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Summary.—The effect of the boundaries of a wind tunnel on the flow
in the neighbourhood of a symmetrical body (i.e. (@) in two dimensions, a
cylinder having a plane of symmetry parallel to the axis of the tunnel: (b) in
three dimensions a body of revolution coaxial with the tunncl), may be
represented on the assumption-of irrotational flow to a first approximation
as an increase in magnitude of the velocity at any point near the body in a
constant ratio (#y + V)/V. In two dimensions the value of u,/V is propor-
tional to the square of the ratio of a lincar dimension of the body to the
width of the tunnel, provided that this ratio is sufficiently small. In three
dimensions #;/V varies as (5/5)*/2 where s is thc maximum cross sectional
area of the body and S that of the tunnel. It is therefore possible to write
in two dimensions

u [V = 7 2 (s/5)?,
and in three dimensions
u [V =t 2 (s/S)%2;
A is a coefficient depending only on the shape of the body, being taken as

unity for a circular cylinder or sphere; = has distinct values for an open or
closed jet, and varies with the shape of cross section of the tunnel in three
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dimensions. In two dimensions theoretical values of A have been worked
out for a range of fineness ratios for the following four shapes of cross section :—-
Ellipse : Rankine Oval : Generalised symmetrical Joukowski @ Simple symmet-
rical Joukowski; in three dimensions for the two shapes :— -Spheroid :
“ Rankine Ovoid.” It may be worth noting that 2 also determines the
flow at a sufficiently great distance from the body in free air. Values of T have
been determined :—in two dimensions ; in three dimensions for square and
circular cross scction with open and closed jets, and for the closed ** Duplex ™
tunnel. The limits of accuracy of the approximation were checked («) in two
dimensions by comparison with the exact calculations (for irrotational tow) by
Lage in R. & M. 1223 of ihe flow past a Rankine Oval ina channel, (b) in three
dimensions by the usc of the solution given by Professor Lamb in R. & M. 1010
for the body gencrated by a source zmd equal sink (" Rankine Ovoid "Yin a
closed tunncl of circular cross scction. This analysis has been extended to the
analogous case of an open circular jet. The results in two dimensions have
also been compared with the observations of Ifage in R. & M. 1223 of the drag
of a two-dimensional body iu a channel whose width could be varied. The
comparison suggests that the ' effective volume 7 of a body increases with its
drag cocficient owing to the formation of a walke, the interference effect
rising in the extreme case of a circular cylinder to rather over twice its
theoretical value.

1. Introduction.—The problem of determining the magnitude
of the interference of wind tunnel walls on a symmetrical body
has recently become more important owing to the increased size of
models tested. IExamples at the National Physical Laboratory
are the two-dimensional Joukowski profiles tested by Trage and
Falkner' and the three-dimensional bodies of revolution tested
by Ower, Townend and Hutton? for the Interference Sub-Committee.
This increase of size has been made possible partly by tlie elimination
of the pressure drop in the 7-ft. tunnel No. 3; previously the
correction for pressure drop so greatly cexceeded the direct effect
of the tunnel walls on velocity that the latter could rcasonably
be ignored. It is the correction on velocity in the absence of
pressure drop which forms the subject of the present report.

The two-dimensional case has been placed on a sound basis by Fage
in R. & M. 12233 This report contains the results of experiments
in a model tunnel of varying width, which he analysed by means of
the theory of a Rankine Oval (source and equal sink) in a channel,
given by Sir Richard Glazebrook?® No experiments on the three-
dimensional case are at present available, but the corresponding
theory of a Rankine *“ Ovoid " (source and equal sink) in a closed
circular tunnel was given by Professor LambS. This solution involves
the use of an infinite series whose convergence becomes slow in
certain cases. The three-dimensional case may be of some import-
ance in the future owing to the increascd desirability of using large
size streamline models suggested by the researches of Professor Jones®
and in connection with experiments on airscrew body interference,

* A list of references is given at the end of the report.
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In the present paper it is shown that a first approximation
to the two-dimensional theoretical solution can be obtained by the
method of images. This solution has the advantage that it can be
applied to any symmetrical cylinder for which the solution in an
infinite stream is known ; it also avoids the somewhat laborious
calculations made by Fage in (3). These calculations have been used
to check the accuracy of the approximate method and show that
the approximation is adequate at least for the relative size of body
and tunnel tested in (1). According to this approximation the inter-
ference for a given shape varies as the square of the ratio of a
linear dimension of the body to the width of the tunnel.

A precisely analogous method can be applied to the three-
dimensional case of a body of revolution in a tunnel of rectangular
section (including square), subject to the labour of determining
numerically the sum of a certain double scries which is, however, a
constant for a given shape of tunnel. As before, the method may be
applied to any body of revolution for which the theoretical flow
in an infinite stream is known. The accuracy has been checked
by comparison with Lamb’s solution for one shape only. According
to the approximation, the interference now varies as the cube of the
ratio of the linear dimensions of model and tunmel, or as the 3/2
power of the ratio of the cross-sectional areas.

Finally, a solution has been obtained analogous to Professor
Lamb’s for the case of a Rankine “ Ovoid ” in an open jet tunnel
of circular cross-section.

2. Method of wmages wn two diumensions.—Consider a sym-
metrical body placed in an infinite uniform stream of velocity V
with its axis parallel to the direction of V. It may be shown that
to a first approximation the flow at a large distance from the body
is equivalent to that produced by a source and an equal sink on
the axis of the body and depends only on the product of the strength
of source or sink into the distance between them. In particular,
at a large distance y at right angles to the stream, the velocity is to
this approximation uniform and parallel to the stream of magnitude

Vau,=V+QM .. .. .. .. (1

where Q, is a constant which may be described as the strength
of the doublet* (Fig. 1). The ratio Q,/V which is of the dimensions
of the square of a length is completely determined by the shape
and size of the body.

Next consider the flow past an equal source and sink in a channel
with straight parallel sides of breadth 2. It may be shown that
the flow is identical with that produced by the infinite series of
images shown (Fig. 2). The images of the source (or sink) lie on a
straight line normal to the channel, are all of equal strength and are

* The word ‘* doublet ”’ is used here for a combination of source and sink.
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at distances # apart. To the same order of approximation, the
effect of the walls is equivalent to superposing an additional velocity
#; in the neighbourhood of the original doublet, representing the
effect of the sum of the images and given by the equations

oo
Uy = 2 2Q,[n? h?
n=1

=@ww§w2

™ O,
i T ¢

Under these conditions, however, the size and shape of the original
boundary will be altered, and in order to return to the same
boundary (to the first order) the strength Q, of the doublet must
be replaced by Q such that

0/Q, = (V + u,)[V B

It follows that the magnitude of the velocity at any point in the
neighbourhood of the body will be altered in this same ratio (V+4-u,)/V.
(In equation (2) it is immaterial to this order of approximation
whether Q, is replaced by Q). Hence, it is to be expected that all
differences of pressure as well as the drag of the whole body will be
increased in the ratio (%, + V)%/V2. It may be noticed that the
pressure at the stagnation point is equal to p, + 4 ¢ V2, where p, is
the static pressure at a point at a distance upstream large compared
with the dimensions of the body.

3. Method of evaluating the interference in two dimensions.—
Writing 2 = x + 4y, where x and y are the co-ordinates of a point
relative to the axes shown in Fig. 3, the velocity field round any
symmetrical cylindrical body is given by the formula

V4+u—1ww=V + f(2)
where f (2) is an analytic function of z which for large values of 2 may
be expanded in a series of inverse powers of z, of which the first term
has the form
—Q/z?
where Q) is a real constant. The velocity at a large distance y normal
to the stream is then given by

Vb u=V+Qly
in agreement with equation (1) of §2 above.
In all cases in which the form of the function f (z) adapted to a
particular shape of body is known, the value of Q and hence the

above approximation to the tunnel interference can be determined.
The following examples will be discussed :—(1) Ellipse ; (2) Rankine
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Oval; (3) The series of generalised Joukowski forms employed
in R. & M. 1241, Ref. (1); (4) Simple symmetrical Joukowski form
with a cusp at the tail.

(1) Elliptic Cylinder,
The appropriate functions are given by
b+ idw= V{z—i—c sinhioef"‘c}’
V 41— v = dw/dz,
z=c.cosh (,
where the semi axes of the ellipse are [ = ¢ cosh £, and ¢ = ¢sinh £&,.
For large values of z
(u—1v)/V approximates to — sinh £, %0 ¢2/222
Q/V = } ¢%sinh &, (cosh &, + sinh &)
— bt
QIV £ = § (1 + Ifh).

For the case when ¢ is greater than / the formule become

or

and

w = V{z — dccosh &, 650_6} )
z =1ccosh C,
I =csinh&,,¢t=ccosh&,,
Q/V= }c2cosh &, (cosh &, + sinh &)
TR
as before, so that this formula holds for all values of #//.

(2) Rankine Oval.
Z2—C)|

b +id= w=V{z—A10gZ+CJ~
(VA4 u—) [V=1—2A/(22—c?),
where 2¢ is the distance between source and sink.

The thickness 2¢ and the length 2/ are determined from the
following considerations :—

(@) Y=oforx=oandy =1,
(0) V4+u=ofory=oandx =1.
(a) This leads to the condition

A =1t2a,
where
tan o = ¢ft.



(6) This leads to the condition
12— c?=ctfe.
It is obvious that
QIV=2cA =ctjx
and so
Q/V#: = tan afo.
Also
21?2 = tan® o4 tan ofo.

The shape is given explicitly by the equation

x% = 2—y? 4 2cy cot (2ay/i).
In the limiting case

lt=1-0
corresponding to & = 0 we have

Q/VE#2 = 1-0

agreeing with the corresponding result for the ellipse, the limiting
shape being a circle in both cases.

(3) General symmetvical Joukowsk: wing (Ref. 1 and 8).

vl ®
w=V Lt -+ 7 J ,
where
t={_{—a+ec,

For large values of z
z approximates to Z{l + (1/3) (n® — 1) ¢¥ C’“’}
71;} = (V + u — )|V approximates to 1 — ll a® — (1/3) (n* — 1) 02}/@,
QJV = a? — (1/3) (n? — 1)c%
For the actual shapes used in R. & M.1241, which satisfy the relation
n = 2-5 — 0-5 (afc), the values of / and # are recorded and so Q/V?
can be determined for given Z/2.

(4) Swmple Joukowsk: form.  This corresponds to the simple
case of the above for which n=2. For this case theoretical formulee
can be obtained for the maximum thickness as well as for the chord.
The formule may be written in the following form. On the surface
we may write { = a ¢ from which the shape of the section is given by

xfc = (ot + 1 + acos 0) (1 4 1/F),
yle =1+ o sin 0 (1—1/T7),
where « is a constant given by
a=(a —c)|c,

F=2x(l+ o) (1-+cosb) 41
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and x and y are rectangular co-ordinates. Then the value 6, of 0
corresponding to the maximum ordinate is given by the relation :—

¥, =sec 0, — 1.
The equation for Q/V becomes
OIV = ¢ o (o 2).

The chord length is equal to the difference between the values of x
which correspond to 0 = 0 and § = 7 and reduces to

Chord == 4c¢ (1 4+ o)2/(1 -+ 2cx).

4. Results of calculations wn  two diumensions—Values of
Q/V #2 = X have been calculated from the above formule for the
four different shapes for various values of the fineness ratio //¢ and are
shown plotted against [/t in Fig. 4. The shapes 1, 2 and 4 all have
the circular cylinder as a particular case and the formule are in
agreement in making A =1 for //t = 1. The first approximation
to the tunnel interference is given in terms of A by the formula

u V= (%/12) X (2/h)?
= 0-822 X (2/h)? N )

where 2¢ is the maximum thickness of the section and % the breadth
of the tunnel (equation (2) of § 2). :

To assist in the process of guessing a suitable value of A for an
arbitrary shape, the four profiles corresponding to the fineness
ratio 3:67 have been calculated, and are shown in Tig. 5.*
Comparison of Figs. 4 and 5§ shows how the tunnel interference
for a given aspect ratio increases with the space occupied by the
section. From these curves it should be possible to interpolate
with sufficient accuracy the tunnel interference for any intermediate
shape.

- It may be worth noting that the curves of Fig. 4 give a first
approximation to the flow at a large distance from the body in free
air where the effect of the body approximates to that of a circular
cylinder of radius #AL

5. Theoretical accuracy of the approximation in two dimensions.—
The accuracy of the above first approximation to the theoretical
tunnel interference may be checked in the case of the Rankine
Ovals by comparison with the exact calculation given in
R. & M. 1223 (3). (Table 1.) This table gives values of the velocity
V 4+ u =m (V + u,) just outside the surface for a Rankine Oval
in a channel, where V + 1, is the velocity at the corresponding
point in free air. The value of m at the maximum ordinate x = 0,
y = T (=1) is denoted by m,, and the values of m; — 1 ( =u,/V to
the approximation of the present report) are plotted in Fig. 6 against

*Shape 3 is taken from (Ref. 1) Table 6, and the value of 3-67 for the
fineness ratio was chosen to correspond with this shape.
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(T/H)? { =(2¢/h)?} for the various values of the fineness ratio
C/T (= 1/f). On the same diagram are shown the values of u,/V
corresponding to the first approximation in the form of straight
lines through the origin of slope 0-822 A (see equation (1) of section 4).
When [/ is not greater than 5-4 the discrepancy is less than
% per cent. on velocity within the limits of the calculations (2¢/h
not greater than 0-2). For the two sections of fineness ratio 9-8
and 18-3 the discrepancy is less than § per cent. so long as the chord
length is less than the width of the channel (2 /4 less than 1-0).

When the above first approximation begins to break down it is
no longer exactly true that the velocity is altered by tunnel inter-
ference in the same ratio at all points of the surface. It appears
from the remaining entries in R. & M. 1223 (Table 1) that the dis-
crepancies between velocities at different parts of the surface are
of the same order of magnitude as the error of the first approximation.

6. Alternative approximation for a long body.—When the
fineness ratio is large and the chord length is large compared with
the breadth of the tunnel, an alternative approximation is available
(suggested by Professor Lamb in (Ref. 5) ). This depends on the
assumption that the velocity V -+ # is constant across the space
between the maximum ordinate of the body and the tunnel walls
so that #, may be determined from the condition of continuity by the
relations

WV = (h — 28) (u + V)

uy [V = u(1t, 4 V) ‘
The value of #,/V may then be determined by comparison with the
values of (V- #,) V for infinite stream given in R. & M. 1223 (Table 1)
(VJV,). Values of 1,/V obtained in this way for the sections of
fineness ratio 9-8, 18:3 (and o) are shown in Fig. 6 by dotted
curves. It appears that the error of this approximation is not
greater than 1 per cent. in either case provided that 2/ is not less
than /. Hence by combining the two approximations it should
be possible to estimate #,/V within 4 per cent. for all cases in which
2t/h is not greater than 0-2.

7. Comparison with experimental resulis—The results of
experiments on various symmetrical shapes in a model channel
of variable width are given in R. & M. 1223 (Table 3). The results
are there analvsed on the assumption that the drag of the body is
increased by channel interference in the ratio# : 1 where

n—1=K,m?*—-1 .. . .. .. (1)
so that K; =1 gives an increase of drag corresponding to the
theoretical increase of velocity. The same results have been re-

analysed by the methods of the present report ; the values of # given
in Table 3 of R. & M. 1223 were plotted against (2¢/h)2. With the
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exception of one or two points at large values of ¢/ they appear
to lie on straight lines through the point (# = 1, £/ = 0) within the
limits of accuracy of the observations, so that it is possible to write

n =14 q (2t/h)?
If equation (1) is replaced by the approximation
nw—1=2K, (m — 1)

(since (m; — 1) and (» — 1) are small quantities), it follows from
equation (1) of section 4, that

g=0-822 X x 2K,

The values of Afrom Fig. 4 appropriate to the actual shapes tested :—
Joukowski section and ellipse as well as Rankine oval and circle,
have been used to determine the values of K, given in Table 1,
and the differences between these values and those quoted from
R. & M. 1223 (Table 4) are chiefly due to the theoretical difference
between Joukowski section and Rankine oval. The effect on the
curve of K, against %, shown in Fig. 7, is mainly to raise the values
for small %25, This is due to the fact that e.g. the theoretical value
of Afor the Joukowski section of largest fineness ratio is only 0-71 of
the value for a Rankine oval of the same fineness ratio as used in
R. & M. 1223. The modified points suggest that the value of K,
may tend to unity as Ap tends to zero which would be expected
on theoretical grounds since the excess of the value of X; above
unity is due to the increase of the effective volume of the section
by the presence of a turbulent wake whose volume should tend to
zero with ky. More probably the factor K; approximates to unity
when the form drag vanishes as is suggested in drawing the curve.

8. Three dimensions.—The method of calculating the interference
velocity for a body of revolution on the axis of a square or
rectangular tunnel is very similar to the method already described
for the case of two-dimensional flow. The image of a three-dimensional
point source in an infinite rigid plane is an equal source symmetric-
ally placed. It follows that a single source on the axis of a square
or rectangular tunnel is equivalent to a doubly infinite system of
images at the corners of rectangles equal to the cross-section of the
tunnel.

Again, the velocity V -+ # at a point at a large distance R
(measured normal to the axis) from a body of revolution is given to a
first approximation by the equation

Vaiu=VEQR .. .. .. .. ()

where Q is a constant. Exactly the same form applies if the
arbitrary body is replaced by a source and equal sink (doublet),
the constant ( depending on the moment of the doublet.
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It follows that the additional velocity at the origin due to the images
in the absence of the original doublet is given by

uy = Q 21/R®

where the summation is taken for values of R equal to the distances
of all the images from the origin.

The summation of this double series is discussed in the Appendix.
For a square tunnel of unit side the numerical value of the sum
is 9-04 ; for a Duplex tunnel of sides 1-0 and 2-0 the sum is 4-05.
It follows that for a square tunnel of side %, the value of #, is given by

wy =904 Q/h3
and for a rectangular tunnel of any shape we shall write
u, =0 Q[h3. . o . .. . . (2)

By an argument precisely similar to that given for the case of two
dimensions it follows that the drag and pressures on any body of
revolution in a tunnel stream of velocity V are equal to this order
of approximation to the corresponding values in an infinite stream
of velocity V + u,, where #, is given by the last equation.

9. Determination of the tunnel tnierference for pariicular shapes.
—As in the two dimensional case the value of Q may be determined
for any shape for which the flow in an infinite stream is known.
The only two simple cases are (1) The Rankine Ovoid and (2) The
Spheroid.

(1) The Rankine Ovoid.—This name may be given to the three-
dimensional analogue of the Rankine Oval in two dimensions,
being the surface of revolution which is equivalent in its external
effect to a point source and cqual sink of strength A at a distance
2¢ apart in a uniform stream of velocityV. The appropriate formule
are given by Lamb in (Ref. 5).*

The axial component velocity at a point whose cylindrical
co-ordinates relative to the body are x, #, is given by

A (x4¢ x—c¢
Vi u=V+4 { 122'3—— R } .. (D

where
RP=(x—c)2 475 Ri2=(x+¢)>+ 72
For x = o we have

1w=cA[2TTR3
where R? = ¢% 4 72 . .. . . (2).

* The sign convention is opposite to that used in (Ref. 5) and in Lamb’s
Hydrodynamics.
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The corresponding forms for the velocity potential ¢*, and Stokes’
stream function t are

b=Vr4+ (AAD /R, —1/R) .. .. .. (3
P=1Vr+@AAmiE - R — E+RY . @),
where .
2b 1 2
Vtu=5=7% 3
()
Y 1 2¢
T or v 0«

If the maximum radius of the equivalent surface is ¢, and the
maximum length 2/, the value of £ is determined by the condition
that = 0forx = 0,7 =1, giving

0 =1 V2 — Ac/2m(c? + £2)}

or

ARV ¢ = (8/c?) (1 + 2[c?): .. c. . ... (8).
The value of / is determined by the condition that # = —V for
r =0, x = lleading to

(12)c? — 1)2 = (I £3/c?) (1 + #3/c%)t . . .. (7).

This equation is a biquadratic for //c which can be solved fairly
rapidly by successive approximation, when ¢/f is not too small, so
as to give /[t in terms of ¢/c. The corresponding values of the inter-
ference velocity #; can then be derived from equations (2) and (6)
with equations (1) and (2) of §8 in the form

|V = (o 3/ & (1 + c?e3)?
It is convenient to write in general
[V = % o A31®
where Ais a function of shape which is unity for sphere.

(2) Spheroid.—The expressions for the velocity potential and
stream function for a prolate spheroid are given in Lamb’s Hydro-
dynamics, section 105. The corresponding formula for the axial
component velocity is given in R. & M. 1239 (Ref. 7) in the form

u|V = C{log coth 7/2 — cosh v/(sinh? v - sin* 0) }

where
C= 1/{cosh 7)o/sinh? v, — log coth 7)0/2}
and x = k cos 0 cosh 7, » = % sin 0 sinh v are the axial and radial

co-ordinates of any point ; / = & cosh v, ¢ = & sinh v, being the semi-
axes of the spheroid. For a point at a large distance normal to the

* The sign convention is opposite to that used in Lamb’s Hydrod ynamics.
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axis, 6 = /2, and #/V may be expanded in powers of e—7* the first
term of the expansion being :—

ulV= 5 Ce
To the same approximation, » = { ke 7 and so

V= % C k373

1
=3 C cosech? v, £3[7®
and in the notation of the last section

2
A= 3 C cosech 37,

7, being given by
: tanh v, = ¢/l

Finally, it may be noted that (as in §4) the three dimensional
curves of Fig. 4 give a first approximation to the flow at a large
distance from the body in free air, where the effect of the body
approximates to that of a sphere of radius ¢A%.

10. Closed tunnel of civcular cross-section.—An exact solution for
the flow in a closed tunnel of circular cross-section past a particular
body of revolution was given by Lamb in R. & M. 1010 (Ref. 5)
in the form of an infinite serics of Bessel functions. The body is that
generated by a point source and equal sink which has been described
as a Rankine Ovoid ; as in the two-dimensional case the shape of
the body is slightly modified by the presence of the tunnel walls.
To conform to the sign conventions of the present paper, the sign
of ¢ and q,: must be changed and V, V 4 «, written in place of
—U, u, respectively.

The formule determine the axial component velocity just
outside the largest cross-section of the body, and this may be
compared with the corresponding value V -+ 4, in the absence of
the tunnel walls. From analogy with the solution for a square
tunnel, it is to be expected that for sufficiently small values of the
ratio ¢fa (@ is the radius of the tunnel) the value of (v—u,)/(#, + V)
can be expressed as an expansion in ascending powers of ¢/a of which
the first term is of the form B#3/a®, where B is a constant. To a
first approximation the flow round the body would be identical
with that in a free stream of velocity V -+ 2, where

MI/V = (u — 'M’o)/(uo -+ V).

* It is convenient to expand in powers of cosech 2xy/2.
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Again the value of B would vary with the fineness ratio in the
same proportion as that already calculated for a Rankine Ovoid
in a square tunnel, so that it should be possible to write as in
Section 12 below

w [V = 1 A (s[S)3/2

where s/S is the ratio of maximum cross-sectional area of body to that
of tunnel, A is the same function of shape of body as in §9, and tis
an absolute constant for a circular tunnel which probably differs
from the value for a square tunnel.

It has not been found possible to establish these results analytic-
ally or to obtain an analytical formula for the constant 1. The
following method has therefore been adopted. Taking the particular
fineness ratio corresponding to #/c = 1/5, the calculations given by
Lamb in R. & M. 1010 (Ref. 5) were extended to additional values
of ¢/a. The results are given in Table 2 and plotted in Fig. 8 in the
form (a%/¢%) {(# — u,)/(4,+-V)} against f/a. The chief arithmetical
and analytical difficulty arises from the fact that the series for »/V
converges more and more slowly the smaller the value of ¢/a. This
limits the smallness of the value of #/a for which calculations can
usefully be made, but the points plotted in Fig. 8 are sufficient to
verify that the ordinate in Fig. 8 approaches a constant value
_ ast/a tends to zero and to establish the magnitude of the limit as 4-03

with an error not greater than 1 per cent. The value of A for this
fineness ratio is given by Fig. 4 as 5-01, and since s/S the ratio of
areas is equal to #2/a?, the value of Tmay be calculated as 0+804, from
the equation A 7 (s/5)%2 = 4-03 (¢/a)®.

It appears from Fig. 8 that the error of the first approximation
increases with increase of {/a rather more rapidly than in the corre-
sponding two-dimensional case, but the error when the length
becomes equal to the diameter of the tunnel is still slightly less
than 1 per cent. on the body drag (i.e. on V2. When the length
of the body is appreciably greater than the tunnel diameter the
approximation described in R. & M. 1010 (Ref. 5) and in §6 above is
available, and is shown by the dotted curve. It appears that an
estimate of the tunnel correction could be made with an error less
than 1 per cent. on the drag, from a knowledge of the dotted curve
and of the limit as ¢/a tends to zero.

11. Open Jet Tunnel.—A solution for the case of a free jet of
circular cross-section can be obtained by a method analogous to
that given by Lamb for a closed jet. The boundary condition in this
case is that the pressure, and so the resultant velocity, are constant
over the surface of the jet. As explained in R. & M. 723* this
condition is equivalent, to a first approximation, to the condition
that the axial component velocity is constant and equal to V over

* R. & M. 723. Aerofoil Theory by H. Glauert.
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the whole of a cylindrical surface of radius @ coinciding with the
undisturbed surface of the jet. It is therefore necessary to find the
solution for a source (and equal sink) such that the axial component
velocity is zero on this surface. Trying as before a solution as a
series of terms of the form

¢:021c}>anjo(kn7)e_m N ¢ )

(for x > o) the required boundary condition is now

od

U = =0
0x

for » = a, and therefore the values of 2, must now be taken as roots
of the equation
Jo(Bpa)=o0 .. .. .. (2).

The remaining conditions for a single source at the origin are the
same as before, viz. :—(for x = o)

0

.e_

|

Uu =0

i

QD
xR

for all but infinitesimal values of #, and that the total flow outwards
from the origin is equal to the strength Q of the source, so that the
limit as x—o0 of

Ju-.‘ZTcrdr::ngQ .. .. . (3)
according as x Z 0.

For x > o, the value of # given by (1) tends to the limiting form
00
u=— Xkya, J, (k7).
1

Multiplying both sides by J, (kx?) . ¥ dv and integrating from
0 to a we have

—Fm Gy ( Jo? (k) v dr =1ty |

| Jo (km 7’) u.vdr

or since # is zero except for infinitesimal values of 7,

~a

w.vdr = Qf4r

_'% at km A le (km ﬂ) = Jo (O) . Lt.v——)-o )
Hence (1) becomes (for x>0)

R 2§Jo<knge—knx )
Ta 1 kn]l (kna)
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The corresponding value of the stream function () satisfying the
relations (5) of §9 is

_ 9 srlilthnett
(x>0),llJ = orad p> o J4% (By a)
0 Jy (hy7) efn? >
_ 0 v)_‘?, 1 (Bn 7 et.n,.— %
(x<0), ¥ zmzi“ B dit (ka) "

The term a? is inserted so as to make y>0 as x>+ oo, Y=>Q/27
as x—>— oo.

For a uniform stream V with a source Q at (—c¢, 0) and a sink
—Q at (c, 0) and for —c<x<+-c,

Q 7]y (ko) e ~Fn € cosh ky % )
I EE A AT T A

b=Vt

If ¢ is the radius of the streamline surface corresponding to ¢ = o
at x = o we have putting » = ¢, x = o in (6)

(7),

O
T
(-3
Ju—y
el
=
™
—
—
S
S

and the axial component velocity at the corresponding point is
given by
V4 u Q T J,(hytyehne
u_ + = X Jo 5 ) . .. (8).
Vv ma?V 1 J2(kna)

Values of the velocity #, at the corresponding point when the body
isin a free stream are given by R. & M. 1010 (Ref. 5) equation (4),

V + u, £2
Vv “laEray

It appears from the formule that the equivalent free air speed
in an open jet tunnel is lower than the tunnel speed, so that the
correction is of the opposite sign to that in a closed jet. Values
of (a®£) { (wo—u)/(u,+V) } were calculated as before for the
case of a body of fineness ratio 5-50 for which #/c = 1/5 and are
given in Table 2 and plotted in Fig. 8 against a/f. The limiting
value of the ordinate as determined by extrapolation has the value
1-03 and so the interference is almost exactly 1/4 of the corresponding
interference in a closed jet, but of opposite sign. As the size of the
body is increased the ratio becomes smaller still. The error of the
first approximation when the length of the body is equal to the
tunnel diameter though forming a greater proportion of the total
correction than in the case of the closed jet is, as before, less than
1 per cent. on the body drag.
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An approximation similar to that obtained for the closed jet
for a body whose length is greater than the tunnel diameter is given
by assuming that the velocity outside the maximum section of the
body is equal to the tunnel velocity. The approximation is shown
by the dotted curve.

Open Jet Square Tunnel.—As a check on the result for an open
jet circular tunnel, the case of an open jet square tunnel has been
worked out by the method of images, although this case is of no
practical importance. The only difference as compared with the
closed tunnel is that the sign of every alternate image is changed.
The resulting calculated value of ¢ is —2-65 as compared with 9-04
for a closed tunnel. The ratio —0-29 (open jet to closed jet) is not
very different from the value —0-25 for the case of a circular
section.

12. Summary of Results—It is convenient to summarise the
results obtained for tunnel interference.

The first approximation for all cases may be expressed in the
following forms. If #; 4 V is the free air speed corresponding to a
tunnel speed V, then :—

In two dimenstons
[V = TA(s]S)2.

In three dimensions
u, [V = TA(s]S)3/2,

Here s/S is the ratio of maximum cross-sectional area of body
to area of tunnel. Ais a coefficient of shape independent of the shape
of cross section of tunnel. All calculated values of A for both two
and three dimensions are collected in Fig. 4. 7is a constant depending
only on the shape of cross-section of the tunnel . Values of T are
collected in the following table :—

Table of values of .

Closed Jet. Open Jet.
Two dimensions .. .. .. 0-82 —0-62
Three dimensions, Circular . . .. 0-80 —0-20
Square .. .. 0-81 —0-24
Duplex .. .. 1-03

To illustrate the method the following two examples have been
worked out :— '

Examples.

(1) Body of revolution: diameter 23 inches in a 7 ft. square
closed tunnel: fineness ratio //{ = 5-45. (Shape given in R. & M.
1030.)
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The shape approximates more closely to a Rankine Ovoid than
to a spheroid, hence from Fig. 4, A=: 5-0. Also from the above
data, T = 0-812, (§/S)®2 == 0-0146. Again the fineness ratio is
approximately that of Ifig. 8, and so the first approximation to
(1,/V) corresponding to #fa - o in Iig. 8 may be corrected by
multiplying by the ratio (3-2/4-0) of the ordinates for //a == 0-24 and
tla == 0. Hence, finally

== (0-0473

. T\ 2
(“1 ; X) = 1-098

giving a correction of 10 per cent. on the drag coefficient.

and

(2) Body of same diameter in same tunnel but of fineness ratio 3-0
(shape given in R. & M. 1271 (Ref. 2) ).
p

The shape approximates to a spheroid and so
== 225, 1= 0-812, (s/5)3/% = 0-0146
and the first approximation is adequate. Hence

u, [V = 0-0267
or
(ug 4+ V)2[V2 == [-055.

13. Comclusions.-- Theorctical formule have been obtained
which give a first approximation to the equivalent frec air speed
for a symmetrical body in a wind tunnel. In two dimensions results
are given for cylinders whosc cross-sections are the cllipse, Rankine
Oval and symmetrical Joukowski wing. From thesc results it should
be possible to guess a figure with sufficient accuracy for all ordinary
shapes. The results in two dimensions should also assist in the
process of guessing a figure in threc dimensions where theoretical
figures are available for the spheroid and Rankine Ovoid only.

In three dimensions the effect of change of shape is independent
of the shape of cross-section of the tunnel. Values of the constant
determining the effect of shape of tunnel section are given to a
sufficient approximation for practical purposes for open jet circular
section, closed jet circular section, square and “ Duplex " ; it could
be evaluated for any rectangular section.

The theoretical accuracy of the approximation in two dimensions
is checked by comparison with the exact calculation of Fage for the
case of an equal source and sink (Rankine Oval). The comparisons
suggest that the accuracy is sufficient provided that the thickness

(40432) B
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is less than one-fifth the breadth of the tunuel and the chord length
less than the breadth of the tunnel.  In three dimensions the case of a
source and sink in a circular closed jet has been worked out by
Professor Lamb ; the calculated results at present available are
much less complete, but the limits of application of the approxima-
tion appear to be about the same as in two dimensions. It may be
remarked that when the approximation breaks down it is no longer
necessarily true that the same correction will apply even approxi-
mately to all parts of the body; but in the case of an elongated
body appreciably longer than the breadth of the tunnel a
different approximation is available which may have some
practical application.

The only satisfactory experimental data on tunnel interference
at present available are those of Mr. Ifage in (3) and apply to the two-
dimensional case. Tt appears that the theoretical correction is to be
multiplied by an empirical factor which increases from unity for a
low drag form to 2-0 or 3-0 for a high drag form. IEvidently this
represents the ratio of the actual disturbance of the fluid to the
theoretical disturbance and may therefore be assumed, as by
Mr. Fage, to be a function of the drag coeflicient and as such applied
to the three-dimensional case in default of further evidence.

The author wishes to record his appreciation of the assistance
of Miss D. Yeatman in the calculations.
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APPENDIX.
Sum of the double series
ad 1 2
4 1((?}12—)3/2 + TEENE RN R SR - (1o e

No formula for the sum of this series has been discovered and the series has,
therefore, been summed numerically. A practical ditficulty arises from the
extremely slow convergence of the scries, e.g., the error of the sum to
47 terms is 3} per cent. To get over this difficulty use was made of the
following artifice. Take the typical term as 1/R," where
Ryw? = m? - n?

so that Rpy is the radius vector of a point whose Cartesian co ordinates are
m and n. Each term of the series may then be considered as occupying a
unit square with its centre at the point (i, »). Hence, for sufficiently large
values of R, the sum of all terms of the series for whicl the points (m, #)
lie outside a certain curve approximates to the surface integral of 1/R3 taken
over the whole area outside this curve. In particular, taking the circle
radius Ry, the sum of all terms for which

m? | 722 > R,2

approximates to

IR, 3 T R(,
The sum of the series was calculated by adding this value of the remainder
Lo the sum of all terms for which m2 |- n® \/: Rp2. Faking in succession values
Ry = 10 and R, = 20, the difference between the results in the two cases
was only 1 in 2,000, although the two remainders were 3§ per cent. and
1-75 per cent. respectively.
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TABLE 1.
Analysis of observations vecorded wn Table 3 of R. & M., 1223.

K
Section. Iyt p K, kno | R & M. 1223
1. Joukowski 9-6 4-53 1-15 0-00444 0-87
2. Joukowski . 4-8 2-50) 182 0-00750 1-29
3. Joukowski . 3-05 1-77 1-83 0-0106 1-81
4. Rankine Oval .. | 10-3 6-76 1-67 0-0108 1-78
5. Ellipse . 54 3-20 1-58 0-0184 155
6. Circle 1-0 1-00 3-13 0-620 233
TABLE 2.
Rankine Ovoid in a lunnel of circular cvoss-section. cft = §-0,
It =5-503, V/](uy + V) = 0-98113.
; Closed Jet. Open Jet.
fa (u—tt0) | (V + 10) (2=t10) /(V +-4o)

0-06 0-00086 —0-00021

0-08 0-00196 —0-00053

0-10 0-00383 ' —0-00094

0-12 0-00651 —0-00153

0-20 0-0271* —0-00442

0-30 () - (01069

0-40 0-168* —{(-01511

* Taken from R. & M. 1010.
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