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Some simple conical c~mbcr shapes to produce low 
lift-depend,cnt drag on a slender delta wing 

G. G. Brebner 

This note presents some of the theoretical aerodynamic character- 

istics of narrow delta wings having flat csntre portions and two types of 

simple conical camber designed to produce zero load at the leading edge at 

the design C,.,. Slender wing theory is used in the calculations. It is 

shown that the drag due to lift is comparable with the low values found by 

Smith and Mangler for wings with more ltwavy" camber lines. 
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1 Introduction 

In a recent paper, Smith ard Mangler1 hme described a method of 
designing conical can&er distributions for thin triangular wings such that, 
at the design CI,, the load along the lending edge is zero. This condi- 
tion on the load distribution was imposed in order to try to obtain a flow 
attachment line along the leading edge at the design CL, even though the 
leading edge is sharp and highly swept. The lift-dependent drag would 
then be reduced compared with the plane wing with leading edge separation 
at the same CI,. The method was based on linearised supersonic, theory, 
assuming conical flow, and the solutions km&tded the llslendernesslf para- 
meter in a very convenient manner. Since the results for non-zero values 
ok the slenderness parameter could be obtained from those with the slender- 
ness parameter equal to zero (Le. slender-wing theory), considerable 
attention was paid to the slender wing solution. In particular it was 
shown that for slender wings the camber could be designed to give lifk 
dependent drag factors as close to unity, the theoretical minimum for wings 
shedding substantially plane vortex sheets, us one wished. Thus a wing 
cambered to have an atka&ment line along the leading edge at its design 
4, would be expected to show a useful reduction in lift-dependent drag 
compared with the corresponding sharp-edged undered wing having, at all 
non-zero lift coefficients, separation at the leading edge. 

The camber shapes in the plane perpendicular to the line of flight 
obtained by Smith and Mangler' are wavy and oonkain a dihedral angle. The 
dihedral angle is not significant theoretically since an arbitrary additive 
function of y, the spanwise co-ordinate, is permitted, which could remove 
the dihedral. The waviness is due to the representation of the potential 
function by an infinite series. For calculation purposes, only the first 
N terms of the series are used and as N inoreases the lift-dependent drag 
factor decreases and the camber line contains more, but less pronounced, 
wclves* To see whether comparable drag results could be obtained without 
waviness ) it was thought worthwhile to e xamine the load distributions and 
lift-dependent drag characteristics of some slender delta wings with flat 
centre portions and simple conical camber shapes outboard, designed to have 
at the design CL zero load at the leading edge. The wings were assumed 
to be flat over a triangular centre portion so that the downwash there was 
constant. Outboard of this region the downwash was assumed to v,a.ry in a 
simple conical manner. Using the relation between downwash and loading 
derived for slender wings in Ref.1 expressions were obtained in closed 
form for the load distributions and lift-dependent drag factors associated 
with two such domwash distributions, and the downwash itself was integrated 
to give the shape of the wing surface. The details of this calc&.ation are 
given in section 2 and a discussion of the results in section 3. 

It is known that, on a wing with conical geometry, deviations from 
conical f?ow are obtained in practice, especially near the trailing edge. 
Also, for practical applications slender wings with non-conical geometry 
may be preferable to deltas with conical camber. Nevertheless, the present 
results based on conical geometry and conical flow may prove useful in 
showing trends and defining downwash or load distributions for more general 
wing designs, as in a recent paper by Weber2, 

2 Theor 

Let 0, the origin of the co-ordinate system be at the apex of a 
slender delta wing. Ox is in the streamwise direction, Q at right- 
angles to starboard and Oa at right-angles downwards. We assume that 
the angle of incidence and the camber are small enough for the boundary 
oonditions on the wing (which i s of zero thickness) to be applied in the 
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x,y plane, snd for the trailing vortex sheet to lie in this plane. The 
root chord of the wing is taken as unity and the non-dimensional spanwise 
co-ordinate q = Y/%x is used, where K is the semi-s an at the trailing 
edge and Kx is the local semi-span s(x), (see Fig. I . P K is also the 
cotangent of the angle of sweep of the leading edge. 

Equation (10) 01' Ref.1 gives the load -in terms of the downwash on a 
slender wing, symmetrical about the x,z plane and having zero load at 
the leading edge, in conical flow:- 

allowing for the different sign convention in the e-direction. V is the 
free-stream velo&ty, w(q) is the perturbation velocity in the z-direction, 
and 4(-q) = 'Ap/&V*, the difference in pressure coefficient between the 
upper Cti lower surfaces. Since the flow is conical, w and 4 are 
independent of x for a given T+ 

m reason of the symmetry of w(q), the above equation may be 
written 

There are an infinite number of dr;nnmwash distributions w(n*), differing 
from each other by an additive constant, which have the same value of 
dw 
Tq* Equation (1) gives the load distribution associated with that one 

member of this family for which the loading is zero at the leadin edge. 
With any other additive constant, Le. at any other incidence, 4 I) f P 0. 

The lift-dependent drag coefficient is given by 

12 'Di = ; s 
e(q) dd dq v 

0 

where ';; is the mean chord. For a delta wing 
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and the lift-dependent &rag factor, K i, is 

where A is the aspect ratio. 

Since slender-wing theory is used, the wme drag due to lift is zero. 

The shape of the stlrf'sce relative to the leczding edge is obtained . -. frcm the. stream surface condition. 

X 

dX,Y) - R&(Y) = 
s $ dx lyconst . 

X&Y 1 

(3) 

where the suffix t refers to the leading edge. 

We shall start from downwash distributions of the general form 

w 
KV = a' 

where n is a positive integer, The case n = 0 has already been treated 
by Shaw3 and is rrlso discussed by Smith ‘and Mangleri, The downwash is a 
step function and is associated with a plane delta wing hming deflected 
leading edge fl&ps hkged about the line q = 5 = constant, the load along 
the hinge line being infinite. The cases treated in this note are 
n=lmd2. 

2.1 Dowmash distribution, n = 1 

Consider n conical downwash distribution 

ti Kv = a: 
xdd 

Kv = a + b(q-Tj): ; < q E; 1 
-5 - 
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Inboard of 11 = Yj the wing is flat and at a constant incidence a = Ka. 
From equation (1 j, 

i 
1 I q2 

Equation (5),like equz.ti.on (I), gives the load distribution associated 
with that member of the infinite f',anily of domwash distributions (all of 

-- 
?I 

1 1 - v2 
I 

which have the same vczlue of for which the loading at the leCadi.ng edge 

is zero* This means that for a given value of b, e(1) = 0 only for one 
value of 8, which is therefore dependent on b. To find the relation 
between them we substitute the expression for e(q)/,!&* which. has just 
been obtained (equation (5)) 
(eauation (I&) of Ref.?):- 

in the basic equation for the downwash, 

alluwing for the different sign convention in the z-direction. Because of 
the symmetry of w(q) and the relation 

/ -$$ (y ) % = 0 , (eqn. (8) of Ref.?) 

-1 
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J 
we can write 

clad identiQ- this'with(4). From (5) and (6), 

I r: - T-It2 I (6) 

where the sy&ol F 
means that the Cauchy B5.ncipc.l value has to be taken, 

= a on equating with the R.H,S. of (4). 

(7) 



At qy fixed value of y, the chord load is given by 

I 
local c,(Y) C(Y) = . al> b 1 

y const. 
where CL(y) is the 

% 
lift coeffioient, 

C(Y) is the chord, 

Remetiering that the root chord is unity, and writbig '/K = n,t# the non- 
dimensional apanwise co-ordinate at the trailing edge, we have 

. 
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The totcl lift coefficient CL is given by 

K 
2. CL = F 

i 
c;;(Y) C(Y) aY where c is the geometric mean chord 

0 

3/2 

= - 

and therefore 

b = wz OL 

' K2(1 -q) -2 a/2 

(10) 

Alternatively CL can be found directly from 45(q) which is constant 

along rays of constant q from the apex. 

1 
i 5 --!~QK~ -+j 

3/2 
:. CL = 2 e(q) aq = (1 

0 

Equation (5) may now be rewritten 

ad= 
cL * 

i 
(r’ - -;-;‘> log 

and equation (8) becomes 

-9- 



&cm equations (4), (7) and (II) we get 

= ” f : 72 
( > 
1 -rJ 

From equation (2) the lifY+dependent drag is 

r (14) Yi<qd 
/equation (15) 
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and the induced drag factor is 
i 

h-6) dq 05) 

Pinally, the shape of the surface (relative to its leading edge) 
associated with -2he given downwash distribution is found from equation (3):~ 

x 

dX,Y) - Z,(Y) = 
i 

f al 

x,(Y) 
y con3-t. 

LX43 so that 06q6; (2 = Z(Y) = &I 
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Then 

since 

I X 

dX,Y) - Z,(Y) = 
s i 

X a + b(r,- 5) d.x+ 
3 I 

Kaax 

xe ;; 

= Ka (x ” E) + Kb f (; - 1 - log Y)) 

x 
5 = K’ 

Ka = a, the incidence of' the centre part of the wing, 0 6 q 4 G, which is 
defined to be flat and at constant incidence. Therefore in this region 

i!E ax = a : z(x) 5 cf.x = Ka X. 

andtherefore 

=a = Kg c a - b (q - 1 - log G) 
I 

Let 

Then 

x 

4X,Y) - =,(y> = K 
i c 

a + b(v - ;) 
3 

dx 

5 : (jcqcbq;i+logq) 

2. z(x) = K ax+ bg 0-t +log %) 
c 3 

= Kx 
c 

a + b(q - G e qlog t) 
-3 

since 2 = qxb 
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In term of the local sernispan, s(x) = EC, 

i.e. 

+I) 

2.2 

stant 

3 = - 

4 (1 - ;i?l 3/2 

@wnwash distribution, n = 2 

As in section-2.1 we consider a downwash distribution which is con- 
for 0 6 77 4 q:- 

The aerodynmic properties and gecmetric characteristios associated 
with this dowxwash are obtained as in section 2.1 and are given by the 
following equations:- 

7 
+ T-j’ log 



z!z - TX 
-1 - 3 cos q-G 

1! ( 
-g 5-Ej2~ 

- / 



andfinally, 

X 

3 Disoussion of results 

(23) 

Figs. 2-12 illustrate the downwash and load distributions, cross- 
section shape, spanwise distribution of chord load and lift-dependent drag 
factor for tne two types of camber considered. The results have been 
caloulated for si 3 0.6 only, as Xi increases with decreasing 51 and 
5 < 0.6 may not be of much practioal interest. 

Figs. 3 and 5 show the effect of n on the cross-section shapes. 
When n = 0 (leading edge flaps deflected for zero load at the leading-) 

d z 
the s1ope G s 0 

is discontinuous at r, = q. When n = I, Fig. 3 

shows that the slope is continuous but the maximum curvature is still quite 
pronounced close to q = 5. Suoh a sharp ourvature is probably not a good 
feature as it may give.rise to a separation, even though the flow is 
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attached at the leading edge. It may be noted that for n = 1 the section 
shape outbosrd of q = ?j is very nearly a ~rabola. Fig. 5 shows that when 
n = 2 the maximum ourvature is less pronounced and has moved towards the 
tip. 

Since the camber and incidence &are proportional to the design CL, 
the latter should be s;lch that the camber and incidence are small enough to 
justify the use of linearised theory. 

The surface slope at the leading edge is of interest smce it may 
influence the leading edge separation characteristics at off-design lift 
coefficients. One feels that for t,his reason, as well as to comply with the 
assumptions of the linearised theory regarding the related quantity 

25 
ax ) this slope should be kept as small as possible. Fig. 6 shows 

d L [ 01 h s plotted against 7 for n = 1 and 2. It is interesting 

?=I 
to no-be that the slope is a minimum for ?j = 0.68 when n = 1 and for 
qz 0.67 when n = 2. For equal values of ?j the slope at the leading 
edge is always greater for n=2 tbanfor n=l. 

The load distributions in lanes perpendicular to the stream direction 
are saddle-shaped (Figs. 7 and 8 P , the peaks occurring outboard of 77 = 5. 
The peaks are finite, however, in contrast to the plane wing at incidenue 
or the wing with leading edge flaps deflected for zero load at the leading 
edge, which have theoretically infinite suctions at the leading edge and 
the hinge line respectively. Figs. 9 and 10 show the spanwise distribution 
of chord load and it can be seen that this becomes more nearly elliptic as 
8 + I. When q= 1 the design condition of zero load at the leading edge 
cannot be realised. The wing cross-section shape degenerates into a plane 
wing at incidence. The load at the leading edge is infinite, except in the 
trivial case when the design CL is zero, ire. the incidence is zero. 
Because of the delta planform, the spanwise distribution of chord load can 
only be elliptic if the loading at the leading edge is infinite, ,and so it 
can never be achieved with a wing designed for zero loading at q = I. In 

fact the slope of the chord load distribution, 
d (qY) C(Y) 
ay CL 5 is zero 

at the tip, n-t L '/K = 1.0, and not infinite as would be required for 
elliptic loading. 

The lift-dependent drag factor, Ki, depends on the shape of the 
spanwise distribution of chord load. When this is elliptic the theoretical 
bd.mum value Ki = 1.0 is obtained for a wing with a plane vortex sheet 
springing from the trailing edge and no wave drag. Thus Ki = 1.0 only for 

the plane wing with infinite loading at the leading edge. The purpose of 
the present work is to see how small Ki can be for slender delta wings 
with simple camber distributions to give zero load at the leading edge. The 
vaiation of Ki with q is shown in Fig. II for n = 0, 1 and 2. In 
all cases Ki decreases almost linearly to its minimum value of unity 
between ?j = 3.6 and fi = 1.0, For a given 6, Ki decreases as n 
increases but the rate of decrease falls off rapidly and no substantial 
improvement is likely to be obtained for n > 2. For a given Ki, t 
decreases as n increases, i.e. a greater proportion of the wing area must 
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be cambered. Referring back to Pig. 6 we see that for a given Ki (in this , \ 
case K. = 1 1,05) the surface slope .& 2 

0 drl s 
at the icading edge 

increases with n. 

Fig, II also contains the lift-de?endent drag factors calculated by 
Smith and M.anglerl. N is the rumber of terms retained in their infinite 
series for K., and the latter decreases as N increases. At the same 

1 
time however the number of l'waves't in their cross-section shape increases, 
although their amplitude becomes snnller, end the shape becomes less 
suitable for practical application. Pig. II shows that values of Ki 

comparable with the lowest values quoted by Smith and &angler can be 
obtained by the simpler shapes of wing cross -section developed in section 2. 

In principle any reasonable value of Ki > 1.0 can be obtained with 
any value of n by choosing the appropriate ?j o In practice the particular 
wing shape chosen will depend cn a number of requirements, some of which are 
conflicting. For example, Fig. 12 shows the spanwise load d-istribution at 
any cross+oction for -.vi,lgs having npproxtitely the s‘ame K i ("i = 1.05, 

n = 1 and 2, and Ki = 1.035, n = 0), For n = 0 there is of course an 
infinite suction a'; the hinge line. As n increases the peak suction 
decreases but there is not much difference in this respect between n = 1 
and n=2, and elsewhere the load distributions are almost identical. 
To avoid flow separation occurring on the upper surface of the wing, low 
suction peaks and an absence of sharp ch<anges of curvature are desirable 
and this .implies large n, On the other &nd for a low value of the cross- 
section slope at the leading edge, n should be small, and 5 in the 
neighbourhood of 0.67. Again, a large area of plane wing might be welcome 
for structural simplicity, which implies large % and small nc However, 
for the off-design condition with flow separation from the leading edge, it 
might be desirable to have a fairly large area of forwGard-facing surface 
outboard of ?j , so that the high suctions under the rolled-i\p vortex 
sheets would give rise to a force coqonent tending to reduce the drag, 
This would imply small 5 and large no The choice of a wing shape 
therefore involves a compromise bctwecn vnrious factors. 

The characteristics of wing shapes with n > 2 have not been calcu- 
lated as the marginal. improvements in Ki did not seem to be worth the 
increasing mathematical complexity. Wing shr.poo given by n = 1 and 
n = 2 seem likely to meet most practical requirements. 

NOTATION 

X,Y¶Z Rectangul,ar co-ordinates, origin at apex of wing, non-dimensional 
in terms of root chord: e positive downwards. 

K Cotangent of angle of sweep of leading edge = semi-span of wing. 

44 Local semi-span. 

7 Non-dimensional spar&se co-ordinate = '/s(x). 

r, y/K. 

5 Ray from apex outboard of which tne surface is cambered. 
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NOTATION (Coatd) 

Free-strmm velocity. 

Perturbation velocity in z-direction. 

Difference between pressures on upper and lmer surfaces. 

AP 
local non-dimensioncl load = - /+v2 . 

local chord. 

Geometric mean chord. 

Locr.1 lift coefficient. 

Overall lift coefficient. 

Lift-dependent drag coefficient. 

Lift-dependent drag factor, = CD 7c A 7 l 

i C, L 

Aspect Ratio. 

angle of incidence. 

&mme%ers in downwash distribution. 
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