unstable. Further experimental work on this point is needed.

REFERENCE

No.		Author			Title, etc.
1 Priestley	•••		• •		An Analysis of Model Hinge Moments on Set-back Hinge and Horn-balanced controls. A.R.C. 4536. January, 1940.

TABLE 1

Sunderland: Model Dimensions, etc.

Scale of model ...

Wing area S	11·6 sq. ft. 9·36 ft. 1·24 ft. 7·55
Wing setting to hull datum	3 deg. 6 deg. 9 min.
C.G. position	
Distance aft of leading edge root chord (measured parallel to chord).	0·646 ft.
Distance perpendicular to and above root chord	0·052 ft.
Tail unit details	
Tail plane setting to wing η_T Fin and rudder area S''	- 2 deg. 9 min.
Total rudder area	1·052 sq. ft. 0·383 sq. ft.
Arm to C.G. l''	3.64 ft.
Fin and rudder volume $\left(=\frac{S''l''}{Sb}\right)$	0.0352
Rudder balance on Sunderland	28 per cent.
Other rudder balances tested	32 per cent., 24·8 per cent., 21·3 per cent.
$\left(ext{Rudder balance} = rac{ ext{Area ahead of hinge}}{ ext{Total rudder area}} ight)$	21 o por cent.
The values of I and w quoted are a mean slope for the range	P 1 E dom

1/12

The values of l_v and n_v quoted are a mean slope for the range $\beta = \pm 5$ deg., and not the slope at the origin.

3

TABLE 1(a)
Sunderland: Yawing Moment and Side Force Coefficients $V=122~{
m ft/sec}$

	B	122 10/300		Children Conti	
Condition	Angle of sideslip	$C_L =$	= 0.2	$C_L =$	= 0.8
	β°	$C_n \times 10^3$	C_{r}	$C_n \times 10^3$	$C_{\mathbf{F}}$
No tail or fins and rudders	0	0	0	0	0
	2.5	$-2 \cdot 16$	-0.0153	-2.35	-0.0170
Part villala and to home the	5.0	-3.62	-0.0362	$-4 \cdot 13$	0.0347
	10.0	-5.38	-0.0893	-5.76	-0.0848
With tail and fin and rudders			Name of the last o		
Rudder fixed $\zeta=0^\circ$	0	0		0	_
	2.5	3.11		2.74	_
	5.0	7.19	_	6.81	_
	10.0	15.88		16.20	_
21·3 per cent balance rudders	0	0		0	
free	2.5	2.53	_	2.35	
	5.0	6.46		5.63	
	10.0	13.76	-	14.38	
24.8 per cent balance rudders	0	0		, 0	
free	2.5	$2 \cdot 43$	_	2.33	-
	5.0	5.80		5.61	201-
	10.0	14.08	_	14.06	-
28 per cent balance rudders	0	0		0	
free (mass balanced)	$2 \cdot 5$	$2 \cdot 37$	-	$2 \cdot 30$	
	5.0	$6 \cdot 20$		6.08	No. of the last of
	10.0	14.34		14.52	
32 per cent balance rudders	0	0	<u> </u>	0	
free	2.5	2.51		2.14	
	5.0	6.55	THE THERE	6.27	_
	10.0	15.00		15.35	-

Rudder Power

Condition	Rudder angle	$C_L = 0.2$	$C_L = 0.8$
Condition	ζ°	$C_n \times 10^3$	$C_n \times 10^3$
$21 \cdot 3$ per cent balance ($\beta = 0^{\circ}$)	0 10	0	0
	15	$\begin{array}{c c} -11.5 \\ -17.38 \end{array}$	−17·14
24.8 per cent balance ($\beta = 0^{\circ}$)	0	0	
CERT CARLOS AND	15	-14.07	- Maria English
28 per cent balance ($\beta=0^{\circ}$)	0 5	0	0
	10		$\begin{array}{c c} -5.05 \\ -9.94 \end{array}$
	15	-13.52	-14.05
	20	-	-18.37
	25	111111111111111111111111111111111111111	-21.92
	30	- WALL	$-22\cdot08$
32 per cent balance ($\beta = 0^{\circ}$)	0		
	15	-13.77	

TABLE 2

Halifax—Model Dimensions, etc.

Scale of model Wing area S Wing span b Mean chord \bar{c} Aspect ratio Dihedral Wing setting to body datum			1	1/10 12·5 sq ft 9·9 ft 1·262 ft 7·84 5·3 deg 5·0 deg
C.G. position Distance aft of leadir parallel to chord) Distance perpendicular			()·55 ft)·021 ft
Tail unit details Tailplane setting to win Fin and rudder area S" Total rudder area Arm to C.G. l" Fin and rudder volume Rudder balances:— (Rudder Balance =	$\left(=\frac{S''l''}{Sb}\right)$	f hinge	=	-2·1 deg 1·176 sq ft 0·60 sq ft 3·30 ft 0·031 and 29 per cent roduction balance)

TABLE 2 (a)

nt Rolling Moment and Side Force

Halifax : Yawing Moment, Rolling Moment and Side Force Coefficients $V=122~{
m ft/sec}$

		1					
Com dition	Angle of		$C_L = 0.2$		$C_{\it z}=0.8$		
Condition	sideslip β°	$C_n \times 10^3$	$C_i imes 10^3$	C_{r}	$C_n \times 10^3$	$C_i \times 10^3$	C_{Y}
No tail or fins and rudders	0	0	_	0	0		0
	2.5	-1.34	MAN TO THE	-0.0069	-1.12	_	-0.0054
	5.0	-2.58		-0.0145	-2.31	blo -	-0.0119
	10.0	-4.04		-0.0334	-4.71		-0.0279
With tail and fins and rudders			Town In		SUMMERS		
29 per cent balance rudder fixed	0	0	0	0	0	0	0
$\ddot{\xi}=0^{\circ}$	$2 \cdot 5$	1.95	-3.65	-0.0165	1.84	-3.52	-0.0114
	5.0	4.73	-7.41	-0.0326	3.68	-7.05	-0.0232
Party Comment Levelle A	10.0	9.05	-14.12	-0.0670	7.74	-14.55	-0.0486
Rudders mass-balanced and free	0	0	0		0	0	
Rudders mass-parameter and nee	2.5	2.13	-3.85	_	1.77	-3.30	
	5.0	4.11	-7.56		3.49	-6.37	_
	10.0	8.72	-14.84	1-4	6.73	$-13\cdot76$	
24 per cent balance rudders free	0	0		1 4		The state of the s	MA
(not mass-balanced)	2.5	1.98		_		_	_
(Hot Mads salamoda)	$\overline{5} \cdot 0$	3.37		100		_	
	10.0	7.07		- 3	100-0		20TH -

TABLE 2 (a)—contd.

Rudder Power and Side Force Coefficients

(V = 122 ft/sec)

Condition	Rudder angle	$C_L =$	= 0.2	$C_L = 0.8$		
Condition	ζ	$C_n \times 10^3$	C_{ν}	$C_n \times 10^3$	C_{r}	
29 per cent. balance rudder $(eta=0^\circ)$	0 5 10 15 20 25 30	$ \begin{array}{cccc} & 0 \\ & -9.08 \\ & -18.23 \\ & -21.02 \\ & -14.27 \end{array} $	0 	$\begin{matrix} 0 \\ -4.40 \\ -8.77 \\ -13.56 \\ -17.83 \\ -20.08 \\ -16.94 \end{matrix}$	0 0·0050 0·0154 0·0260 0·0415 0·0461 0·0393	
$(\beta = -10^\circ)$	-15 0 15	$ \begin{array}{r} 3.55 \\ -9.33 \\ -23.13 \end{array} $		$5.41 \\ -7.87 \\ -21.05$		
(β = +10°)	$ \begin{array}{c c} -15 \\ -10 \\ 0 \\ 15 \end{array} $	$ \begin{array}{c c} - & +18.76 \\ 9.05 \\ -5.12 \end{array} $		18.41 16.46 7.74 -5.73		
24 per cent. balance $(\beta = 0^{\circ})$	0 10 20	$0 \\ -9.02 \\ -18.70$	=			

TABLE 3

Lancaster—Model Dimensions, etc.

Scal	e of mode	el							1/12
Win	g area	S							9.00 sq ft
Win	g span	b							8.50 ft
Mea	n chord	<u>c</u>							1.06 ft
	ect ratio								8.01
	edral								6 deg 46 min
	g setting	to bo	dy datun	1					4 deg
C.G	. position								
	Distance	aft	of leadir	ig-edge	e root	chord	(meas	sured	0·459 ft
	paralle	el to c	hord)						
	Distance	perpe	endicular	to and	below	root ch	ord		0.025 ft
Tail	l unit deta								
	Tailplan	e setti	ng to wir	ng η_T				==	- 1.6 deg
					7				2.75 ft
	T. 1								

Fin and rudder details:

	Large A.R. Fins and rudders	Small A.R. Fins and rudders with central fin	Small A.R. Fins and rudders no central fin	Rudders with unshielded horn
Fin and rudder area S" Arm to C.G. l" Rudder area Rudder balance	0·772 ft ² 3·11 ft 0·307 ft ²	0·832 ft ² 3·07 ft 0·236 ft ²	0·574 ft² 3·11 ft 0·236 ft²	0·694 ft ² 3·11 ft 0·322 ft ²
$= \frac{\text{Area of horn to hinge line}}{\text{Total area of rudder}}$	14.5%	7.6%	7.6%	9.54%
Fin and rudder volume = $\frac{S''l''}{Sb}$	0.0314	0.0334	0.0234	0.0282

TABLE 3 (a)

Lancaster: Yawing Moment, Rolling Moment and Side Force Coefficients

(V = 122 ft/sec)

			Mari II was			(=	122 ft/sec)
Condition	Angle of sideslip		$C_L = 0.2$			$C_L = 0.8$	
W X W	β°	$C_n \times 10^3$	$C_i imes 10^3$	$C_{\mathbf{r}}$	$C_n \times 10^3$	$C_i \times 10^3$	$C_{\mathbf{r}}$
No tail or fins and rudders	$ \begin{array}{c c} 0 \\ 2.5 \\ 5.0 \\ 10.0 \end{array} $	$ \begin{array}{r} 0 \\ -1.13 \\ -1.66 \\ -3.58 \end{array} $	$ \begin{array}{r} 0 \\ -3.74 \\ -7.64 \\ -15.13 \end{array} $	$\begin{array}{c} 0 \\ -0.0072 \\ -0.0149 \\ -0.0329 \end{array}$	$\begin{array}{ c c c c c }\hline 0 \\ - & 1 \cdot 22 \\ - & 2 \cdot 48 \\ - & 4 \cdot 71\end{array}$	$egin{array}{c} 0 \\ -4.32 \\ -7.79 \\ -15.45 \\ \end{array}$	$\begin{array}{ c c c c c }\hline 0 \\ -0.0062 \\ -0.0131 \\ -0.0298 \\ \hline \end{array}$
	Wii	h tail and fi	ı ns and rudd	ers			1
Large A.R. fins with inset horn-ba	 lanced rudde	rs				THE COLD !	
Rudders fixed $\zeta=0^\circ$	$ \begin{array}{c c} 0 \\ 2.5 \\ 5.0 \\ 10.0 \end{array} $	$0 \\ 2 \cdot 39 \\ 4 \cdot 59 \\ 9 \cdot 25$	$ \begin{vmatrix} 0 \\ -4.64 \\ -8.97 \\ -18.87 \end{vmatrix} $	$\begin{array}{ c c c } \hline 0 \\ -0.0168 \\ -0.0342 \\ -0.0701 \end{array}$	$ \begin{array}{c c} 0 \\ 1.80 \\ 3.32 \\ 7.72 \end{array} $	$0 \\ -4.38 \\ -8.34 \\ -16.98$	$\begin{array}{c c} 0 \\ -0.0150 \\ -0.0301 \\ -0.0651 \end{array}$
Rudders free and mass-balanced	$ \begin{array}{c} 0 \\ 2.5 \\ 5.0 \\ 10.0 \end{array} $	$0 \\ 1.87 \\ 4.36 \\ 8.12$	$ \begin{array}{c c} 0 \\ - 4.78 \\ - 9.12 \\ -18.93 \end{array} $		$0 \\ 1 \cdot 97 \\ 3 \cdot 76 \\ 8 \cdot 28$	=	
Small A.R. fins with inset horn-bank			al fin			ng Statut	168
$\zeta=0^{\circ}$	$ \begin{array}{c} 0 \\ 2 \cdot 5 \\ 5 \cdot 0 \\ 10 \cdot 0 \end{array} $	0 2·50 4·75 9·50	$ \begin{array}{r} 0 \\ -4.39 \\ -8.58 \\ -17.05 \end{array} $	$\begin{array}{c c} 0 \\ -0.0169 \\ -0.0344 \\ -0.0717 \end{array}$	0 1·74 3·83 8·14	$ \begin{array}{r} 0 \\ -3.97 \\ -7.48 \\ -15.15 \end{array} $	$0 \\ -0.0150 \\ -0.0304 \\ -0.0665$
Rudders free and mass-balanced	$ \begin{array}{c} 0 \\ 2.5 \\ 5.0 \\ 10.0 \end{array} $	0 2·59 4·84 9·91			0 1·94 4·18 9·83		=
Small A.R. fins and rudders without	ut central fin						
Rudder fixed $\zeta=0^\circ$	$ \begin{array}{c c} 0 \\ 2 \cdot 5 \\ 5 \cdot 0 \\ 10 \cdot 0 \end{array} $	0 0·82 1·36 3·47	$ \begin{array}{r} 0 \\ -4.77 \\ -8.27 \\ -17.52 \end{array} $	$ \begin{array}{c} 0 \\ -0.0127 \\ -0.0260 \\ -0.0540 \end{array} $	$0 \\ 0.35 \\ 0.80 \\ 2.31$	$ \begin{array}{c c} 0 \\ - 4.08 \\ - 7.89 \\ - 15.71 \end{array} $	$0 \\ -0.0113 \\ -0.0229 \\ -0.0320$
Rudder free and mass-balanced	$\begin{bmatrix} 0 \\ 2 \cdot 5 \\ 5 \cdot 0 \\ 10 \cdot 0 \end{bmatrix}$	$0 \\ 0.71 \\ 1.78 \\ 3.93$			0 0·64 1·49 4·07		Ē
Fin and rudders with unshielded he	orn balance						
Rudder fixed $\zeta=0^\circ$	$\begin{bmatrix} 0 \\ 2 \cdot 5 \\ 5 \cdot 0 \\ 10 \cdot 0 \end{bmatrix}$	0 1·73 3·53 7·67			$ \begin{array}{c c} 0 \\ 1 \cdot 33 \\ 2 \cdot 66 \\ 5 \cdot 76 \end{array} $		
Rudders free and mass-balanced	$\begin{array}{c} 0 \\ 2 \cdot 5 \\ 5 \cdot 0 \end{array}$	0 4·69 9·67		==	0 4·00 8·66	=	× = 1
	7·5 10·0	12·58 15·46	_		12·10 14·30	= ,,,	=

TABLE 3 (a) (Contd.)

Lancaster: Rudder Power

(V = 122 ft/sec)

				()	= 122 it/sec)
		$C_L = 0.2$			= 0.8
Condition	Rudder angle	C_n	× 10³	C_n	\times 10 ³
	5	Angle of sideslip $\beta = 0^{\circ}$	$eta = -10^\circ$	$eta=0^\circ$	$\beta = -10^{\circ}$
Large A.R. fins and rudders	$\begin{array}{c c} -25 \\ -20 \\ -15 \\ -10 \\ -5 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \end{array}$		7.11 3.06 -0.89 -9.44 -16.98 -20.61 -25.52	$\begin{array}{c} - \\ - \\ - \\ 0 \\ - 4.62 \\ - 8.66 \\ -11.90 \\ -14.36 \\ -16.62 \end{array}$	9·38 6·63 4·62 0·74 — — 7·57 — —15·59 —18·83 ———————————————————————————————————
Small A.R. fins and rudders with central fin	$ \begin{array}{r} -25 \\ -20 \\ -15 \\ -10 \\ -5 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \end{array} $	$\begin{array}{c} - \\ - \\ 0 \\ - 2.57 \\ - 4.94 \\ - 6.84 \\ - 8.58 \\ - 10.14 \end{array}$	$ \begin{array}{r} -0.16 \\ -2.71 \\ -4.69 \\ -9.71 \\ -13.99 \\ -16.15 \\ -19.70 \end{array} $		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Without central fin	0 5 10 15 20 25	$0 \\ -2.61 \\ -5.03 \\ -7.20 \\ -8.85 \\ -10.52$		$ \begin{array}{r} 0 \\ -4.93 \\ -6.83 \\ -8.63 \\ -10.27 \end{array} $	
Unshielded horn-balanced rudders	$ \begin{array}{r} -25 \\ -20 \\ -15 \\ -10 \\ -5 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ \end{array} $	0 - 4.61 - 9.04 -11.84 -14.16 -16.93	$ \begin{array}{c} 8 \cdot 42 \\ -4 \cdot 18 \\ 0 \cdot 69 \\ -8 \cdot 12 \\ -16 \cdot 28 \\ -19 \cdot 53 \\ -21 \cdot 43 \end{array} $		11·21 — 3·04 — 5·86 — -14·32 —19·27 —

A.R. Abbreviation for Aspect Ratio.

TABLE 4

Values of Lateral Stability Derivatives, Rudders Fixed and Free

Condition		$C_L =$	= 0.2		$C_L = 0.8$			
Condition	$n_v \times 10^3$	$l_v imes 10^3$	$\frac{\partial C_r^*}{\partial \beta}$	$\frac{10^3 \partial C_n^*}{\partial \zeta^\circ}$	$n_v imes 10^3$	$l_v imes 10^3$	$\frac{\partial C_r^*}{\partial \beta}$	$\frac{10^3 \partial C_n^*}{\partial \zeta^\circ}$
Sunderland (Table 1(a) and Figs. No fin and rudder	7 and 8) -45·5	-	-0.382	_	-50.5	_	-0.394	_
With fin and rudder Rudder fixed $\zeta = 0^{\circ}$ Free rudders	76.8		_	- 8	70.5	_	_	-
21·3 per cent. balance 23·8 per cent. balance 25 per cent. balance	66·1 61·0 62·9		=	$ \begin{array}{r} -66 \cdot 0 \\ -53 \cdot 8 \\ -51 \cdot 7 \end{array} $	59·5 58·9 61·2	_	=	$ \begin{array}{c c} -65.5 \\ \hline -53.6 \end{array} $
32 per cent. balance Halifax (Table 2(a) and Figs. 9 a	66.4			$-52\cdot6$	63.6	-		_
No fins and rudders	$-30\cdot2$		-0.162		$-25\cdot7$	-	-0.130	_
29 per cent. balance rudder fixed $\zeta = 0^{\circ}$ free	49·5 47·9	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_0·376		42·2 40·3	$-80.8 \\ -74.3$	-0·263 -	$\begin{bmatrix} -50.3 \end{bmatrix}$
24 per cent. balance rudder free	42.0	_	_	-51.7	_	-11	-	-
Lancaster (Table 3(a) and Figs. 1 No fins and rudders	$-20\cdot 5$	_86·5	-0.166		-27.0	-89 · 1	-0.146	
With fins and rudders. Large Rudders fixed $\zeta=20^\circ$. Rudders free	A.R. fins w 53·7 49·9	$ -104 \cdot 2 $ $ -106 \cdot 9 $	rn-balanced -0·388 -	rudders 	39·6 44·2	−98·1	$\begin{bmatrix} -0.344 \\ - \end{bmatrix}$	
Small A.R. fins with inset horn Rudders fixed $\zeta = 20^{\circ}$ Rudders free	-balanced ri 55·8 57·5	dders and -99·7	 a central fir —0·391	28.8	41·9 46·2	-88.4	-0.346	
Small A.R. fins with inset horn Rudders fixed $\zeta = 20^{\circ}$		udders with	out central j -0.292		8.62	-92.0	0.961	-25.8
Rudders free Fins and rudders with unshield	18.3	-	—0·202	$-\overline{29\cdot4}$	15.9	92.0		$-\overline{28\cdot 2}$
$ m Rudders~fixed~~\zeta=20^{\circ}~~$ $ m Rudders~free~~~$	40.0 108.7				30·6 95·5	= 3	_	

^{*} Angles in radians

TABLE 5 $\label{eq:Values of a_1, a_2 and b_1/b_2 from Yawing Moment Measurements.} Sunderland$

		Rudder Balance								
C_{L}	a_1	21·3 p	er cent.	24·8 per cent.		28·0 per cent.		32⋅0 per cent.		
		a_2	b_1/b_2	a_2	b_1/b_2	a_2	b_1/b_2	a_2	b_1/b_2	
0·2 0·8	$+3.49 \\ +3.48$	+1·87 +1·86	$+0.155 \\ +0.183$	+1.53	+0.294	$+1 \cdot 47 \\ +1 \cdot 52$	$+0.258 \\ +0.165$	+1.49	+0.208	

Halifax

C_L	a_1	Rudder Balance						
		24 per	r cent.	29 per cent.				
		a_2	b_1/b_2	a_2	b_1/b_2			
0·2 0·8	$+2.58 \\ +2.18$	+1.71	+0.193	+1·66 +1·63	$+0.060 \\ +0.040$			

Lancaster

C ₂	Small A.R. fins (Shielded horn)			Large A.R. fins (Shielded horn)			Large A.R. fins (Unshielded horn)		
	a_1	a_2	b_1/b_2	a_1	a_2	b_1/b_2	a_1	a_2	b_1/b_2
0·2 0·8	+1·62 +1·76	+1·23 +1·21	$ \begin{array}{c c} -0.081 \\ -0.256 \end{array} $	$+2.38 \\ +2.14$	+1·76 +1·69	$+0.102 \\ -0.095$	$+2.18 \\ +2.08$	+1·87 +1·74	$ \begin{array}{c c} -0.932 \\ -1.09 \end{array} $

Fig. 6. Lancaster Fins and Rudders.

Halifax.—Yawing and Rolling Moment Coefficients, Rudders Fixed and Free.

Fig. 9.

15

ROLLING MOMENT.

ō

16

Publications of the Aeronautical Research Committee

TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

1934-35 Vol. I. Aerodynamics. 40s. (40s. 8d.)

Vol. II. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 8d.)

1935-36 Vol. I. Aerodynamics. 30s. (30s. 7d.) Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7d.)

1936 Vol. I. Aerodynamics General, Performance, Airscrews,

Flutter and Spinning. 40s. (40s. 9d.) Vol. II. Stability and Control, Structures, Scaplanes,

Engines, etc. 50s. (50s. 10d.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews,

Flutter and Spinning. 40s. (40s. 9d.) Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (61s.)

1938 Vol. I. Aerodynamics General, Performance, Airscrews, 50s. (51s.)

Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (30s. 9d.)

1939 Vol. I. Aerodynamics General, Performance, Airscrews,

Engines. 50s. (50s. 11d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63s. (64s. 2d.)

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

> 1s. 6d. (1s. 8d.) 1933-34 1s. 6d. (1s. 8d.) 1934-35 April 1, 1935 to December 31, 1936. 4s. (4s. 4d.) 2s. (2s. 2d.) 1937 Is. 6d. (Is. 8d.) 1938 1939-48 In the press

INDEXES TO THE TECHNICAL REPORTS OF THE ADVISORY COMMITTEE ON AERONAUTICS-

December 1, 1936 — June 30, 1939. R. & M. No. 1850. Is. 3d. (1s. 5d.) July 1, 1939 — June 30, 1945. July 1, 1945 — June 30, 1946. R. & M. No. 1950. Is. (Is. 2d.) R. & M. No. 2050. Is. (Is. 1d.) July 1, 1946 — December 31, 1946. R. & M. No. 2150. Is. 3d. (Is. 4d.) January 1, 1947 — June 30, 1947. R. & M. No. 2250. 1s. 3d. (1s. 4d.)

Prices in brackets include postage. Obtainable from

His Majesty's Office Stationery

York House, Kingsway, London, w.c.2 429 Oxford Street, London, w.1

P.O. Box 569, London, s.e.1

13a Castle Street, Edinburgh, 2
39 King Street, Manchester, 2
2 Edmund Street, Birmingham, 3

1 St. Andrew's Crescent, Cardiff
Tower Lane, Bristol, 1
80 Chichester Street, Belfast

, or through any bookseller.

