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Part I.—The Electrical Analogue to Steady and Oscillating Flow in
Slotted-Wall Tunnels

Summary,

Part I of this report describes a study of the lift interference effect in slotted-wall wind tunnels performed
by a pure resistance electrical analogue. Both steady and oscillatory flow are considered. Special tech-
niques devised to represent the singular behaviour of a point wing and at the edges of each slot are dis-
cussed in detail Comparisons are made with an exact solution based on an equivalent homogeneous
boundary condition for steady flow. For oscillatory flow experimental results are presented which show
how the magnitude of the interference upwash changes with the frequency of the oscillation.

1. Introduction,

Many of the wind tunnels used for both subsonic and transonic investigations have partially open walls
consisting either of longitudinal slots or circular perforations. The boundaries of the tunnel influence the
flow around the model, and there are several distinct interference effects, such as blockage interference on
the stream velocity, lift interference on the model incidence and shock wave reflections from the walls.
In oscillatory compressible flow tunnel wall resonance may occur. A recent review of unsteady inter-
ference effects in slotted-wall tunnels by Wight! describes the exceedingly large changes in pitching damp-
ing which may result from sealing off the slots. The present investigation concerns steady flow when
linearised boundary conditions are applied at the slots. The study is carried out by means of a pure
resistance electrical analogue with the object of obtaining detailed information about the lift interference
in the wake of the wing and the flow near to the slots.

The resistance network automatically solves the two dimensional differential equation which is assumed
to describe the potential function in the distant wake of an oscillating wing. In effect the resistance network
is an automatic means of solving the finite difference equation, and in using a finite difference approach
two particular difficulties arise. The first concerns the representation of the discontinuities in the velocity
at the edge of the slots, and is overcome by the introduction of special singularity formulae at these points.
The second problem arises from the necessity of obtaining accurate values of the interference potential,

*Part I replaces. A.R.C. 26680.
Part II replaces. A.R.C. 27140.



which are of a smaller order than the velocity potential. This is achieved by carrying out separate experi-
ments, first in terms of the velocity potential and then in terms of the interference potential.

The reduction of the problem to two dimensions involves the assumption that the tunnel is cylindrical
and of finite length, so that the velocity field becomes' periodic in streamwise distance far downstream.
For steady incompressible flow the velocity potential far downstream is known to equal twice the potential
at the wing? and therefore the results for steady flow are directly relevant to the transverse plane containing
the model, but for unsteady flow no such relationship exists and the results in the infinite wake can only
be used as a rough indication of the amplitude, but not the phase, of the velocity field in the plane of the
wing. Another assumption is the linearised condition at the slots, but any more accurate representation
of the free boundary would involve a far more complicated network.

The resistance network is used to compare the interference upwash. in steady flow for tunnels having
different types of roof, including open and closed roofs, different slot configurations and an equivalent
homogeneous condition. A further object of the report is to investigate whether failure of the linearised
condition is a possible explanation of the large interference effects reviewed in Ref. 1.

2. Mathematical Formulation,

The problem of the interference upwash effect in slotted wind tunnels in linearised compressible flow
leads on formulation to a second order partial differential equation in terms of the perturbation velocity
potential. The boundary conditions for the tunnel walls and roof including the effect of the slots can be
written in terms of the velocity potential and its normal slope. Many forms of wing could be adopted
but for computatlonal convenience a ‘point’ wing is selected. The perturbation velocity potential @, for
the point wing in an infinite field is known and this can be corrected to allow for the interference effects
If @ is the actual perturbation velocity potential within the tunnel then the interference velocity potential,
®, can be determined from,

®=d,+0. . @)

2.1. Governing Differential Equation.
For a field as shown in Fig. 1 with an undisturbed stream velocity U, the component velocities of the
flow in the x, y and z directions are U +u, v and w.
These velocities can be expressed in terms of the perturbation velocity potential in linearised com-
pressible flow, @, as

u = 0®/dx, v = 0®/dy and w = 0D/0z, 2

and the governing equation for unsteady flow at Mach number M is

2
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If the tunnel geometry is independent of x and the wing is oscillating with angular frequency, w, then
it may be assumed that in the distant wake
® = Real part of [¢(y,2)e ¢~ V], @
Equations (3) and (4) lead to the differential equation for ¢ (y,z)

52¢ 52¢
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which is seen to be independent of Mach number.



2.2. Condition on the Tunnel Boundary.
The tunnel is taken to have a rectangular cross section with solid side walls and ventilated roof and floor
with four slots in each. The geometry of the quarter tunnel is explained in Fig, 2. On the boundaries of
the tunnel two conditions hold.

(i) For a closed boundary the normal gradient of the velocity potential must vanish, hence on the
walls,

9¢/dy = O when y = +1b,

-and on the closed portion of the roof and floor
0¢/9z = 0 when z = +1h.

(ii) On the free boundary of the open portion of the tunnel, that is across the slots, there is a further

condition for constant pressure, that
od\2 [od\? [o0\? 5
ur 2V (22V1 (%) - 6
( ax) (ay)+(az) - ©

The usual assumption in wall interference problems is that the free boundaries are not distorted by the
presence of the wing, that the streamline condition is relaxed and that equation (6) can be linearised with
respect to the perturbation velocity potential so that across the slots,

® = constant = 0, ie. ¢ = 0.

At the edge of the slot the boundary condition changes suddenly from (i) to (ii) with the result that a
discontinuity in the slope of the function will occur. Also it should be noted that the boundary condition
(ii) is very much idealised, and it would be desirable to simulate the free boundary condition more
accurately.

Instead of separate conditions on the slots and slats of the tunnel, an equivalent homogeneous condition
has been suggested®. In this method the overall effect of the slotted roof or floor is given by

¢+Kdp/oz =0forz = +3h
(7

where K = —l log, cosec E‘f;
i 21

here [ is the periodic slot spacing and o/ the open area ratio, Fig. 2.

2.3. Flow Field of a Small Wing.

It is now necessary to define the actual wing which is placed in the tunnel and then find its effect far
downstream where ¢ (y,z) is to be determined. From the analytical solution for a very small wing in an
_infinite field of fluid, ‘boundary’ values for ¢ = ¢,,+ ¢; can be specified on z = 0.

Let the velocity potential of the perturbed flow.

® = Real part of [§(x,y,2)e'"] @)



‘where ¢ is antisymmetric in z, (Reference 4). On the plane z = 0 downstream of the wing of span 2s,
P(x.y,0+) = —P(x,y,0—) for |y|=<s,
. ©)
Px,y,0) =0 for |y|>s.
In the wake (x>0, [y[<s,z = 0)

U 0¢/dx+iwd = 0, (10)
since there is no discontinuity in pressure there. For a wing of very small chord with uniform spanwise
loading the lift is specified as

Real part of [4spUd(0,y,0+ )e!]
= Real part of [3pU%SC,e"]; (11)

with this condition at x = 0 equations (9) and (10) give

a(xryao + ) = U:S(:'L_e —lox/U —

= —¢(x,5,0—) for y<s. (12)

In the limit as x— o equation (12) gives the boundary condition

Usc
$0+) = =g =Ffor |y <s

(13)
¢(»,0+) =0 for |y>s

to be satisfied by ¢ (y,2) of equation (4). In the limit as s—0 the solution of the governing differential
equation (5) subject to (13) and the boundary conditions of an infinite field is

S
00) = da) = Lt ik, (%), (14

where 2 = y? 422 and K, (wr/U) is a Bessel function in the usual notation. Since K, (wr/U) satisfies
the ordinary differential equation

1 1 :
" ’ — 15
K1+——W/UK1 (1+———(W/U)2> K., (15)

it can be verified that equation (14) is a particular solution of equation (5). Moreover, for small r equation
(14) becomes

USCp wz | U wr wr
(15(37,2) - A —U_T l:E—i_O (ﬁ 10g U)] >



so that

f ) o(y,2)dy = ancl“ [2 tan —+0 (a;}z)]

= % as z—0, (16)

which is consistent with equation (13).
The problem is to solve the two-dimensional differential equation (5) subject to the boundary conditions
in Fig. 2 (Section 2.2). Since these are independent of Mach number, so are the solutions for ¢ and

bi = ¢— b

2.4. Determination of the Scaling Factor.
For a wing of small span ¢,, is given by equation (14). Let the electrical potential representing ¢,, on
the network be V,, where

_ 4nF'h,,

" ="Usc, 17
in which F’ is a scaling factor.
For steady flow the expression for ¢, is
USC, =z
O = 4 : ?
aﬁd hence the electrical potential becomes
V, = hF'z/r*. : (18)

For convenience the scale factor, F’, is chosen to be 10 000 x 6/88. Hence all measurements on the
electrical network must be multiplied by a factor such that

. USCE 88
¢ = Ak 60000 Vo (19)

It should be noted that the same scaling factor is used bothi for steady and unsteady problems.

3. The Electrical Analogue.

The analogy between the finite difference form of partial differential equations and the electrical
equations to resistance network has been used in the study of many field problems®°. In this instance
an analogous network to a second order partial differential equation is required and is devised in the follow-
ing manner.

The equation

¢ 0%
o = @fUP ©



must first be written in finite difference form,

1+ dat s+ da—ddy = (0/UYd*¢, ' (20)

where d is the mesh interval and the nodes are numbered as shown in Fig. 3a. Now for the electrical
network of Fig. 3b the sum of currents entering the node 0 must be zero; hence

Vi-Vo Vo=V Va—V, V.=V, 0-V
170 Y270 P37 Vo Ve Vo 0 _

0 .
p p p p R

which may be rewritten as
i+ Vo+Vs+V,—4V = pV/R. (21)
Equations (20) and (21) are identical in ¢ and V if the resistances are chose such that
p/R = (w/U)*d>.

When this condition is satisfied the network of resistors can be used to represent exactly the finite difference
form of the differential equations and once the correct boundary conditions are set on the network it
becomes a model of the mathematical idealisation of the problem.

For the particular case when wh/U =1 and the tunnel height, is divided into eighty-eight mesh
intervals (h/d = 88),

R = p(U/wd)* = p(88)%,

where p is the standard mesh resistance of 100 ohms.

Since ¢ was required in greater detail in some regions, a system of graded meshes was used. By this
means the mesh interval near to the wing and around the slots was made to equal #/88 whereas in regions
where the change in ¢ was less rapid the interval was increased to h/22.

Of the boundary conditions which arise in the problem under consideration, that of the function, ¢,
taking known values can be satisfied directly by setting the equivalent voltage ¥ to the nodes of the
" network. By doubling the value of the resistance on the boundaries, the condition of normal zero slope is
automatically satisfied.

By using additional boundary-feeding resistors the condition (7) on a homogeneous boundary,

¢+ Kop/on = 0,

can also be achieved automatically in the following manner. The slope at node 0 (Fig. 3a) can be written
as

(09/02)0 = (P2 — $4)/2d,
but the homogeneous condition for the edge z = 3h is

o+ K(0¢p/dz)o = 0.
Elimination of (0¢p/8z), gives :

A¢2 = ¢4—(2d/K)¢0-

When this is substituted in the finite difference form of the governing equation (20)

>

b1+ @3 +2¢,— ¢ = (2d/K)po + (/U d* ¢, (22)



If the circuit is modified with an extra resistor connected to each boundary node (Fig. 3¢) the electrical
equation becomes

Vi+Vs+2V,—4V, = 2p/X)Vo+ (0/R)Vs. (23)
For the equations (22) and (23) to be analogous
2d/K = 2p/X or X = (p/d)K.

As an example, the homogeneous condition where a/l = 1/8, d/l = 1/16 then

{
K= -f;loge cosec(na/2l) = - log, cosec(n/16),

16
hence the resistance X = Tp log, cosec(n/16) (24)

where the resistance p is 100 ohms.
The advantages of the resistance network method of solution are as follows:—

(1) In areas of particular interest the mesh interval can be decreased to permit a closer study of any
critical effects. ‘

(2) Only the values of the function in regions of particular interest need to be recorded.

(3) Boundary conditions-can generally be applied automatically.

(4) Successive problems with the same geometry can be set on the network rapidly.

4. Steady Flow in Slotted Wall Tunnels.

The equation which has to be solved for the steady flow in slotted wall tunnels is the Laplace equation,
V2¢ = 0. This equation is a standard problem for solution using a resistance network but techniques
additional to the standard procedure are required to simulate the effect of discontinuities at the slots, to
simulate the wing and also permit an accurate evaluation of the interference potential. Reference should
also be made to the Appendix for a detailed treatment of the singularities.

4.1. Discontinuities.

Discontinuities in the slope of the velocity potential occur at the edges of the slats and so as to test the
ability of the resistance network to simulate the flow around the edge of a slat, the first problem selected
was one for which an analytical solution is available. This problem, the non-viscous flow through a grating,
is discussed by Lamb’. The dimensions for the particular example studied here were chosen to approxi-
mate to the shape of the wind tunnel to be considered in the following section. The length was infinite,
and breadth between the parallel walls 44 mesh intervals and the width of the slot 4 mesh intervals (so
that the open area ratio was 1/11th); the total inflow set to be = units (Fig. 4a) and the boundary conditions
are satisfied as described in Section 2.3. Appreciable errors were found to occur around the nodes represent-
ing the slot ; the flow at the centre of the slot was found to be 15 per cent low and the flow at the quarter
points of the slot was 18-5 per cent low.

These errors arose because the standard finite difference approximation is unable to represent the
discontinuity in the slope of the velocity potential at the edge of the slot. To overcome this difficulty
use can be made of additional information which is available about the form of the function around the
singularity. The form of the velocity potential around the edge of an obstacle consisting of a thin wall in an
infinite field is known, and since the shape of the function sufficiently close to the edge of the wall does not
depend on the remainder of the field, this information can be used in the finite difference analysis of any



problem in which the flow is restricted by a thin wall, whatever the other boundary conditions.

However, the magnitude of the function is dependent on the remainder of the field and therefore a
mathematical solution is used close to the singularity, the standard finite difference solution is used in the
remainder of the field and these two solutions are made to join smoothly.

The flows close to the edge of the wall takes the form,
¢ = Ar¥sinf/2+ A,r3?sin36/2+ . .. (25)
where 4, and 4, are unknown constants,

v is the radius from the edge of the wall,

0 is the angle of the radius measured from the line across the open portion
of the slots (Fig. 4b).

At the four points C, D, E, F, surrounding the edge of the wall as shown in Fig. 4b, the expressions for the
functions ¢ are:

¢c = A h¥sinm/2+ A,h*?sin3n/2
¢p = A1(2h)%sinn/2+A2(2h)3/2 sin3m/2
by = A h¥sinn/4+ A,h>2sin3n/4
¢dr = A;(2h)*sinn/4+ A,(2h)3?sin3n/4.

By eliminating 4, and A4, the functions ¢ and ¢, can be written in terms of ¢ and ¢,

de = 025¢,+0-5303¢,
} (26)

¢ = 0-5303¢pp+0125¢,

In order to ensure that this particular function joins smoothly with the normal resistance solution,
an iterative procedure has to be adopted. From an initial solution in which the normal resistance network
is used over the entire field, values of ¢, and ¢, are measured and from substitution in equations (26)
values of ¢ and ¢ are calculated. These are set as potentials on the network, and new values of ¢, and
¢y are measured. This process is repeated until the calculated values of ¢ and ¢, equal those set in the
previous iteration. When this occurs both the special formula and the standard finite difference equations
are satisfied in the region between BEC and AFD.

When the solution of the flow through the gating was repeated by use of the special singularity function,
the values of the flow across the slot agreed more closely with the analytical values of Lamb, the greatest

o¢

error being 3 per cent, a satisfactory result for such a coarse net. The total flow 2, dy] is de-
z
z=const

fined as 7 and the localised flow d (0¢/0z) for points 4 and B (Fig. 4) tabulated below.

Point A Point B
Exact solution ' 0524 0598
Standard resistance network solution 0445 0-487
Solution with singularity formula 0-540 0611




4.2. Simulation of the Wing.
In this study the wing could be assumed to be either elliptically loaded or uniformly loaded. However,
when the span of the wing tends to zero, these two loading cases become the same, and the unconstrained
velocity potential for w—0 is

Usc, z
4n  r*’

b = @7

In view of the singularity at the origin it is clear that ¢ cannot be set at this point of the resistance network.
However, if it is permissible to represent the wing by setting values on an arc enclosing the point wing, the
difficulty would be overcome. For example, with an arc of radius approximately h/12, the values of ¢,,
on the Z axis is about ten times the largest value of ¢» on the roof of the tunnel. Such a range of values can
easily be set on the resistance network.

To verify that there is no finite difference error when simulating the wing of small span by setting the
function on a small arc around the origin, the following experiment was performed. A large field was
divided into a square mesh and values of ¢,,, calculated according to equation (27) were set both on an arc
a short distance from the origin and on the external boundary of the field. Potentials throughout the field
were measured and were found to agree everywhere with calculated values of ¢,,. If the setting of the func-
tion on the arc had been inadequate, discrepancies between the values would have occurred within the
field, from the close agreement it was assumed that the simulation is satisfactory.

4.3. Determination of Interference Potential.
When carrying out the analysis the quantities which have to be determined accurately are,

(a) the total flow towards each slot;
{b) the interference potential at the wing.

These two quantities were determined in the following manner. The total flow, Q, through a slot in
the plane of the model (which equals half the value at infinity) was calculated from

0
2Q =f 2 ay,

87thQ ov
USCL F’ bz

In practice integration was taken across a rectangular boundary approximately six mesh intervals from the
slot. ,
The lift interference parameter for a small model, d, is determined from the expression,

bh (34,
2% = ysc, (a)

again the parameter is evaluated in the plane of the model. The term (9¢,/9z), is calculated by numerical
differentiation using a three point formula.

Two methods of determining the interference potentials were studied, in the first a single solution in
terms of the interference potential only was obtained, whereas in the second method successive solutions
in the velocity potential and then the interference potential were tried until convergence occurred.



4.3.1. First method.

For the first attempt the analysis of the flow in the tunnel was only in terms of the interference potential
where ¢, = ¢— ¢, Since an analytical expression is available for ¢,, and the boundary conditions were
stated in terms of ¢, the problem can be stated entirely in terms of ¢;. The governing equation to be solved
is

ii”-’+a—¢ 0 for |y] <3b, [z <3k, 29)
with d¢,/dy = —d¢, /0y ony = +3b  (because the flow across the vertical walls of the tunnel 8¢/dy is

Zero),

9¢,/0z = —0¢,,/0zonz = +3h  for the closed portions of the roof and floor (because the flow
across the closed portion of the roof d¢/dz is zero),
¢, = —¢,onz= +3h for the open portions of the roof and floor (because the value
: of ¢ across the slots is zero), :
¢;=0onz=0 “on the horizontal centre line.

The advantage of working directly in terms of ¢, is that the interference upwash d¢;/0z at the wmg
is a small quantity which can be evaluated directly, whereas if it was calculated from an experiment in ¢,
being a small quantity compared with d¢/0z and 0¢,,/0z it would be liable to error.

However considerable practical difficulty was encountered in setting the boundary slopes 8¢;/dy and
d¢,/0z. Further, a very severe variation of the function ¢; occurs in the neighbourhood of the slots with
the result that it was virtually impossible to satisfy the boundary conditions in that region. Thus, through
reliable values of the interference potential remote from the slots were obtained, the solution could not
be used to determine accurately values of the flow at the slots.

4.3.2. Second method.
As an alternative to only working in terms of ¢;, a step by step procedure was carried out whereby
successive experiments in ¢ and ¢; quickly led to solutions giving all necessary results.
In carrying out the first analysis in terms of ¢ the boundary conditions can be stated as,

d¢/on = 0 on closed portions of the tunnel wall and roof and y = 0
¢ = 0 on open portions of the tunnel roof and z = 0

with the wing simulated as in the manner of Section 4.2. For the initial experiment it is necessary to set
values of ¢,, (the velocity potential in an unrestricted field) on the arc around the wing. But, because the
velocity potential will be modified due to the interference effects of the tunnel boundary, in a later experi-
ment the velocity potential on the arc is set from ¢ = ¢,,+ ;.

Therefore the procedure is that an experiment in ¢ is carried out with the correct conditions on the tunnel
boundaries but with calculated values of ¢, set around the wing. This is followed by an experiment in
¢; on the same resistance network with the potentials at the boundary of the tunnel calculated from
¢; = ¢ —¢,, and with the condition that ¢; = 0 on the line y = 0. :

The third experiment involves a repeat of the analysis in ¢ but with corrected values on the arc around
the wing. In the final experiment new calculated values of-¢; are applied on the boundary. Provided that
the values of ¢; in this last experiment have changed little from the second experiment it can be assumed that
convergence has occurred. The four steps are summarised in Fig. 5.

In the experiments in ¢ the singularity formula was used, and since ¢; was set from ¢; = ¢ —¢,, the
singularity formula was implicit in the experiments in ¢;. However, it was necessary to calculate the set
values of ¢; not only on the tunnel boundaries but also on the nodes within the tunnel where singularity
potentials in ¢ had already been applied.

10



5. Experiments in Steady Flow. .

The particular tunnel represented on the electrical analogue has a height/breadth ratio of one half
with the wing in the centre of the tunnel. To represent the conditions in the N.P.L. slotted wall tunnels
the open area ratio a/l is taken to be 1/11 (Table 1 of Ref. 1). Four slots were taken in both the roof and floor,
and in the first experiment a slot is positioned directly above the model and a half slot is adjacent to each
side wall. Due to symmetry only one quarter of the tunnel need be studied.

5.1. Exploratory Work.

Exploratory tests were conducted with a uniform square mesh the full breadth of the tunnel being
represented by 88 mesh intervals, and each slot by 2 mesh intervals. Potentials on the arc around the wing
were set by using ten turn helical potentiometers, the maximum potential being 2 volts. Values equivalent
to ¢; were set on the tunnel boundaries by means of potential dividers, which consist of a length of resist-
ance wire with numerous tappings. Measurement of the potentials was achieved either through a digital
voltmeter or by a null method using a voltage dividing resistance.

With this tunnel singularities occurred on the edges of each slot, but by following the procedure
described in Section 4.1 adjustments were carried out simultaneously at all the singularities and rapid
convergence occurred.

5.2. Solutions with Finer Net.

Though the results of the exploratory tests appeared to be satisfactory, it was thought to be advisable
to halve the mesh size in the regions around the slots and the wing. Therefore a graded network was
introduced and the form of the grading can be seen from the mesh numbering on the results sheet, Fig. 7.
A photograph of the apparatus and ancillary equipment is included in Fig. 6. In the first experiment when
¢,, was set around the wing, the magnitude for the point wheré the arc crosses the z axis was 10000 but
it had to be corrected due to the tunnel interference to 9943 for the third experiment. However, little
change was noted in the values of ¢; between the second and fourth experiments.

It is not possible to assess directly the accuracy of either the coarse net or the graded net, since there is
no exact theory with which the results can be compared. However the close agreement between the potent-
ials in the two experiments suggests that there is no serious net effect. In particular the comparison of the
flow through the individual slots, to be found in the following table, indicates that the finite net is a
satisfactory representation of the flow within the tunnel.

Usc,

Fl
oW 4rh

Position of slot  —
176 x 88 graded net | 88 x 44 uniform net

y=0, z=1 +2:30 +236
y=3%h z=1%h +072 +073
y=~h z=41h +0-08 +0-085

5.3. Slot and Slat Centres Interchanged.

In a second experiment the slot and slat centres were interchanged such that there was a slat directly
above the wing. The experiment was carried out on the 88 x 44 network and the flows calculated as before.

The flows through the individual slots were +1-60 and +0-225 x 4nh/USC,. A comparison showing
the effect on the interference upwash of interchanging the slots and slats is to be found in the table included
in the following section. The total flow through the slots is reduced from ) 8zhQ/USC, = 3-90 to 379 for
the case where a slat is directly above the model.

11



5.4. Homogeneous Boundary Condition.

Little modification is required to the experimental technique to permit the setting of the homogeneous
condition, ’

¢+K 0¢/oz =0

on the tunnel roof and floor. Resistors, calculated according to Section 3 are connected from the boundary
nodes on the tunnel roof to zero potential, whilst the tunnel sides are left free thus satisfying the condition
d¢/on = 0. The first analysis in ¢ is carried out as before with the values of ¢,, applied on the arc around
the wing. From this solution values of ¢; are calculated for the tunnel wall and roof, and an analysis in
¢, is performed. This is followed by a further experiment in ¢ with improved values set around the wing
and a final experiment in ¢; leads to the required information about the interference upwash.

In the following table the exact solution for the interference upwash (Reference 3) is compared with the
results for the homogeneous condition and the slotted tunnels.

do
Homogeneous boundary (exact solution) —0-0871
Homogeneous boundary (Analogue solution) —0-0869
Slotted tunnel, slot above wing —0-0976
Slotted tunnel, slat above wing —00642

6.0. Unsteady Flow.

The resistance network technique can readily be extended to include the effect of unsteady flow. The
governing equation,

2 P
575 = @0 5

can be analysed on a resistance network constructed according to Section 3.
The range of frequency parameters analysed was such that

O<wh/Ux1

and the actual values studied were wh/U = 0, 0-1988, 0-5101 and 1-000. There is no special significance
in the magnitude of the values chosen; they were selected to coincide with standard resistance values.
For a mesh resistance of 100 ohms, the resistances used to simulate the frequency parameter corresponding
to a unit mesh were 20M ohms, 3M ohms and 774K ohms. In the photograph of the apparatus, Fig. 6,
the mesh resistors are mounted in the horizontal board, and the resistors corresponding to the frequency
are set in the vertical board.

In order to satisfy the singularity condition on the edge of the slots, a technique similar to that used in
steady flow is adopted. The general form of the singularity equations is derived in the Appendix and for
the particular frequency parameter wh/U = 1-0 they become,

be = 024997 ¢ +0:53030 ¢,
b = 053030 ¢p+0-12499 ¢,

These coefficients are so close to those used for steady flow in equation (26), that it is sufficiently accurate
to use the steady state equations for all the frequency values considered in this report.

12



A similar system of iteration was adopted working first in ¢ and then in ¢; also the scale factor remained
unchanged from that given in Section 2.4. From the resultant values of ¢ and ¢; the total flow towards the
slots and the interference upwash at the origin were determined. The manner in which these depend on
the frequency is illustrated by the graphs of Fig. 8.

7. Concluding Remarks.

In this report a pure resistance electrical network has been described which represents a two dimen-
sional perturbation velocity potential over the cross section of a slotted rectangular wind tunnel. Though
the use of a network implies that the field is divided into a finite mesh, by the introduction of graded nets
sufficient detail is obtained in regions where the change in potential is rapid. Additional techniques have
been devised to cope with the singular behaviour at the small wing and also on the edges of the slots.

Using the resistance network, information has been obtained about the interference upwash parameter
at the origin of the wing in steady flow. The experimental value with the homogeneous condition on the
boundary is found to agree well with the analytical value from Ref. 3. The values for actual slots, with
the slot or the slat above the wing, are found to lie on either side of the homogeneous condition. It is
physically reasonable that the case where the slot is positioned above the origin should deviate towards
that of an open tunnel, while the case with a central slat should tend towards the closed boundary condition.

A second important conclusion which can be deduced from the results of this report is that the magni-
tude of the inflow near the roof slots tends to be reduced as the frequency of the oscillation increases.
A more accurate simulation of the conditions with a free stream surface bridging each slot would be
advantageous, but it would require a much finer grid in the neighbourhood of the slots with an iterative
process on the boundary even in steady flow. Under such conditions the tunnel boundaries, would no
longer be cylindrical, so that the present approach would not apply. The time dependent free boundaries
of an oscillatory flow in a slotted tunnel could still provide a clue to the large interference effects observed
in slotted tunnels (Ref. 1).

Further work which is being carried out with the two dimensional resistance network includes the
effect of increasing the number of slots in the roof of the tunnel and determining how the interference
parameter converges to the analytical results of the homogeneous condition. Another problem being
studied is that of all four walls slotted.

The success of the two dimensional network suggests that a three dimensional network would be useful,
for it would permit the evaluation of the streamline curvature correction for slotted tunnels. It might
also be applied to the more difficult problem of interference upwash near an oscillating model.
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NOTATION

Arbitrary constants
Width of slot T
Tunnel breadth

Lift coefficient

Mesh interval

Scaling factor

Height of tunnel

Bessel functions(n = 4, 1,...) -
Geometric slot parameter equation (7)
Periodic slot spacing

Mach number

Resistances

Radial co-ordinate

Planform area

Semi-span of wing

Time

Undisturbed stream velocity

Velocity components

Voltage

Resistance

Co-ordinates

Angle

Stream density

Lift interference parameter for small model
Perturbation velocity potential

@ = Real part of (¢(x,y,z)e’®)

Two-dimensional velocity potential in equation (4)

®,¢ for model in unconstrained flow

Interference velocity potential

. Angular frequency of the oscillation
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APPENDIX

Singularity Equations.

The need to introduce singularity equations arises from the inability of the standard finite difference
network to represent the infinite slope of the function which occurs at the edge of the slot. If the normal
finite difference expansion is replaced by an alternative expression in the neighbourhood of the slot,
such that this alternative expression satisfies the condition of infinite slope, then an improved solution
can be anticipated.

The following derivation was suggested by Mr. W. E. A. Acum of the National Physical Laboratory,
but the originator of this method is not known.

Within the region R bounded by the closed curve C, Fig. Al, the governing equation is equation (5),
and the boundary conditions are that ¢ vanishes on OP and its normal derivative vanishes on 00. 1t is
convenient to write equation (5) in polar form,

¢ 1dp 1 9% w>2 .
= aTrae\y) oY (AD)

the corresponding boundary conditions are,
¢=00n8 =0,

0¢/06 =0on 6 = 7. (A2)

The general solution of equation (A1) and the boundary conditions are given by the infinite series
¢ = ¥ [Aulus(@1/U)+ B, K, (or/U)]sinim—}, (A3)
m=1

where I, and K,, are Bessel Functions and A,, and B,, are constants. But K,, has an infinity at r = 0
and must be rejected to keep ¢ finite. Hence

¢ = Y A, (wr/U)sin(m—1). (A4)
m=1
If ¢ = g(6) is known on any small circle r = rq, the constants A,, can be evaluated.
However, ¢ may be expanded in the form of (A4) and close to 0 it is sufficient to take only the first two

terms of the expansion. Then the expressions for the points C, D, E, and F, F ig. 4b, can be written in terms of
the two constants 4, and A,. For example,

and there are similar expressions for ¢,,¢; and ¢p. Elimination of 4;and A, gives,

$e =730 ¢D+%ﬁ¢h
(AS5)
1
¢p = mﬁqj)v‘l‘% % ¢y,
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where

_ 11 5(w d/U) + I35(w d/U)
1,,Qwd/U)  I5,(2w d/U)

(A6)
— 115(wd/U) _ I3,(w d/U)
1,220 d/U) 15,20 d/U).

Equation (A5) reduces to equation (26) when w—0.
The manner in which these equations are used 'in a resistance network solution is described in

Section 4.1.
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Part II.—Particular Examples of Slotted-Wall Tunnel Interference in
Steady Flow

Summary.

In Part II the electrical analogue computer is used to obtain results for two particular steady flow
problems. The first involves a comparison between actual slotted walls and an equivalent homogeneous
condition. In the second the lift interference for tunnels with all four walls slotted is examined.

1. Introduction.

Part I describes an electrical analogue computer which can be used to investigate the interference
velocity potential in slotted wind tunnels. The computer consists of a rectangular array of resistors which
form, in effect, a model of the tunnel. The equations of the electrical network are made identical to the
finite difference form of the two-dimensional differential equation which governs the linearized flow in
the wake of an oscillating wing.

The resistance network is now used to estimate the interference upwash in steady flow for two types of
tunnel boundary. The first study is concerned with small lifting wings in rectangular tunnels with both
the roof and the floor slotted. As the number of slots is increased from two, the interference upwash for
discrete slots converges towards that for an equivalent homogeneous condition, and conclusions can be
made concerning the adequacy of the homogeneous condition.

Secondly rectangular tunnels with slots on each wall were investigated. Three typical shapes of tunnel
were examined with homogeneous conditions ranging from open to closed boundaries.

2. Résume of the Analogue Method.

A detailed derivation of the governing equations and the analogy between the physical and electrical
system has been given by the author in Part I, but in this Section a brief résumé will be given of the
information relevant to the present studies.

For steady subsonic flow in a cylindrical tunnel of infinite length the perturbation velocity potential,
¢, in the transverse plane of a small model is governed by the Laplace equation.

82/0y? +02Joz* = 0. Q)

If a lifting wing of small span is positioned on the axis of the tunnel, the velocity potential in the plane
of the wing is

USC, =z
-2 )

P

8t r
where U is the undisturbed stream velocity, S is the planform area, C; is the lift coefficient, z and r are
the vertical and radial distances from the wing.

Various linearized conditions can occur on the walls of the tunnel. On an open boundary, or a slot,
¢ = 0, and on a closed boundary or a slat d¢/0n = 0. Instead of treating a slotted boundary as separate
slots and slats an equivalent homogeneous condition can be used

¢+K d¢/on = 0, @)

where

1 ! na
K= EFh = Eloge cosecr 4)

24



is a constant dependent on the open area ratio, a/l, and the slot spacing I. The object to determine the
interference effects, is most conveniently achieved by an analysis in ¢ followed by a further analy51s in
the interference potential ¢,

bi = ¢— P

This satisfies the Laplace equation subject to the boundary values equal to the difference between an
initial value of ¢, and the calculated values ¢,, for an unconstrained field.

The resistance network automatically solves the finite difference form of the Laplace equation (1),
and the boundary conditions are applied as voltages or currents. Then electrical potentials are measured
on the network and these are equivalent to the velocity potentials. For further details of the analogue
techniques reference should be made to Section 3 of Part I. Finally the interference upwash at the wing
is expressed as a lift interference parameter

b 99,

° T USC, bz ) (©)

3. Validity of the Equivalent Homogeneous Condition.

The validity of the equivalent homogeneous boundary condition (3) was investigated by considering
a duplex tunnel (h/b = 0-5) having solid side walls, but slotted roof and floor of open area ratio a/l =
0-125. Two symmetrical arrangements of the slots are possible; either a slot or a slat is positioned centrally
above and below the wing. Four cases of each arrangement were considered, with two, three, four and six
complete slots, as illustrated in Fig. 1. At the edges of the slots discontinuities in the slope of the potential
occur, and care must be taken to ensure that these critical regions are represented adequately by the
resistance network. The singularities were treated using the method of Section 4.1 of Part 1, and the mesh
interval was chosen so that each complete slot was represented by two mesh intervals. Hence for the
tunnel with two slots the width of the tunnel was represented by 32 mesh intervals, but for the tunnel
with six slots, 96 intervals were required.

The homogeneous boundary condition varies according to the number of slots through the parameter
I/h. In one instance, when there were four complete slots, the analysis was performed with a central slot,
with a central slat and also with the equivalent homogeneous condition set on the tunnel roof. The lift
interference parameters were respectively 6, = —0-122, —0-091 and —0-1032. An analytical expression
(6) for 6, with the homogeneous condition leads to a value of 6, = —0-1044 which confirms the estimated
accuracy of +2 per cent or better. Values of §, from the electrical analogue together with the analytical
values based on the equivalent homogeneous condition, are recorded in Table I and are plotted in Fig. 2
against (1+ F)~! from equation (4). The closed and open tunnels, (1+F)~! = 0 and 1-0 respectively, are
the two extreme conditions.

Fig. 2 suggests that for more than four slots the lift interference effects at the wing are satisfactorily
represented by the equivalent homogeneous condition. However, if there are three or fewer slots there
are large differences between the three values of . It will be-noted that the boundary immediately above
and below the wing is significant ; the correct result with a central slat deviates towards that for a closed
tunnel, while the central slot gives more open (i.e. more negative) lift interference than that predicted by
the homogeneous condition. For six slots, however, with central slot or central slat, J,, instead of stradling
the homogeneous value, slightly less in both cases, but the difference is within the estimated order of
accuracy of the analogue technique. ’

Thus for more than four slots the equivalent homogeneous boundary condition can be expected to
apply to practical slot arrangements, provided that viscous effects can be ignored.

4. Rectangular Tunnel with Four Walls Slotted.
Davies and Moore! derive the interference parameter J, for small wings in rectangular tunnels with
four walls slotted by transforming the velocity potential for a uniformly slotted circular tunnel. Unfortun-
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ately the rectangular tunnels do not remain uniformly slotted, and no analytical solutions are available
for four uniformly slotted walls. Therefore analogue solutions have been obtained for the lift interference
parameter over the practical range of rectangular tunnels with the equivalent homogeneous condition
set on each wall. Table 2 glves d, for small wings in three shapes of tunnel (h/b = 05, 1-0 and 1-6) with five
slot conditions (1+F)~! = 0, 0-35, 0-65, 0-85 and 1.

The analytical values in the right-hand column of Table 2 are calculated from the appropriate formula
in Ref. 2 for open and closed tunnels. These are seen to be in good agreement with the end values from the
electrical analogue The three curves of J, against (1+F)~! are shown in Fig. 3. These are very roughly
linear in (1+F)™%, as is exactly true for small wings in multi-slotted circular tunnels (Ref. 2), and in
rectangular tunnels having very small or very large ratios 4/b. Nevertheless, Fig. 3 shows that small errors
would result if a strictly linear variation were assumed between the exact limits of open and closed tunnels.

5. Concluding Remark.

In this report a pure resistance analogue computer has been used to calculate detailed results for the
lift interference in slotted wall wind tunnels with small models.in linearized potential flow. The results
are estimated to be within +2 per cent, an accuracy which is adequate since the mathematical idealisation
used in this analysis differs from the actual working of a tunnel; viscous and other non-linear effects at
the slotted boundaries must contribute major uncertainties. Treatment of these effects requires on the
one hand empirical data concerning slot flow, and on the other a three dimensional network.

NOTATION
a Slot width
b Tunnel breadth
C, Lift coefficient, lift/2pU?S
! Periodic slot spacing
F Non-dimensional slot parameter
h Tunnel height
K Geometric slot parameter
n Qutward normal
¥ Radial ordinate
S Planform area
Undisturbed stream velocity
¥,z Coordinates in transverse plane
do Lift interference parameter
P Air density
¢ Velocity potential in transverse plane
o; Interference velocity potential
D Unconstrained velocity potential
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TABLE 1

Duplex Tunnel With Slotted Roof and Floor

do
Number F (1+F)~* Electrical Analogue . Analytical
of slots ' '
Slot above Slat above |homogeneoushomogeneous
wing wing condition condition
0 o0 0 — — +0138 +0-137
2 1-040 0-490 —0-303 +0-098 — —0-038
3 0-694 0591 —0-106 —0-041 — —-0077
4 0-520 0658 —0122 —0-091 —0-103 —0-104
6 0-347 0-743 —0151 —0-145 — —0-141
o0 0 10 — — —0:262 —0-262

27



TABLE 2

Rectangular Tunnels with Homogeneous Conditions on all Four Walls

hib = 05
do
(1+F)~1 ,
Analogue Analytical
0 +0-130 +0-137
035 +0:008 —
0-65 —0108 —
0-85 —0-193 -—
1-0 —0-263 —0262
hid = 10
(1+F)~? %
Analogue Analytical
0 +0-137 +0137
035 +0-027 —
0-65 — 0051 —
0-85 —0-099 —
10 ~0136 —0137
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b = 16

dg
a+mnt
Analogue Analytical
0 +0-212- +0-210
0:35 +0-069 —
0-65 —0-023 —
0-85 —0-078 —
1-0 —0122 —0121
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