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SUMMARY

It 1s shown that the solutions of similar differential
equationa which arc coupled together can be expressed in torms of the
golutions of a single differential cquation, possibly containing complex
parameters, but of the same order as each separate equation. Some
amplications of this result are discussed, and Nyquist's criterion 1s
generalized to study tho stability of constant parameter systems of this
type.
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1. Introduction

It 13 frequently possible to represent a pair of lincar coupled
equations by a single equation containing complex quantities, the
conditions on the real and imaginary parts separately giving the original
relations. This gives a compact way of handling the equations and can bo
a convenlent method of obtaining analytical solutions.

This Memorandum shows that it 1s possible to use complex numbers
to gamplify the analysis of any number of linear syatems which are coupled
together provided that the separate gystems are alike, and the couplings of
samilar form., The behaviour of- tho coupled gystems can be writion as a
guperposition of the response of & number of uncoupled systems cach of the
same order as one of the-original separate systems, though posaibly
containing complex parameters. The method 18 a generalization of the
transformatlon 16”7 normal coordlnatos used in the dynamical theory of small
oscillationa, :

The theoretical study of systems containing such complex
parameters 18 no more difficult than 1f the parameters were purely real.
Any analytical solution has only to be extended to the complex plane,
and the kmowledge that it will bo an analytic function of the complox
parameter satisfying the Cauchy-Ricmann relations may assigt in an
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understanding of 1ts properties. Constant parameter systems whose
exponential solutions are well known for complex arguments are
particularly easy to treat, and Nyquist's critorion readily extended
to discuss their stability.

While thas paper was being written, the author's attention
was directed to work by Merson (1954) and Jeffrey (1955) (the latter
unpublished) which 1s relatedy but the present itreatment 1s different
and may be said in some ways to unify the two earlier approaches.

2. The Complex Variable Concept

It wall be useful to study first some examples of the way in
which complex variable notation can simplify the mathematical formulation
of a problem.

Consider the pair of differential equations

d
Tcos p+ysing = T — (v ~x)
dt
ees (1)
4
< Bmn Pp+ycos ¢ = T —(s-y)
dt

The orthodox method of solvang thesc equations is to eliminate ¥
between them solving the resuliing second order equation for =x, and
then repeating the process for y. But by defining

Z2 = xX+1iy 3§ q = r + is

the equations may be identified with the equations for the real and
imagrnary parts of

d

PP R (q - z)
dt
ory writing Tel¢ = B
d dq
(1+s--)z -5 — oo (2)
dt dt

If a sinugoidal input is applied to one plane only 80 that B8 vanishes
and g = r = 8in wt, it 18 easily vorified that the solution of
equation (2) wath z = 0 at t = O 18

(1 +¢8%) 2 = w8 [wS sin wt + cos wt = exp (~t/5)] ...(3)

and /



_3-.

and this as truc whether S 18 real or complex., In thas example, the
output sagnals x and ¥y will be the rcal and i1maginary paris,
respectively, of =z. These are 8een to be given by

(1 + 2”72 cos 2¢ + ' T4) x
= Wl {wD (coe 2¢ + ®P?) sin wt + (1 + T3 cos ¢ cos wt
- oxp (- t cos ¢/T) [cos (¢ + t san ¢/T) + « T2 cos (¢ -t sin ¢/T)]} ... (4)
+ 20PT% cos 2¢ + *T%) y = T P sin 2¢ sin wb + (1 ~ *T?) san ¢ cos wt
- cxp (- t cos /2) [san (¢ + ¢t sin ¢/P) -~ T sin (¢ - t sin ¢/T)]]

The coupling oporation in this example, a transformatzon hetween
error and torque axes; 1s particularly simply represcnted by using complox
variables, In general, 1f signals r and 8 corresponding to motion in
one set of rectangular axes are resolved into signals r' and s' an
another set of axes making an angle ¢ (possibly time varying) with the
first

rt 4+ 18! = q' = @ q = e—1¢ (I‘ + iS) ---(5)

The resolved signals might each be passed through a linear filter
represented by A{D), a polynominal function of the differential
operator D = d/dt and then resolved back to the original axes as
outputs x and y. Working back through the systom these oporations may
be represented by ’

X+1y = & = el¢ zt = 0l¢ A(D)g' = oi? A(D)eﬂl¢ q = A'(D)q ,

where A'(D) a1s rcadily found whon the time variation of ¢ 13 known.
For oxamplo, 1f A(D) = I® and ¢ = Ot where @ is constant

= oMW (o7 ) L [D® - 3i00% - 30°D + 10°] @ = [D - 20 q
EBquating rcal and imaginary parts
x = DPr + 3D%s ~ 3PIr - (Ps
y = D°s - 3W*r - 30PDs + (Pr

3. Transformation of Coupled Systoma

A set of linear systems may be coupled in many ways. Some of
these, such as combination of the inputs before any element intreducing
a time dependence and addition of the outputs i1n groups, are trivial in
that they can be dealt wath by the superposition principle. Feed-back
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coupling, on the other hand, where guantities related to each output may
be added to all the inputs presents more difficulty., Typical equations
governing such coupling betwcen linear systems which are otherwise
i1dentical may be written.

N

Xy = A(D,%) SJ+1§ B(D,t) kaxk ees(6)

!

The suffices take on as many values as thore are systems coupled, xy
being the response of the jth system to rts stimulus s , and the

real numerical coefficients bjk gi1ving the proportion of the output
from the kth system which is fed-back to the input of the jth system.
The operators A(D,t) and B(D,t) may be any function of time, t, and
the dafforontial operator; D. It will be shown that the solution of
these equations can be written in terms of the solutions of single
wcoupled cguations,

Define a new set of variables by adding the =x. togetkher in
various proportions whosc magnitudes will be determined later.

i
Z. = X C._ X, eos (T)
3

The ¢35 determino the weights in the inverse transformation

through the N sets of ¥ simultsncous equations

N
Zalcldek =8, =11 =k
.o {8)
= 0 2 7£ k
Substituting in cquation (6) gives the X equations
[ w NNE
2, = AD,t) | chj 53JrIs(za,Jc)z‘?zzclJ b ey 7, . (9)
L‘J ik €
Now fix the values of the C13 %0 that
N
?iclabakdkz T Mg Sy = Mgy = 4
eeo (10)
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This implies that the dyg arc the solutions of N sets of N
homogeneous simultancous cquations {each value of & gives one set of
equations)

N

2z (v
k

1 to N e {11)

.
i}

g e S G -

and can only be non-zerc if the detorminant of the coefficients vanishes,

]bjk - u, 63k| ... (12)
Equation (12) determines the N values of up as the roots of the

Hth degrce polynomaal obtained by expanding the doterminant. They are
called the latent roots of the matrix of the by and by solving
successively the sets of simultancous ocquations ?11) éB) lead to the
values of the dye and the c¢;3 which satisfy equation (10). Such

values can always be found 1f all the pg are different and using

them equation (9) may be written.

z, = A(D,t)

N
N ? C 5 8, % B(D,t) u z, o (13)

| 1
L |

Thnere are N equations like (13) corresponding to the N values of 1,
but they are all independent, each one representing a system like one of
the original coupled systems with feed back from i1tz own output only.

If F(r,w) 1s used to represent the output from such a system with

foed back cocfficient w when the anput 18 1, 80 that

Flr,w) = A(D,t) [r + B(D,t) wF(r,w)] eeo{14)
1t will be seen from equatzon {13} that

N
Z. = ? Cj F(sa,ul)

by the suporposition pranciple. Hence

Ny

x, = ? 5 le ch F(Sk’ua) ...(15)

As 1nitial condaitions for equations (14} 1t is conveniont to choose
[F(sk’uﬁ)]t=to = [xk]t=t0 for all j s (16)

Those/
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These last three equations, (14), (15) and (16), are completely equivalent
to the original set of equations {6) wath their initial conditions.
Physically 1t may be said that the feed-back cross couplings of the
original system which make 1t diffacult to analyse have been replaced by
cross couplings between the inputs only, and between the outputs only, so
that the superposition prainciple may be used.

Transformation of the type used here are familiar in the study
of the equations of motion of dynamical systems and, following the
nomenclature used there, equation (13) may be called the "normal equation"
representing one of the "nmormal systcoms" derived from the oraginal coupled
systems. Since 1t 18 of the same order as each of the coupled equations,
solution of the problem througk the normal equations 1s considerably
easier than solving the high order system obtained by eliminating all but
one variable. In the same way properties such as stability of the
coupled systeme can be discussed through the properties of the normal
gystem.

Although the stimulus r and the initial values of F(r,w)
arc real, equation (1) will in general be complex., This is because the
latent roots of an arbitrary metrix are complex, though since here the
matrix 18 real such latent rcots must occur in complex conjugate pairs.
Thus for generally coupled systems, some of the normal equations may have
real values of w and hence have real solutions, while in others the
parameter may be complex so that their solutions and the coefficients ¢
and d will alse be complex. Such complex numbers do not hinder an
analytical solution unless it 18 rcoguired to evaluate i1t numerically for
functions which arc not well tabulated for complex arguments., Physically,
however, although esquation (14) can be represented by a singlo system with
a feed-back path when w is real, this 18 impossible for complex w. But
from Section 2 1t will be realized that 1t can be represented by coupling
two systems in the appropriate way and identifying one system with the
real part of the solution and the other with the imaginary part. This is
shown 1n Fig., 1 wath B(D,t) = 1 and

P = G+aHyp w = u+ iv
go that

G(ryw) = A(D,t) [r + wG(rgw) = vH(rsw)]
eee (17)
H(ryw) = A(D,t) [vG(rsw) + uli(ryw)]

To 1llustrate the application of the method, consider the pair
of coupled systems shown in Fag. 2. The feed-back operator B(D,t) 18
taken as unity, and for convenience tho paramctcrs are defined:

byy = a+83b, = (B*=8)yyby = Yiby = a-8

Hence the two sets of equations corresponding to 11 are obtained by
putting

&/
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& = 1 or 2 in

(0.+5-u8) +((:‘° Ga)yd.z& = 0
ydw+(a-6—,u&) dyy = O ..l (18)

The condition that the determinant of the coefficients of the dyxg shall
vanish gives

U1=a+B,u2=a-ﬁ

By substituting these values in (18) and solving, the dipg may be taken
asz:

d11=B+6;d21=y;d12=—(§3-6);d22=y

The ¢ coefficients can now bo obtained by solvaing equation (8) and
substituting in equation (15)

2y x = y [(B +8) F(rsa + 8) + (B ~8) F(rya - 8}]
+ (8? - 8 ) [F(sga + B) - F(ssa - B)]
s+ (19)
28y y = y [F(rsa + B) -~ F(rsa - 8)] + (p - 8) F(ssa + B)

+ (B + &) P(sga - B)

The transformations can be used to draw Fig. 3 which 18 equivalent 1o
Fig. 2. The ¢ and d coefficients respectively determine the summing
sections which precede and follow thoe two "normal systoms".

When

(byy = Byl + 4Dy, < 0

in this oxample, B”n must be negative and the u, -become complex.

A system equlvalant to Fa 2 may then be built round. Fig. 1

(with u = Gy V IB1 the two SUMNing scctions being as in

Fig. 3 oxcept that B must be replaced by 1ts modulus. In this case
equation (19) may be written in terms of real quantities

y [IBIG (z5a + 2 181) + 88 (Ffa+ 1 Ip!)]

I8ly x =
- (pl* +8) H (sga + 1 !81) .. (20)
1l vy = yH (rsa +2 IBl) + [BlG (s3a + 2 1Bl) - 8H (s3a + ilBl)

vy/



by using the relations

P(rsw) = G(rsw) + 1H(rsw) = F(ryw) = G(rjw*) - iH(rsw®)

*

which are impled by equation (17); here is used to denote the complex

conjugate.

It
It may be verified by differentiating equation (17) that 5—
u
oH aG gH
and =-- sgatisfy a common differential equation, and so do = and =- — ,
av av du
each of those equations being of order 2N, where N 1s the order of
equation (13), Hence provided that the initial values of G and H and
their time deravatives to order 2N - {1 satisfy the Cauchy-Riemann
relations as a function of w they will continue to do so for all time.
This means that both G and H satisfy Laplace's equation with respect
to the varisble u and v 8o that knowledge of the variation of G with
u enables an cstimate of the effect of v on both G and H to be made.
Expressed analytically:

" . 2r a?rG
Gla + i) = G(a) + & (-)F e | —=
r=1 ert Buzr
L] uza
vea(21)
) E’ ) 27+1 a2r+1G
H(a + iB) = (=)
2r+1
= !
=0 (22 + 1) (du L
which may be compared with the Taylor expansion for rcal values:
o gF|3%c
Gla + B) = Gla) + & —|——
=1 r} ouT
R P
oou(22)
H{a + B) = ©

L+ Stability of Constant Paremeter Systems

If coupled systems of the type considered here are to be stable,
all the normal systems derived from them must also be stable since the
relationship of equation (15) can only affect the coefficient and not the
exponent of any exponentially increasing tcrm,

The methods of investigating the stability of systems with
congtant coefficicnts are based on the application of couplex variable
theory (Nyquist's criterion, for cxample), so 1t 1s not surprising that
they are rcadily cxtended to treat constant complex paramctor equations
which may arise from the normal systcms.

A congtant parameter differential equation has stzable
solutions if each term of its complementary function contains an
exponentral with a negative real part in 1ts exponcont. When the

constant/
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constant coefficient overators corresponding to A and B ain equation (14.)
are the ratios of polynomials, the equation may be re-written as a true
differential equation,

[x(D) = wL(D}] P = J(D)r e (23)

Jy K and L being polynomials in D. The complementary function of this
equation will contain terms like F = E; oxp Mt where E; and M
are complex constants, the M, being the roots of the auxiliary polynomial

P(A) = [x(A) -wL(pd)] = © oo (24)

This 18 quite independent of whether w 18 a real number or another
complex constant. To find 1f any roots of this equation have positave
real parts, a standard process 18 to examine the path traced in the complex
plane by some function in (24) as A 1s takon round the contour of

Fig. 4(a), 1.6., from =1 oo up the imaginary axis to +1 oo and then
clockwise round a large semicircle in the right half plane. The path
traccd by the whole left-hand side of cquation (2,,) must not encircle the
origin 1f all the roots of (24,) aro to have negative real parts. Since
that part of the locus corresponding to the large semicircle in the

%\ plane will turn clockwise through 2n quadrants (n 1s the highest
powor of A an (24)), the path corresponding to the imaginary axis of the
A plane must turn anti-clockwigo through 2n quadrants. Loci for stablo
oquations of second, third and fourth order are shown in Fags 4(b), (c)
and (d) and from their shape the Appendix deraves inequalitics whick must
be satisfied by the complex cocfficients in the differential equations.
Bocause the coefficients are complex the locus corresponding to negative
frequencies 18 not the mirror image in the roal axis of that for positive
froguencies.

A moro useful technigue when 1t 1s required to find the range of
valuecs of w for which the systom 18 stable 1s to rewrite equation (24)
as

L(n) 1
wK(A) |==——r==] = O .. (25)
K(n) w '
and consider the locus of
L(M)
—— = aA(x) B(®)
k(M)

as A tracos the same closed contour. Provided that K(A) has no zeros
in the raght half plane this case 13 the same as the previous one but with
the origin shifted to the point 1/w which must not be enclosed by the
locus. Remembering that usually K(A) 1s of highor order than L{A)

so that the locus corresponding to N on the large somi-circle collapsges
to the origin, the locus considered is that of the "open loop transfer
function" and the stability craiterion tho same as Nyquist's, substituting
the point 1/w for the point  (1,0). It should be noted that when the
feed-back loop has a variable real gain it is customary to consider the
open loop locus as expanding whon the gain 1s incroased, the critical
point remaining at (1,0). When the gain 1s complex 1%t 18 morc convenient

to/

n n=-1 n-2
r(s) = 8 + e _, 8 ta o

and/



- 10 =

to keep the locus fixed and move the craitical point, otherwise the locus
18 rotated about the origin by the phase angle of w as well as being
multiplied by 1ts modulus,

="

- 12 -

end expand r(s)/q(s) as a continued fraction by dividing to a remsinder,
thon inveriing tho division and repeating:

r(s)/a(s) = bs+ B +bs+ B + 1

bas + 53 +

o e vt S s

The solutions of the equation will be stable if all the b are real and
positive; and all f purely imaginary.
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