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SU1n.marv.-The effect of the boundaries of a wind tunnel on the flow
in the neighbourhood of a symmetrical body (i.c. (a) in two dimensions, a
cylinder having a plane of symmetry parallel to the axis of the tunnel : (b) in
three dimensions a body of revolution coaxial with the tunnel), may be
represented on the assumption of irrotational flow to a first approximation
as an increase in magnitude of the velocity at any point near the body in a
constant ratio ('Ill + V)(V. In two dimensions the value of ul(V is propor­
tional to the square of the ratio of a linear dimension of the body to the
width of the tunnel , provided that this ratio is sufficiently small. In three
dimensions ul(V varies as (sjS)3/2 where s is the maximum cross sectional
area of the body and S that of the tunnel. It is therefore possible to write
in two dimensions

uI!V = T ), (sjS)2,

and in three dimensions
ul(V = T J. (sjS)312 ;

). is a coefficient depending only on the shape of the body, being taken as
unity for a circular cylinder or sphere; T has distinct values for an open or
closed jet, and varies with the shape of cross section of the tunnel in three
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dimensions . In two d imensions theoreti cal val ues of }, h<1\'C been worked
out for a ran ge of fin en ess ra tios for the follow ing fo ur sha pes of cross section :- ­
Ellipse: Rankine Oval: Generalised symmetrical j oukows ki : Sim ple sym met ­
ri cal Joukowski : in three d im ensions for the two shapes :- -Spheroid :
" H.an kin e Ovoid ." It m a y be wort h n oting t hat J. also d etermines t he
Howat a suflicicntly great distance from the body in free a ir. Val ues of T have
been d etermined :- in two dimensions; in t hree dimensions fo r square and
circular cro ss section wi t h open and closed jets, and for t he closed " D uple x."
t unn el. The limits of accuracy of the approxima tion were ch ecked (a) in t wo
dimen sions by com pa rison with the exact calcul a tions (for irrot a t ional flow) by
F a ge in R & 1\'1. 1223 of the flow past a R ankine Oval in a channel , (h) in three
d im en sions by the usc of t he solution given b y Professor Lamb in R . &. ~I. 1010
for the bod ygen era t ed b y a source and equ'8l sink (" R ankin e Ovoid " ) in a
closed tunnel of circular cro ss section. This an alys is has been ext ended to the
analogous case of a n open circ ula r je t. The results in t wo dimensions ha ve
also been compare d wit h t he observa tions of Fagc in E. & M . 122~) of t he drag
of a two-d imensional bod y in a channel whose width could b e varied The
com parison sugges ts that the" effectiv e volume ., of a body in creases with i ts
drag coefficient owing t o the formation of a wa ke, the interference effect
rising in the ex t re me case of a circu lar cylinder to rat her ove r twice its
theoretical value .

1. Lntroduction-s-Ysv: problem of determining the magnitude
of the interference of wind tunnel wall s on a symmetrical body
has recently beco me more important owing t o the increased size of
models tested. E xamples at the Nat ional Physical Laboratory
are th e two-dimensional J ouku\\'ski profil es t ested by Fage and
Falkner!" and the three-dimensional bodies of revolution tested
bv Ower, Townencl and Hutton" for th e Interference Sub-Committee.
This increase of size has been made possible partly by the elimination
of the pressure drop in the 7-ft. tunnel No.3; previously the
correction for pressure drop so greatly exceeded the direct effect
of the tunnel walls on velocity that the latter could reasonably
be ignored. It is the correction on velocity in the absence of
pressure drop which forms the subj ect of the present report.

The two-dimensional case has been placed on a sound basis by Fage
in H.. & 1\1. 1223.3 This report contains the results of experiments
in a model tunnel of varying width, which he an alysed by means of
the theory of a Rankine Oval (source and equal sink) in a channel,
given by Sir Richard Glazebrook". No experiments on the three­
dimensional case are at present available, but the corresponding
theory of a Rankine " Ovoid" (source and equal sink) in a closed
circular tunnel "vas given by Professor Lamb". This solution involves
the usc of an infinite series whose conve rgence becomes slow in
certain cases. The three-dimensional case may be of some import­
ance in the future owing t o the increased desirability of using large
size streamline models suggested by the researches of Professor Jones6

and in connec tion with experiments on airscrew body interference.
- -_.__._--- --- _ ._--

* A list of references is giv en a t the end of the report .



In the present paper it is shown that a first approximation
to the two-dimensional theoretical solut ion can be obtained by the
method of images. This solution has the advantage that it can be
applied to any symmetrical cylinder for which the solution in an
infinite stream is known; it also avoids the somewhat laborious
calculations made by Fage in (3). These calculations have been used
to check the accuracy of the approximate method and show that
the approximation is adequate at least for the relative size of body
and tunnel tested in (1). According to this approximation the inter­
ference for a given shape varies as the square of the ratio of a
linear dimension of the body to the width of the tunnel.

A precisely analogous method can be applied to the three­
dimensional case of a body of revolution in a tunnel of rectangular
section (including square) , subject to the labour of determining
numerically the sum of a certain double series 'which is, however, a
constant for a given shape of tunnel. As before, the method may be
applied to any body of revolution for which the theoretical flow
in an infinite stream is known. The accuracy has been checked
by comparison with Lamb's solution for one shape only. According
to the approximation , the interference now varies as the cube of the
ratio of the linear dimensions of model and tunnel, or as the 3/2
power of the ratio of the cross-sectional areas.

Finally, a solution has been obtained analogous to Professor
Lamb's for the case of a Rankine" Ovoid" in an open jet tunnel
of circular cross-section.

2. J.1I1ethod of images in two dimensions.-Consider a sym­
metrical body placed in an infinite uniform stream of velocity V
with its axis parallel to the direction of V. It may be shown that
to a first approximation the flow at a large distance from the body
is equivalent to that produced by a source and an equal sink on
the axis of the body and depends only on the product of the strength
of source or sink into the distance between them. In particular,
at a large distance y at right angles to the stream, the velocity is to
this approximation uniform and parallel to the stream of magnitude

V + u., = V + Qoly2 (1)

where Qo is a constant which may be described as the strength
of the doublet* (Fig. 1). The ratio Qo/V which is of the dimensions
of the square of a length is completely determined by the shape
and size of the body.

Next consider the flow past an equal source and sink in a channel
with straight parallel sides of breadth h. It may be shown that
the flow is identical with t hat produced by the infinite series of
images shown (Fig. 2). The images of the source (or sink) lie on a
straight line normal t o the channel, are all of equal strength and are

* The word" doublet " is used here for a combination of source and sink.
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at distances h apart. To the same order of approximation, the
effect of the walls is equivalent to superposing an additional velocity
u1 in the neighbourhood of the original doublet, representing the
effect of the sum of the images and given by the equations

00

u1 = 2 ~Qo/n2 h2
n=l

00

= (2Qo/h2
) ~1/n2

1

(2)

Under these conditions, however, the size and shape of the original
boundary will be altered, and in order to return to the same
boundary (to the first order) the strength Qo of the doublet must
be replaced by Q such that

Q/Qo = (V + u1) IV (3)

It follows that the magnitude of the velocity at any point in the
neighbourhood of the body will be altered in this same ratio (V+u1) IV.
(In equation (2) it is immaterial to this order of approximation
whether Qo is replaced by Q) . Hence, it is to be expected that all
differences of pressure as well as the drag of the whole body will be
increased in the ratio (u1 + V)2/V2. It may be noticed that the
pressure at the stagnation point is equal to Po + t P V2, where Po is
the static pressure at a point at a distance upstream large compared
with the dimensions of the body.

3. Method of evaluating the interference in two dimensions>«
Writing z = x + iy, where x and yare the co-ordinates of a point
relative to the axes shown in Fig. 3, the velocity field round any
symmetrical cylindrical body is given by the formula

V + U - iv = V + f (z)
where f (z) is an analytic function of z which for large values of z may
be expanded in a series of inverse powers of z, of which the first term
has the form

- QIZ2

where Qis a real constant. The velocity at a large distance y normal
to the stream is then given by

V + u' = V + Qly 2

in agreement with equation (1) of §2 above.

In all cases in which the form of the function f (z) adapted to a
particular shape of body is known, the value of Q and hence the
above approximation to the tunnel interference can be determined.
The following examples will be discussed :-(1) Ellipse ; (2) Rankine
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Oval; (3) The series of generalised Joukowski forms employed
in R. & M. 1241, Ref. (1); (4) Simple symmetrical Joukowski form
with a cusp at the tail.

(1) Elliptic Cylinder.

The appropriate functions are given by

~ + i ~ w = V {z+c sinh~oio-C},

V +u- iv = dwJdz,

z = c. cosh Z,
where the semi axes of the ellipse are l = c cosh ~o, and t = c sinh ~.

For large values of z

(u-iv)JV approximates to - sinh ~o i oc2J2z2
or

and

Q/V = t c2 sinh ~o (cosh ~o + sinh ~o)

= l t (t+l)

Q/V t2 = l (1 + lIt).

For the case when t is greater than l the formulse become

w = V{z - iccosh ~oio-C},

z = ic cosh C: ,
l = c sinh ~o, t = c cosh ~o,

Q/V = ic2 cosh ~o (cosh ~o + sinh ~o)

= l t (t + l)

as before, so that this formula holds for all values of til.

(2) Rankine Oval.

~ + i ~ = w = v{z- A log z - C

J
1. ,

z+c

(V + u-iv) IV = 1-2cA/(z~c2),

where 2c is the distance between source and sink.

The thickness 2t and the length 2l are determined from the
following considerations ;-

(a) ~=oforx=oandy=t,

(b) V + u = ofory = oandx = l.

(a) This leads to the condition

A = uz«,
where

tan ex. = cit.
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(b) This leads to the condition
l2 - e2 = et/ a .

It is obvious that

and so

Also

Q/V = 2eA = etla

Q/Vt2 = tan al a.

l21t2 = tan" a +tan al a.
The shape is given explicitly by the equation

x 2 = e2_ y 2 + 2 ey cot (2aylt).
In the limiting case

ljt= 1·0

corresponding to a = 0 we have
Q/V 2t2 = 1·0

agreeing with the corresponding result for the ellipse, the limiting
shape being a circle in both cases.

(3) General symmetrical Joulunoski wing (Ref. 1 and 8).

r a2
)

w=Vlt+ TI'
where

t = ~ - a + 0,

~+:~=(~+~)n
For large values of z

zapproximatesto ~{1 + (1/3) (n2-1)e2/~2}.

~~ = (V + ti - iv)jVapproximates to 1 - {a2
- (1/3) (n2

- 1)c2 } 1~2,
Q/V = a2 - (1/3) (n2 - 1)e2,

For the actual shapes used in R. & M.1241, which satisfy the relation
n = 2·5 - 0·5 (ale), the values of land t are recorded and so Q/V2
can be determined for given ljt.

(4) Sil1tple J o'ukowski [orm, This corresponds to the simple
case of the above for which n=2. For this case theoretical formula;
can be obtained for the maximum thickness as well as for the chord.
The formula; may be written in the following form. On the surface
we may write t = a ei Ofrom which the shape of the section is given by

x[c = (a+ 1 + a~os 0) (1 + IjF),

y Ie = 1 + (X sin 0 (1- 1jF) ,

where a is a constant given by
a= (a - c)/c,
F = 2a(1 + a) (1 + cos 0) + 1
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and x and yare rectangular co-ordinates. Then the value 81 of ()
corresponding to the maximum ordinate is given by the relation :-

F 1 = sec ()1 - 1.
The equation for Q/V becomes

Q/V = c2 cx(ex+ 2).
The chord length is equal to the difference between the values of x
which correspond to 0 = 0 and () = 'it and reduces to

Chord = 4c (1 + ex)2/(1 2cx).

4. Results of calculations in tsoo di1Jzensions-Values of
Q/V t2 = A have been calculated from the above formula: for the
four different shapes for various values of the fineness ratio lit and are
shown plotted against lit in Fig. 4. The shapes 1, 2 and 4 all have
the circular cylinder as a particular case and the formulae are in
agreement in making A= 1 for lit = 1. The first approximation
to the tunnel interference is given in terms of Aby the formula

u1/V = ('it2/12) A(2tlh)2
= 0 ·822 A(2tlh)2 (1)

where 2t is the maximum thickness of the section and h the breadth
of the tunnel (equation (2) of § 2).

To assist in the process of guessing a suitable value of Afor an
arbitrary shape, the four profiles corresponding to the fineness
ratio 3·67 have been calculated, and are shown in Fig. 5.*
Comparison of Figs. 4 and 5 shows ho\v the tunnel interference
for a given aspect ratio increases with the space occupied by the
section. From these curves it should be possible to interpolate
with sufficient accuracy the tunnel interference for any intermediate
shape.

It may be worth noting that the curves of Fig. 4 give a first
approximation to the flow at a large distance from the body in free
air where the effect of the body approximates to that of a circular
cylinder of radius t A~.

5. Theoretical accuracy of the approxinzatiolt in two diJnensions.­
The accuracy of the above first approximation to the theoretical
tunnel interference may be checked in the case of the Rankine
Ovals by comparison with the exact calculation given in
R. & M. 1223 (3). (Table 1.) This table gives values of the velocity
V + u, = m (V + u'o) just outside the surface for a Rankine Oval
in a channel, where V + IUO is the velocity at the corresponding
point in free air. The value of m at the maximum ordinate x = 0,
y = !-T ( == t) is denoted by 'In!> and the values oim'1 - 1 ( == u1/V to
the approximation of the present report) are plotted in Fig. 6 against

*Shape 3 is taken from (Ref. 1) Table 6, and the value of 3·67 for the
fineness ratio was chosen to correspond with this shape.
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(TjH)2 {_(2tjh)2} for the various values of the fineness ratio
CjT ( - ljt). On the same diagram are shown the values of 'U1jV
corresponding to the first approximation in the form of straight
lines through the origin of slope 0 ·822 A (see equation (1) of section 4).
When ljt is not greater than 5·4 the discrepancy is less than
l per cent. on velocity within the limits of the calculations (2tjh
not greater than 0,2) . For the two sections of fineness ratio 9·8
and 18·3 the discrepancy is less than j per cent. so long as the chord
length is less than the width of the channel (2 ljh less than 1·0).

When the above first approximation begins to break down it is
no longer exactly true that the velocity is altered by tunnel inter­
ference in the same ratio at all points of the surface. It appears
from the remaining entries in H.. & M. 1223 (Table 1) that the dis­
crepancies between velocities at different parts of the surface are
of the same order of magnitude as the error of the first approximation.

6. Alternative approxi1nation for a long body.-\iVhen the
fineness ratio is large and the chord length is large compared with
the breadth of the tunnel, an alternative approximation is available
(suggested by Professor Lamb in (Ref. 5) ). This depends on the
assumption that the velocity V + 'u is constant across the space
between the maximum ordinate of the body and the tunnel walls
so that U'l may be determined from the condition of continuity by the
relations

ItV = (h - 2t) ('U + V)
'U1jV = 'uj(uo + V)

The value of 'U1jV may then be determined by comparison with the
values of (V+ 'Uo) V for infinite stream given in R. & M. 1223 (Table 1)
(VIVo). Values of 'U1jV obtained in this way for the sections of
fineness ratio 9·8, 18·3 (and 00) are shown in Fig. 6 by dotted
curves. It appears that the error of this approximation is not
greater than 1 per cent. in either case provided that 2l is not less
than h. Hence by combining the two approximations it should
be possible to estimate 'U1jV within 1 per cent. for all cases in which
2t jh is not greater than 0·2.

7. Comparison with experimental results.-The results of
experiments on various symmetrical shapes in a model channel
of variable width are given in R. & M. 1223 (Table 3). The results
are there analysed on the assumption that the drag of the body is
increased by channel interference in the ratio 11- : 1 where

11, - 1 = K 1 (m1
2 - 1) (1)

so that K1 = 1 gives an increase of drag corresponding to the
theoretical increase of velocity. The same results have been re­
analysed by the methods of the present report; the values of 11" given
in Table 3 of R. & M. 1223 were plotted against (2tjh)2. wiu. the
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exception of one or two points at large values of tjh they appear
to lie on straight lines through the point (n = I, t/h = 0) within the
limits of accuracy of the observations, so that it is possible to write

n = 1 + q (2tjh)2

If equation (1) is replaced by the approximation

n - 1 = 2 K 1 (m1 - 1)

(since (m1 - 1) and (n - 1) are small quantities), it follows from
equation (1) of section 4, that

q = 0·822 ,\ X 2 K 1

The values of ,\ from Fig. 4 appropriate to the actual shapes tested :­
Joukowski section and ellipse as well as Rankine oval and circle,
have been used to determine the values of K1 given in Table 1,
and the differences between these values and those quoted from
R. & M. 1223 (Table 4) are chiefly due to the theoretical difference
between J oukowski section and Rankine oval. The effect on the
curve of K1 against kD shown in Fig. 7, is mainly to raise the values
for small kD . This is due to the fact that e.g. the theoretical value
of ,\ for the J oukowski section of largest fineness ratio is only O·71 of
the value for a Rankine oval of the same fineness ratio as used in
R. & IVI. 1223. The modified points suggest that the value of K1
may tend to unity as kD tends to zero which would be expected
on theoretical grounds since the excess of the value of K1 above
unity is due to the increase of the effective volume of the section
by the presence of a turbulent wake whose volume should tend to
zero with kD . More probably the factor K1 approximates to unity
when the form drag vanishes as is suggested in drawing the curve.

8. Three dimensions. - The method of calculating the interference
velocity for a body of revolution on the axis of a square or
rectangular tunnel is very similar to the method already described
for the case of two-dimensional flow. The image of a three-dimensional
point source in an infinite rigid plane is an equal source symmetric­
ally placed. It follow's that a single source on the axisof a square
or rectangular tunnel is equivalent to a doubly infinite system of
images at the corners of rectangles equal to the cross-section of the
tunnel.

Again, the velocity V + u at a point at a large distance R
(measured normal to the axis) from a body of revolution is given to a
first approximation by the equation

V + 1,£ = V + Q/R3 .. (1)

where Q is a constant. Exactly the same form applies if the
arbitrary body is replaced by a source and equal sink (doublet),
the constant Q depending on the moment of the doublet.
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It follows that the additional velocity at the origin due to the images
in the absence of the original doublet is given by

u = 0 2:1/1<.31 ,..,

where the summation is taken for values of R equal to the distances
of all the images from the origin.

The summation of this double series is discussed in the Appendix.
For a square tunnel of unit side the numerical value of the sum
is 9·04; for a Duplex tunnel of sides 1·0 and 2·0 the sum is 4·05.
It follows that for a square tunnel of side h, the value of 1·t1 is given by

u l = 9·04 Q/h3

and for a rectangular tunnel of any shape we shall write

'Ul = cr Q/h3 • • (2)

By an argument precisely similar to that given for the case of two
dimensions it follows that the drag and pressures on any body of
revolution in a tunnel stream of velocity V are equal to this order
of approximation to the corresponding values in an infinite stream
of velocity V + U v where 1,t1 is given by the last equation.

9. Determination of the tunnel interference for particular shapes.
-As in the two dimensional case the value of Q may be determined
for any shape for which the flow in an infinite stream is known.
The only two simple cases are (1) The Rankine Ovoid and (2) The
Spheroid.

(1) The Rankine Ovoid.--This name may be given to the three­
dimensional analogue of the Rankine Oval in two dimensions,
being the surface of revolution which is equivalent in its external
effect to a point source and equal sink of strength A at a distance
2c apart in a uniform stream of velocityV. The appropriate formulas
are given by Lamb in (Ref. 5).*

The axial component velocity at a point whose cylindrical
co-ordinates relative to the body are x, r, is given by

A (x +c x-cl
V + 1-11 = V + 4n l R

2
3- - R

l
3 f (1)

where

For x = 0 we have

1[. = c A j2 7t R 3

where R2 = c2 -+ 1,2 (2).

* The sign convention is opposite to that used in (Ref. 5) and in Lamb's
Hydrodynamics.



(5)

11

The corresponding forms for the velocity potential <p*, and Stokes'
stream function ~ are

<p = Vx + (A/4rc) (1/R1 - 1/R 2) (3) ,

~ = ~Vrz + (A/4rc) ~ (x - c)/R1 - (x + c)/Rz} (4),
where

o<p 1 a~ .~

V: u 0: x _ : :~' \

or r ax j
If the maximum radius of the equivalent surface is t, and the

maximum length 2l, the value of t is determined by the condition
that ~ = 0 for x = 0, r = t, giving

0= t VtZ- Acl2rc(cZ + t2)!
or

(6) .

The value of l is determined by the condition thatu - -V for
r = 0, x = lleading to

(lz/cz - 1)2 = (l t2/c3) (1 + t2/C2)~ (7).

This equation is a biquadratic for lIe which can be solved fairly
rapidly by successive approximation, when cIt is not too small, so
as to give lit in terms of tic. The corresponding values of the inter­
ference velocity U,I can then be derived from equations (2) and (6)
'with equations (1) and (2) of §8 in the form

~lI/V = (o t3/h3) ~- (1 + c2It2)!

It is convenient to write in general

'[,lI/V = i·a it.t3/ h3

where it. is a function of shape which is unity for sphere.

(2) Spheroid.-The expressions for the velocity potential and '
stream function for a prolate spheroid are given in Lamb's Hydro­
dynamics, section 105. The corresponding formula for the axial
component velocity is given in R. & M. 1239 (Ref. 7) in the form

u./V = C{log coth YJI2 - cosh '1)/(sinh2 'I)+ sin" e)}-
where

C = 1/{cosh YJo/sinhz YJo - log coth YJo/2}

and x = k cos f) cosh YJ J r = If, sin () sinh YJ arc the axial and radial
co-ordinates of any point; l = k cosh '1)0' t = k sinh YJo, being the semi­
axes of the spheroid. For a point at a large distance normal to the

* The sign convention is opposite to that used in Lamb's Hydrodynamics.
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axis, () = n/2, and ~t/V may be expanded in powers of e-11* the first
term of the expansion being :-

IV 8 C _ 3"
'll = 3 e

To the same approximation, r = .~ k e 1/ and so

1
'lljV= 3 G k3jr3

1
= "3 C cosech" 1)0 t3fr3

and in the notation of the last section

2
A= 3 C cosech 3 1)0

"1]0 being given by
tanh 1)0 = tfl .

Finally, it may be noted that (as in §4) the three dimensional
curves of Fig. 4 give a first approximation to the flow at a large
distance from the body in free air , where the effect of the body
approximates to that of a sphere of radius i».

10. Closed tunnel of circular Cl'oss-section.-An exact solution for
the flow in a closed tunnel of circular cross-section past a particular
body of revolution was given by Lamb in R. & M. 1010 (Ref. 5)
in the form of an infinite series of Bessel functions. The body is that
generated by a point source and equal sink which has been described
as a Rankine Ovoid ; as in the two-dimensional case the shape of
the body is slightly modified by the presence of the tunnel walls.
To conform to the sign conventions of the present paper, the sign
of <p and ~ must be changed and V, V + 'It, written in place of
- U, 'U , respectively.

The formulze determine the axial component velocity just
outside the largest cross-section of the body, and this may be
compared with the corresponding value V + Uo in the absence of
the tunnel walls. From analogy with the solution for a square
tunnel, it is to be expected that for sufficiently small values of the
ratio tla (a is the radius of the tunnel) the value of (·u-uo)f(uo+ V)
can be expressed as an expansion in ascending powers of tja of which
the first term is of the form Bt3fa3 , where B is a constant. To a
first approximation the flow round the body would be identical
with that in a free stream of velocity V + 1.f'1 where

u1/V = (u - uo)/('llo + V).

* It is convenient to expand in powers of cosech 21]/2.
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Again the value of B would vary with the fineness ratio in the
same proportion as that already calculated for a Rankine Ovoid
in a square tunnel, so that it should be possible to write as in
Section 12 below

u1/V = "r A (S/S)312

where siS is the ratio of maximum cross-sectional area of body to that
of tunnel, A is the same function of shape of body as in §9, and -r is
an absolute constant for a circular tunnel which probably differs
from the value for a square tunnel.

It has not been found possible to establish these results analytic­
ally or to obtain an analytical formula for the constant -r, The
following method has therefore been adopted. Taking the particular
fineness ratio corresponding to tic = 1/5, the calculations given by
Lamb in R. & M. 1010 (Ref. 5) were extended to additional values
of tla. The results are given in Table 2 and plotted in Fig. 8 in the
form (a3/t3

) {(u - uo)/(uo+V)} against tla. The chief arithmetical
and analytical difficulty arises from the fact that the series for u/V
converges more and more slowly the smaller the value of t/a. This
limits the smallness of the value of tla for which calculations can
usefully be made, but the points plotted in Fig. 8 are sufficient to
verify that the ordinate in Fig. 8 approaches a constant value
as t/a tends to zero and to establish the magnitude of the limit as 4·03
with an error not greater than 1 per cent. The value of A for this
fineness ratio is given by Fig. 4 as 5,01 , and since siS the ratio of
areas is equal to t2/a2, the value of "t'may be calculated as O: 804, from
the equation A -r (S/S)3/2 = 4·03 (t/a)3.

It appears from Fig. 8 that the error of the first approximation
increases with increase of t/a rather more rapidly than in the corre­
sponding two-dimensional case, but the error when the length
becomes equal to the diameter of the tunnel is still slightly less
than 1 per cent. on the body drag (i.e. on V2). When the length
of the body is appreciably greater than the tunnel diameter the
approximation described in R. & M. 1010 (Ref. 5) and in §6 above is
available, and is shown by the dotted curve. It appears that an
estimate of the tunnel correction could be made with an error less
than 1 per cent. on the drag, from a knowledge of the dotted curve
and of the limit as t/a tends to zero.

11. Open Jet Tunnel.-A solution for the case of a free jet of
circular cross-section can be obtained by a method analogous to
that given by Lamb for a closed jet. The boundary condition in this
case is that the pressure, and so the resultant velocity, are constant
over the surface of the jet. As explained in R. & M. 723,* this
condition is equivalent, to a first approximation, to the condition
that the axial component velocity is constant and equal to V over

* R. & M. 723. AerofoiI Theory by H. Glauert.
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the whole of a cylindrical surface of radius a coinciding with the
undisturbed surface of the jet. It is therefore necessary to find the
solution for a source (and equal sink) such that the axial component
velocity is zero on this surface. Trying as before a solution as a
series of terms of the form

(1)

(for x > 0) the required boundary condition is pow

04>
u=- =0ax

for r = a, and therefore the values of kn must now be taken as roots
of the equation

(2),

The remaining conditions for a single source at the origin are the
same as before, viz. :-(for x = 0)

ad>
u,=~=o

uX

for all but infinitesimal values of r, and that the total flow outwards
from the origin is equal to the strength Qof the source, so that the
limit as %-70 of

f
a

'/,{. 21t'rd1' = ± J. 0, - - 2 "-'
o

(3)

according as x ~ o.

For % > 0, the value of u given by (1) tends to the limiting form
00

U = - ~kn an Jo (knr).
1

Multiplying both sides by Jo (kmr) . r dr and integrating from
o to a we have

--km am (a J0
2 (kmr) . r dr = Ltx + orJ0 (kIll r) 1t . r dr

• 0 " 0

or since u is zero except for infinitesimal values of r,

-t a2kill am J1
2 (km a)= J, (0) . Ltx-+o ra

u . r dr = Q/41t'
• 0

Hence (1) becomes (for x > o)

<P _ _ Q ~ Jo(knr)e- kn
%

- 21t'a2 1 kn J12(kn a)
(4)



15

The corresponding value of the stream function ~ satisfying the
relations (5) of §9 is

Q r J1 (kll r) e-h ll x
(x>o), ~ = c)2 ~ k ] 2 (l, ).... tea n 1 ?Il a

o { r J (k r) e flu x '~( < ) Uf' _ ""' ~ 1 u 2
X 0, I - - ?--2 ..:..J k J 2 (k ) - a.., Ita 'n 1 n a _

(5).

(7),

The term a2 is inserted so as to make ~+o as x++ 00, ~+Q/21t
asx+- 00.

For a uniform stream V with a source Q at (-c,. 0) and a sink
-Q at (c, 0) and for -c<x<+c,

" , = J. V 2 _ Q S2 ~ rJl (kn r) e -flu C cosh kn x _ 21. (6)
't' 2 r +? 2 I £..I 1, J 2 (k ) a I ..., it a \.. h n 1 n a )

If t is the radius of the streamline surface corresponding to ~ = 0

at x = 0 we have putting r = t, x = 0 in (6)

1t a2V _ a2 _ C) ~ J1 (kn t) e - ku_c

Q - t2 .., 1 kn t J12 (kll a)

and the axial component velocity at the corresponding point is
given by

(8).

Values of the velocity ~to at the corresponding point when the body
is in a free stream are given by R. & M. 1010 (Ref. 5) equation (4),

V -1- Uo t2

V = 1 + 2 (t2 + c2)

It appears from the formulre that the equivalent free air speed
in an open jet tunnel is lower than the tunnel speed, so that the
correction is of the opposite sign to that in a closed jet. Values
of (a3It3) '{ (uo-u)/(u o+V) } were calculated as before for the
case of a body of fineness ratio 5·50 for which tIc = 115 and are
given in Table 2 and plotted in Fig. 8 against alt. The limiting
value of the ordinate as determined by extrapolation has the value
1·03 and so the interference is almost exactly 1/4 of the corresponding
interference in a closed jet, but of opposite sign. As the size of the
body is increased the ratio becomes smaller still. The error of the
first approximation when the length of the body is equal to the
tunnel diameter though forming a greater proportion of the total
correction than in the case of the closed jet is, as before, less than
1 per cent. on the body drag.
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An approximation similar to that obtained for the closed jet
for a body whose length is greater than the tunnel diameter is given
by assuming that the velocity outside the maximum section of the
body is equal to the tunnel velocity. The approximation is shown
by the dotted curve.

Open]et Square Tunnel.-As a check on the result for an open
jet circular tunnel, the case of an open jet square tunnel has been
worked out by the method of images, although this case is of no
practical importance. The only difference as compared with the
closed tunnel is that the sign of every alternate image is changed.
The resulting calculated value of (J is -2·65 as compared with 9·04
for a closed tunnel. The ratio -0·29 (open jet to closed jet) is not
very different from the value -0·25 for the case of a circular
section.

12. Summary of Results.-It is convenient to summarise the
results obtained for tunnel interference.

The first approximation for all cases may be expressed in the
following forms. If U 1 + V is the free air speed corresponding to a
tunnel speed V, then:-

In two dimensions
u1/V = 1'i\ (s/S)2.

In three dimensions
u1/V = 1'i\ (s/S)3J2.

Here sIS is the ratio of maximum cross-sectional area of body
to area of tunnel. i\ is a coefficient of shape independent of the shape
of cross section of tunnel. All calculated values of i\ for both two
and three dimensions are collected in Fig. 4. -ris a constant depending
only on the shape of cross-section of the. tunnel. Values of -r are
collected in the following table :-

Table of values of v.

Two dimensions
Three dimensions, Circular ..

" Square ..
" Duplex ..

Closed Jet.

0·82
0·80
0·81
1·03

Open Jet.

-0'62
-0'20
-0,24

To illustrate the method the following two examples have been
worked out ;- .

Exam,.ples.
(1) Body of revolution: diameter 23 inches in a 7 ft . square

closed tunnel: fineness ratio lIt = 5· 45. (Shape given in R. & M.
1030.)
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The shape approximates more closely to a Rankine Ovoid th an
to a spheroid , hence from Fig. 4, A=" ':: 5 ,0 , Also f rom t he above
data, 't' = 0,812, (S /S)3/2 = 0·0146. Again the fineness ratio is
approximately that of Fig. 8, and so the first approximation to
(ul/V) corresponding t o tla ' co.:: o in Fig. 8 may be corrected by
multiplying by the ratio (3· 2/4·0) of t he ordinates for till = 0·24 and
tla = o. Henc e, finally

= 0·0473
and

(1£1 ~V)2== 1.098

giving a correc t ion of 10pe r cent . on the drag coefficient.

(2) Body of same diameter in same tunnel but of fineness ratio 3· ()
(shape given in 1<. & M. 1271 (Ref. 2) ).

The shape approximat es to a sphe roid and so

A =-= 2,25, 't' C'':':: 0 ' 812, (s/S)3/2 = 0 -0146

and the firs t approximat ion is adequate. Hence

/.iI/V = o-0267
or

(U'l + V)2/V2
:=.:: 1·055.

13. Concl-zts1:ons,-- T heorctical Iormulre have been ob tained
which give a first approximation to the equivalent free air speed
for a symmetrical body in a wind t unnel. In t wo dimensions results
are given for cylinders whose cross-sections arc the ellipse, Rankine
Oval and symmetrical]oukowski wing. From these results it should
be possible to gu ess a figure with sufficien t accuracy for all ordinary
shapes. The results in two dimensions should also assist in the
process of guessing a figure in three dimensions 'where theoretical
figures are available for the spheroid and Rankine Ovoid only.

In three dimensions the effect of change of shape is independent
of the shape of cross-section of the tunnel. Values of the cons t ant
determining the effect of sh ape of tunnel section arc given to a
sufficient approximation for practical purposes for open jet circular
sect ion, closed jet circular section, square and" Duplex" ; it could
be evaluated for any rectangular section.

The theoretical accuracy of the approximation in two dimensions
is checked by comparison with the exact calculation of Fage for the
case of an equal source and sink (Rankine Oval). The comparisons
suggest that the accuracy is sufficient provided that the thickness

(40432) B
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is less than one-fifth the breadth of the tunnel and the chord length
less than the breadth of the tunnel. In three dimensions the case of a
source and sink in a circular dosed jot has been worked out by
Professor Lamb; the calculated results at present available are
much less complete, hut the limits of application of the approxima­
tion appear to be about the same as in two dimensions. It may be
remarked that when the approximation breaks down it is no longer
necessarily true that the same correction will apply even approxi­
mately to all parts of the body; but in the case of an elongated
body appreciably longer than the breadth of the tunnel a
different approximation is available which may have some
practical application.

The only satisfactory experimental data on tunnel interference
at present available are those of Mr. Fage in (3) and apply to the two ­
dimensional case. It appears that the theoretical correction is to be
multiplied by an empirical factor which increases from unity for a
low drag form to 2·() or ~3·() for a high drag form. Evidently this
represents the ratio of the actual disturbance of the fluid to the
theoretical disturbance and may therefore be assumed, as by
1\Jr. Fago, to be a function of the drag coefficient and as such applied
to the three-dimensional case in default of further evidence.

The author wishes to record his appreciation of the assistance
of Miss D. Yeatman in the calculations.
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APPENDIX.

Sum of the double series

..' r 1 J , I :2 ,}
4 X \ «()2 + 12) 3 /2 + (T2 ~fT2)i72 T ((j :i':~22) :1-12 '1- (I:i~j_ 22):1)2 T .. . .

No form ula for the sum of t his se r ies has be en discovered and the series has,
therefore, been summed numerically . A practical d ifficulty arises from the
extremely slow con vergence of the series, c .g ., the error of the sum t o
47 terms is 3} per cent . To get over this difficulty use was made of the

following artifice. Take the typical t erm as J/ l(m;: where

R mu2 :=;--c 111 2 -I- n 2

so tha t Rum is the radius ve ctor of a point whose Car tesian co ord ina tes a re
tn and n . Each term of the series may then be considered as occupying a
unit square with its centre at the point (III, ·n ). Hence, for sufficiently large
values of R UIll the sum of all terms of the seri es for which the points (m, n)
lie outside a certain curve approximates to the surface integral of 1/R 3 taken
over the who le area outside this curve. In particular, taking the circle
radius Eo , t he sum of all terms for which

q I . 2 ' > I:> 2111" . . II. :::.- ... "

approximates to

/

• J J 2Jr~:!.!. c_" ~.b

. !{" 1':1 !{o

The sum of th e series was ca lcula ted by add ing this value of t he remainder
to the sum of all terms for which 71/.2 I-}/.2 ~ 1<02 • 'Fa king in successio n values
!<u= 10 and B.o =---" 20 , the d ifference between" t he resul ts in the two cases
was only 1 in 2,OOU, although the two remainders were 3~· per cent . and
1· 75 per cent. respectively.
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TABLE 1.

Analysis of observations recorded in Table 3 of H.. & 1\1. 1223.
_ .. -_._--_. . _ - ..•• ... _ ._-- - -_._._- -- _. .__.__.. ._-_...• . .. '--' -" -" - -" -' -' - - -"-' -'- - - --~-

Section. lIt A K 1 l l j) H.. & M. 1220.
----- - - '---"- -- - - _ ._------- - - - --.-.- -. .- . ._---
1. Jou kowski 9·(-) 4·58 1· 15 ()·OO44-! 0 ·87
2. j oukowski 4·8 2 ·50 1·82 0·00750 1·29
3. Joukowski 3·05 1·77 1· 83 0·0106 1·81
4. Rankine Oval . . 10·3 6-76 1·67 0-0108 1 ·78
5. Ellipse 5·4 3-20 1 ·58 0· 0184 I -55
6. Circle 1·0 1· 00 3- 13 0 -620 2·33

TABLE 2.

Rankine Ovo·id in a tunnel of circular cross-section. cIt

lIt = 5 ' 503, V I(u·o + V) ~.= () '98113.

---_ ._ ._-- - --- -_ .... ._-- -_._- _ ..._._ -_.

5 ·0,

tla

0 ,06
0 ·08
0·10
n·12
0·20
0-30
0 · 40

* Taken from R. & M. 1010.

Closed Jet.
(u-lto)I(V -1- Ho)

0 ·00086
0-00196
0 ·00383
0 ·00651
0 ,0271*

0, 168*

Open Jet.
(u-uo) /(V -1- uo)

---- --- ---
-0 -00021
-0,00053
- 0 ·00094
-0'00153
- 0 ,00442
- 0 ,01069
- 0 ·01511
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