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Summary. 
The Report presents a theory of the aerodynamic interference between a helicopter rotor blade and a 

fuselage or wing. A two-dimensional analysis is made to which a correction factor is applied to convert 
the two-dimensional calculations to the appropriate three-dimensional case. 

The pressures and forces on circular and square-sectioned fuselages and on wings are calculated for 
hovering flight and also the corresponding changes of lift on the blade. It is shown that large changes of 
blade lift occur if the blade is close to a fuselage due to the interference by the fuselage of the downwash 
or normal component of flow. The calculations also show that the interference effects on, and due to, a 
square sectioned fuselage are about half as large again as those of a circular cylinder whose diameter is 
the same as the length of the side of the square. 

The analysis is extended to cover the case of interference between a blade and a lifting wing or tailfin 
in forward flight. It is shown that the interference between a tailfin and tailrotor can be severe and may 
result in a large loss of effectiveness of the tailrotor, especially in hovering and low speed flight. 
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1. Introduction. 

When a helicopter hovers the fuselage and other components, such as a wing or tailplane, are partially 
or wholly immersed in the rotor slipstream. Apart from the steady loads due to the rotor slipstream, it 
is known 1'2 that large transient loads occur as the blades pass over these surfaces and that these loads 
increase the nearer the surfaces are to the rotor. These loads are not only important because they may 
affect aerodynamic e~ciency, but because they could also be a serious source of vibration. The proposals 
for helicopters with retractable rotors and other forms of high speed VTOL aircraft, which have rotors 
dose to fuselages and wings, mean that this problem could become even more acute in the future. Further 
important interference effects are those which affect a tailrotor if dose to a wide fuselage or fin. 

Refs. 1 and 2 above, describe some measurements of periodic pressures on cylinders and flat plates 
under a rotor but so far there appear to have been no corresponding theoretical studies. The purpose of 
this Report is to provide such a study which will predict and explain the transient loads. 

The calculations of this Report fall into three groups, namely: 

(i) the pressures and forces on a fuselage due to the passage of a blade, 

(ii) the change of lift on the blade due to the presence of the fuselage, 

(iii) the changes of lift on a blade and wing in forward flight. 

In calculating (i) two assumptions are made which greatly simplify the analysis. Firstly, the flow 
around the blade's aerofoil is replaced by line vortex flow, corresponding to the bound vortex of finite 
aerofoil theory. It is shown that this is a good approximation even when the blade is only a chord's 
distance from the fuselage. Secondly, the flow in any plane normal to the fuselage is assumed, at first, to 
be two-dimensional. This not only simplifies the calculation of the velocities and pressures but enables 
the methods of conformal transformation to be used to determine the flow about a variety of fuselage 
shapes. An approximation to three-dimensional flow is obtained by calculating an 'end effect' and apply- 
ing it to the two-dimensional calculations mentioned above. 

The fuselage cross-section shapes considered in this Report are the circle and square although the 
analysis can easily be extended to elliptical and rectangular sections. The calculation of (i) therefore is 
reduced mainly to the two-dimensional one of finding the velocities and pressures on a circle or square 
in the presence of a moving vortex. 

In the initial calculations of (ii) the aerofoil flow is no longer assumed to be that of a simple vortex, 
except to approximate to its image in the fuselage and a flat-plate aerofoil is used to represent the blade. 
Actually, it is found that by far the most important effect is simply the local change of flow direction due 
to the interference of the downwash, or normal component of flow, by the fuselage. 

In the calculation of (iii) we have to deal with the case in which two lifting surfaces are interfering with 
one another. If the rotor blade and wing are more than a chord distance from one another the simple 
vortex representation of the interfering lifting surface can be used. In cases where the blade and wing are 
very dose, however, such as when a tailrotor is attached to a broad fin, it may be necessary to represent 
one or both of the lifting surfaces by two vortices, instead of one, as a better approximation. 

Measurements of pressures on circular cylinders below a hovering rotor, have been made at R.A.E. 
and NASA, and pressure variations on a blade in the presence of a circular cylinder have been measured 
at R.A.E. For all these cases there is good agreement with the theory presented in this Report. 

No attempt has been made to calculate the vibration due to aerodynamic interference. 

2. Calculation of Fuselage Pressures and Forces in Hovering Flight. 

2.1. The Approximation to the Flow Around an Aerojbil. 

The flow around an aerofoil in the presence of a fuselage, both of arbitrary shape, is not only very compli- 
cated but, in general, no two-dimensional transformation exists which maps such a flow onto the W = • + i~ 
plane. However, a great simplification can be made by replacing the flow around an aerofoil by the 
flow of a vortex having the same circulation. Mitne-Thomson, in Ref. 3, calls this the 'substitution vortex' 



and the justification for using it is as follows : The vortex flow, as seen by a stationary observer, will consist 
of a series of concentric circles. Now, the flow about the circle [([ = a, in the (-plane, Can be transformed 
into the flow about a flat-plate aerofoil of chord c = 4a, in the z-plane, by the transformation, 

z = ( + ~ .  (1) 

0 2 
It can be seen from (1) that as 1([ indreases the term ~- decreases and becomes negligible and the flow 

about  the flat plate becomes more nearly like the flow in the (-plane, i.e. the vortex flow. The degree of 
approximation involved in taking z = ( can be found by inverting (1) to obtain 

a 2 

~ z m - - D  o,° 
z 

or, in terms of the flat-plate chord, 

( C 2 
- 1  

z 16z 2 . . . .  

C2 (22 C 2 1 
Putting Izl = r gives [1--6-J = 16r ----~ '  so that if we take r = c, 16r2 - -(-~, which shows that the approxi- 

mation z = ( is quite good even at only a chord distance from the centre of the aerofoil. As we shall usually 
be concerned with distances at least as large as this, the error in assuming vortex flow in place of the aero- 
foil flow should be very small. A special case, in which the separation is smaller than this, is treated 
separately. 

2.2. Pressures and Forces  on a Circular Fuselage. 

Although the velocity and circulation at a blade section vary along the blade and the fuselage cross- 
section may vary also, a two-dimensional analysis, described below, will be used to calculate the pressures 
and forces. It is found that for the constant section fuselage, at least, the two-dimensional approach is 
quite accurate up to a blade radius of about 0.8R but, from that point outwards, the measured pressures 
fall off far more rapidly than the two-dimensional calculations predict. As will be seen in Section 2.5, 
this 'end effect' can be explained theoretically quite simply and the results then show good agreement 
with the measurements. An appropriate end correction will therefore be made to the two-dimensional 
calculations. 

It will be assumed that the helicopter rear fuselage can be represented by an infinite circular cylinder of 
radius a, and that the flow around the blade aerofoil at a given point along its span, is that of an infinite line 

1 
vortex having the local strength re equal to 2nn of the circulation about the blade's aerofoil. 

We will take the centre of the circular fuselage as origin of co-ordinates and place the vortex at the point 
z 0, as in Fig. 1. I fD is the angular velocity of the rotor and r is the radial distance of the section under con- 
siderat~on, V = f~r is the speed with which the blade section passes the fuselage, i.e. the speed of the vortex 
relative to the chosen axes. 

The image system of a vortex of strength re at the point z o in the presence of a circular cylinder of 
radius a consists of a vortex of strength re at the centre of the circle and another of strength - re at the inverse 
point z = a2/~o . The complex potential of this system is then 

W = ix log z +ire log ( z - z o ) - i x  log (z-a_~Z~ . 
\ Z o /  

(2) 



In addition the fuselage will be immersed in the downwash (assumed steady) of the rotor. This velocity 
can be obtained from Ref. 4 which gives the relationship between the induced velocity at a given radial 
position at the rotor and at a corresponding point vertically below. The induced velocity at the rotor will 
have to be found in any case when determining the value of tc from blade strip theory. Calling this local 
induced velocity U, where U will be a function r and Zo, the complex potential becomes 

 a2) W = - iUz+iUa2/z+i tc log(z-zo)- ix log -~o " (3) 

In writing down equation (3) we have assumed that the fuselage is in a uniform flow, whereas, as we 
have implied above, the induced velocity varies in a vertical direction. However, from the information 
given in Ref. 4, it/tppears that except, perhaps, at points very close to the rotor's edge, the induced velocity 
field is nearly uniform and the assumption should be a reasonable one. For the purposes of calculation 
we will assume that the appropriate velocity is the velocity at the centre of the fuselage. 

The velocity components, u and v, relative to the x and y axes, are given by 

dW - iU-iUaZ/z2 + itc/z-~ ix ix (4) 
- u + i v  = d--Z= z-z-----o z-a2/~o" 

If we put z = ad °, Zo = ao d °°, ~0 = a0 e -~°°, the velocity components at a point P(a,O) on the cylinder 
surface are given by 

- u + i v  = - i U - i U e -  2~°+itCe-i°-t ix ilc 
a 2 

a aeiO ae~O ___ eiOo ~, - -  a o el°° 
ao 

f [ 1  1 ke_~(o._oo ) 1 1 }  
= - i  U(l+e-Zi°)-tCe-i° 1-+ 

a 1 --~ e -"°-°°) i - 

where k = a/a 0 and 

u+iv = - i  J U(l+e2~°)-~e~°a [ lq-  
1 

1 ei(O_Oo ) l_kei(O_Oo ) 1-~ 

If the velocity at any point on the cylinder is q, we have 

q2 = ( u -  iv) (u + iv), 

which after simplification becomes 

q 2 = 4  {UcosO ~c [k-c°s(O-Oo)] } 2 
a 0 1 - 2 k  cos (O-Oo)+k 2 (5) 

Now, since the flow is unsteady, the appropriate form of Bernoulli's equation is 

P+½Pq2--(~2 = Po+½P U 2 
o~ 



of ~W where P0 is the atmospheric pressure. To find ~ we must calculate the real part 0t ' so that differ- 

entiating (3) with respect to t, assuming x constant, we get 

OW ix Oz o ix a 2 C3~ o 
Ot Z - -Z  0 0 t  z - - a Z / z o  " ~ 2 0 t  

1 } zo 
Z - Zo z ~  2 - a 2 3 o  Ot  

= - # ¢  V {  1 a2 } 
-t z~2_aZ (6) z -  z o 3o 

since --=0z 0 and --=0z° 0 3 0  = OXo 
Ot Ot t3t Ot 

It is shown in Section 3.2 that, unless the blade is very close to the fuselage, the vortex strength x varies 
little as it passes over the fuselage. Even when the blade is close to the fuselage, the most important case 
is the one in which the blade is directly above it, when x is at a maximum and dx/~3t is then zero. Thus 
the assumption of constant x, in arriving at Oq~/St would appear to be justified. 

To find Oq~/t~t on the cylinder we put z = ae i° and z o = ao ei°° in (6) and obtain 

t l  1 a2e20o t t~t - -  i t ¢  V - ~ a 2  a °  2 
ae io _ aoeiOo ae io _ _  eiOo 

ao 

f ke-,O e-,Oo k2 eiOO+ke-iO e2,Oo l _ i lcV - - 

c- s ( O- o ) I 
) 

and the real part is 

~--t- = ao{1-2k cos ( 0 - 0 o ) + k  2} (1 - k  2) sin 0 o - 2 k  cos 0o sin (0-0o) . 

Thus the pressure at a point on the cylinder is 

(7) 

P--Po = P -ff~+½ P U 2 - l  p q 2 

= p  x__._VV [ ( 1 - k  2) sin Oo-2k  cos Oo sin (0-0o) ] 
ao [_ 1 - 2k cos ( 0 -  0o) + k 2 J + 

+ ½ p U  a - 2 p  { U c o s O  
x [ k -  cos ( 0 -  00)] ] 2 

ao [1 - 2k cos ( 0 -  0o) + k2] ~ (8) 



We are more likely to be interested in the pressure increase, due to the passage of the blade, rather than 
the actual pressure. Thus, from (8) we must subtract the steady pressure ½p U 2 ( 1 - 4  cos 2 0) on the 
cylinder due to the downwash. The pressure increment then becomes 

P-P'o P x V  I ! l - k2 ) s inO° -2kc° sO°s in (O-O° )  ] 
= ao 1 - 2k cos ( 0 -  0o) + k 2 + 

2 p x k - cos (0 - 0o) I- 2U cos 0 - - - . x  k - cos (0 - 0o) ] (9) / a0 l - 2 k c o s  ( 0 - 0 0 ) + k  2 ao 1 - 2k cos ( 0 -  00) + k 2 J 

where p[~ is the undisturbed pressure at the point of interest on the cylinder. In particular, if the blade is 
directly above the fuselage, 0o = ~/2 and 

p ~: V 1 - k 2 F 2 px k - sin 0 V,~ x k -  sin 0 ] 
p ao 1 - 2k sin 0 + k 2 a 0 " 1 - 2k sin 0 + k2 L" U cos 0 - - - .  (10) = " - -  ao 1 - 2k sin 0 + k2J 

In terms of the local blade CL, (10) can be written as 

(,  sinO } 
P-P'o = 4ZCao(l_2ksinO+k 2) 1 + 2 ( k - s i n 0 )  v c o s 0 -  4rta-----o" 1 - 2 k s i n O + k  2] 

(11) 

U 
since 4r~ t¢ = Vc C~. and where v = - -  

V 

T h e  pressures on a circular fuselage have been calculated, using equation (11), and are shown in Fig. 2 
for the conditions stated. The lift coefficients of the blade have been calculated by the usual strip theory. 
At this stage, no account has been taken of the effect of the fuselage, on the circulation when the blade is 
close to the fuselage, as mentioned earlier, and no account has been taken of the 'end effect'. The calcula- 

aq~ 
tions, shown in Fig. 2, show that by far the most important  term is p ~ ,  represented in equation (11) 

by the term multiplied by 1 -  k 2. The remaining terms are seen to have a very small effect and could be 
neglected, especially when it appears that these pressure differences for points on either side of the vertical 
are almost equal and opposite, as shown by 0 = 60 deg and 0 = 120 deg in the lower diagram of Fig. 2, 
and would therefore cancel when the total force on the fuselage section was calculated. Thus a very good 
approximation to the pressure, when the blade is directly over the fuselage, is 

aq9 _ p V 2 c C L 1 - k  2 (12) 
P - P o = P  at 47ra o " l - 2 k s i n O + k  2 

where we have returned to Po again since the above approximation implies that Po = P~- 



For  a general position of the blade 

p _ p o  _ p V2 cCL [ ( 1 - k Z ) s i n O o - 2 k c o s O o s i n ( O - O o ) ]  

4~z a o 1 - 2k cos ( 0 -  00) + k 2 " (13) 

We can take V = x~) R, since the angle between the blade span and fuselage axis will be small for all 
cases of practical interest. For  the calculation of the force per unit length of the fuselage, we will use the 
unsteady form of Blasius's theorem 5, which gives 

X - i Y = ½ i p  d z - i p  - ~ - d ~  

c c 

(14) 

where the contour of integration, c, encloses the cylinder but excludes the external vortex at Zo. The 
omission of the first integral of (14) corresponds to the approximation leading to equations (12) and (13), 
so that, neglecting this term and taking the conjugate of (14), we get 

dz X + i Y =  i p  j Ot 

¢ 

= p ~c v -~ dz 
Z - -  Z 0 a 2 " Z 2 

Z - - - -  

c Zo  

(15) 

from equation (6). 

02 (Z The only singularity of the integrand within the contour is at z = ~  and the residue of - 
Zo \ Zo/  

0 2 " 

at z = - -  as unity. 
~0 

- 1  

Therefore 

X + i Y  - 
2~z ip  ~c V a  2 

= 2~ i p x V k 2 (cos 200 + i sin 200) 

Vc CL 
and since ~ - , we have 

4n 

X : - ½  p V 2 c C L k 2 s in  200 (16) 

and 

y = i p V z c C L k 2 cos 200 . (17) 

These results check with the far more tedious method of integrating ( p - p o )  cos 0 and (P-Po)  sin 0, in 
conjunction with ec~uation (13) round the circle. It is interesting to note that if the blade has positive 
lift the cylinder is urged downwards whether the blade passes above or below the cylinder. 



2.3. Pressures and Forces on a Win9. 
In order to calculate the pressures and forces on a wing under a moving blade in the hovering condition 

we will represent the wing by a flat-plate aerofoil. We have already obtained the complex potential for a 
vortex in the presence of a cylinder and can obtain the corresponding potential for a flat plate by the 
transformation. 

2 

z = ~+~-~ (la) 

where ax is the radius of the circle to be transformed into the flat plate. This circle is now in the (-plane, 
x,y axes are reserved, as usual, for the physical plane, as in Fig. 3. 

It will simplify the calculations greatly to make the same approximation as in the previous section, 
0q~ 

i.e. of retaining only the p ~ -  term in estimating the pressure. We can therefore omit the downwash 

velocity altogether, since it makes no contribution to ~-~ , and write, for the flow about the circle, 

/ 
W = i ~: log ( + i  K log ( ( -  ( o ) - i  x log 1(  

(o ]  \ 

where (o is the position of the blade vortex in the (-plane. Then 

{ 1 1 t ,18  o ~ - -  i x  ( - ~ o o t  ~ ¢_~_~(o  TM ot " 

(o 
1 

Now 0~o 0(__2o . Oz__q 0(0 
0-5- = 0z0 0t = v S~zo 

and 0(o 0(o 0~'o 0(o 
0-? = 0 ~ o  8--7 = v ~ o  J 

since, as before, Oz° = 0~o Ot Ot = V. 

(19) 

Also, from (la) 

0~0 (2 and O(___qo= ~2 
0Zo = ( ~ - a ~  0~0 (0 ~ - a ~  

(20) 

Substituting the relations (19) and (20) into equation (18) gives 

OW { (2 a ~  l 

• ~0__~i " 
& = - i x V  ( (_ (0 ) ( (2_a2)4- (_a2-z  2 

(o 

(21) 



Points on the plate are represented by ( = a 1 e ix and the position of the blade by (o = ao eiZ°- Therefore 
the pressure on the plate is 

P -  Po = Real part of p - -  
OW 
& 

f a2 e2iXo 
= Real part of - i p x V (a le  ~x- ao e ~z°) (a g e 2~x°- a 2) + 

4 a2 . 
( a le  ~ - - ! 1  e 'x°) (a2 e -2ix° - a~ )  

ao 

After some rearrangement and picking out the real part we find 

P--Po ~ - -  
p x V k' {2k' (1 - k  '2) cos Zo sin (Xo- X)+(1 - k  '4) sin Zo} 

al {1 -2k '  cos ( Z -  Zo)+ k '2}{1-2k '2 cos 2;to +k  '4} 

p V 2 c CL k' {2k' (1 - k  '2) cos Zo sin (Zo-Z)+(1 - k  '4) sin Xo} 

z~cw { 1 - 2 k '  c o s ( X - X o ) + k ' 2 } { 1 - 2 k ' 2 c o s 2 x o + k  '4} (22) 

where k' = a~ and cw = 4al is the chord of the flat plate. The relationships between k' and X and the 
a0 

co-ordinates x,y of the physical plane are given in Appendix A. 
As in the previous case, the force components are most easily found by a contour integration, that is 

I t?Wdz I OW dz 
X + i Y = i p  - ~  = i p  Ot d~ 

c 

where the contour of integration, ?, encloses the transforming cylinder but excludes the vortex at (o- 

Thus 

X + i  Y = p tcV  j{ l J , \ 

The singularities within the contour are a double pole at ( = 0 and a simple pole at ( = a2/(o . Evaluating 
the residues at these singularities gives 

1} X + i Y = 2rt i p ~ V r~_~2 4 -2 2 
bO--t*l ~o--al  

2re i p x V a2{((2 + (2)_  2a 2} 

(23) 

10 



from which we find 

X = 0  

2k '2 (cos 2 Z o - k  '2) 
Y = ½ p V2 c CL l _ 2k,2 cos 2zo + k,4 j " (24) 

The t e rm outside the bracket in equation (24) is the local lift of the blade so that the term inside the 
bracket is the fraction of the blade lift transferred to the wing. As the blade approaches the wing k' --* 1 
and the term in the bracket ~ - 1, that is, in the limit, all the lift of the blade is transferred to the wing, 
as we should expect. 

2.4. The Pressures and forces on a Fusela~ge of  Square Section. 
In Section 2.2 the helicopter fuselage was typified by a circular cross-section. However, some recent 

helicopters, e.g. the Westland 'Rotodyne'  and the Boeing-Vertol 'Chinok', have fuselages which are 
very nearly square and it would be interesting to find out how the pressures and forces on a square fuse- 
lage differ from a circular one. To do this we need the complex potential of a vortex in the presence of a 
square and this can be obtained by mapping the Outside of the square onto the upper half of the z-plane 
and placing a vortex pair in the 7:-plane as shown in Fig. 4. 

The complex potential of the vortex pair in the z-plane is 

W = i x log 7: - i b -  V~ At (25) 
7: + i b - V ~ A t  

where b is the distance of either vortex from the cr = 0 axis and V, At is the horizontal distance travelled by 
the vortices in a short time At. Differentiating equation (25) with respect to time gives 

{ 1}  
a----~-=-itcV~ 7 : - i b - V ~ A t  z + i b - V ~ A t  " 

For the specialcase of t  = 0, in which we shall be interested later, the vortices are at z = _+ i b, and therefore 

OW 2b t¢ V~ 
Cq t 7:2 + b2. (26) 

A function which maps the outside of a rectangle onto the upper half of the 7:-plane is 

Z = A i ~ / (1- -z2)(k2-Z2)dt  
(k -[- 7:2) 2 (27) 

0 

where A fixes the scale and orientation of the rectangle and k is to be chosen so that the rectangle reduces 
to a square. Transformations of this type are discussed in Ref. 6. 

Making the substitution z = ksn(u,k) transforms (27) into 

i cn 2 u dn 2 u 
Z = A (1.~_k sn2 u)2 

0 
du 

A [ k s n u c n u d n u  ( 1 - k ) u + E ( u ) ]  (28) 
= 2--k l + k s n 2 u  

11 



where E(u) is the elliptic integral of the second kind and sn u etc. are Jacobian elliptic functions, all of 
modulus k. (This k, which is standard notation for elliptic functions, must not be confused with the 
k and k' of Sections 2.2 and 2.3.) Corresponding points in the z-plane and z-plane are chosen to be 

z = a ,  z = k, u = K (29) 

z = a -  2ai , ~ z =  1,  u = K + iK'  (30) 

where K and K '  are complete elliptic integrals of the first kind of moduli k and k' (=  lx/i--S~-k 2"] 

respectively. Substituting the values from (29) into equation (28) gives 
\ / 

A [ E - ( 1  - k )  K]  (31a) a = ~  

and the corresponding values of (30) give 

A 
a -  2ai = - ~  [E + i(K - E ' ) -  (1 - k) (K + iK')] (31b) 

since dn(K + i K')  = 0 and E ( K  + i K ' )  = E + i ( K ' -  E'). 

Subtracting (31b) from (31a) gives 

A 
a = 4-~ ( E ' -  k K'). (32) 

Hence, equations (31a) and (32) give us two relations for finding k and A. 

From (31a) and (32) 

2[E(k)-  (1 - k) K(k)] = E(k') - kK(k ' ) .  (33) 

Using the Gauss modulus transformation 7, we can write 

1 [E(2')+ 2 K (2')] (34) E(k) = 

K(k)  = ½ (1 +2) K (2') (35) 

1 - k  
where 2 = 1 - ~  and 2' = ~/1 - 22 and, since k is the same function of 2 as 2 is of k, we deduce from (34) 

and (35) that 

E(k') = 1 ~ 2  E(2) -  (1 - 2) K(2) (36) 

K (k') = (1 +2) K(2). (37) 

Substituting the relations (34) to (37) into equation (33) gives 

E(2)-  2 ,2 K(2) = E(2 ' ) -  2 2 K(2) 
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which is clearly satisfied by taking 2 = t '  = l/x/2 giving k = 3 -  2x/2. Thus, by using the relations (34) 
to (37) we have been able to find the exact value of k instead of having to solve equation (33) by trial 
and error, or at any rate, by some approximate method. Either of equations (31) or (32) can now be used 
to find A and we obtain. 

A = 1.38334a 

k and A having now been found, the transformation (27) is completeiy defined. 
It will simplify calculations greatly to consider only the important case in which the blade is directly 

above the centre of the fuselage and assume that the way in which the pressures and forces vary with other 
(lateral) positions of the vortex is the same as for the circle for which the general case has been calculated 
[equations (12), (13), (16) and (17)]. 

The vortex in the z-plane will lie on the imaginary axis, by symmetry. We now need a relationship 
between points on the imaginary axis in the z-plane and corresponding points in the z-plane. 

We already have z = k sn(u,k), so that putting z = i b and u = i ul say, we have, on using Jacobi's 
imaginary transformation, 

sn (us, k') b 
cn (us, k') = -k 

b 
from which sn(ul, k') = ~ (38) 

k 2 x / 0 - +  

k 
cn(u 1, k') = b ~  k ~ 2  (39) 

k 1/~ +b2 and dn(ul, k') = ~ / b ~  ~ "  (40) 

Putting i ul for u equation (28) gives 

Ai [ k sn(ul, k') dn(ul, k') 
z = ~ / c ~ ( ~ ,  k') [ ~ ( u  1, Z ) -  k sn~(u 1, Z)] (1 - k) ~, + ~, - E(u,, k') + sn(u~, k')dn(,,,, Z ) ]  

cn(ul, k') J 

and using the relations (38) to (40), together with the familiatcehange of argument sin ~Pl = sn(ul, k') = 

b / ~ ,  gives finally 

iA [ b ( l + k )  ~ _, , 1 ] 
z = -~  [. ~ ~ / b - - f - ~ + l ~ ( q ) l , k ) - ~ E ( q ) l , k  ') (41) 

= i Yo, say 

A graph of Yo against b is given in Fig. 5. 
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Now since ~ is real on the boundaries of the square, equation (26) gives 

Ocp 2b ~c V, 
a--t- = z 2 + b 2 (42) 

O'C OZ OZ V(k-  b2) 2 (43) 
and V, = 0---[ = Oz Ot = A~/(1 + b 2) (k 2 +b  2) 

when z = i b, i.e. the blade is over the middle of the fuselage. Also, the velocity, q, along the boundaries is 

q ~ ~ . 

_ 2 b ~ (k  "l- ,~2)2 
z~ ~ 2 "  A~/(I - z 2) (k 2 - z 2) 

(44) 

with the pressure difference being given, as before, by 

63tP 1 q 2  p = p--~--~ p . 

The pressure distribution round a square fuselage is shown in Fig. 6. The conditions are the same as for 
the cylinder of Fig. 2. (To simplify calculations for this case the coning angle has not been taken into 
account.) It can be seen that the pressures on the bottom of the fuselage are negligible and that there- 
fore the force on the fuselage can be calculated by integrating the pressures on the top side only. It can also 

seen from Fig. 6 that the effect of the ½ p q2 term is small compared with p ~-~-~t ' as is the case with the be 

circular cylinder, and will also be neglected in the calculation of the force on the fuselage. 
The force on the fuselage is therefore 

+ a  

Y = - p  ~-~dz 
- -a  

k 

= - 4 p x b V ~  -~d'c 

0 

k 
I .~/(1 - z  2) (k 2 - z  2) dz 

= - 4 p ~ c b V ~ A  (,C2 + b2) (k .]_,t.2) 2 
0 

y = 

K 

4 p'x V~ A f c n  2 u dn 2 u du 
b (l+tx2sn2u)(1-I-ksn2u)2 

0 

(45) 
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o r  

K 
Y 4(k - -  b 2 )  2 f cn 2 U dn 2 u du 

p tcV = bx/(l+b2)(kZ+b 2) (l+o~2sn2u)(l+ksn2u) 2" 
0 

By partial fractions 
K K 

f cn2udn2udu ct4 f cn2 u dn2 u du 
(l+e2sn2u)(l+ksn2u)2 - (k_a2)2 l+a2sn2u 

0 0 

(46) 

K 
~t2 k f cn2 u dn2 u du 

( k -  ~2)2 1 + k sn 2 u 
0 

K 

~ f cn 2 U dn 2 u du 
(1 + k sn 2 u) 2 

0 

From Ref. 6 

~t 4 a 2 k k 
- -  ( k _ t ~ 2 ~ I i  ( k _ ~ 2 )  2 I2-]-k----~I 3 ,say. 

1 
11 = ~ [(1 + a2) (k 2 + a2) H(K, - a2, k ) -  a2 E -  (1 + a2) k 2 K]  (47) 

1 [1 +k) n - 4 E + 2 ( 1  - k  2) K]  I2  = (48) 

and 1 [ E - ( 1 - k ) K ]  I3 = (49) 

where II (K, - a  2, k) is the complete elliptic integral of the third kind and is defined by II (K, - a2 ,  k) = 
U 

1 + ~i sn 2 u 
0 

From equations (46) and (41) and since A = 1"38334a it can be seen t h a t - ~ T  z is a function of yo/a Y, 
say, only. This relationship is shown plotted in Fig. 7 together with the corresponding values for the 
circular cylinder from equation (17) (0o = n/2). 

For  the conditions given in Fig. 2 we find that the downward force on a square whose side is one foot 
is 9-75 lb per foot of fuselage. The corresponding force on a circular cylinder of one foot diameter is 6.35 lb 
per foot. 

2.5. Calculation of the "End Effect'. 
So far we have calculated interference effects as if conditions were two-dimensional at each point along 

the blade. The trailing vortex sheet of the blade is assumed to have no effect on the interference (although it 
is taken account of in the estimation of the local CL) and any vortex lines linking the image vortices 
(since they actually vary in strength) are assumed to be so short that they also make no contribution to 
the interference. Hence, the vortices producing interference are the finite line vortex of the blade and its 
images in the cylinder. 
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Now, the pressure on the fuselage, as can be seen from equation (13), is proportional to the product 
of the blade chord, CL, and the square of the local blade velocity or, what is the same thing, the product of 
the circulation and the local blade velocity. In the special case of constant chord and incidence this product 
varies as the square of the radius of the blade element. As we shall see below, this simple variation enables 
a spanwise integration to be made quite easily and thus a comparison to be made between the two- 
dimensional analysis and one with finite vortices. 

To find the relative contributions of the blade vortex and its images it is more convenient to refer to 
0W 

equation (6). -~ -  is a measure of the air accelerations due to the changes of positions of the blade vortex 

and its image at the inverse of the circular cylinder. The term from the image at the cylinder centre is 
OW 

absent because it is stationery relative to the chosen axes system and cannot contribute to ~ and 

0go therefore to ~ - .  When typical values o f  z and z0 are inserted into equation (6) it appears that the first 

term is several times larger than the second term. This is because the image vortex moves more slowly, 
relative to the cylinder, than the blade vortex and therefore the air accelerations due to the image vortex 
are correspondingly smaller. Hence, in order to get some idea of the 'end effect' it should be sufficient to 
consider only the blade vortex and assume that its strength is proportional to the radius of the blade 
element. 

Referring to Fig. 8 and using the Biot-Savart law 3, the contribution to -~tat the point l of the cylinder, 

due to the vortex element r dr is 

d 0(_'~ = hr 2dr 
\ Ot zl {(r--/)2+h2} s/2 

remembering that theblade velocity is proportional to r also. 
The units are arbitrary since we shall be interested only in a ratio and not in absolute values. 
Integrating equation (29) between r = 0 and r = R gives 

(50) 

R 

Ogo h f r 2 dr 
0-)- = {(r--/)2 + h2) 3/2 

0 

o r  

10g0 ( l ~ f )  @)  /~ -~ - sinh- 1 + sinh- 1 {(1_e)2+~2}½ ~ ( 1 + ~ )  ½" (51) 

The corresponding two-dimensional analysis gives 

/3 2 
lh 0~& = 2 ~2 (52) 

Generally, the blade chord and incidence will not be constant along the span but it will be assumed that 
the squared law variation of xV  will represent most practical cases reasonably accurately. 

The ratios, f, between the values of ~--~-~t calculated from equation (51) and equation (52) are shown in 

Fig. 9 for a range of ~. It is proposed that the pressures and forces for the three-dimensional case can be 
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obtained by extrapolating the two-dimensional values to about e = 1.2, say, and then multiplying them 
by f fo r  the appropriate value ofy. This method has been applied to the two-dimensional values of Fig. 2 
and the results are shown in Fig. 10 together with experimental values. It can be seen that the agreement is 

good. 

3. Forces on Rotor Blades in Hovering Flight. 

In the previdus sections the calculations of the pressures and forces on circular and square fuselages 
were made possible by the approximation that the flow about the blade's aerofoil can be represented by 
the flow of a simple two-dimensional vortex. In order to calculate the effect of the presence of a circular 
cylinder on a lifting blade we will still suppose that the image of the blade flow in the cylinder is equival- 
ent to two vortices, as in Section 2.2. Thus, as the blade moves over the cylinder, it will appear to the 
blade as if two vortices of opposite strength move relative to it at different speeds. The forces on the blade 
will arise from 

dW 
(1) The unsteady flow corresponding to the terms p St 

(2) The change in the velocity field, and hence blade circulation, due to the presence of the fuselage in 
the neighbourhood of the aerofoil. 

3.1. Calculation of the Unsteady Forces on the Blade. 

The blade section will be represented by a flat-plate aerofoil. The image of its flow in a circular cylinder 
will be two vortices of equal and opposite strength at the centre of the cylinder and at the inverse point, as 
shown in Fig. 1 1. According to the approximation discussed in 2.1 the image vortices in the (-plane will be in 
the z-plane and their angular co-ordinates, as reckoned from the blade, will be the same. If the flat-plate is 
at incidence a, the complex potential for the flow about the aerofoil, of chord c = 4al, becomes 

i= / W(() = V(  e +---(- e-i~'+i tc log ( + i  x log ( ( -  ( ' ) - i  x log ~( - -~- )  

- i ~ l o g ( ( - ( ' , ' ) + i x l o g  -~77 • (53) 

Now assuming x remains constant, the first three terms are independent of time and we find that the 

of ~W calculation - - ~  becomes identical to that of Section 2.3, except that we are now dealing with two 

vortices instead of one. Thus to find the force on the blade arising from the unsteady terms we simply 
calculate Y by the method of Section 2.3 for the two vortices at (' = ' e ix° and ~" = a~ e ix° a 0 

As seen from the blade, the vortex at the centre of the cylinder moves with velocity - V so that the 
contribution to Y from this vortex is 

Y' _½ P V2 {2k '2 (cos 2•o-k'2)} 
= c VzSz- -o 

(54) 

If a~ is the distance of the vortex at the centre from the aerofoil, then the corresponding distance, ag, 
of the vortex at the inverse point is given by 

a 2 
- , ( 5 5 )  a o  ~ a 0 - - - - r  

a o  
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and the velocity of this vortex relative to the blade is - V --a~,. The unsteady force due to this vortex is 
a0  

then 

a" {2k ''2 (cos 2z0-k"2)} o 
Y" = +½p V 2 c CLa,o ( l_2k, ,2cos2zo+k,, , )  (56) 

where k' al = ~ -  

ao  

and k" al 
a o 

(57) 

Using the dimensions given in Fig. 2 and taking the case in which the blade is directly over the fuselage, 
7~ 

t t t  

Zo = - ~ ,  we get a 1 = 0-125, a = 0.5, ao = 1, a o = 0.75, k' = 0.125 and k" = 0.1667. Equations (54) and 

(56) then give 

and 

y, 

1 p V 2 C C L 

y .  

l p V 2 c C L  

- 0'0308 

- -0"0406 

that is a loss of lift of about 1 per cent. Thus, even when the blade is only one chord width above the 
fuselage the change of lift due to the unsteady terms is negligibly small. It might be argued that with the 
aerofoil represented by a vortex the lift could be obtained from equation (15) of Section 2.2 by taking a 
contour which surrounds the vortex but excludes the cylinder. The only singularity in this contour is at 
z = z 0 and the integral is easily seen to be 2 n i p V~, which is the steady lift on the blade. Thus the change 
of lift due to the unsteady pressures is zero but this is not inconsistent with the calculation above as the 
vortex corresponds to an aerofoil of vanishingly small chod, in which case, k' = k" = 0 and hence 
Y' = Y" = 0 also 

3.2. Calculation of the Change of Circulation due to the Presence of the Fuselage. 
To calculate this effect exactly would require a transformation which mapped the w-plane onto a 

flat plate, with a neighbouring circular cylinder, representing the fuselage, in the z-plane. Since such a 
transformation is not known we will use an approximate method of Milne-Thomson 3. Milne-Thomson 
makes use of a theorem (Section 5.311 of Ref. 3) by which the circulation about a circular cylinder can be 
written down if the position of the stagnation point is given. The theorem states that ifa point (s is to be a 
stagnation point of the cylinder, and if the cylinder is placed in a flow whose complex potential is f (() ,  then 
the circulation about the cylinder is given by 

2 ~ K = 27r x real part of 2 i (~f '  ((s). (62) 

Milne-ThomSon uses this theorem to obtain an approximation to the mutual interference of a biplane 
(Section 8.7 of Ref. 3) by placing a vortex at the quarter-chord point of the lower wing, say, and replacing 
the Japper wing by the circle which would transform it into an aerofoil. The theorem is then used to obtain 
the circulation about  the transforming circle with the vortex of the lower wing and forward flight velocity 
providing the external flow whose complex potential isf(~). In our case the circle represents the blade 
and the vortex image system the external flow. Milne-Thomson's  use of this theorem in calculating biplane 
interference implies that the positions of the image vortices in the physical and transformed planes are 
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the same and corresponds, therefore, to the approximation made in the previous Section. It will be conveni- 
ent to split the relative velocity at the blade into the components U and V, i.e. perpendicular to and along 
the direction of blade motion. The blade chord makes an angle O o (the collective pitch angle) with the 
direction of blade motion. For the complex potential we then have. 

f ( ( )  = V ~ 8  i~'° - -  iU~ei~o q- 
ia 2 U e -  iao 

~- ix log (~ -  (')-- i~c log (( - (") (63) 

where f(~) is referred to axes fixed in the aerofoil circle, as in Fig. 11 (but with c~ replaced by V0), ~' is 
the position of the centre of the fuselage circle and ~" = i f ' -  a2/~ '. 
Now U is small compared with V so that U z + V 2 = V 2 and, supposing 0o to be a small angle, we can 
absorb the second term of equation (63) into the first term and have approximately 

iOo v) ia 2 U 
f ( O  = V [ e  - + ~ - - ~ + i t ~ l o g ( ( - ( ' ) - i t c l o g ( ~ - ( " )  (64) 

U 
where v = - - .  

V 

Then 

f ' ( O  = Ve"°°-~) 
ia 2 U i~ iK 

( ( _  (,)2 ~ ( _  ~, { _  ( , , ,  (65) 

The stagnation point is at ( = - a t ,  so that 

- 2ia t f '  ( - a 1) = - 2ia l Ve":~° - "~ 
2a la2U 2a1• 2alto 

t- - -  (66) 
(at+~')  2 a l+~ '  a t + ( " "  

It can be seen from Fig. 11 that, apart from the tilt of the blade due to the collective pitch angle 0o,  
the blade will be directly over the fuselage when (' = -a 'o i  and (" = -a'~i, and in this case 

- 2 i a l f ' ( - a l )  = 
2a la2U 2alK 2aa~c 

- 2ialVe i(~°-~l - ( a l  +a,oi)2 a l - a ' o i  { - - -  a l - a'~i 

= - 2ia 1Ve i~ao - ~) _ 2a 1 a2 U{(aZt - a'o z) - 2a la'o i} 
a'~ + 2a~a'o 2 + a'o 4 

f a, +a'oi a+a'~i 
- 2a, h- t~-~-a~ 2 a~--~a ~ 2 J (67) 

where, as in 3.1., a~ = a o - - -  
a 2 

a~' 

Then, from equation (62) 
K = real part o f -  2 i a l f ( - a O  

{1 1} 2a,a2 (a Z -a ' o  2) U 2 a ~  a2 a,o2 
= 2a,Vsin (Oo-V)  a4+2a~aoZ+ao 4 a~+a,~2 
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o r  

2a~ 2aZl "[ 2alaa(a{_a,oZ)u 
1+ a~+a~----~o 2 a~+--~{;a j = 2a,Vsin (,9o-V) -a,~+2a~a,o2+a,o4 

(68) 

Taking the same case as in 3.1, we find that the last two terms in the bracket on the left-hand side of 
equation (68) are negligible, being about 2 per cent of unity. Also, a~ z <<  a~ 2, so that approximately 

~c = 2alV (,9 o - v )  +v . (69) 

If 2nx o is the steady undisturbed circulation, then 

Ko = 2al V(O o -  v) 

so that 

a 2 
p-- 

x 1 q a°2 
~Co ( 0 -  v) " (70) 

Now, by considering the flow about a circular cylinder in a uniform stream, it can easily be shown that 
if U is the velocity of the steady stream and U' is the local velocity upstream of the stagnation point then 
the ratio a~/a'o 2 of equation (70) is equal to 1 - U'/U. In other words, the term va~/a'o z is simply the local 
change of downwash angle at the blade due to the presence of the fuselage. Inserting into equation (70) 
the values appropriate to the case shown in Fig. 2 gives r / ro  = 1.204, i.e. the circulation increases by 
20.4 per cent. Thus, comparing this value with that of Section 3.1. shows that the disturbance of the 
downwash by the fuselage is by far the most important interference to the lift of the blade. 

This effect is not confined, of course, to the rotor downwash in hovering but to any component of 
velocity normal to the fuselage, e.g. in vertical flight or the component of forward velocity when the fuselage 
is tilted relative to the flight direction. 

3.3. Calculation of  the Change of Lift on the Blade due to the Disturbance of the Downwash Flow 
Field by a Square Fuselage. 

We have seen in the previous section that the change of lift experienced by a blade as it passes over a 
fuselage can be calculated by finding the local change of inflow angle. This makes the calculation for the 
interference of a square fuselage fairly simple. We need a transformation which maps the exterior of a 
square onto the exterior of a circle since the flow about the latter can be written down easily. Such a 
transformation is given by Bickley in Ref. 8 where he uses the relation* 

dz 
d~ = ½iC cosec ~(1 - 2(-  2 cos 2~ + if- 4)~ (71) 

*The numerical value of C given by Bickley, and quoted above, is consistent with the C of equation (71) 
and in what follows. Owing to the omission of a factor ½ in Bickley's paper it is not consistent with the 
C of the transformation as first stated by him and from which the form of equation (71) has been derived. 
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to map the exterior of a rectangle in the z-plane conformally onto the exterior of a unit circle in the 

~-plane. For a square of side 2a, a = n/4, k = l/x//2 and C = -ia/x//-2 E, where E = E ' - ½  K', (mod 

1/x/~), i.e. E = 0.42361. 

Therefore 

Putting 

we get 

and integration gives 

d( (1+ (-4)~. (72) 

(73) 

dz ai 2 
du (74) 

ai 1 
z = --_~e,(u)--~u~ + D .  

(75) 

Bickley has further shown that D = a, giving finally 

ai 
z = - - ~  ~t~(uj-~u~ + a .  

Now the complex potential of a unit circular cylinder in a uniform stream moving with velocity U 
in the negative ~ direction is 

giving 

w =  u(¢+¢ -~) 

dW 
- u(l_~-z), 

d~ 

so that, using (72), the velocity components of an otherwise uniform stream flowing round a square will 
be 

d W  d W  d( 2EU ~2_1 
dz d~ "dz a v / (  4+ t 

- - U + i V  = 
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d W  2EU 2EU 
and --dz ~ a as ( ~  0% i.e. the velocity at infinity is a 

free stream velocity for the square is 

• Thus the ratio of disturbed velocity to the 

( 2 - 1  U' 
x/~ 4 + 1 U '  say, 

• ( 2 - - 1  . 

and for the circle the corresponding ratio as - ~  .l'qow, we are interested in the changes of downwash 

velocity for positions directly above the fuselage which correspond here to points along the positive real 
axis in both the z -  and ~-planes. Hence we need a relationship between points on the real axis in the 
z-plane and corresponding points in the (-plane. 

From equation (73) we obtain 

o r  

Therefore 

Therefore 

1 
sc(iu) = ~ ( ( -  ~- ~). 

u = isc-  1 1 @ _  

=- iu~, say, for real values of ~. 

• f u, = s c - l  f 2  t.e. snul - x / ~ j . a  (76) 

where 

1 

Putting sin q~x = sn ul,  we have, from (76) 

~o 1 = sin- 

(77) 

(78) 
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Now 

ai .  
z = - E  { E ( u ) - ~  u} + a  

and if u = iul 

ai 
= - 2  ¢ e ~ i U l ) - ~ u l I  + a 

a{1 sin q ~ l ~ q h ~  
= ~ 7F(@l)-E(@l)-t ~ ) + a .  (79) 

Equations (77), (78) and (79) give us the required relationship. The velocity ratios U'/U at the same 
distances from a unit circle and unit square have been calculated and are shown in Fig. 12. 

The numerical example of the previous sections gives y = 1 and for the square, from Fig. 12, we find 

U'/U = 0'63. The change in the inflow angle is therefore 1 --~-  v = 1.76 deg, giving a change of in- 

cidence of 32 per cent, compared with 20.4 per cent for the circular fuselage. Thus, for this example, the 
square fuselage gives 60 per cent more blade interference than the circular one. When y = 2, i.e. when 
the blade is one diameter above the fuselage, the corresponding incidence, and therefore lift, increases 
are 13.1 per cent and 9 per cent for the square and circular fuselage respectively. 

4. The Mutual Interference between a Blade and a Lifting Wing in Forward Flight. 
Another important source of aerodynamic interference is that which will occur between a rotor blade 

and an auxiliary wing, as on a compound helicopter, or, what is the same thing, between a tailrotor and 
a tailfin. In what follows the term 'wing' will be used to mean either the wing of a compound helicopter 
or a tailfin since the analysis will be the same for both. 

The mutual interference between the blade and wing can be considered as arising from three sources, 
namely 

(a) the velocity interference from the bound vorticity or chordwise velocity distribution, 
(b) the changing pressure field due to their relative motion, i.e. unsteady effects, 
(c) the trailing velocity. 

Sources (a) and (c) correspond to the welt-known biplane interference but, unfortunately the established 
biplane theory is of little help since it has been developed mainly to calculate the steady drag and is not 
well suited to the calculation of lift variations. 

The methods used to calculate the changes of blade lift will not be the same as those of the wing so 
that the interference effects to the blade and the wing will be considered separately. 

4.1. 7he 'end effect'. 
As in the previous sections the calculations will first be obtained from a two-dimensional analysis 

which will then be corrected for the 'end effect'. For the rotor blade this correction will be the same as 
in Section 2.5. For the wing or fin it will be assumed that the loading is uniform. This should be accurate 
enough for our purpose and also an analytical expression for the velocity distribution about a finite 
vortex of constant strength is known (e.g. Ref. 11, p. 128). Any other distribution, typical of a wing, would 
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be extremely difficult to integrate, if possible at all. By comparing the two-dimensional velocity distribu- 
tion with that of a finite vortex we obtain a correction factor, k, for the wing given by 

1 

y 
- + 1  - - 1  
s s 

' 

1̀ 

(80) 

where y is the spanwise distance from the centre of the wing 
a is the distance of the blade axis from the wing 

and s is the wing semi-span. 

4.2. Calculation of the Wing Lift. 
For this calculation the flow will be represented by a moving vortex, representing the blade, in the 

presence of a lifting flat plate, see Figs. 3 and 13a. The complex potential of this flow in the (-plane is 

• a 2 

W= Vn(e"~+V H2~e-' ' , .+ixlog((+(o)+it~log(_i~log ( (_a2)+i~  c log(  
\ (ol " 

(81) 

where V n is the helicopter speed, or its component along the chord if the wing or tailfin is swept back, 
and (0 is the position of the blade vortex in the (-plane. It should be noted that the blade circulation is 
itself subject to interference. However, it should be sufficient here to assume the steady value, i.e. the value 
in the absence of interference. I f required a second approximation can be made by considering the change 
of blade lift in the next Section. 

As in Section 2.2., the force components are given by 

1. :MW\Z  t'OW 

¢ C 

The first integral represents the interference from source (a), mentioned in the previous section, and 
the second integral the inferference (b). 

4.2.1. Interference from bound vorticity. The value of ½ip \ dz I dz has been calculated by 
¢ 

Neumark 9, who uses exactly the same mathematical model to investigate the effect of a rotating flap on 
the characteristics of an aerofoil. The complete solution is rather long, however, and takes into account 
not only the change of circulation induced by the vortex (representing the rotating flap in Neumark's 
case) but also the change of pressure distribution over the aerofoil due to the non-uniformity of the 
external flow. The terms corresponding to the latter are small for the cases in which we are interested 
and a much simpler expression can be obtained by considering the effect of the change of circulation 
only. This can be obtained, of course, by retaining the appropriate terms of Neumark's result but it can 
be derived quite simply by using Milne-Thomson's theorem, equation (62), of Section 3.2. For in this 
casef(O is simply V(e i~,. + #c log ( ( -  (o), so that putting (o = ao eix°, and since ( = - a 1 is a stagnation 
point, we easily find that the change of circulation 27rA~cw is given by 

, 2xk'(k'+ cos Xo) 
xw+A~w = 2a, Vn sin a , . _ - l ~ s  ~o ~-~2 (82) 

where 2 ~  w is the steady wing circulation, k' = al/ao, and the negative and positive signs refer to the 
advancing and retreating blades respectively. 
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Since 4nx = V'cCL, where V' is the relative airspeed of the blade section, that is V' = ~R(x + # sin ~9), 
we can write 

V'cCLk'(k'+ cos Xo) (83) 
Axw = -T-2n(1 +2k'  cos Zo+k '2) 

and the (two-dimensional) change of lift is given by 

AE = 2~pAx~V~ 

= "T- p VIt V'cCLk'(k' + cos Z0) (84) 

Now the change of lift on a finite wing will be smaller than this due to its own trailing vortex system. 
To correct for this we assume that the ratio of the increment of lift on a finite wing to that of an infinite 
wing is the same as the ratio of their respective lift slopes for which a simple expression exists for elliptic 
loading (Ref. 11, p. 145). Thus, if the incrementtoflift for the finite wing of aspect ratio A is ALwe assume 
that 

A L =  T +  2AE. (85) 

4.2.2. Interference due to unsteady flow. Since the first two terms of equation (81) are independent 

time, and if the time derivatives of x and xw are assumed to be small, the contribution of ~tVto X -  iY 

is identical to that of Section 2.3., that is, in terms of the blade circulation 

X = 0  

4~plcVk'2(cos 2Xo-k '2) ~. (24) 
Y =  T-~-_ 2-~-~oS 2~o +- ~ ~. 

In terms of the blade chord and lift coefficient we can also write 

y =  pVV'cCL k'2(cOs 2Xo -- k '2) 

1 - 2k '2 cos 2Zo + k '4 
(24a) 

vis the speed of the blade relative to the wing, that is V= f~r. No distinction need be made in where 
this case between the advancing and retreating blade because relative to the chosen axes both the signs 
of the vortex strength and the velocity, V = OZo/Ot, change together. 

4.2.3. Interference due to trailing vorticity o f  blade. It is unlikely that the trailing vortex system 
from the rotor will prodttce significant timewise variations of wing lift. There might be a slight local 
increase of induced velocity near the blade but we will assume that at any given point under the rotor 
the induced velocity is constant. The steady induced velocity will, of course, take part in determining 
the steady wing lift. No simple theory exists for the estimation of the induced velocity below a rotor 
but the wind-tunnel tests of Heysonl°, provide an adequate set of data from which an accurate estimation 
can be made. 
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4.3. The Calculation of Blade Lift. 

In all the work so far we have been able to represent the flow about a rotor blade by a vortex since 
the blade has always been at least its own chord's distpnce from the surface it has been affecting. When 
we consider the interference of a lifting wing on the blade, however, we note that the wing chord is usually 
much greater than that of the blade and that the separation between the wing and a blade is often much 
less than the wing chord, e.g. the tailrotor blades of the Westland 'Wessex' come within a quarter of the 
tailfin chord of the tailfin. Therefore, as far as the blade is concerned, we may not always be justified in 
approximating to the wing flow by a vortex and a more suitable representation, such as in Section 4.3.2. 
below, may have to be found. 

4.3.1. Interference due to chordwise flow about wing. In order to calculate the chordwise flow 
about the wing we can, in this case, assume the wing flow to be represented by the flow about a lifting 
flat plate. Also, since the chord of the blade is much smaller than that of the wing, the blade can be treated 
as if it were a line, in which case it is necessary only to calculate the local change of incidence at the 
line instead of having to consider the distribution along the blade chord. The circulation about the wing 
should be taken as the one appropriate to its aspect ratio and incidence and which, therefore, will not 
satisfy the Kutta-Joukowski trailing edge condition. However, as we are also going to consider the effect 
of the trailing vortices from the wing, the trailing edge condition will, in effect, be satisfied and the steady 
flow about the wing properly accounted for. 

The change of incidence at the blade is easily calculated. The complex potential of the flow about the 
wing's transforming circle in the ~-plane is 

a 2 
W = Vlt~ei~w+ Vtf ~ e- i~+ it% log 

where we have omitted the image vortices of the blade since they will only affect the flow very close to 
the wing surface. 

The velocity components u and v in the z-plane are given by 

- u + i v  = 
d W  dW d~ 

dz d~ dz 

= VHei~,,, q 2ia 2 Vn sin aw ixw~ 
¢~-a~ -~ ¢~-a ~, 

= VHe law- u' + iv', say, 

where u' and v' represent the disturbance due to the wing or fin and are relative to the main stream direc- 
tion. The change of incidence at the blade is approximately v'/V' = Aal, say. 

Putting ~o = ao eix° for the co-ordinates of the centre of the blade, and k' = at/ao, gives 

k,v~ 
Aal = l_2k,2cos2)~o+k,  4 2k'sin~w c o s 2 z o - k  '2 + (1 -k '2 )cosz0  

(86) 

where CLw is the lift coefficient of the wing. 
Then, if L o is the steady lift of the blade element, and if a is the local blade incidence, the change in 

lift from the above contribution will be Acq L o. The effective change of tailrotor shaft angle is the same 
c~ 

as that given by equation (86) but with -Vn replaced by t, nity. 
V' 
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4.3.2. Interference due to unsteady flow. When the rotor blade is more than a wing chord distance 
from the wing the unsteady lift change can be found from equation (24a) of Section 4.2.2., but with V'cCL 
being replaced by Vn cw Cr~,~ and a negative sign in front of the expression since the wing vortex moves 
in the negative sense relative to the blade. 

For  cases where the blade is very close to the wing or fin the simple vortex representation of the wing 
flow is no longer valid and a better representation must be found. 

The flow about a flat-plate aerofoil, however, is too complicated to be able to find the timewise pressure 
variations easily and we must now make some sort of compromise between a lifting flat plate and a 
vortex. Now we know from aerofoil theory that a thin aerofoil can be represented by a vortex sheet and, 
as we have results already for the effect of one moving vortex, it would seem that a convenient second 
approximation to an aerofoil might be tried in which the aerofoil is represented by two vortices instead 
of one. Let us place one vortex, of strength rq, at the ¼ chord point and the other, of strength K2, at the 
¼ chord point and choose these strengths, as in aerofoil theory, such that their combined circulation is 
equal to the circulation of the aerofoil they represent. We also choose the boundary condition at the 
½ chord point to be satisfied. The latter choice above is somewhat arbitrary but the results seem to be 
quite satisfactory as shown below. If ~c,~ is the local wing vortex strength, the strengths of the two vortices 4 ) 4 ) 
at the ¼ and 3 chord points are easily found to be ~ w + V n sin ~ and } xw-  c-~ Vn sin ~ respec- 

tively. Calculations have been made of the steady pressure coefficient for the flat plate, single vortex and 
double vortex at two positions close to the aerofoil which is at 5.7 deg incidence. The results are given 
in the table below. 

Position relative to aerofoil Flat plate Single vortex Double vortex 

5/24c above centre - 0.184 - 0"538 - 0-209i 

~c above and ¼c behind L.E. - 0.438 - 0" 125 - 0-360 

We now find the normal velocity, w", on the longitudinal axis from the trailing vortex system of the 
w 

wing. This calculation will differ from Glauert's calculation of the downwash angle, e = ~-, since he in- 

cluded the downwash from the bound vortex, representing the chordwise flow about the aerofoil, whereas, 
in our case, this has already been taken into account. 

The normal induced velocity on the 2 axis at a point l behind the wing from two trailing vortices, 
distance s' apart, is 

( 
w" ~c ) l 

= ~ 1+~/12+s'2 

so that for elliptic loading when x = 

s~-  r/2 
/ :l dr/. 
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Putting t / =  s cos 0 and 12 1 -  k 2 S2 = - ~  gives 

/if :1k2  w ,  = +_ 

(88) 

where K is the complete elliptic integral of the first kind, of modulus k, and the positive and negative 
signs refer to points behind and in front of the wing respectively. We note that at the wing k = 1 and 
equation (88) reverts to equation (87), as it should. 

We now assume that the normal induced velocity distribution in the lateral plane through the wing, 
given by equation (87), applies to all lateral planes and that the magnitude of the velocity, at a given point, 
varies in the same way as the velocity along the longitudinal axis. This means that we replace the w0 
of equation (87) by the w" of equation (88) to obtain, for a general position, 

( sinh/~cosh/~ ) (  ~ _  /]--L-~) 
w = w  o 1 coshZ#_sin  2 1__ 

where, in our notation, 
VHC~ 

Wo - - -  (89) 
7tA 

and A is the aspect ratio of the wing. 
Equations (87) and (88) have been plotted for ranges of y/s, ~/s and l/s and are shown in Figs. 15 and 

W' 
16. Thus to obtain w we calculate w o from equation (90) and multiply successively by the factors - -  and 

%'o 
w ,¢ 

- -  obtained from Figs. 15 and 16. This method of approximation has been tested by applying it also to 
Wo 
the calculation of the flow about a uniformly loaded wing for which it is comparatively easy to calculate 
the exact velocity. The approximation was found to be good. 

4.4. Numerical Examples of Rotor/Win9 Interference. 
4.4.1. Interference to the lift of the wing of the Westland 'Rotodyne'. The variation of lift near the 

tip of the wing of the Westland 'Rotodyne Y' has been calculated using the theory of Section 4.1. The 
flight conditions were taken from the tests of Ref. 12 for a case in which the tip speed ratio was 0"35. The 

r 
radial position on the blade chosen for calculation was ~ = 0"5 and as it was well away from the rotor 

tip it was thought necessary to apply the end correction of Section 2.5. The percentage variation of lift 
with azimuth position of the blade is shown in Fig. 17a and can be seen that it is small. The calculations 
showed that the contributions from the unsteady pressures and the interference from the bound vortex 
flow are of about the same order in this case. 

4.4.2. Interference to the lift of the blade of the Westland 'Rotodyne'. Fig. 17b shows the percentage 
r 

variation of lift at the radial position,~- = 0"5, of the advancing blade. It will be seen that the variation 

is large and arises from the fact that the steady state incidence is only about 1 degree whereas the bound 
vortex flow, corrected by the factor of equation (80) and Fig. 14, causes an incidence change of between 
+0.4 degrees and -0-4 degrees. The unsteady lift variation is negligible. Fig. 14 shows that beyond the 
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wing-tips the interference of the wing falls off very rapidly so that, for the 'Rotodyne', the interference 

of the wing on the rotor blade does not extend much beyond R = 0.5. Thus, although the percentage 

r 
interference is high at ~ = 0.5 the interference to the whole blade is quite small. 

4.4.3. Interference to the lift of the tailfin of the Westland "Wessex'. The change of lift on a section 
of the tailfin of the Westland 'Wessex' has been calculated the results being shown in Fig. 18a. The blade 

r 
radial position has been taken at ~ = 0-75 and it has been assumed that the local lift coefficient of the 

advancing tailrotor blade is 0.2 and that the forward speed of the helicopter is 170 ft/sec. It can be seen 
that by far the most important effect is the unsteady pressure component and this is to be expected as 
the rotor is only about 1.3 feet away from the fin whose chord is about 4 feet. 

Now since the unsteady forces are independent of the forward speed of the helicopter this suggests 
that the greatest interference effects will occur in the hovering condition when the lift coefficient of the 
advancing blade will be at its highest. No detailed blade loading analysis has been made but it has been 
assumed that in hovering flight, and in free air, the blade lift coefficient is 0.41. This means that the un- 
steady forces would be just over twice as large as those shown in Fig. 18a. These forces have been calculated 
over the whole blade, with the appropriate end correction applied, and the result is shown in Fig. 18b. The 
total maximum force on the fin is 102 lb and its variation with azimuth angle is the same as in the broken 
curve of Fig. 18a. The curve is shown for a range of azimuth of 90 deg which means that, since the 'Wessex' 
has four blades, the pattern repeats itself immediately. The mean value of this force is found to be 60 lb 
and is in a direction opposite to that of the tailrotor thrust. Assuming, from the known power in hovering, 
that the tailrotor thrust is 870 lb, the interference force represents a loss of tailrotor effectiveness of about 
7 per cent. However, the above calculation is conservative as no account has been taken of the effect of 
the fin on the tailrotor induced-velocity field which in hovering would be very large. The 'Wessex' fin 
is upstream of the tailrotor and it is probable that in the wake behind the fin the air velocity is practically 
zero. Thus, since the induced velocity at the rotor tip is about 85 ft/sec, the blade would experience an 
increase of incidence of about 7½ deg as it came into the lee of the fin. Even in potential flow the increase 
of incidence would be about 3½ deg, as can be seen from Fig. 12 for the case y = 0.65. The lift of the 
blade interfering with the fin would probably be doubled at least (if it had not already stalled), producing 
double the force calculated above and which would now represent a loss of about 14 per cent. 

In addition to the above there is the steady force on the fin from the tailrotor downwash. This is difficult 
to estimate accurately as it cannot be assumed that the force is simply Co½p v 2 S (where vi is the local down- 
wash velocity and CD a fiat-plate drag coefficient) as the static pressure is varying rapidly in the neigh- 
bourhood also. Nevertheless the force is almost certain to be in the adverse sense and may well increase 
the total loss to about 20 per cent. 

It appears, then, that tailrotor/tailfin interference is one of the most important cases of interference 
encountered on the helicopter and, from the above calculations, might be expected to become serious 
when the chord of the tailfin becomes greater than about half the tailrotor radius. 

4.4.4. Interference to the lift of the tailrotor of the Westland "Wessex'. In straight unyawed flight 
the only interference to the tailrotor expected from the taiffin would be the dynamic pressure forces. 
Calculations show that these forces are small and are at most about 1 per cent of the blade lift. Interference 
effects become important when the aircraft yaws as the tailfin straightens the airflow near the tailrotor 
so that the apparent yaw angle of the tailrotor is reduced and hence also its effectiveness as a fin. An 
example of this is shown in Fig. 18c where the apparent change of incidence of the no-feathering axis of 
the rotor, as felt by a blade near the fin, is much less than the actual change. The figures given in Fig. 
18c suggest that the fin-effectiveness of the tail rotor is reduced by about 17 per cent. At low speeds and 
in hovering, when streamline flow about the fin has not become established, this interference effect will 
not be apparent but the 'shielding' effect from the downwash, mentioned in Section 4.4.3. above, will be 
important. 
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5. Comparison of Theory with Experimental Results. 

5.1. Comparison with NASA Cylinder Tests. 

Ref. 1 describes a series of tests in which pressures were measured on a circular cylinder under a hovering 
rotor. Measurements were made for four different rotor heights at seven pressure orifices equally spaced 
from the top to the bot tom of the cylinder around one half of its circumference. Variations of pressure 
with radial distance from the axis of the rotor were obtained by progressively moving the cylinder from 
one side of the rotor to the other. However, the pressure orifices were not in the middle of the cylinder 
but close to one end, which meant that the cylinder rarely spanned a rotor radius when the orifices were 
in the slipstream and also, for a given radial position of the orifices, the amount  of cylinder in the slip- 
stream differed according to which side of the rotor the orifices were placed. Aerodynamically speaking, 
part of the image vortices were usually missing and, due to the asymmetry mentioned above, the pressure 
measurements made on one side of the rotor should have been different from those made at the corre- 
sponding radius on the other side. Figs. 19 and 20 show that this was the case and the lower set ofpoints, 
indicated by the empty circles, correspond, as would be expected, to the shorter length of cylinder. 

It is possible to calculate curves of pressure against radius taking into account the appropriate length 
of cylinder for each point, but as this would be very tedious it was decided to compute two curves, the one 
corresponding to the cylinder completely spanning the rotor radius and the other corresponding to the 
complete absence of the cylinder. The experimental points should lie between these curves. The C L- 
distribution used in the theory was obtained from the usual strip theory with the blade lift-slope adjusted 
to give the same disc loading as quoted in the tests. Experimental points were omitted whose values 
were clearly affected by the trailing vortex of the blade. Figs. 19 and 20 show that, apart from obvious 
scatter, the theory over-estimates the pressures slightly but that the agreement generally is quite good. 

5.2. Comparison with R.A.E. Cylinder Tests. 

Tests have been made at R.A.E. (Bedford) similar to those discussed in the previous Section. The main 
difference was that the cylinder had an adjustable extension so that for every radial orifice position the 
length of cylinder in the slipstream could be adjusted to span most of the rotor radius. In this way the 
source of errors, mentioned in the previous Section, were largely avoided. A detailed description of the 
apparatus and test procedure is given in Appendix B. 

Tests were made with the rotor hub placed at one chord and two chord height above the cylinder. The 
comparison between theory and experiment for the first case has already been given in Fig. 10. The 
comparison for the second case (two chord height) is shown in Fig. 21. Agreement is seen to be good 
generally. Again, measurements obviously affected by the blade trailing vortex, at about the position 
r 

- -  = 0.9, have been omitted. 
R 

Fig. 22 shows the theoretical and measured variation of pressure with blade azimuth angle at the top 
r r 

of the cylinder at the radial positions ~ = 0'785 and ~ = 0"585. Agreement can be seen to be very good. 

5.3. Comparison with NASA Flat-plate Tests. 

Fig. 23 shows some of the measurements, from Ref. 2, of the variation of pressures at the centreline of 
a flat panel as a rotor blade passes over it. The measurements were made at two different disc loadings 
and the theory indicates that, owing to the difference in coning angle for the two cases, there should be 
a considerable difference in pressure variation. However, only one experimental curve is given in Ref. 2 
for each rotor height and these are compared with the theoretical curves for the higher disc loading. 
Agreement is quite good, except near the blade tip, but since it is not known how the curves were derived 
from the experimental points, which the theory suggests should have been in two distinct sets, the agree- 
ment may well be fortuitous. 
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5.4. Comparison of Estimated Blade Lift with R.A.E. Measurements. 

Fig. 24 shows the theoretical differential pressure distribution for a flat-plate for steady conditions, 
and when passing over a circular fuselage, for the conditions stated. Experimental points for the blade 
NACA 0012 aerofoil are shown for comparison. The figure is interesting mainly because of the similarity 
in distribution between the flat plate, which is comparatively easy to calculate, and the NACA 0012 aero- 
foil. The increase in lift, for the case quoted, is not very obvious from the figure but has been calculated 
to be 15-2 per cent due to the increase in circulation (see Section 3.2.). (This figure is smaller than that 
calculated in Section 3.2. as here coning'angle has been taken into account.) The measured increase in 
lift was found to be 15.5 per cent so that agreement between theory and experiment is good. 

Fig. 25 shows the variation of lift with blade azimuth angle. 
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LIST OF SYMBOLS 

a 

al  

a',a" 

ao 

a 

A 

b 

c 

Cw 

CLw 

CL 

C 

cn(u,k) 

dn(u,k) 

E(u,k) 

E,E' 

f 
h 

Ii,Iz, I3 

k 

k 

k,k' 

k' 

K,K'  

l 

L 

Lo 

P 

Po 

p'o 
q 

r 

R 

Radius of circular fuselage 

Radius of transforming circle in ~-plane 

Radial co-ordinates of image vortices in ~-plane 

Radial co-ordinates of blade vortex in ~-plane 

Semi-length of side of square 

Constant determing scale and orientation in transformation, equation (27) 

Co-ordinate of vortex along imaginary axis in r-plane 

Blade chord 

Wing chord 

Lift coefficient of wing element 

Lift coefficient of blade 

Factor used in determining scale of transformation, equation (71) 

An elliptic function 

An elliptic function 

Incomplete elliptic integral of the second kind 

Complete elliptic integrals of the second kind 

Factor used in determining 'end effect', Section 2.5. 

Height of blade above fuselage, see Fig. 8 

Integrals defined by equations (47), (48) and (49) 

a/ao 

Factor used in determing 'end effect', Section 4.1. 

Moduli of elliptic functions 

al/ao 

Complete elliptic integrals of the first kind 

Co-ordinate of point on fuselage, see Fig. 8 

E-½K (mod 1/~/2) 
Steady lift of blade element 

Air pressure 

Atmospheric pressure 

Undisturbed pressure at point on circular cylinder 

Air velocity 

Radial distance of blade element from hub 

Radius of blade 
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LIST OF SYMBOLS--(contd.) 

s 

u 

u r 

U~Ul 

U 

/) 

v ~ 

V 

v~ 

K 

w 0  

W 

x 

x , y  

~ , ~  

X , Y  

Yo 

Y 

Ao~ 1 

fl 
y 

8 

~,~ 

0 

Oo 

E 

Semi-span of wing 

Component of velocity along x-axis 

Component of velocity along x-axis due to interference of wing 

Variables of elliptic functions 

Local downwash velocity 

Component of velocity along y-axis 

Component of velocity along y-axis due to interference of wing 

Velocity of a blade element 

Velocity of helicopter or its chordwise component over a swept wing or fin 

Velocity of vortex in z-plane 

Induced velocity at eUiptically loaded wing 

~0 + i~k, complex potential 

Normal components of induced velocity near wing 

r/R 

Co-ordinates axes of physical plane 

Co-ordinates of a point from a lifting wing 

Force components along x, y axes 

Distance of blade vortex above square fuselage 

= yo/a 

Incidence of blade element 

Change of incidence at blade element due to bound vorticity of wing 

k/b, see equation (46) 

Parameter used in determining scale of transformation, equation (71) 

Angular co-ordinate used in determining end effect, see Fig. 8 

h/R 

I/R 

w/V, downwash angle behind wing 

+ irh complex co-ordinate in transformed plane 

Co-ordinates in transformed plane 

Angular co-ordinate of a point on circular fuselage 

Angular co-ordinate of blade vortex 

Collective pitch angle of blade 

Vortex strength 
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LIST OF SYMBOLS--(contd.) 

/¢0 

/£w 

2 

V 

FI(K, - c~ 2, k) 

P 

p,o 

q~ 

X 

q, 

f~ 

Steady vortex strength of blade 

Steady vortex strength about wing 

(1 -k)/(1 + k) modulus transformation of elliptic functions 

.u/v 
Complete elliptic integral of the third kind 

Air density 

Co-ordinates in z-plane, see Fig. 4 

Velocity potential 

Angular co-ordinate in (-plane 

Stream function 

Angular velocity of rotor 
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A P P E N D I X  A 

Relationships between Co-ordination in the ~ and z Planes 

In Sections 2.3., 4.1. and 4.2. we need the relationships which express the variables k' and )C in the 
(-plane. The t ransformation connect ing ( and z is 

z = g .  a~ °+~ 

giving 

where we have chosen the positive sign in front of  the radical since we want the t ransformat ion which 
maps  the outside of  the circle in the (-plane onto  the whole z-plane. Put t ing ( = aoe ~x and k' = al/ao we 
find after some algebra 

k ' + ~ ,  = ~/x2+y2+4a21+4W 
2a~ 

k , _ _  
1 /x2+y2-4a2+4W 
k'=-V 

y /4a2-x2-y2+4W 
sin Z = a t v  8y 2 

where, as defined in Ref. 8, 

x /x2 + y2 +4a~-x/W 
cos Z = a~ V 8x 2 

W = (x 2 + y2 + 4a~)2 _ 16a~x 2 

= (x 2 + y2 _ 4a~)2 + 16a~y2. 
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APPENDIX B 

Pressure Measurements on a Cylinder in the Downwash of a Hovering Rotor 

1. Description of Test Equipment. 
Pressure measurements were made on the upper surface of a one foot diameter cylinder placed, with 

its longitudinal axis horizontal, in the downwash of a hovering 12 ft diameter helicopter rotor. The test 
rig is shown in Fig. 26. The aerofoil section of the blades was NACA 0012 and the chord constant at 6 
inches; there was a flapping hinge at 3.1 per cent and a drag-hinge at 6-6 per cent of the blade radius. 
The tests were carried out in a large hangar where the floor was about one and quarter rotor diameters 
below the plane of the disk and the roof a slightly greater distance above it. 

A light-weight steel framework supported the cylinder, which had a nominal length of 10 ft. As shown 
in Fig. 27 only two sets of pressure plotting holes were used so that, to obtain the distribution along the 
axis of the cylinder, the whole support frame and cylinder were shifted radially outwards in a series of 
small movements until the survey was complete. To avoid possible end-effects due to the finite length 
of the cylinder the outer end was never less than 4-75 ft beyond the outer edge of the rotor disk. At the 
inner edge of the disk the minimum distance between a pressure measuring point and the cylinder end was 
1.56 ft; this occurred when the cylinder was touching the casing of the electric-motor used to drive the 
rotor. When the framework was moved outwards a sliding portion of the cylinder was used to maintain 
an adequate length between this pressure point and the inner end. 

Inductive type electrical transducers were used to measure the pressures (see Figs. 28 and 29). On the 
rotor blade these were recorded at the 75 per cent radius position only; each transducer gave a net value 
between the upper and lower surfaces of the blade. On the cylinder the difference between the local 
surface pressure and that of the air well away from the rotor was recorded. 

2. Test Conditions. 

All tests were made with the collective pitch of the blades set at 10 deg and the rotor running at 570 
r.p.m. (tip speed = 357 ft/sec). Records were taken with the top surface of the cylinder 6 inches below the 
centreline of the blade flapping hinge and with this distance increased to 12 inches; i.e. 1 and 2 blade 
chords or ½ and 1 cylinder diameters below the disk respectively. The cylinder was kept parallel to the 
floor of the hangar but the rotor blades, when rotating, coned upwards about 13 deg. 

The innermost pressure point on the cylinder axis was situated beneath the 38 per cent radius position. 
The cylinder was then moved outwards in steps of 0.3 ft (5 per cent R) until this pressure point was beneath 
the 98.5 per cent radius position. 

3. Results. 
Galvanometer deflections due to signals from the transducers were recorded on photographic paper; 

typical traces are shown in Fig. 30. The relative magnitude of the deflections shown cannot be compared 
directly because of differing transducer sensitivities and signal amplifications. After resolving these 
differences by applying the appropriate calibration factors the deflections were reduced to pressure 
values. The results for the spanwise distribution of pressure increment due to the passage of the blade 
over the cylinder are shown in Figs. 10 and 21. The variation of this increment at a particular station 
as the blade approached and then receded away from the cylinder is shown in Fig. 22. Fig. 24 shows the 
net chordwise pressure distribution on the rotor blade, at 75 per cent radius ; a small temporary increase 
in lift was measured as the blade passed over the cylinder. 

This increase is shown on the records (Fig. 30) as a peak in the galvanometer traces occurring once 
per revolution because only one blade out of the three contained transducers. The corresponding peaks 
in pressure on the cylinder obviously are shown three times per revolution of the rotor (i.e. at 28.5 times 
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per sec). From previous tests on the blade installation it had been found that the overall frequency re- 
sponse of the pressure plotting system was linear up to at least 30 cps. By interpolation it was estimated 
that linearity would be achieved up to 55 c/s for the installation on the cylinder, which had shorter pipe 
lengths. Except in the region beneath the blade tip, these calibration tests, the orderly nature of the records, 
and the lack of any discernible lag between the pressure rises on the blade and those on the cylinder 
indicate that the results represent an accurate record of the pressure changes that occurred. The effect 
on the galvanometer deflections when the measuring station was placed beneath the rotor tip is shown 
by the lower records in Fig. 30. It can be seen that there are large negative values of pressure just after 
the positive pressure peak. Traces taken with the cylinder 12 inches below the rotor showed similar 
negative values occurring just before the blade reached the cylinder. These large disturbances are believed 
to be due to the pressure and flow variations caused by the tip vortices of the blade above the cylinder 
and of the preceding blade. This effect, which was also observed in the NASA tests, was even more marked 
at other radial positions close to the 93-5 per cent station shown in Fig. 30. It was felt that the response 
of the measuring system to these large and rapid variations would adversely affect the accuracy of the 
positive pressure peaks under investigation. Any records taken near the blade tip which showed signs of 
such degradation have been ignored in the presentation of the results in this Report. 
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