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Summary. 
The case of a Random Gaussian process for which the root,mean-square value is itself variable is 

considered. A distribution for the root-mean-square value is assumed and an expression is derived for 
the resulting distribution of peak values of the variable quantity. 

This'expression is shown tq give good agreement with experimental results in many cases of aircraft 
gust load statistics, and its limitations are discussed. 
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1. Introduction. 

When an aircraft flies in turbulence, the load imposed on the structure varies continuously and causes 
fatigue. Although hitherto, work in the fatigue laboratory has been mainly under constant amplitude 
conditions, workers are now turning more and more to the application of random loads. It is convenient, 
therefore, to have a statistical description of the load in terms of a few parameters only. 

The simplest case is when the variable load behaves as a 'stationary random Gaussian process'. The 
usual definitions of such a time-varying quantity imply something more than that its distribution about 
the mean is Gaussian and invariant with time. In particular, the joint distributions of the values of the 
variable separated by given intervals of time are all multivariate Gaussian distributions. 

The properties of a stationary random Gaussian process have been discussed extensively by Rice 1 
who derives the distribution of the maxima and minima of the variable and finds an expression for their 
number which is related to the power spectrum. 

These results are useful when the applied load behaves in such a simple fashion, but unfortunately 
this is not often the case. However, the load distributions met in practice can usually be described suffi- 
ciently well by assuming that they are made up of a combination of Gaussian processes, each with its 
own root-mean-square value. 
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In this paper, load distributions are derived based on the composite Gaussian case for a particular 
distribution of root-mean-square values, and it is shown that they give good agreement with observed 
load distributions. 

2. Theoretical Discussion. 
In all cases considered below the distribution of the variable x is assumed to be symmetrical about zero 

and the frequency distributions of the variable and of the number of crossings of a given value are all 
given for the range 0 ~ x < oo. 

2.1. Simple Case. 
Consider first of all the simple case in which the variable x is a stationary random Gaussian process, 

the distribution of which is given by : 

~@ exp ( - x 2  ) 
~ / ~  ~ • (1) 

The fraction of the total time which the variable spends between x and x + dx is expression (1) times dx. 
Since the values of x and x' are independent (see Rice), it follows that the number of times the variable 

crosses the value x is proportional to the time spent in an elementary range dx about x, and therefore 

(x2) N x = N  0exp - ~ a  2 (2) 

where N x is the number of x-crossings per unit time, and No is the number of zero-crossings per unit time. 
Press et al 2 have shown that for gust loads on aircraft, the crossing distribution is a good approximation 

to the cumulative distribution of peak values, the percentage error decreasing as x/a increases. For a 
relatively rigid aircraft the use of expression (2) to derive the peak distribution leads to estimates roughly 
10 per cent. low at x/a = O, and less than 3 per cent. low at x/a = ½. 

For moderately flexible aircraft such as those from which the majority of counting accelerometer and 
American V-g-h records have been obtained, the errors are somewhat larger: 

X" X X 
30 per cent low at - = 0; 10-15 per cent low at - = 1, and 2 to 3 per cent low at - = 2. 

c~ cg 

These errors are not likely to be of much significance in practical cases, particularly as most of the data 
refer to values of x/c~ greater than 2. 

Assuming that (2) gives the cumulative distribution of peak values, their frequency distribution can be 
derived from differentiating (2) and hence the probability that a given peak value falls in the range x to 
x + dx is given by: 

(x2) x --~-d~2 dx (3) ~-~ exp 

2.2. Composite Case. 

We now consider a family of realisations of a stationary Gaussian random process each with its own 
root-mean-square value. We assume the family to be large enough, - strictly speaking, infinite - to justify 
describing the distribution of root-mean-square values in continuous form. Now the mean-square, 
that is, the variance, is essentially positive and its distribution may be assumed to extend indefinitely in 
the positive direction, suggesting that an Eulerian (i.e. Pearson Type III) distribution might prove suitable. 
Accordingly, the following distribution for a2 is assumed : 



f(~2) d(e2) _ ( n -  1)! exp ~p2 2p2 • 

The parameter p is a scale parameter, and the parameter n, which can take only positive values, determines 
the shape. (The factor 2 is included in (4) in order to simplify some of the subsequent expressions.) For  
n < 1, the distribution is J-shaped, and for n > 1 the distribution becomes hump-shaped, tending to 
Gaussian form for large n. 

Furthermore, the coefficient of variation of the distribution is 1/x/n so that as n increases the peak 
becomes more and more pronounced, and therefore the parameter n can be used as a measure of the 
heterogeneity of c~. 

The corresponding distribution of c~ is : 

f(~)d~ - 2,_ t ( n - l ) !  exp - p .  (5) 

Now providing N o is constant, the average number of x-crossings per unit time for the whole family 
(assuming all members to be of the same length) can be obtained by integrating (2) over all values of ~. 
It must be emphasized that this is only justified providing No is constant, and while this is a reasonable 
assumption to make, there is some evidence to suggest that in the case of aircraft loads due to turbulence, 
the number of zero crossings depends to some extent on turbulence intensity. This point will be taken up 
again in Section 2.3. 

Assuming then that No is constant, the average number of x-crossings per unit time is given by 

No e2.-  1 exp de 
Nx = 2._ 1 ( n -  1)! p2. 2e2 

0 

i.e. N x  = 2 . _ 1 ( n _ 1 ) !  P K .  . (6) 

where K,  is a modified Bessel function of the second kind as defined and tabulated in Ref. 3. 
Fig. I shows the distributions of ~/p given by (5) for a range of values of n, and indicates the progressive 

change of shape. Fig. 2 gives the corresponding numbers of x-crossings given by (6), (for N o = 1). As 
explained above, these are approximately the cumulative distributions of peak values. 

Differentiating (6) and dividing out the factor N O to obtain the approximate frequency distribution 
of peak values gives : 

1 / x \ "  / x \ d x  
(7) 

The frequency distribution of the original variable, x itself, is obtained by integrating (1) over all 
values of c~, giving 

f ( x ) a x  = (8) 



The value of 0 -2, the mean square value of x, can be found either by multiplying (8) by x 2 and integrating* ; 
or by finding the average value of c~ 2 from (4), giving : - -  

~2 = 2rip2. (9) 

The mean-square value of the peak distribution is 4np 2, twice that of the distribution of x itself. A 
convenient way to determine the parameters n and p for a given peak distribution is by finding the second 
and fourth moments and the coefficient of Kurtosis (Pearson's/?2). We have 

#2 = 4np z, (10) 

#4 = 32n(n+ 1) p4 (11) 

a n d  f12 = #4 _ 2 ( n +  1) (12) 
, ~  n 

2 
giving n - - -  (13) 

/ ?2 -2  

When f12 = 2 we have a Rayleigh distribution of peaks, corresponding to an infinite value of n and a 
constant value of e, that is, the homogenous case. As e becomes more and more variable,/?2 increases. 

Although the use of the second and fourth moments is a convenient way of determining the parameters 
of the distribution it is not the most accurate. It is more accurate to use the mean deviation and the second 
moment, as the higher moments have larger sampling errors. However, using this method, it is necessary 
to solve a transcendental equation involving Gamma functions, and it is by no means so convenient. 

An important particular case arises when//2 = 6 and n = ½. For  this value of n, expressions (6) and (7) 
degenerate into exponential distributions giving 

The distribution of e2 is J-shaped, and substituting n = ½ in (5) shows that the distribution of ~ is the 
positive half of a Gaussian distribution. The distribution of x from (8) is 

and (9) gives 

,rcp o 

O ' ~ p ,  

It is thus a simple matter to determine the root-mean-square value of x f romthe  slope of the peak 
distribution, or cumulative peak distribution, plotted on a logarithmic scale. The increase in x necessary 
to decrease the number of peaks by a factor 'e' is its root-mean-square value (but not, of course, the root- 
mean-square of the peak distribution, which is x/2 p). 

*In determining the moments of the distribution of x and of the distribution of peak values, the following 
relation is useful : 
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2.3. The Case when No Varies. 

It was emphasised earlier that the results obtained in the above analysis are only true providing N O 
is constant. In general, when N o varies the problem becomes more intractable, but in the particular 
case when N O is a power of e the solution follows similar lines to that above. 

As before, let the distribution of x be given by (1) and the distribution of ~2 by (4), but in this case 
let N O be dependent on e, the relation being given by 

N O = A g2m, 

where A and m are constants. Writing M x for the number of x-crossings, the integral expression for 
Mx then becomes 

cO A I 2n+2ml ( 
Mx = 2._ 1 ( n -  1)! p2, exp 

0 

X2 52 1 
2~ 2 2~- ~ d~ 

i.e. M x =  2 . _ ~ ( n _ a ) ! \ p  ] K.+ m P . (14) 

Thus the expression for M x is of the same form as that previously obtained for N x; it has the same 
scale parameter p, but the shape parameter is changed from n to n + m. The value of M o is given by 

M o = 2mAp2,, ( n + m - 1 ) !  
( n - l ) !  (15) 

In the case of aircraft normal acceleration response to atmospheric turbulence, there are indications 
that as the turbulence intensity increases, the number of zero crossings decreases slightly. Expression 
(14) shows that if the variation can be approximated over the range of interest by a power law, it may 
still be possible to fit a distribution of the same form. However, unless the power law is known, it will 
not be possible to infer the parameter n in the distribution of ct, or the value of A, although it will be 
seen that the parameter p again determines the scale. If the root-mean-square value of x is inferred in 

usual way, the spuriously low value of x/2 (n + rn)p instead of x / ~  p is obtained (m negative), although 
this may be quite a good approximation if n is numerically large compared with m. 

Since m+ n may be negative and since K,  = K~_,), expression (14) suggests that in some cases it may 
be useful to fit distributions of the form : 

K x constant x ( P )  v p ( p )  (16) 

where p = - ( n + m ) .  This expression becomes infinite when x = 0 but may give a good fit over the 
observed range of values. 

3. Fitting the Distribution to Observed Values. 

A convenient body of data for testing the validity of expression (6) in describing gust load statistics 
is provided by the results of an investigation, using Canberra aircraft, of low level atmospheric turbulence 
in North Africa. The full sdope of this investigation, known as 'Operation Swifter', is described in Ref. 4. 

In the first instance, expression (6) will be fitted to observational gust load material extending over 
fairly short periods of time during which conditions remain fairly constant, and some of the single runs 
over the desert will be examined. These runs were of about 100 to 150 miles in length and were made 
throughout the year under a variety of meteorological conditions and intensities of turbulence. Counting 



accelerometer records for each run were converted to equivalent gust velocities by the standard discrete 
gust method. The resulting distributions may be assumed to represent reasonably well the peak load 
distribution, to some arbitrary scale, that would be produced by the gusts on the aircraft, if its weight 
and speed remained constant throughout the run. 

Tables 1 to 4 give a selection of these cumulative distributions ranging from an exponential to one 
approaching a Rayleigh, together with the calculated distributions based on expression (6). The com- 
parisons are made diagrammatically in Figs. 3 to 6. (In order to use published tables*, cases where n is 
close to an integer have been selected, but in other respects these distributions are quite typical.) 

It will be seen that the agreement is very good, and confirms that the suggested theoretical expression 
adequately describes these distributions. 

It is also to be expected that the distribution will give a good fit to data representing more extensive 
flying, providing it is done under fairly uniform conditions. The next example is for the gust distribution 
obtained from all flights made in the middle of the day over the flat desert during the month of June. 
Table 5 gives the observed and calculated distributions and they are shown plotted in Fig. 7. The agree- 
ment is not as good as for the single legs, but is probably sufficient for most purposes. The most serious 
discrepancy, from the practical point of view, is for the gusts above 25 ft/sec, where 4 occur, compared 
with the expected mean of 1.2. However, the actual numbers involved are small, and such a distortion 
of the 'tail' of the distribution could easily be produced by a few manoeuvre loads inadvertently applied, 
probably in combination with an already moderately large gust load. 

When much longer periods, involving a variety of meteorological conditions, are considered however, 
expression (6) will not usually give a satisfactory representation of the gust distribution. For example, 
most of the gust distributions for the year's flying shown in Ref. 4 are obviously different in character 
from those considered in this paper, having a point of inflection and a marked 'tail'. This is not surprising, 
since the distribution of ~ for the whole year might b e expected to be far flatter than that implied by 
expression (5). 

An exception is in the case of flying over the sea, where the turbulence intensity varied throughout 
the year between much narrower limits. As a final example, illustrating the use of the distribution as 
modified in (16), a curve will be fitted to these data. 

It is found that reasonable agreement is given by p = ½ and since 

X 

tables of logarithms can be used in the calculation. Table 6 gives the observed and calculated distributions, 
and they are plotted in Fig. 8. 

Generally speaking, the agreement is good but again the tendency is observed for a few additional 
high loads to occur. The discrepancy, however, is only about 4 occurrences in 44,000 miles and, as before, 
might easily be due to a few manoeuvre loads. 

4. Conclusions. 

In the case of a random Gaussian process for which the mean square itself varies, when the mean square 
distribution is of Eulerian (Person Type III) form, the cumulative distribution of peak values of the variable 
is given approximately by: 

1 (p)" (p) 
2n_i (n_ l )  ! .K,, 

*Tables of the function and its logarithm have now been prepared 5 for the values: 

x = 0.1 (0.1) 20 

n = ½ (½) 6 (1) 10 



This expression gives a good fit to many observed distributions, and it is thus confirmed that the suggested 
mathematical model is a useful one. 

In deriving the above expression, n is necessarily positive, but in some cases a function of the form 

K x 

where C is a constant, and p positive, may give good agreement over the observed range of values. 

5. Summary of Results. 

(a) Simple case. 

Frequency distribution of x 

f(x) dx = ~ exp dx. 

The number of x-crossings per unit time 

N x = N  oexp - ~ z  • 

Approximate frequency distribution of peak values 

f ( x )dx  = -~exp ~ dx. 

(b) Composite case. 

Let the variance of x, that is, ~2, have the distribution given by: 

f(c02 d(e2) = ( n -  1)-----~. ~,2p2] exp - 2p 2 . 

The frequency distribution of ~ is then : 

1 
f(~) de = 2n- 1 (n-- 1)! exp \ 2p2 ] P . 

Frequency distribution of x 

f(x) dx = 2"- 3/2 x/Tz ( n -  1)! Kn_ ~ p .  

The number of x-crossings per unit time 

@n 
No Kn 

Nx = 2n_ 1 (n-- l)!  



Aproximate frequency distribution of peak values 

1 ( x ' ~  '~ { x ' ~ d x  
/(x)ax = 2.-1 (n_l) , \~)  K . - 1 \ ~ ) 7 .  

Moments and kurtosis of the frequency distribution of x 

#z = 2np z = or2 

#4 = 12n(n+1)p 4 

3 (n+l)  
n 

Moments and kurtosis of the frequency distribution of peak values 

]~z = 4np 2, 

#4 = 32n (n+ 1) p4, 

2 (n + 1) 

n 
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TABLE 1 

Comparison of observed and calculated gust distributions for 'Swifter' leg 399 (80 miles) 

Gust velocity 
v ft/sec 

5 
7.5 

10 
15 

Number of gusts exceeding 
v ft/sec 

Observed 

236 
73 
22 
2 

Calculated 

236 
72"2 
22.1 
2.1 

(v) Calculated values given by 2522 exp 

TABLE 2 

Comparis.on of observed and calculated gust distributions for 'Swifter' leg 289 (155 miles) 

Gust velocity 
v ft/sec 

5 
7.5 

10 
15 

Number of gusts exceeding 
v ft/sec 

Observed 

711 
237 

67 
5 

Calculated 

711 
235"8 

67"3 
4"2 

Calculated values given by 97'7 K a 
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TABLE 3 

Comparison of observed and calculated gust distributions for 'Swifter' leg 1735 (140 miles) 

Gust velocity 
v ft/sec 

5 
7.5 

10 
15 
20 

Number of gusts exceeding 
v ft/sec 

Observed 

919 
414 
164 

15 
1 

Calculated 

919 
414.6 
160"3 

17'7 
1'5 

Calculated values given by 41.63 K 4 

TABLE 4 

Comparison of observed and calculated gust distributions for 'Swifter' leg 119 (152 miles) 

Gust velocity 
v ft/sec 

5 
7.5 

10 
15 
20 

Number of gusts exceeding 
v ff/sec 

Observed 

1209 
559 
217 

21 
1 

Calculated 

1209 
562"3 
216"5 

21 '7 
1'5 

Calculated values given by 0"6324 (,--x-~,'~ 6 ( ,  ~ ,~ K6 
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TABLE 5 

Comparison of observed and calculated gust distributions for flying over fiat desert at 200 f t  at midday 
during the June period of 'Swifter' trials (2100 miles) 

Gust velocity 
v ft/sec 

5 
7.5 

10 
15 
20 
25 

Number of gusts exceeding 
v ft/sec 

Observed 

17,173 
7,813 
2,803 

262 
26 
4 

Calculated 

17,173 
7,661 
2,863 

279.3 
20.2 

1.2 

Calculated values given by 95.49 K s 

TABLE 6 

Comparison of observed and calculated gust distributions for all flying over sea at 200 f t  during 'Swifter' 
trials (43,660 miles) 

Gust velocity 
v ft/sec 

5 
7'5 

10 
15 
20 
25 

Number of gusts exceeding 
v ft/sec 

Observed Calculated 

32,932 
4,503 

714 
21 

5 
2 

32,932 
4,541 

705 
20.1 
0.6 

Calculated values given by 2-423 x 106 x - -  
1 . 5 8 7  

V 
exp - 
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