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Summary.—The equations of hydrodynamics are derived in a very general form for a fluid all of whose physical
properties are variable. Vector analysis is used.

It is shown that in some circumstances C,T -+ 332 = CorfStant is an integral of the energy equation. The
transformation formulae to any co-ordinate system are given.

Introduction.—The equations of hydrodynamics contain symbols which represent the physical
properties, density, viscosity and so forth, of the fluid. In the simplest applications these are
regarded as constants (including as a particular case zero), and with this assumption the theory
has been very thoroughly investigated. The next simplest case is when the fluid is treated as
compressible, and here again considerable progress has been made. In recent years, however,
it has become increasingly important to have as exact a knowledge as possible of the effect of
allowing other quantities, especially viscosity, to vary. Certain particular cases in this category
referring to circulation theorems have been worked out!, but so far as is known no general
treatment exists. This report is an attempt to fill this gap, by deriving, once and for all, the
general equations when all the physical properties of the fluid vary.

Notation.—In any statement of general principles of this sort, some form of mathematical
shorthand is very convenient, otherwise the formulae are apt to become very complicated and the
essential statement being made is lost in a cloud of symbols. There are several such systems of
which Vector Analysis and Tensor Calculus immediately suggest themselves. The former has
been selected on the grounds that it is better known and better represents, in its symbolism,
the underlying physical ideas.

There are several competing notations in Vector Analysis ; that used by Milne-Thompson?
in his book * Hydrodynamics ” has been selected. A knowledge of vector manipulation will be
assumed and frequent reference will be made to this book, hereinafter denoted by “ M.T.”,
and to “ Modern Developments in Fluid Dynamics 3, hereinafter denoted by “F.D.” Indeed
from one point of view this report is merely an extension of certain parts of these works to the
more general case in which the pressure (p), density (o), absolute temperature (T), specific heats
(Cp and Cy), thermal conductivity (k) and viscosity (u) are all scalar point functions. The velocity
will be denoted by g (su + jv + kw) the dilatation (V) by A and the vorticity (v,7) by 7. The
conversion of any expression obtained to some co-ordinate system will be made via an orthogonal
curvilinear system in which ds? = Jda® + h,dp2 + hydy? with 7, 7, and & in the directions of
o,  and y increasing. Throughout 7 denotes the outward drawn normal from the surface S under
consideration. Gauss (or the divergence) theorem will be repeatedly used ; in its simplest form

this states that ﬁiXdS. = vadr where X is any scalar or vector point function and in the
latter case the product # (or ) X may be either scalar or vector. The idea of a * linear vector
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function *’ underlies much of the analysis ; this states that if @, b, and @, b', ¢’ are given

vectors then f(7) = (@n)a + @b + (') is a “ homogeneous linear function ” of the (arbi-

trary) vector . f 7 be another (arbitrary) vector and k an arbitrary scalar then fE+ )=

f&) + f() and f(hi) = 1f(i)- If in addition Ef(n) = /(&) the (linear vector) function is “ self
conjugate ” (M.T. p. 31). The importance of this lies in the fact that the rate of strain of the

fluid is given by the self conjugate linear function (7V)q + 574 € where 7 is the position vector
of two adjacent elements of the fluid.

Derivation of the Equations o fM otion.—Consider an infinitesimal element of volume dr and
surface dS. Then from the conservation of mass

el p it 3
57 odr + /gq ndS= 0.

/[2% + v (9) ] dv = 0 from Gauss theorem.

2
co .

-.5t—+(ﬁv)9+e(v?1')=0

and we get the Equation of Continuity in the alternative forms

do i
ﬂ'tdi*QA——O

%0 5 —
5 Sl =Y
The forces acting on the element are ‘—

(1) The external force of amount /QF dr.
(2) The normal pressure thrust on the boundary — f npds.

(3) The viscous stresses, these consist of
A term proportional to A f AARAS.
A term proportional to the rate of strain ﬁgﬂ, (7] + M;;AZ 1dS.
By resolving along three mutually perpendicular vectors, it can be shown that 4 = — 2u/3.

Now apply the second law of motion to the element, we get :\—

aq ¥ L Q2 — - -
/ézgdr — [oFdr — / pndS —/ifg— ndS + f120HEV)G + 1h z]dS.

Using Gauss theorem this becomes

d —_ 2 = 1S I
/Qc—igd’ e /[QF Sy (wa) + 2V §{pV)q} + vch)] dv
or since dr is arbitrary

ol — F—vp- 2 V) + 29 {697} + Ol uE)

which is the form assumed by the Navier—Stokes equations when the physical properties of the
fluid varv. The above is the most compact way of writing them (it is of course equivalent to three
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Cartesian equations) ; for further developments it is better to expand the various operards of
habla. Doing this, writing  for (V) and using the (symbolic) identity v, = vA — w27 we
obtain the equations in the alternative forms ‘

dg = = B e i e
’Jzﬁg: oF — VP + uvig —I—%VA—I—Z(MV).‘Z o, b—=5 L4

WI o

aq h . 4u A (8 ER S

U (E =oF — VP =2 /l’(vAS) —} '3— VA —} “(;”V)q 'i_ IHAC g 3 A{”

in which the increasing complication of the cquations as more variations are taken into account
is well displayed. The first term on the right-hand side arises from the body forces, the second
from the pressures. Together they represent all that is taken into account in the “ inviscid,
incompressible fluid ” of classical hydrodynamics. Allowing for the effect of (constant) viscosity
adds the third. Allowing for compressibility adds the fourth, Allowing for the variation of
viscosity adds the fifth and sixth. Finally allowing for the variation of both density and viscosity
adds the seventh. So far as the first four terms they are well known in Cartesian form (F.D. p. 6802).
If we neglect body forces and compressibility and assume *“ slow motion” the equation becomes

VP = pvq + 2aV)§ + il
the Cartesian equivalents of which have been used by Christopherson? in connection with
lubrication problems. The equivalent cylindrical polar form, with axisymmetric motion, arises
when considering the flow through a heated pipe.
The next step is to calculate the dissipation function ( ) or rate per unit volume at which energy
is being dissipated by the viscous stresses. The rate (We) at which the stresses do work on the
element is given by

)
W, = [GoFdr /{f’ A q ‘( p2 (17)g — p(0,E) + ;"ﬁﬂ }:I as.

Now Pty __
29(nv)q = (uv)q?,
so applying Gauss theorem we get

1o

0 ye
W= /' [§Fe 900 + 7 Lo} 4 7 4ulE) 37 0ed)]

e}

=/ {?Fe — qVp = PV + uVIT + (10T + pV(TG) + A(EF) — 5 uA

w

g e
3”9 A é'u qAJdT.

Now the rate of increase of Kinetic Energy is
d e dg
[;t/[%eer}if = /<0£/ d—f) dr

il o e = e AL A5 = Dt ;
:/[ qFo — qvp tugvig 4 29(0v)g + q(,"AC) }- 3-,1lqﬁA — ,—,uqﬁ] ar

3
Now . 7 e =
24(«V)g = (7V)7? and gV = gva — g(v,2).
so we get
dT o e - 4 = e e DA
G =/ |TFe — TV + (wv)TP%uq(V,\7) + n(2,9) + 3gHIvVA — gugh | dv.

(63310) Ar
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Subtracting this from W, the internal work (W;) done on the element is

i) = = = jrod « = 2 )
/[ - pA A 72 g b a7 (CNg) - ug (7, 8) — 209 VA — ,g } dr.

The first term is the work done in compressing the fluid, the remainder is the dissipation due to
viscosity. Now ‘

so we get
L - = L P
Jedr = [y [vzqﬂ 2V (g.8) + 2 —Wva — 3 Aﬁ] dr
Again

The first form is vectorially more satisfying as it puts the effect of compressibility in evidence ;
the sccond is probably better for expressing results in terms of co-ordinate systems. Millikan
gives the second form, without the A® term, claiming that compressibility has been taken into
account, the ‘error probably arising from neglecting the 2 term in the stress equations. Notice
that the g terms have disappeared, thereby proving that the form of the function is not affected
by variation of viscosity : that this would be so can be inferred from a carcful inspection of the
method of obtaining ® in Cartesians.  The Cartesian form is given in F.D. p. 603, being there
derived for constant viscosity.

As a digression it may be noticed that one method of deriving the © Strain-Energy FFunction ”
of Elasticity is formally precisely the same. It follows that this function, also is not affected if
the “ clastic constants ”” are functions of position.

The next, and last, step in the general analysis is to derive the Energy equation. We define
the total energy (&) per unit volume as 3g* + GT and assume that the perfect gas law
p = (Cp — CYeT is vbeyed.

We have, as in F.D. pp. 604-607,

Time rate of increase of total energy -+ Rate of working against external forces
- Rale of working on element by surface stresses 4+ Rate of heat conduction through
boundarics + Rate of convection of total energy through boundaries. In symbols
ot

Eitf.‘.’b'd’r — /‘pﬁi?lis = [—fﬁ??ziS —-f/hldr !/:‘31_; d—zt: -|~‘/‘(J) ({T]

+ [ h(uv)TdS — foe 0 7 dS.
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3 =2 i
L pa+ 1% 1 0 4 V()T — ViesD.
Now ((;;:aﬁt gl (?v) and Z—f = — pA so that

d dq? da

_g_;—_— — pA + lg%jt sd—f—}—<1>+ v {(AV)T}
or since ¢ = 332 + C,T

a(C,T
e | ph 0 4 v ) T,
An alternative form can be obtained by substituting (CpT - ‘g for G T yielding

S _ B o G (poi).

If we assume steady motion, allow for compressibility but otherwise neglect variation of the
physical properties of the fluid (or substitute mean values) we get writing out ® in full

35 - k e, — i 2
e(gv) (GT) — (7v)p = c, V2 (CT) + 2uv{(qV)q} — 20V A + ul2 — 3" A2,

On the above assumptions the equation of motion becomes
o B 4 =
eqV)T=— VP + £ VA —u(v )
ARSI L st 4u ~ ac 2
L eqVIg + VP = 5 g VA — Gp(V,2).
s o 4u _ = e
-3 @V)P + GVp = G TVA +uvig,D) — w2

Eliminating gvp by adding this to the energy equation we get

e 3 = k £ A o 2015
P @ GT +47t] = & v (GT + WVI@VT + wv@,) — Zugva + o

6T+ 47 = & et 4 17 + 5 [vavir - 2vas]

Po

So that if 6 = 1 and the circumstances of the motion are such that » [v{ (Vg — %'q‘(vg)}] can

be neglected C,T + %g% = Constant is an integral of the energy equation. The practical value
of this will of course be decided by the particular application under discussion at the time. The
first condition restricts it to gases. '

The derivation of the energy equation completes the analysis in its general form and it seems
likely that short of the introduction of a “ second coefficient of viscosity ”, justified by arguments
from the Kinetic Theory of Gases, it is the most general form possible. On the practical side it
should be adequate for a long time to come.
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In the course of the preceding discussion some of the cases in which the variation of the physical

properties of the fluid is of importance have been noticed in passing. The compressible flow of a
gas at high speed ® 7 ® ®9is another important example. It is not proposed in this report to
go into details of these or any other possible applications. For convenience of reference, however,
the curvilinear orthogonal equivalents of many of the expressions which will be required in any
such application are collated below.
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