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CAP:NOQME

A One-Dimensional Theory of Liquid-Fuel
Rocket Combustion
._.By..
D. B. Spalding,
Imperial College, London

19th May, 1953

SULEARY

The system considered is an ideal rocket motor in which all
properties depend only on distance Trom the injector face and droplets
have uniform diameter on entry. Processes considered arz droplet drag,
vaporization and chemical reaoticn. Equations are derived, integration
of which leads to a predictien of the minimum length of rocket motor.
Such predictions are made for the particular case in which the chemical
reaction rate is high and the fuel and oxidant, though injected
separately, have similar droplet properties. Calculations are made of
the effects of droplet size, droplet injection velocity, final ges
velecity, droplet transfer number, and cther variables. The mean
residence time, and the concentration-time eurve of an injected tracer,
are also calculated.

e ST D

1, Introduction

Te1 Purpose of the paper

Much is Jnown about the burning ef single droplets, but this
knowledge appears not to have been applied quantitatively to combustion
in liquid~fuel rockelt motors.

The prcsent report represents such an anplication, which is
intended ultimately te lead to:-

(i) an assessment ef how far actual rocket performance can
be quantitatively explained in terns ef simple physical
and chemical idealisations af the actual processes;

(ii) the disclosure ef what fundamental data are needed for
the understanding ef rocket conbustion and what are not
necessary;

(iii) guiding principles for the assistance of rocket metor
designers.
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1.2 ligthed

The paper is entirely theoretical, ané involves the investigation
of an ideal rocket motor, the main featurc of which is that droplet and
gas conditions are supposed to depend caly on distance from the injector
face; de.c., the model is ene-diuensional. Both bi-propellant and
mono-propellant systems can be considered in this way.

Assumptions, based on small-scale experiments, are made for:
s\ ' . .

(1) +the law ¢f droplet vaperizatinn
(i1) the law of droplet drag
(1ii) the law of chemical reactisn rate,

liathematical aralysis then permits prediction of the variation
of gas and droplet states along the length ¢f the combustion chamber.
In particular the length necessary for complete combustion can be
evaluated.

1.3 General remarls

Tt will be shown that in a simple case (llodel Ia) an analytical
svlution is possible. In morc complicated cases, numerical methods and
high-speed computing machinery are reguired, but the solubtion procedure
is still reluatively straightforward.

Use of the results of the theory requires data about:-

(i) the size and velocity of droplets produced by the
injector,

(ii) the thermodynamic properties ef the propellants,
(iii) the chemical reaction rates in the propellant gases.

Some ¢ these data are available, but it is hoped that the present work
will stimulate the oollection and measurement of more.,

Only wnen thesc data have been inserted in the theeretical
solutions can the value of the theorctical models be assessed thoroughly.
However it appears that qualitatively the implications of the thcery
are realistic.

e The One-Dimensional Idcalisation

2e1 Haturc o the theoretical medel

Consider the liguid—fuel rocket motor shewn in Fig, 1. It
is supposed that droplets of unifori size and wniferm velocity are
injected through the injector and travel to the right. No distinction
is wade between oxidant aund propellant droplets, although this could be
done with a relatively small extension «~f the theory. (Consideration of
injected sprays ef nou—uniform size and velocity is also possible, but
involves a major increase in the amount of computation.) Pig. 2 shows
the expected trencs.

The droplcts decrease continuously in diameter during their
travel, as a result of vaporization. The mass flow rate eof gas

therefore increasecs from zero at the injector plane t7 a maximum at the
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plane where the droplets finally disappear. The relation between gas
velocity and droplet size is easily determined from the mass~conservation
principle.

The droplets are injected at a finite velocity and at first
are slowed down by friction with the gas. Later however the gas velocity
begins to exceed the droplet velocity as a consequence of vapsrization
and combustien; the droplets therefore tend to be accelerated once more.

The state of the gas can vary betwee:n that of unreacted
propellant vapour at the droplet temperature and that of combustien
products in equilibrius. The exteat ef the approach to equilibrium
depends cn the rate of chemical reaction. Tnis rate depends on the
instantaneous state of the gas, i.e., primarily on the local fuel-oxidant
ratis and reactedness.

It is assumed that the process is stcady, that heat transfer
to the duct walls is negligible, that turbulent mixing in a longitudinal
direction is absent, anc. that the kinetic energies of motion are small.

2+2 The law of droplet vaporization

The rate of decrcase of droplet radius depends only on the
instantaneous state of the droplet, the local gas state, and the relative
velocity of droplet and gas. I the rocket is a bi-fuel onc, chemical
reactien rates scarcely influence the rate of vaporization;
mono—-propellant droplet vaporizatisn rates are alfected by chemical
reactivity however, at least for large droplets and large reaction rates?.

It is usually possible to write the law of droplet vaporization

Dr ar
— = v - = -o(r).nr).0@e) eee (1)
Dt dx
where r = droplet radius
D/Dt = substantial derivative

v = droplet velocity

X = axlal distance

o = function of reactedness, 7, = 1 for gas in

equilibrium
R = function of radius alone

= (1/f)(k/cpa) 2n{1 + B) in simple cases (Ref. 1)

k = average gas conductivity

¢ = average gas specific heat
P = droplet density

B = transfer number

£ = function of dAroplet Reynnlds number.

It/
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It is possible to take account, in the function R, of
transient effects within the droplet, and of chemical reaction around the
droplet. R 1is therefore a known function, as is o also.

2.3 The law of droplet drag

The rate of change ef droplet velocity depends on its mass
and on its drag. The relation can be written as

dv u
V o= = = ——i; (u - v).m(r).fé(Re) eee(2)
dx 2 Pe
where
pg = viscosity of gas in equilibrium state
= function «f' T expressing variation of gas viscosity
with temperature, = 1 if 7 = 1
f, = function of droplet Reynolds number.

For small Re, £, = 1; egquation (2) reduces to Stokes's Law.

As the Reynolds number increases, f, rises above unity. This is

disoussed in Section 6.1. A modification to (2) may be made to account
for the fact that the outward mass transfer from the droplet surface
tends %o reduce the drag (see Section 5.1).

244 The law of chemical reaction rate

For mono-propellant droplets, chemical reaction rate influences
R, as already indicated. DRef. 1 gives details of this influence for the
case in which the bulk of the gas can be regarded as in equilibrium.

When the reaction rate is sufficiently low, for either
mono-propellant or bi-propellant systems, the gas stream reactedness is
not unity. It is then necessary to take account of the way in which
the reaction rate depends on reactedness (we assume for simplicity that
the fuel-oxidant ratio of the gas stream is uniform; the more general
case can also be dealt with).

Knowledge of chemical kinetics is insufficient to warrant
more than the assumption of the law

o LLLAN ces
g = qm.W(T) (3)
where
" = volumetric energy release rate,
@; = paximum value of &", a function of the propellant
composition, its pressure, and its initial temperature,
¥y = function of reactedness.

[N.B. Egquation (3) is U.H.T. L of Ref. 2. See, for
example, Ref. 3 for discussion.]
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2¢5 Differential equations: physical terms

liass conservation in droplet vaporization:

am—

G = pgu.é(r) + 61 /7 eoo{l)

where G = mass flow rate ef injectcd material per unit duct area

Pg = density of gas in equilibrium

u = gas vclocity

6 = function of 7 expressing dependence of gas density

on reactedness
r = local droplet radius
r, = droplet radius at injection.

Steady-flow energy equation:

For an elementary contrael velume enclosing the gas stream,

we have
Bd‘r ¥ dr s )
u e i I S e e, cns
s o7 ¥ dx (Tt-Tua»g)v ’
where T, = equilibriun (burned) gas temperature
Tu = temperature of newly-formed vapour
@ = heat transfer to droplet to vaporize unit mass.

In addition we have the differential equations (1) and (2).

2.6 Prcliminary remarls about the solution

The differential equations, together with knowledge about the
size and velocity of the injected drsplets and the properties of the
substances, enable the conditions throughout the rocket motor to be
calculated witnout difficulty.

Bven without performing the computations, it is possible to
see that the solution must yield curves of the general shape sketched in
Fig. 2. This shows the steady decrease in droplet diameter, the steady
rise of the gas velocity, and the initial decrease and subseguent
increase of the droplet velecity. A quantity of great interest is x¥,
the axial distance at which the droplets finally disappear; for
clearly the rocket chamber should not be shorter than this length,

The distribution ¢f recactedness is also sketched. Although
it is not evident from Fig. 2, experience of other types of steady-flow
combustien, together with study of the differential equations, makes
it probable that as the mass flow rate is increased {for fixed pressure )
the reactedness will steadily fall; at very high rates it is likely
that the flame will be altogether extinguished. This matter is
znalysed in Scetion ©.2 belov, and in Nuf. 5.

2.7/
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2.7 Dilfferential cquations: dimensionless form

As usval before computation, it is found convenient to simplify
the equations by definition and substitution of dimensionless varicbles.
A suitable set are:-

Droplet radius g = x/r, cee(6)
Droplet velocity X = ng/G eeo(7)
Distance £ = Rbpgx/ﬂrb «ee(8)
Vaporization rate : [ = R/R, eea(9)
Droplet drag DS o= Su/ywp, ...(10)
Gas velocity 0 = pgu/G cea (1)
Chemical loading : L = RO{C(Tb~Tu)+Q}pg/@;rb ..o (12)
where R, = R with droplet in entry state and gas in cquilibriume

The differential equations thereupon take on the following

forms:
az

(1): X -~ = =G[ 1, ..+(13)
ag
dy s, — 1 -2 -

(2) and (4): X — = m -L —— v (1)
az z? & _J

(&) w = (1 -2)/b ... (15)
ar 1 ¥ L pf

(5): T RN L
dag L (1= 1 -2 X

In these equations, the independent variable is the
distance, &. The dependent variables are &, X, T and . 0f the
remaining symbols, we have

o = o(7) eee(17)
e o= £, x-w) .o+ (13)
n = n(r) eee(19)
S = constant ...(20)
c = c(g, ¥-w) .ea(21)
§ = &(r) ... (22)
L = constant eea(23)
vy o= y(r) ee.(24)

T/
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£,o= o] SR, e (29)
. i -
- 8. |% - w] -

fg = f2 —————————— .Reo "'(26}
lom m —

Re, = 2Gro/pg e (27)

where all these functlous and constants are supposed knswn. In addition,

the golution will depend on the initial droplet injection velocity, X, .

2.8 liathematical lcatures of the problem

The equations (13), (14) arnd (16) form a set of simultaneous
first~order differential equations. Mercover the boundary conditions
(& = 0:¢ =1, % = %, ar/dE = Crfinite) are all given at
a single point. The problem is therefore one of straightforward numerical
integratica, for which many technigucs are available.

Further, since & appears only in the denominator of the
dirferential cocfficients, division of (14) and (16) by (13), for examrle,
cusures that only two equations lave to be integrated simultaneously.

The gns velocity, w, can be evaluated from (15) aftcr completion of the
intcgrations.

It will be shown belew that in simple cases (Model Ia) an
analytical solution can be obtained.

3. liodel T: Tast Reaction Rate

3.1 HNature of iGealisation
Then the chenical loading, L, dis very small, examination of
(16) and sons thought about its physical significance reveal that the
reactedness 7 will oe unity throughout: the gas phase is in
eguilibriun at all points. This occurs when the chemical reactivity of
the gases is very large.

Tor bi-propellant systems, this means that the rate of burning
is entirely determined by physical Tactors, Tor mono-propellants on the
other hand, chemical reaction still influences the process because a
flanc propagates into the vapours streaming from the droplet surface
and increases the lenperature gradient at the surface.

It is probable that many rocket motors operate in the
S
liodel I regine,

3e2 liathewatical implications

Since 7 = 1, eqguation (16) no longer has to be considered.
lioreover we can put o 1, m = 1, and ¢ = 1. Tquatisns (13),
(14) and (15) can be correspoadingly simplified.

I~

3.3 Sclution in terums of quadratures

\ " .
vividing (14) by (13), we obtain:

ax oo, s(1 -4) £,
i . e ...(23)
& pf L, Jeras £,

wherein/



wherein it will be ncted that the two functions of Reynolds number,

f, and f,, appear as a ratio. Now these functions represent
respectively the increases in heat transfer and drag due to inertia
effects close to the droplet. Examination of heat transfer and drag
data for small spheres reveals that, for Reynolds numbers lower than 30,
the ratio f,/f, is equal to unity within about 6%, There is therefore
little inaccuracy in assuming

(>

— = 1. ...(29)

' This approximation converts (28) into a linear differential
equation, dircctly integrable by means of an integrating factor.
(28) becomes

a s s(1 -2)
—— - —-—,x = . - 000(30)
az o Jerad

in which of course $ is a constant while (0 is a function of £ alone.
Its solution is

e el /2;' o) ][4+ / Lo esfo [ (at) 2z ).

s Bg”

When the initial droplet velocity X, is given, and S is lmown,
cvaluation of (31) gives the droplet velocity X as a function of the
droplet radius &.

The distance, &, for ecach & value can now be determined by
evaluating the integral ef equation (13), with o egqual to unity as
before. We obtain

ot

g =, (Wps,) & e (32)
/g

This can be evaluated bescause X is now a known function of ¢ from
(31), and @ is evaluable from (15) with & put equal to unity, i.e.,

w = ’I—Z_,s ---(33)

f,, the Reynelds number funetien, can now be inserted via (25) as a
function of &. Re, needs to be given.

The length »f the rocket motor necessary for the completicn
f sombustisn, E£*¥ in dimensisnless terms, is given by putting & = O
at the lower limit of (32).

Lk« Hodel Id: Physically Contmplled Vaporization Rate

kot Lature of the vaporization low

Vle now oonsider a particularly simple, but practically
importunt, example of rockets in which the chemical reactivity is high
but the dwoplet Reymplds number is so small that f, = 1, This is

a/



a particular exanmple of the model T flame of Section %.35 above.

The

systenm may be a bl-propellant one; or, ii the fuel is a mono-propellant,
then the droplets must be co cmell that the flames around them are
relatively far from the surface. It is necessary that the droplets

should be injected at their wet-bulb temperature.

Tris case 1s the well-known one in which the vaporization rate

per unit surface area is inversely proportional to the droplet
This behaviour is expressed by

6= 1/8.

i

Lke2 Solutbion of equations

For this case, equations (31) and (37) reduce to

X = [% +3/(s =312 +1-23/(3-3)
X, + 3/(8 = 3) - S
S L1 - 259 (1 =) ~ —mmmmmm (1
S + 2 5(3 - 3)

Equation (33) also holds.
At the end of combustion, we therefore have
?:,-’-‘-C:'X,:1
w = 1

o= g% = (% + 35/10)/(5 + 2).

radius.

oo (30)

oo (37)
.ee(38)

ve s (39)

Equations (37) and (38) of course hold for all tlodel I flames at & =

as a result of the definition ol the quantitics X and w.

Equation (39) is the interesting one, for it enables the minimum length

of rocket motor, =x*, +To be evaluated,

<

For the particular case in which S = oo (very large gas
viscosity), the droplet velocity, X, always equals the gas velocity, .

The solution simplifies %o

w3

X = o = 1-&
- 3 1 o2 1 <
E:, = L. T D L: + - Z,a

10 5
- 3
(:, — ——

10

4.3 Graphical representation of results

v (1)
ceo(42)

eoo(43)

Lquation (39) has been evaluated. £% dis plotted versus S
in Pig. 3 Tor various values of Xoo It will be uscd belew for

determining the minimun permissicle length af rocket motor.

Equatisms (33), (35) and (36) have also been evaluated
for various corbination ef values of %, and S. TFig. & shows a

set/
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set of curves for X, = % and S = 1, vhich are believed to be
values representative of rociet practice. These curves give the
variation with distance & of the droplet velocity X, +the gas
velocity , and the droplet radius &.

Tigs. 5, 6, 7, 8 and 9 give results for S = 0, C.5, 1, 2,
gnd. ©, The £, w and X curves arc plotted on separate graphs.
Values of X, equal to 0, 0.5, 1.0, 1.5 and 2.0 have been considered.

The physical significance of the graphs is discussed below.

5« Discussion of the liodel Ta Results

P

2«1 Ihe significance of 3

s _ppnsm

Fron equetion (10) and the definition of R, we have

g = _?&§ ________ ii ______ -
2:bp6 (k/bpﬁ)én(1 + B)
OPr
= e bk 001(44)

2en(1 + B)

where DPr 1is the Prandtl number of the gas and mean values eof the
transport properties are used.

I, as is reasonable, the droplet drag is reduced below its
Stokes Law value by outward mass transfer from the surface in tie ratio
(1/8)en(1+B), equation (44) can be corrected to

S = ———— |00(45>

Now, fnr all gases, Fr is about 0.,7. The transfer
number B varies with the gasand liquid properties but is of the order
of 6 for bi-propellants, and somewhat lower for mono-propellants.
We conclude that S is of the order of 0.5. This value is included
anong thcse used in the calculations; other values have been covered in
order to exhibit the trends,

5.2 The significance of ¥*; relation to I*

From equation (8) and the definition of R, we have

(k/cpz)CA(1 + B)

¥ = x¥ p o 2 12 0 e e 100(46)

£ g Gxﬁ

With &* Xmown from Fig. 3, and cther quantities given among the
design data, equation (46) can be used to permit calculation of x¥,
the minimum length of rocket motor for complete combustion.

Tt is evident that, other things being equal, x¥ is
proportional to G; disc., the greater the mass {low per unit
cross-sectional area, the longer the combustion chamber must be.
This means that there is & maximw: permissible mass flow per unit
volume.

This/
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This fact underlics the usc of the characteristic length, L%,
to specify rocket motor conditions. Since

IJ;"< —_— AX*/At oao(l‘—?)
where A = motor cross-scctional area
AJG = throat cross-sectional area,

and since from the theory of one-dimensional compressible isentropic
flow

i ~ '}‘1
] gl
Loyt NieET)
i 2 1 4 L{M |
A 1 \ 2 ¢
—— = e e i con (A—S)
W
At Mo y + 1 |
where vy = ratio of specifiic hecats of the gas (assuned constant)
M = DMach numbcr of fully burned gases in combustion chamber
= G/p a
Ve
a = sonic velocity of gases in combustion chamber,
we have, T E v+l

5T
SR
-
+
i
i
{ ._x
—
o2
™~
'O
(D
~—r
©
\.w
Nt
N
~
1

©
10

0

et 1t A Yt 2 s T e o i B o o e (e Bt i e

0

~<
+
-—

E* a ro iZ/(y + i)}{’! + (y - 1)(”/9 )z } /(y-—’l)

- —_.—......._—....—-....-..-_._.._--..__..——-..._...—.——.—-_.—..._.—_..-...-_—-.._-—-._........_..-. .

(x/cpé)ﬂn(1 + b

Bquation (49) permits L* to Le cvaluated from the properties
of the propellants and the 1nJ ceted droplet radius x,. In addition
it is neccssary to knmow &%, which dcpends, as Fig. 3 shows, on 3 and
Yo . S is established [rom the considerations discussed in Scction 5.1;
X, is thc ratio of droplet injection velccity to final gas velocity in
the cowbustion chamber, and may therefore also bc assumed known.
The expression (Q/P‘&SB in equation (49) will often be sufficiently
small to be neglectod

5.3 Ixample of the calculatian of TI*

The following data may be taken as representative of many
rocket motors:-—

a = 3000 f&/sce
r, = 0,005 cn
(k/ope)ﬁn(ﬁ + L) = 2x 107 erf /sce

+11
\ /o 2 2{y=1
i/l + DI+ (& = D{e/paf /211307 = 0.6
g¥ = 0,2 (fron Fig. 3with 5 = 0.0, X% = 0.3).

llence/
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Hence we obtain

L*

i

0.2 x 3000 x (0.005)® x 0.6/2 x 1072

1

Lao5 £t = B4 inches.

This is of the order of magnitude encountered in practice.  Although
more detalled examination of particular cases is necessary, we can

already conclude that it is possible that the theoretical Model Ia is
capable of representing practical rocket performance reasonably well.

S¢L Discussion of gas and droplet velocity distributions

Taking Fig. L4 as typical, we sece that the droplet velocity ¥
at first decreases as a result of the drag exerted by the gas. However
the gas velocity w increases as a result ef vaporization and burning
(indicated by the decrease in droplet radius &). Dventually the gas
velocity exceeds that of the droplet; the drag now tends to accelerate
the latter. The droplets only succeed in "catching up with" the
gas at the last woment however, namely at £*¥ where ¢ has just become
ZEro,

Figse 5 to 9 illustrate the way in which the values of S

and X, affect the velocity distributions. Ian Fig., 5, where 3 = O,
the droplet velocity is unaffected by drag, so X = X, throughout.
In Fig. 2, the other extreue case, where 35 = o, drag is so great

that the droplets and gas have the same velocity whatever the value of
Xo« PFigs. 6, 7 and 8 illustrate more realistic conditions. It will
be recalled that in practice S is likely to vary betwcen 0.5 and 1.

For a fixed value of 8, +the graphs show that &%, the
quantity entering the expression for L¥, always increascs with X,.
This means of course that droplets which are injected at high speed
penetrate far downstream before burning, requiring a long combustion
chamber.  The iwodel Ia theory leads to the practical conclusion that
the injection velocity ought to be small., Hewever considerations of
chemical reaction rate indicate a limit to this (Model I1 theory, Ref, 5)
(sec also Seotion 9.2 below). In practice X, probably varies between
0.1 and 0.5.

5.5 Summary of factors influencing I*

Equation (49) and Pig. 3 provide the information from which
we can deduce what can be done to make L*¥ small:-

(1) €% should be small. This depends only on X, and S
(Fig. 3). S is not in the designer's control, but X,
is. It should be small.

(ii) B should be large. This means that the fuels should
have large heat of reaction and small latent heat of
vaporization. They should be injected at this adiabatic
vaporization iemperature; this usually means that they
should be heated between leaving the fuel taiks and
entering the injector.

(iii) The injected dropleil radius should be small, for IL* is
proportional to the sguare of the initial droplet size.
Although not dealt with explicitly by the foregoing theory,
we can be certain that, il the droplets are not of uniform
size on entry, it is the largest ones which control L¥*.

(iv)/
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(iv) G/Pga, i,e., the Mach number of the gases in the combustion

chamber just before entering the nozzle, should preferably
be much less than unity; for then this term, which in any
case is of secondary importance, vanishes entirely. One
may conclude that short fat chambers can have a somewhat
smaller L* than long thin ones. The effect is not
straightforward however, for X, may increase as G/pga
is decreased.,

(v) a, y and (k/bge) are usually not under the designer's

control, and in any case vary comparatively little from
one propellant system to another. Moreover for a given
gas ac/k is almost independent of temperature.

6. The Effect of Droplet Reynolds Number

6.1 Model Ta at larger Reynolds numbers

In the above calculations it was found convenient to put
f, = 1, this involved assuming that Stokes's Law held for drag and
that the Nusselt number of the droplet was 2. We now consider the
error involved in this assumption. It is convenient still to assume

Reynolds Analogy, namely f, = f,; for £; we take the Frosslin
cquation, which in the present notation becomes, for Pr = 0.7,
£, =1 + 0,245 Reg . | = X| .8 ++.(50)

where Re, is obtained from (27).

6.2 Results for % = %, S = 1

Equations (33) and (35) are unaffected by the new expression
for f,. Equation (36) must be replaced however by the quadrature
expression (3G).

Equation (36) has been evaluated for the case X, = 2, S =
for three values of Re,, mnamely 10, 100 and 1000. The corresponding
curves for ¢, ® and X versus E are plotted in Fig. 10a, b and c.
These curves should be compared with those of Fige L.

6.3 Discussion

Comparison shows that the main effect of increasing Re, is to
reduce the horizontal scale of the diagrams. The corresponding values
for E* are shown in Table 1.

Table 1
e , : o ,
i\ Re, @ O 10 100 1000
! i s
E¥ . 0,267  0.21  0.147 0,077

3

Valucs of Re, in practical rvockets vary considerably, but
they are likely to be of the order of 100 in many cases. We see

that cornsideration of this effect may yield a &%, and so an L*, of
only one half the velue obtained if the Reynolds number is assumed smalle

7./
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7. Residence-Time Calculations

7.1 Purpose

It has been suggested that the processes occurring inside
rocket motors might be investigated experinentally by inJjecting a
momentary pulse of tracer meterial into the fuel line; the variation of
the tracer concentration in the exhaust gases would then be measurcd.
In order to aid in interpreting such diagrams, it is interesting to see
what concentration-time curves are to be expected for Model Ia flames.

7.2 E-O diagrams

_ Since the droplet and gas velocities have been calculated as
functions of position &, it is merely a matter of integration to
calculate and plot the paths of droplets and gas particles on a
distance-time (£-6) diagram.

We obtain that the dimensionless time 6& which a droplet

takes to reach the position & from the injector face is given by:-

6, = z(1-&) .ea(51)

where, of course, & 1is obtainable, for low Re, from (36). 8 is
related to real time t by

6 = Ryt/r,. ... (52)
The time © _ spent by the gas between position E and the exit
is given by g

o ;"‘:"%3" oac<53)

0 =

& X&dg
e

the evaluation of which in terms of & requires both (35) and (36).

Equations (51) and (53) have been used to construct Fig. 116)
which shows a single droplet path and several gas particle paths on an
E-0 diagram for the Model Ia case, X, = F 8 = 1.

Tt is seen that the droplet at first overtakes gas particles,
is later overtaken by them, and finally travels along with them. In
particular it will te noted that the gas particles take an infinite time
to travel the whole distance from the injector to the outlet (g = %),
because of their very low velocities near the injector.

7.3 Residence~time distribution

Values of £ (0.9, 0.8, .... 0.1) are marked at appropriate
places on the droplet path. These indicate the proportion of initial
droplet mass still in the ligquid phase.

An element of the droplet at first travels along the droplet
path, and then, on vaporization, travels along the gas particle pathe
The outer layers of the droplet "peel off" first. Thus the layer at

radius £ = Y0.9 travels with the droplet to the point marked
2 = 0,9 and then enters the gas.

These considerations have been used to construct Fig. 11(b),
showing © (= concentration of tracer at E*) versus 0, which is

plotted/



plotted with C horizontal on the right. It is cvident that, for a
time 6 = O.41 after injuotion ef the tracer, € is zero; thereafter
the tracer concentration riscs suddenly to a peak followed by a slow
fall-off. Betwcen 6 = 041 and € = 0,5, the time at which the
droplet arrives, the tracer concentration consists of two contributions,
one having vaporized early, the other late; from 0 = 0,50 onwards,
only tracer from the outer laycrs of the droplect appears.

We may conclude that, even in the absence of turbulent
mixing in a strea.uwise direction, and in the abscnce of recirculation,
the differing velocities of droplet and gas ensure a wide spread in the
residence times of elcments of a tracer pulse,

It would of coursc be interesting <o test this consequence
experinentally.  Vhether the technigue can be uscd to conlim the
validity of the present view of rockct combustion depends however on
what residence~time distlributions are to be expected from other
combustion mechanisus, Such distributions have not yet been examincd,
However it can be stated thet if dintense turbulorce werc dominant, the
residence-time distribution would be nuch more symmetrical than that of
Fig. 11(b).

7ol Time-lag

Sonc theorics of low={reguency rocket notor oscillatlon make
usce of the conccpt of a "time-lag" between injection and combustion.
The present theery throws light on this concept. Inspection of
Fig. 11(a) shows, for the Wodel Ia cace ¥y = 2, O = 1, the
rclation betwcen “ime from injection © and fraction unvaporized .
Assuming, as has been dornc above, that the reaction rate is very high,
the fraction burned is 1 - & . Tig. 12 shows a plot, for the case of
Fig. 11, of time of burning versus {raction burned.

It is evident that the burning is spread out over a
dimensionless time of 06 = 0.5, One half of the droplet has burned
however aftcr a time of 6 = 0,13. TFor simple theories this might be
assumcd lo be the average time lag. Inspection ¢f equation (52) and
the definition of R shows that, in real terms, the tiue lag is
proportional to the inverse squarc of the droplet radius for Model Ia
rockets.

It should be observed that there is no direct relation between
the above average time-lag and the residence~tiunes measured by the tracer

tecoehnlique.

8. Relation ef Present Work to that of Priem7’8

Since the present work was begun, two reports by Pricm have
become available which procecd along similar lines. The following
similaritics and differcnces may be noted.

5.1 Similaritics

Prien postulates a model which is essentially the same as
liodel I of the present paper. Reynolds nunber cffects are considered,
but chenical reaction is not.  The results are expressed in the form
of curves of droplet sizce and velecity, gas velcelty, clice, versus
distance.

8.2 Diffcrences

The nain featurc in which Ref. 7 goes beyond the present work
is in taking account of transient effects in the droplet, l.e., in

supposing/
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supposing that the liquid is injected below that of adiabatic vaporization.
It is showm that this considerably rcduces the rate of vaporization in
the regions close to the injector.

Priem solves his equations numerically by means of a high-speed
computing machine. The equations are not expressed dimensionlessly, so
the solutions can cnly be used for the particular droplet sizes, fuels,
and injection conditions for which integrations have been carried out.
n-heptane was thc fuel, burning in oxygen; the latter is supposed,
implicitly, to have the same physical propertics as heptane.

In Ref. 8, Prien considers the cases in which not all the
heptane droplets have the same initial radius. The calculations show
that, as may be expected, the minimum combustion chamber length is
controlled by the larger droplets in the injected spray.

8.3 Comparison

Friem's work hes shown thet transient eff'ccts are important.
In the present method these can be accounted for by introducing the
appropriate £(%) function. Such solutions will be reported in a
later paper. DPriem's treatuent of non-uniform sprays marks a delinite
step forward.

In the author's opinion, the use of dimensionless variables is
an advantage of the present formulation; it increases generality,
pernits trends to be perceived, and eases the calculations. The present
calculations have been performed with a desk calculating machine.

9. Further Work to be Done

5.7 Exanmination c¢f actual rocket data

If the foregoing theory is to be useful, a detailed study of
actual rocket combustion rust be made in its light. There are three
parts to this:-

(i) Collection of data on droplet sizes, injection velocities,
final gas velocities, latent heats of fuel vaporization,
heats of reaction, etc., for practical fuels and injectors.

(i1) Imsertion ¢f these data in the atove theoretical relations,
leading to predictions of L*, residence-time distribution,
pressure distribution, etc.

(iii) Comparison of these predictions with the experimental
performance of the correspending rocket motors, and
subsequent refincment of the theory to make agreement better.

9.2 TFurther theoretical worlk

More lodel I flames need to be investigated, particularly with
the (%) relations appropriate to mono—propellants1, and those valid
for fuels of initially low temperaturc. It may be possible, as &
result of such studies, to explain the markedly different I* wvalues
of current bi-provellant and mono~-propellant rockets and also to provide
rules for the designer.

Model II flames necd to be investigated in order to cstablish
the rdle of chemical reaction in rocket motors. That there is such
an influence can be ascertained by inspecting equation (16) for the
ncighbourhood of the injector (¢ = 1). Ve find that unless the

chemical/
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chemical loading L ds lcss than about ¥,/2, the flame will be
extinguished. Now combining the definition (12) of L with the
definition of Ry» we have as a condition for existence of a flame:

g <=2, o (5

It appears that very small droplets, coupled with low injection
velocity, may succeed in extinguishing the flame. It is necessary to
examine, in the light of available reaction-rate data, whether this
condition is in practice easily or only just fulfilled.

1t should be emphasised that only steady combustion has been
considered. Howcver the one-dimensional model may in time prove helpful
in the study of unsteady phenomena as well.

10. Conclusions

(a) A cne-dimensionzl theoretical model of a liquid fuel rocket
motor has becn set up, taking account of droplet motion, gas motion,
droplet disappearance, and chemical reaction.

(b) The equations arc simultaneous first-order differential
equations presenting no serious mathewatical difficulty. With some
simplifications, which are believed to be realistic for many practical
cases, analytical solution is possible.

(c) When chemical reaction is very rapid, the IL* of a propellant
system is chiefly determined by the size and velocity of the injected
droplets. An explicit formula is given, permitting calculation of L*,

() The main necd nou is for collection of the appropriate data

for injectors and fuels, the insertiou of these data in the theoretical
equations, and the comparison of the predictions with experiment.

Acknowlcdgements

The author gratefully acknowledges the help of liss il. P. Steele,
who did the caleculations and drew the graphs.

References/



Nos
1 Ds
Vo
2 De
3 0.
D
L
5 J.
6 N.
7 k.
8 R

Authorg s)

B. Spalding
and

K. Jain

Be Spalding

A, Saunders
and
Be Spalding
Deleted

Adler

Fr8ssling

Je Priem

Je« Priem

- 18 -

References

Title, etc.

Theory of the burning of mono-propellant
dropletse.
CePeNolilt7.  May, 1958.

Progress in flame theory. AGARD Cambustion
and Propulsion Colloquium, March, 1958.

A.SMoE./TMech.E. Joint Combustion
Conference, 1955, pe23.

A one-dimensional theory of liquid-fuel
rocket combustion II: The influence of
chemical reaction.

Commmnicated by Dre D. B. Spalding.
CoPeNouihtb.  May, 1958.

Beitr. Geophys. 52 (1938) 170.

Propellant veporization as a criterion
for rocket engine design; calculatlons
of chamber length to waporize a single
n-heptane drope.

N.A.Ceh. Technical Note 3985.
July, 1957.

The propellant vaporization as a criterion
for rocket-engine design; calculations
using various log-probability distributions
of heptane drops.

NeAoCoA. Technical Note 4098.
October, 1957,




Fies. 1&2
Fig.|.

LRI
&

i
" \/
"'1'_ >
|
I
|
|
!
|
1
x

Q

Model liquid-fuel rocket motor

Fic. 2.
-0 T
I
/__:: :
T |
|
|
|
Ty :
|
|
|
|
i
|
|
|
u
i |
: T+ = Gas reactedness
|
| r =Droplet radius
|
|y = Gas velocity
|
: v = Droplet velociky
I
|
% !
v ]
|
|
|
|
|
!
|
|
0 ¥
x

Variation of droplet and gas conditions along_length of model
rocket mokor




|
0 2:0 4-0 S .60 8-0 10-0 12-:0

. . ‘ *
Minimum length of rocket motor & ; influence of % o and S for model Ia.

I-00 S=1[0

X& 0-5

0-80

0-60

040 A Uypical solution for a model 1a rocket.

0-20




()

"5 \xo— ' 5
(c) x|

1-0

i \X°= -0
05 ——Y—xo.___ 05
O’- 1 A [ 1 L | SN L H ,]O
05 ég ’

Model 1 a solutions; S=0.




FiGS.687.

[

1 } 1 1

B

l 1 | l 1 1
0 05 § Y O'SE
Model T a solutions; $=0.5 Model Ia solutions; S=1-0

|




-0

e 05
(9
0
-0 10
w 05 w 05
® ®
0 0
20 2:0
-5 1’5
u
Xx I-0 X 10
© ©
-0 -0
|
0 B 05 0 g 030

Model Ia solutiorn. 5=2-0 Madel Ta eal Fine G = an



0 Ol 0-2

Effect of droplet Regno\ds number on model Ia.rocket, for X, =05,

S=1. Graphs should be compared with Fig.4., which represents Reg O.

Pr@Eor 913



Fle. 1 (3)&(b)

08 08
07+ 07
e
06 06 F
05 Gas particle /' / /| ___ os| |
§=0
04 F
(b)
| | -
0 5 ¢ 10
Tracer concenbration
(b) Tracer concentration abt outlet
nozzle versys time from Lracer
in J'ccbion for same rockelb motor:

(a) Droplet and gas particle

Pabhs

on_distance ~ time (§~6) qraph, for

=2, s=1, model la.




05

04

03

02

ol

FiG. 12,

| |

02 04

08

Time of burruns versus fracbion burned:

Model T a, %,

-\ -
=2, 5=1.

IO



4



© Crown copyright 1959

Printed and published by
Hrr MayesTY’s STaTIONERY OFFICE

To be purchased from
York House, Kingsway, London w.c.2
423 Oxford Street, London w.x
13A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller

Printed tn Great Britain

C.P. No. 445
(20,175)

A.R.C.Technical Report

5.0. Code No. 23-5011-45

C.P. No. 445



