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SUMMARY

This note presents some of the theoretical aerodymamic character-
istics of narrow delta wings having flat centre portions and two types of
simple conical camber designed to produce zero load 2t the leading edge at
the design CL' Slender wing theory is used in the calculations. It is
shown that the drag due to lif't is comparable with the low values found by

Smith and Mangler for wings with more "wavy" camber lines.
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1 Introduction

In a recent paper, Smith and Mengler! have described a method of
designing conical camber distributions for thin triangular wings such that,
at the design CL’ the load along the leading edge is zero. This condi~

tion on +he load distribution was imposed in order to try to obtain a flow
attachment line along the leading edge at the design CL’ even though the

leading edge is sharp and highly swept, The lif't~dependent drag would
then be reduced compared with the plane wing with leading edge separation

at the same CL' The method was based on linsarised supersonic theory,

assuming conical flow, and the solutions included the "slenderness" para-
meter in a very convenient manner, Since the results for non-zero values
of the slendcrness parameter could be obtained from those with the slender-~
ness parameter equal to zero (i.e. slerder-wing theory), considerable
attention was paid to the slender wing solution. In particular it was
shovn that for slender wings the camber could be designed to give 1ifym
dependent drag factors as close to unity, the theoretical minimum for wings
shedding substentially plane vortex sheets, us one wished. Thus a wing
cambered to have an atbachment line along the leading edge at its design

OL would be expected to show a useful reduction in lift-dependent drag

compared with the corresponding sharp-edged uncambered wing having, at all
non-zero 1lift coefficients, separation at the leading edge.

The camber shapes in the plane perpendicular to the line of flight
obtained by Smith and Mangler1 are wavy and contain a dihedral angle. The
dihedral angle is not significant theoretically since an arbitrary additive
function of y, the spanwise co-ordinate, is permitted, which could remove
the dihedral. The waviness is due to the representation of the potential
function by an infinite series. For calculation purposes, only the first
N terms of the series are used and as N increases the lift-dependent drag
factor decreases and the camber line contains more, but less pronounced,
waves. To see whether comparable drag results could be obtained without
waviness, it was thought worthwhile to examine the load distributions and
lift-dependent drag characteristics of some slender delta wings with flat
centre portions and simple conical camber shapes outboard, desigred to have
at the design CL zero load at the leading edge. The wings were assumed

to be flat over a triangular centre portion so that the downwash there was
constant. Outboard of this region the downwash was assumed to vary in a
simple conical manncr. Using the relation between dowrwash and loading
derived for slender wings in Ref.1 expressions were obtained in closed

form for the load distributions and lift~dependent drag factors associated
with two such downwash distributions, and the downwash itself was integrated
to give the shape of the wing surface. The details of this caloulation are
given in section 2 and a discussion of the results in section 3.

It is known that, on a wing with conical geometry, deviations from
conical flow are obtained in practice, especially near the trailing edze.
Also, for practical applications slender wings with non-corical geometry
may be preferable to deltas with conical camber. Nevertheless, the present
results based on conical geometry and conical flow may prove useful in
showing trends and defining downwash or load distributions for more general
wing designs, as in a recent paper by Weber2,

2 Theory

Let O, the origin of the co~ordinate system be at thc apex of a
slender delta wing. Ox is in the streomwise direction, Oy at right-
angles to starboard and 0Oz at right-angles downwards. We assume that
the angle of incidence and the camber are small enough for the boundary
conditions on the wing (which is of zero thickness) to be applied in the
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X,y plane, and for the trailing vortex sheet to lie in this plane. The
root chord of the wing is taken as unity and the non-dimensional spanwise

co~ordinate m = Y/Kx is used, where K is the semi-span at the trailing
edge and Kx is the locel semi-span s(x), (see Fig. 1). K is also the
cotangent of the angle of sweep of the leading edge.

Equation (10) or Ref.1 gives the load in terms of the downwash on a
slender wing, symmetrical about the x,z plane and having zero load at
the leading edge, in conical flow:-

f__é_;])_ _ ‘-1/:‘ e (m:)_) o 1 =nn +J<1~n2><1~n'2>' N
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allowing for the different sign convention in the z-direction. V is the
free-stream velocity, w(m) is the perturbation velocity in the z-direction,

and &(m) = "AP/—;-pVZ, the difference in pressure coefficicnt between the
upper and lower surfaces. Since the flow is conical, w and ¢ are
independent of x for a given e

By reason of the symmetry of w(m), the above equation may be
written

s "f;f ar () e J“n'ZJfJ“nzan' (1)

There are an infinite number of downwash distributions w(n!), differing
from each other by an additive constant, which have the same value of

aw Equation (1) gives the load distribution assooiated with that one

dn! *

member of this family for which the loading is zero at the leading edge.
With any other additive constant, i.ec. at any other incidence, ¢ 1) % O,

The lift-dependent drag coefficient is given by

1
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where © is the meon chorde For a delta wing

1
GDi = f &(n) E%‘)‘ dn (2)
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and the lift-dependent drag factor, Ki’ is

- TA_
K:x. = C2 C’D:.L
L

where A dis the aspect ratio.

Since slender-wing theory is used, the wave drag due to 1ift is zero,

The shape of the surface relative to the leading edge is obtained
from the stream surface condition.

oz W
ox =~V
X
2(x,7) -z&(y) = %’{ y const.
x,(y)
1
. X [ w(n') dnt (3)
T K Vv 12 3
m
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where the suffix £ refers to the leading edge.

We shall start from downwash distributions of the general form

w ——

W o= & O<smn<T
n

w _ -

= a+bn-m) : Mm<ne<t

where n is a positive integer. The case n = 0 has already been trcated
by Shaw? and is also discussed by Smith and Mungler". The downwash is a
step function and is associated with a plane delta wing having deflected
leading edge fleps hinged sbout the line t = 1 = constant, the load along
the hinge line being infinite. The cases treated in this note are
n=1and 2.

21 Downwash distribution, n = 1

Consider o conical downwash distribution

as O<n<gW

g

(&)
a+b(n-m): Mm<nx<
...5-
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Inboard of m =T the wing is flat and at a constant incidence q = Ka,
From equation (1),
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Equation (5), like equation (1), gives the load distribution associated
with that member of the infinite family of downwash distributions (all of

which have the same value of % ) for which the loading at the leading cdge

is zero. This means that for a given value of b, £(1) = O only for one
value of a, which is therefore dependent on be To find the relation
between them we substitute the expression for 5(11)/1,1{2 which has Just
been obtained (equation (5)) in the basic cquation for the downwash,
(equation (14) of Ref.1):=

1 J |
n - 'n
t
Kv hid d’n' 7
-1

allowing for the different sign convention in the z-direction. Because of
the symmetry of w(m) and the relation

1

t an!
f 6.3,* <&l(£2)> 2: = 0, (eqns (8) of Ref.1)
~1
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where the syxbol f means that the Cauchy Principsl value has to be taken,

we can write
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At any fixed value of y, the chord load is given by

1
o (y) ofy) = [ e(n) ax |

where C (y) is the local

¥y const. 1ift coefficient,
x
£ c(y) is the chord,
1
a
= & / «(n) ';g
/K

Remembering that the root chord is unity, and writiug y /K = Nygs the non-
dimensional sperwise co~ordinate at the trailing edge, we have
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The totel 1ift coefficient C. is given by

L
X
Cp, = % / CL(y) e(y) dy where ¢ is the geometric mean chord
)
1
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o
3/2
2 -2
- —%bK (1—71) (10)
and therefore
8]
L
b = -2 (11)
) -2,9/2
2 (1 -7

Alternatively C. can be found directly from £&(m) which is constant

L
along rays of constant m from the apex.
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Equation (5) may now be rewritten
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From equations (4), (7) and (41) we get

S
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From equation (2) the lift-dependent drag is

/equation (15)
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Finally, the shape of the surface (relative to its leading edge)
associated with the given downwash distribution is found from equation (3):~
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Then

x x
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Ka = a, the incidence of the centre part of the wing, O < m & 1, Wwhich is
defined to be flat and at constant incidence. Therefore in this region

3z . _ _
ax—-a.z(x) = ax = Kax.

and therefore
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In terms of the local semispan, s(x¥) = Kx,
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2.2 Downwash distribution, n = 2

As in section_ 2.1 we consider a downwash distribution which is con~

atant for 0 < n ¢ M~

Vo=
W - L
-Ln)‘v = a+ b(n

The aerodynamic properties and

0<n<1—1
) (18)
mi;i; m<ngl

geametric characteristios associated

with this downwash are cbtained as in section 2.1 and are given by the

following equations:-
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When m =17,
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3 Discussion of results

Figs. 2~12 illustrate the downwash and load distributions, cross-
section shape, spanwise distribution of chord load and lift~dependent drag
factor for the two types of camber considsred., The results have been
calculated for 7 » 0.6 only, as K, dincreases with decreasing % and

Tl < 0.6 may not be of much practical interest.

Figs. 3 and 5 show the effect of n on the cross~section shapes.
_ When n =0 (leading edge flaps deflected for zero load at the leading esze)

the slope ':;11% (-2—) is discontinuous at m=7. When n =1, Fig. 3

shows that the slope is continuous but the maximum curvature is still quite
pronounced close to m = f{ » Such a sharp curvature is probably not a good
feature 4s it may give rise to a separation, even though the flow is



attached at the leading edge. It may be noted that for n =1 the section
shape outboard of v = T is very nearly o parabola. Fig. 5 shows that when
n = 2 the maximm curvature is less pronounced and has moved towards the
tipo

Since the camber and incidence are proportional to the design CL’

the latter should be such tha: the camber and incidence are small enough to
Justify the use of linearised theory.

The surface slope at the leading edge is of interest sunce it may
influence the leading edge separation characteristics at off-design 1ift
coefficients. One feels that for this reason, as well as to comply with the
assumptions of the linearised theory regerding the related quantity
9z

o this slope should be kept as small as possible, Fig. 6 shows

E%] (-2—)] plotted ngainst % for n=1 and 2. It is interesting

=1

to note that the slope is a minimum for T = 0.68 when n =1 and for
fi= 0.67 when n = 2., For equal values of 7 the slope at the leading
edge is always greater for n =2 than for n= 1.

The load distributions in planes perpendicular to the stream direction
aere saddle-shoped (Pigs. 7 and 8), the peaks occurring outboard of n = T
The peaks are finite, however, in contrast to the plane wing at incidence
or the wing with leading edge flaps deflected for zero lcad at the leading
edge, which have theoretically infinite suctions at the leading edge and
the hinge line respectively. Figs. 9 and 10 show the spanwise distribution
of chord load and it can be seen that this becames more nearly elliptic as
B> 1 When 7 = 1 the design condition of zero load at the leading edge
cannot be realised. The wing cross-section shape degenerates into a plane
wing at incidence. The load at the leading edge is infinite, except in the
trivial case when the design CL is zero, i.e. the incidence is zero.

Because of the delta planform, the spanwise distribution of chord load can
only be elliptic if the loading at the leading edge is infinite, and so it
can never be achieved with o wing designed for zero loading at m = 1. In

o (v) o(y)
ay ~ ¢ o
at the tip, m, = °/K = 1.0, and not infinite as would be required for
elliptic loading,

fact the slope of the chord load distribution, is zero

The lift-dependent drag factor, K., depends on the shape of the

spanwise distribution of chord load. When this is elliptic the theoretioal
minimm value Ki = 1.0 is obtained for a wing with a plane vortex sheet

springing from the trailing edge and no wave drag. Thus Ki = 1,0 only for

the plane wing with infinite loading at the leading edge. The purpose ef
the present work is to see how small Ki can be for slender delta wings

with simple camber distributions to give zero load at the leading edge. The

variation of Ki with % 4is shown in Fig. 11 for n=0, 1 and 2. In
all cases Ki decreases almost linearly to its minimum value of unity
between T = 0.6 and % = 1.0. For a given M Ki decreases o8 n

increases but the rate of decrease falls off rapidly ond no substantial

improvement is likely to be cbtained for n > 2. For a given Ki’ n

decreases as n increases, i.e. a greater proportion of the wing area must

- 16 -



be cembered. Referring back to Fig. 6 we see that for a given Ki (in this

case K, = 1.05) the surface slope -a@- <-§-> at the leading edge

|
increases with n.

Fig. 11 also contains the lift-dependent drag factors calculated by
Smith and Mangle=l. N is the rumber of terms rctained in their infinite
serics for Ki, and the latter decreases as N increases. At the same

time however the number of "waves" in their cross-section shape increases,
although their amplitude becomes smaller, end the shape becomes less
suitable for practical application. Fige. 411 shows that values of Ki

comparable with the lowest values quoted by Smith and Mangler can be
obtained by the simpler shapes of wing cross~section developed in section 2.

In principle any reasonable value of Ki > 1.0 can be obtained with

any value of n by choosing the appropriate 7 o In practice the particular
wing shape chosen will depend cn a number of requirements, scme of which are
conflicting. For example, Fig, 12 shows the spanwise load distribution at
any cross-section for wiags having approximately the same Ki (Ki = 1,05,

n=1aond 2, and K, = 1,035, n =0), PFor n =0 there is of course an

infinite svction a% the hinge line. As n increases the peak suction
decreases but there is not much differcnce in this respect between n =1
ond n = 2, ond elsewhere the load distributions are almost identical.

To avoid flow separation occurring on the upper surfacc of the wing, low
suction peaks and an absence of sharp changes of curvature are desirable
and this implies large n. On the other hand for a low value of the cross—
section slope at the leading edge, n should be small, and 7 in the
neighbourhood of 0.67. Again, a large area of plane wing might be welcome
for structural simplicity, which implies large 7% and small n. However,
for the off~-design condition with flow scparation from the leading edge, it
might be desirablc to have a fairly large area of forward-facing surface
outboard of 7 , so that the high suctions under the rolled~up vortex
sheets would give rise to a force component tending to rcduce the drag.
This would imply small % ond large ne The choice of a wing shape
therefore involves a compromise between various factors.

The characteristics of wing shapes with n > 2 have not been calcu~
lated as the marginal improvements in Ki did not scem to be worth the

increasing mathematical complexity. Wing shopeos given by n =1 oand
n =2 seem likely to meet most practical requirements.

NOTATION

X,¥,% Rectangular co-ordinates, origin at apex of wing, non~dimensional
in terms of rcot chord: 2z positive downwards.

K Cotangent of angle of sweep of leading edge = semi-span of wing.
s(x) Local semi-span.

n Non~dimensional spamvise co-ordimate = 9/s(x).

g /.

n Ray from apex outboard of which tne surface is cambered.

-7 -



NOTATION (Contd)

\') Free-stream velocity.

w Perturbation velocity in z-direction.

Ap Differcnce between pressures on upper and lower surfaces,
£ local non~dimensional load = - Ap/—;_'p\/’z .

c(y) local chord.
c Geometric mean chord.

GL(y) Locel lift coefficient.

CL Overall 1ift coefficient.
CD Lift~dependent drag coefficient.

i
K Lift-dependent drag factor, = O —7&-‘% .

i CL
A Aspect Ratio.
a angle of incidence.
a
b Parameters in downwash distribution.
n
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