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Summary.

The T-tail under investigation consists of a flat horizontal tailplane mounted on top of a flat vertical fin.
The chords of the two surfaces at their junction are of the same length and are coincident. The T-tail is
assumed to be isolated and to be oscillating harmonically in a subsonic flow whose main stream is parallel to
the mean positions of the surfaces of the T-tail. The linearised equations of potential flow are assumed to be

valid.
A pair of integral equations relating the normal air velocities on the surfaces of the tailplane and fin with

the loading distributions on these surfaces is derived. This pair of simultaneous equations is solved approxi-
mately by collocation and the loading functions so determined are used to calculate generalised airforces on
the T-tail at any frequency of oscillation. When the T-tail is attached to an aircraft there is some aerodynamic
interaction between the aircraft fuselage and the T-tail. It has not been possible to estimate this interaction in
general. If the T-tail is attached to an infinite wall with the tailplane parallel to the wall then it is possible to
obtain the interaction by the method of images with the infinite wall acting as a reflector. This approaches
conditions in a wind tunnel, so a treatment of this case has been given. This case may also be a guide to the
more general case of interaction between a fuselage and a 'T-tail.
The procedures have been programmed for the Ferranti Mercury Computer.
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1. Introduction.

The use of T-tail configurations on present day aircraft has initiated the problem of investigating
their flutter characteristics. This necessitates the accurate determination of oscillatory airforces
acting on the T-tail. There is at present a scarcity of both theoretical and experimental information
on these forces, and this paper provides an addition to the theoretical information. ‘

The horse-shoe vortex method of plane wings has been extended to T-tails in a steady subsonic
flow by a number of writers>23. The process is to replace the surfaces of the T-tail by sets of
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horse-shoe vortices in the plane of each surface of the T-tail so that the centre of each bound vortex
is at a quarter-chord point and the trailing vortices extend downstream to infinity in the direction
of the main-stream flow. The boundary condition that the airflow is tangential to a surface is applied
at the three-quarter-chord points at the mid-span lines of the horse-shoe vortices. A set of simul-
taneous equations is then obtained for the strengths of the horse-shoe vortices. These equations are
solved and then the airforces on the T-tail are obtained in a straightforward manner using the
strengths so obtained.

If a plane wing oscillates in flexible modes or at relatively high frequency parameter the horse-
shoe vortex method is not entirely satisfactory. A more complicated horse-shoe vortex method with
several horse-shoe vortices at intervals along a chord, or a Multhopp lifting-surface-type method
such as that of Acum? or Richardson® provides better results. It might be expected therefore that a
more elaborate method would yield results of wider applicability in the case of the T-tail configura-
tion. This paper extends the method presented by Davies® to the oscillating T-tail configuration.

When the T-tail is assumed to be isolated, and the linearised equations of potential flow apply, a
pair of integral equations can be derived relating the normal air velocities on the surfaces of the
tailplane and fin with the loading distributions on these surfaces. This pair of integral equations is
solved approximately by collocation at a number of points on the surfaces of the "I-tail, and the
loading functions so determined are used to calculate the generalised airforces on the T-tail at any
frequency of oscillation.

When the T-tail is attached to an aircraft fuselage there is some aerodynamic interaction between
the aircraft fuselage and the T-tail. It has not been possible to estimate this interaction in general.
If the T-tail is attached to an infinite wall with the tailplane parallel to the wall then it is possible
to obtain the interaction by the method of images with the infinite wall acting as a reflector. This
approaches conditions in a wind tunnel, so a treatment of this case is given. This case may also
serve as a guide for obtaining the interaction in the more general case of T-tail and fuselage.

A completely different method of solving the problem is to consider the two-dimensional flow
in the Trefftz plane behind the T-tail. For steady flow this has been done by Weber and Hawk® for-a
T-tail and fuselage. Many approximations are inherent in the method and an extension to consider
oscillatory flow would ledd to complications. The method of collocation adopted here does indeed
rely on approximations but it would appear to the present writer that the approximations made are
more plausible than in the case of the Trefftz plane method.

2. The Integral Equation Relating the Loadings on the Tailplane and Fin with the Normal Air
Velocities on these Surfaces when the T-Tail is Isolated.

A diagram of the T-tail configuration under consideration is given in Fig. 1. 'The fin ABCD is
attached to the tailplane EFCGHD along CD. The tailplane and fin are assumed to be very thin
and nearly plane and the whole T-tail is in a subsonic airstream with the inclination of these surfaces
to the main-stream direction being very small. The tailplane and fin oscillate with small amplitude
about a mean position in either rigid or flexible modes. Accordingly linearised theory is applicable
and the T-tail may be replaced by intersecting flat plates the mean positions of which are parallel
to the main-stream direction. It is assumed that the tailplane has no dihedral so that in the mean
position EFCGHD may be taken to be a flat plate. The tailplane is taken to be symmetric about the
line CD, as usually occurs in practice.
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A system of right-handed Cartesian coordinates (%, y, 2) is introduced, which is stationary with
respect to the mean position of the oscillating surfaces. The origin is taken as some point on the
mean position of the line CD. The positive direction of x is that of the main stream and is therefore
along DC. The positive axis of z is in the mean plane of the fin along the span of the fin and the
axis of y is mutually at right angles to complete a right-handed orthogonal system.

Let the normal displacement at time £ in the positive direction of z of a point (x, y, 0) on the
undisturbed tailplane be Z(x, y, #) and the normal displacement at time # in the positive direction
of y of a point (x, 0, 2) on the undisturbed fin be ¥(x, 2, #). Then in a harmonic oscillation of the
"T'-tail we can write

Z (%, 9, 1) = {fi(, y)e! (1)
Y(x, 2, 8) = lfy(x, 2)e’ (2)

where 7 is a typical dimension of the T-tail, and as is usual with using complex functions for
harmonic analysis only the real or the imaginary parts represent the pertinent physical quantity.

The boundary conditions that the airflow is tangential to the tailplane and fin surfaces lead to
the following linearised equations

s 3) = (V1 + i) (s, (3)

Wy, 2) = (V-a% + zw) I, 2) (4)

where V' is the main-stream velocity, w,(x, y)e’ is the component of the air velocity in the
z-direction at the surface of the tailplane and w,(x, 2)e*’ is the component of the air velocity in the
y-direction at the surface of the fin. The functions w,(x, y) and w,(x, z) will be called the normal-
velocity functions.

Corresponding to the normal-velocity functions given by equations (3) and (4) there is at the
point (x, y, 0) on the tailplane surface a pressure force per unit area, or loading /(x, y)e™ in the
positive direction of z, and at the point (x, 0, %) on the fin surface there is a pressure force per unit
area, or loading [y(x, 2)¢' in the positive direction of y.

Reduced normal-velocity functions are introduced by the equations

ol 3) = 7y, ) )
1 .
ao(X, 2) = 7 Wy, %) (6)

and reduced loading functions are introduced by the equations

1
A%, y) = NG h(x, ) (7)
Ao, 3) = NE Iy(x, 2) (8)
where p, is the density of the air in the undisturbed main stream. {
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Then the following pair of integral equations (see Appendix)

1 ‘
(%, y) = yo fJ‘ A, Yo)Ky(e— g, ¥ — ¥o)dxadyo +

tailplane

1 :
* 4 fJ‘ Ay 5 20) Ko — %, ¥, 20)dwdzy
fin

1
ol 3) = 1 [ [ Mo y0elr—s0, 2, yodvady +

tailplanc

1
T, ff Aa(g » 20)Ky(%— %9, 2 — 2)dxedZq
fin

are satisfied. The kernel functions K, and K, are given by

© .
e—i(uu{V du

e
Cormrpa-a® @+

Ky(x, y) = el I: f

M(Max+ Ry) {_ iw (— X+ MRI)”

TR P TV TS
: ® . 3yz du
K (.X', ,2) = o—ioxil’ l:f g—tlwull” yo e
o#, %) (—a+BIRIA—DIP (2 +y° + 220
o iw (—x+ MR\ ( M(Mx+Ry  MY1-M)s
+ Y3 exp {_ 74 ( 1 = M2 )] {R(x2+y2+22)2 R332+ 32+ 22)

2M(Mx+R) iw MXMsx+R)
T RGPV R y2+zZ)H

where V
Rl

Vi + (1= M%)
R = /s + (1= M) (3+ )

and M is the Mach number of the main stream.
If now the modified functions

&y(%, ¥) = oy, y)etosV
Qo(x, 3) = o, R)eodV }
Nx, v) = A(x, y)etos?

Ao, 2) = Ao, 2)etesl” ]
K, (x, ) = Ky(x, y)etosV ]

Izz(xa Vs 2’) = Kz(x, ¥, z)gia)x/V '
5
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(13)

(14)

(15)
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are introduced into the integral equations (9) amd (10), they become

1 A 25
4w =5 [ Mo soRite= x5 —yidsdyo +

tailplane

1 A > '
i fJI Ag(%q , 20) Ko — Ky, 5 Zo)ditodzy
fin

1 N .
o, 2) = 4o ff Ao, o) Ko — g, R, Yo)dagdyy -+

tailplane

1 A .
+ Jf Ag(%g B (2 — %, 7 — 2g)dnydzy .
fin

Into the integral equations (18) and (19) introduce the new variables

1
g = Cl(y) [JC - xL(l)(y)]
_ 1
n = S_ly
1 1
& = m [2¢g — 2 30)]
1
Ny = s_lyo
1 e
€= 6—2(;) (v — 2, 9(2)]
1
{= s_z &
, 1 @
60 = 6_2(20) [‘xD — X (2’0)]
1
L = ;; 20

(18)

(19)

(20)
(21)
(22)
(23)
(24)
(25)
(26)

(27)

where s, is the semi-span of the tailplane, ¢,() is the local chord length and x;®(y) the x-coordinate
of the leading edge of the tailplane at the spanwise position y, and s, is the span of the fin, cy(3) is
the local chord length and x,®(z) the x-coordinate of the leading edge of the fin at the spanwise

position z as shown in Fig. 1.
The pair of integral equations (18) and (19) then become

s, [ 1 R
(€ m) = 4%7 f c(yoddng Jo A(€py mo) K — %y, ¥ —yo)d &y +
-1

5. [ 1 .
= f ca(z0)d Lo f Xo(€g» Lo)Ka(x— 2y, 3, Zo)deg
0

47 ),

s [ 1 N
we 0= 3 [ aldn | Kby, Rule—o, 5 3048 +
-1 0
1 1 R
L3 f co(Z0)d & f Aao(€g> Lo)Ky(x— %y, 27— 2p)de,
47 J o 0

6

(29)



where

a(€, 1) = &(x, p) ,
. (30)
CT‘2(6: C) = &2('7‘7’ z)
7\1(50’ M) = /Al(xm Vo)
(31)
X2(60’ &) = ,)\\2(%’ %) -
It is convenient to split the kernel functions K; and K, into
Ky, ) = K%, y) + K®(x, y) (32)
Kz(x7 g z) = Kz(l)(x> s z) + KZ(Z)(JC, Ys z) (33)
where
A @ du
K, 0(x, y) = f e~V
0% 3) (~z-+MR/(1~112) (u?+y7)3*
T iw|y| iw[y| 27 wy (wy J
- T H = = -
3w (57) [ () 2 (7)1 (7)) +
0 ) du
+ e—zo)ulV - 34_
f (DI RI1—DI2) (u?+ 52 4%
L M(Mx+ R,) iw {—x+ MR,
R.©® — VTR A rTr
#00) = iy # =7 (1o ) 43)
[22(1)(,6, v, 2) = fm e—iwulV 33}—2
(—a+ MRI1—12) (U2 + 5%+ 22)%2
2eys (i, L. o) i 2 (o
= 7 ) H.!= 2 2\~ - 2 o2
+il, {3 v (y2+z2)” + fo PR G LY (36)
\V (~w+ MRK1—-12) (2 + y* + 272
and
N M(Mac-i—.R)3 M2(1— M?)x 2M(Mx+ R)
(2) —
By, 2) = y= |:R(x2+ ¥2+2% " R4y +3%) | R(P+yP+22)
iw MYMx+ R) 3 iw {—x+ MR (37)
v Rz(x2+y2+zz):| [ v ( 1 — M2 )}

In the above I, and I, are modified Bessel functions of the first kind, K; and K, are modified
Bessel functions of the second kind and H_, and H_, are Struve functions in the usual notation
(see for example Ref. 7).



If the kernel functions are split up according to equations (32) and (33) and an integration by
parts carried out on the integrals involving the first components K,®(x, y) and K,"(x, v, 2) in the
integral equations (28) and (29) then there result the pair of integral equations

s, [H Lo .
() = 3 [ clondng | Ut R0, y=30) +
- 0
+ ()&, Wo)l€1(3)(x —%g, ¥y —Yo)yd &y +

5. [+ .
| AbIRO, a5 0000, y =3, +

-1
1

$ 1 ) - .

+ 4_2 f e(20)d Ly f Aoy s LK (w -2y, , ) +
T Jo 0

+ (@) A5 L) (x— 2y, 3, 20)}de, +

O - A . )
-+ 4";; f ca(2) AL P(1, o) KD — ay (=), v, %p)d Ly (38)
0 .

‘ s, [+ 1 R
e, 0 = 5 [ eaondn [ o, mR M=, 5,50 +
—1 ]
+ e (YN €y, 10) K (2 — %0, 7, yo)d €y +

s [T - N
+ 4:7 f L (o) MDA, ) — x4,V (yp), 3, Yo)dng +

sy (1 - NP
. f css)d Gy J (Aeo, LR D0 — g, 5—5) +
T ) 0

(

+ eof=e) AN ey, Q,)Kl(‘d)(x — Ny, 8= Sp)jdey +

ol .
b | R, BRY =g ), s—2)dG (39)
4 ),
where
- fo _
50,10 = [ R, o (40)
0
- i €0 _ .
AP ey, o) = f M, Ly)du - (41)
0
.o 1 (Mx+ R))? tw (—x+ MR,
) 5 — e N ey P ..
[<1 (9\«, J’) Rl (xg_l_yz)z exp { V ( 1 — M2 )} (42)

Y
2

K3, %) = T

Jyz (Mx+ R tw (—a+ MR\
=7 55 )] )
x,{0(y) is the x-coordinate of the trailing edge of the tailplane at spanwise position y and a,&(2) is
the x-coordinate of the trailing edge of the fin at the spanwise position z.
The pair of integral equations (38) and (39) are better than the pair (18) and (19) for numerical
evaluation since the parts of the kernels involving an infinite integral now occur only in a simple
integral.

3. Approximations to the Loading Functions and Location of Loading and Velocity Points.
The pair of integral equations (38) and (39) may be solved numerically for values of the loading

functions Ay(&,, 7,) and Ay(e,, £y) at only a finite number of points on the tailplane and fin surfaces.
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Accordingly a set of points, the loading points, at which the values of the loading are to be deter-
mined are chosen at the outset and the values of the loadings at these points are regarded as unknowns.
The loading functions are then represented approximately in terms of the values at the loading
points by use of interpolation functions which have the same behaviours as the loading functions
near the edges of the tailplane and fin.

The normal-velocity distributions on the tailplane and fin, respectively obtained from the
integral relations (38) and (39), by using the approximations just described for the loading functions,
cannot be made to coincide exactly with the given normal-velocity distributions all over these surfaces.
Coincidence at a number of points, the velocify points, equal in number to the number of loading
points can be obtained. In this way a set of simultaneous equations for the values of the respective
loading functions at the loading points in terms of the values of the normal velocities at the velocity
points is set up.

The accuracy with which the loading distributions are determined depends on the number of
velocity points chosen and also on the choice of their positions over the tailplane and fin.

Since the harmonic velocity potential of the flow satisfies an elliptic partial differential equation
in subsonic flow the loading functions can be expected to be smooth over the tailplane and fin,
away from any discontinuities which occur in the normal-velocity functions, such as occur at
control-surface edges, and also away from any discontinuities in slope of the edges of the surfaces.

For a T-tail without control surfaces the loading is smooth except in the immediate vicinity of
any points of discontinuity of slope of the tailplane or fin edges, s0 A(&,, 7o) and Ay(¢,, () may be
approximated quite well by a few terms of an expansion in terms of elementary orthogonal functions
over the whole of the surfaces except in the immediate vicinity of those points of discontinuity of
edge slope. The values of total forces on the T-tail obtained by using these approximations should
be little different from the actual values.

In the following theory the positions of the leading and trailing edges ol the tailplane and fin are
specified at only a relatively few stations along the spans and it is assumed that sufficiently good
approximations to the leading and trailing edges are obtained by taking the equations of these
edges to be polynomials which give the correct values at the specified stations. 'T'his leads to small
errors in the neighbourhood of discontinuity of slope in the leading and trailing edges but the
overall effect on the total forces is expected to be small.

For the present let us confine attention to Ay(¢,, {,). The loading function Ay(€,, {;) has a singular
behaviour like 1/4/¢, near the leading edge of the fin and tends to zero like 4/(1—¢)) near the
trailing edge. These are the behaviours near the leading and trailing edges of a two-dimensional
wing, which must be followed near the leading and trailing edges of the finite fin of the T-tail.

The selection of velocity points along a chord of the fin will be made on the basis of two-
dimensional steady-flow theory. For a particular finite oscillating 'T'-tail there may be better selections
but the problem of their choice remains. The selection made on the basis of two-dimensional theory
should be better than an arbitrary selection.

An approximation to the loading function Ay(e,, {,) along the chord at % = 7,, and which has
the correct behaviour at the leading and trailing edges is given by

- . n—1 ] 1—¢

W ) = | 2 ater] (1% (+4)
r=0

If A*(ey, o), for a particular value of {;, represents the loading on a two-dimensional wing lying
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between ¢, = 0 and ¢, = 1 in steady subsonic flow, then the corresponding normal velocity at any
point e in (0, 1) may be calculated. If this calculated normal velocity is equated to the prescribed
normal velocity at each of # points € in (0, 1), then there results a system of # simultaneous linear
equations which may be solved for the values a,({,). The values of the 4,({,) so obtained will depend
on which points have been selected as the # upwash points £ in (0, 1).

The values of the a,({,) for which A,*(¢g;, {;) of equation (44) is the best approximation to
A€y, L) are deemed to be those for which

f[l) [Aa(€os Lo) — A*(eo, L0)T? J(TELQ)) dey (45)

is a minimum for a given value of {,. This best set of values of the a,({,) cannot be determined
exactly since the function Ay(¢,, ;) is not known explicitly. However, it is possible to select the
n velocity points ¢ in (0, 1) so that the values of the a,({,) calculated in terms of the two-dimensional
steady-state normal velocities at these velocity points are, in general, as good approximations to the
best set of values of the a,({;) as it is possible to get with only # points. The procedure for doing
this involves rewriting equation (44) in terms of orthogonal polynomials.

If the set of polynomials /,(e,) of degree r is defined as an orthogonal set over (0, 1) with respect
to v/{(1 — ¢y)/eo} as weight function, i.e.

f 1 1(e)l(e) /\/ (1 - e") dey = 3, (46)

where 8, , is Kronecker’s delta, and the series (44) is written

e, L) = {% b,.(CO)l,,,(eO)} \/ (1 — €°) | (47)

¥ 60

then the integral (45) is a minimum when

bt = | No(cor Lh(e)dey,  O<r<m—1. (48)

The b,({,) are the coefficients of the first # terms in the infinite expansion of Ay(¢y, {y) in terms
of the [(ey):

W 0 = | T b)), /(F2)- 49)

€o

Corresponding to the loading distribution

1— ¢
N (50)

on the two-dimensional wing in steady subsonic flow let there be a normal-velocity distribution
a,(€). The function «,(¢€) turns out to be a polynomial of degree # in &.

Then, corresponding to the loading distribution Ay(ey, {;) of equation (49) there is a two-
dimensional normal-velocity distribution u(e, ;) given by the formula

e ) = 3 BAG%(0). 1)

If equation (51) is written down for z separate points ¢ in (0, 1) a set of equations is obtained
which may be solved for the 4,({,), 0 <7 <7 — 1, in terms of the values of the two-dimensional
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normal velocity u(e, {,) at these points and of the 5,({;), » > n. Approximate values of the 5,({,),
0 <7 < n—1 are those obtained by neglecting all the b,({;), ¥ > n. If, however, the n separate
points ¢ in (0, 1) are chosen to be the # roots

Y kR=12,...,n (52)
of the polynomial equation
a(€) = 0 (53)

then the values of the 4,({,), 0 < # < #» — 1 do not depend on the value of 4,({,). The approximations
to the 5,(,), 0 <7 < — 1, will then, in general, be better than those obtainable using the values
of u(e, {;) at any other selection of # points ¢ in (0, 1). The corresponding values of the a,({,) are
then the values which are to be taken as the approximations to the best set of values of the a,(L).
It follows that the points (52) are, in general, the best ones to take for the chordwise positions of
the velocity points on a two-dimensional wing in steady flow. As mentioned earlier, these points
will be taken as the velocity points in the case of the finite fin of the T-tail. The points are numbered
in order from the leading edge.

The functions a,(€) and [,(1—¢) are proportional to each other (see Ref. 6, Section 3). The
n velocity points are therefore given by

Em =1-¢0 k=12 ...,n (54)
where
i=n—k+1 (55)
and
O i=1,2,...,n (56)

are the roots, numbered in order of increasing size, of the polynomial equation

I.(&) = 0. (7)
As is shown in Ref. 6, Appendix III, the points {® are given by

£0 = 1~ Lo (_22_:;111 ) i=1,2.. .10 (58)
and they are all in the interval (0, 1).

The approximate values of Ay(¢y, ;) at » points along a chord may be determined from the
approximate formula (44). Reciprocally the approximate formula for Ay(¢,, {,) may be determined
in terms of the approximate values at these # points by the use of interpolation functions having the
correct behaviours at the leading and trailing edges. It is very convenient from the point of view of
mathematical formulation and numerical computation if these # points are taken to be the # points
£,9 defined above in equation (58). These 7 points will be called the chordwise loading points.

Corresponding to each point £%, an interpolation function 2,%(¢e,) is formed which is unity at
the point ¢® and zero at the other (z— 1) loading points, and which is the product of 1/{(1— €,)/€o}
with a polynomial of degree (n—1) in &;:

k™€) = (C~O— fi(l)inl(:ji; Zn(GO)] \/ (1 fi(l;i@) ’\/(1—;:()—69) . )
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The approximation to the loading along a chord of the fin may then be given as the sum

Moo, 1) = 3 BED, Lo (60)

where the asterisk has now been dropped from the X, for it is no longer required if one bears in
mind that the quantities denoted by A; are henceforth approximations to the actual quantities.
Formula (60) is exactly equivalent to formula (44). ,

Similarly the approximation to the loading on the tailplane may be given as the sum

Ko 1) = RS nh (). (61)

The loading distributions have the behaviour of 4/(1— ;) near the tip of the fin, of 1/(1— %)
near the port tip of the tailplane and of 4/(1+ ;) near the starboard tip of the tailplane. These are
the behaviours near the edges of a very slender rectangular wing. Near the junction line DC of the
tailplane and fin the spanwise behaviours of the loading are regular except that there may be a
finite discontinuity of the tailplane loading function across this junction line. The functions
A €9, L) and A(€9, ) must take these behaviours into account.

A suitable approximation to the fin spanwise function A€, {;) is given by the product of
4/ (1—1¢,) with a polynomial of degree (m—1) in {,. Following the procedure of the chordwise

variable ¢,, we define a set of polynomials p,({,) of degree  which are orthogonal over (0, 1) with
4/(1-£,) as weight function, i.e.

ﬁMMMMVW%MQ=%y (62)

To choose the spanwise locations of the velocity points it is observed that the kernel Ky(x, ) in
equation (19) behaves like 1/5* near » = 0. The spanwise distribution of normal velocity w,,({)
corresponding to the loading distribution w,,({,)4/(1—{;) and upon which the choice of spanwise

velocity points depends is then taken to be

1
f’Lm( CO)
w, (L) = AL—=1Lo)di,. 63
R N e RO (63)
The spanwise locations of the velocity are then chosen to be the m real roots
2 r=12...,m (64)
of the equation
w, () =0 (65)

for reasons similar to the ones for which the chordwise velocity points were chosen. The spanwise
points are numbered in order starting from the function line DC and proceeding towards the tip.
Polynomials which satisfy equation (62) are Jacobi polynomials given by

oy 3 2 (=17 [r\2 2r+2p—1)! Ly»
pA L) = G, (E’ 1, Co) = ])Z::OW (Zﬁ) r=p) ep)! @+ D1’ (66)

It is again very convenient from the point of view of mathematical formulation if the spanwise
loading points are taken to be the m roots

n j=L12,...,m (67)
of the m’th degree polynomial
Mm(go) = 0. (68)

12



Corresponding to each point #; an interpolation function g,({,) is formed which is unity at the
point ; and zero at the other (m — 1) spanwise points, and which is the product of 4/(1—{,) with a
polynomial of degree (m—1) in {;: ‘

2L el ) V(=L )

d L V(=)

(CD - 7]]’) ]:d_go I‘Lm( CD)

The approximation to A(£9, {;) is then given by

m
A(E0, L) = X A6, m)g,(Lo) ' (70)
. i=1
so that from-equation (60) we get
Afes o) = 30 3 Na(60, m))h(eo)g (o) - (71)
i=1j=1

To allow for a discontinuity in X,(£, n,), this function is treated separately for =, > 0 and
7o < 0 in a manner similar to the above with {;, for the discontinuities at the ends of the intervals
of 7, correspond with those at the ends of the intervals of {;.

The approximation to A;(&,, 7,) is then given by

. >3 AES, nj)hi(")(fo)gjo”)(no) for 7> 0
T i=14=1
Moy me) ={ (72)
% X MES, — )R E)g N (—mp)  for <0
i=1j=1

It turns out that the positions of the velocity points (64) are very close to the loading points (67),
and this is true in particular near the tip of the fin. This introduces complications into the numerical
evaluation of some integrals, used later. Since the above process of choosing the spanwise positions
of the velocity points can give at most only an indication of the best positions, the points

n,, *=12,...,m (73)

will be taken to be the velocity points instead of the points (64). The choice of this set has the
advantage that the complications in the said numerical evaluation of integrals do not appear and
also a certain amount of symmetry is introduced.

To end this section formulae for the loading and velocity points on the 'T'-tail are given. It is
assumed that the same number of spanwise and chordwise stations are taken on the fin and each
half of the tailplane.

The totality of loading points is therefore:

g5, = ca(%p, )60 + 21%(2q, ;) ] Z =12...,n (74)
g = Sah j=142,...,m
on the fin;
%40 = (1, ;)EL + w0, (31,57) ] i=1,2,...,n 75)
YT = sy ) j=54L2...,m
on the port half-tailplane;
wy 40 = ey EL + 2 Py ) } i=1,2,...,n (76)
Vi = = S j=12...,m

on the starboard tailplane.

13



The totality of velocity points is:

x2, k,'r(w) = 62(22,7')§7c(w) + xL(Z)(zZ,r) k= 1, 2, . , 7 (77)
Bop = $17, = 1, 2,. ) 12
on the fin;
X, k,r(W) = 01(3’1, 7'+)§73(W) + xL(l)(.yl, 'r_l_) ] k= 1, 2, PRSI / (78)
J’1, ,.+ = 8§17, = 1s 2: )
on the port half-tailplane;
X1,k r(u» = Cl(yl,r—)gl.;(w + xL(l)(.yl, 1*——) } k= 1, 2; N ] (79)
Yi,0 = — S 4 1, 2, PN (4

on the starboard half-tailplane.

4. The Integration Procedure.

Substituting the approximations (60) and (61) for Ay(ey, ) and A(&,, 7,) into the forms (38)
and (39) of the integral equations, we obtain

e = 5 [T fy, 0, yin, +
; z [ ot D, LT Lo, 0Ly (80)
e ) = 3 [ I R0 1M, L Ny +
% ”;fz D N G, )i, (81)

where
iy Tt "
100,10, €) = 3 (o) (1= | | MENR (=0, 3=30) +
0
+ (Vo) (€N K B — 4, y —yo)td & + BO(DK D — 2,0 p,), y '"yo):l (82)
' 1 §.2n2 45,27 2)2 [ 1 R
J(n, &y, €) = i ¢2(%o) (ln—z*é—o—) [f {h(60) Ky (2 — x4, ¥, %) +
T8y 1o 0
+ cz(zo)h'(l’ MWeo)Koa®(x— 1y, 3, 2o)}deg + b (DK O — 3,5(z), v, 2‘0)] (83)

M (ng, 4, €) = —— ex(y) (—”%ﬁ [ f I ()R —50, 2 30) +
0

+ cl(yo)hﬁl’ &) KP4, %, yo)}d € + (DR~ x5 5), —yo)] (84)
N, &y, €) = co(g) (L= Ep)? [f {h( €o)K @k — 2y, 2 —2) +

+ o)t "‘)(eo)Kl(?’)(x — %o, 8—Zo)ydey + b "(1) <1(1)(x — 29 ®(2), & — zﬂ)jl (85)
and

£ ‘
R m(E) = f h{(u)du . (86)
. .
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The function I™(%, 74, £) may be developed into a series of the form

I™(q, 74, ) = Z Eq, (& ) (n=m0)° + (1 —m0)* log EEEN Z F & m) (n—n0F (87)

s=0 §=0

in the neighbourhood of 7, = 7, and the function N({, {,, ¢) may be developed into a series of
the form

NG Ly, ©) = S Gy e, ) (L= L) + (L) log [T = 4| § H, (6 O (=L (89)
s=0 s=0
in the neighbourhood of {, = .
The principal value integrals in equation (81) could be evaluated approximately by using the
interpolation formula

K(E0, NSO, Ly, @) = 5 W(ED, MNLAE 55 €)g (L) (89)

and integrating each term obtained by putting this series into (81). The accuracy of the value
obtained would however be adversely affected by the presence of the logarithmic terms in the
expansion (88), and in particular by the lowest-order logarithmic term, especially if the value of m
is small. The accuracy can be improved if the lowest-order logarithmic term is removed from
N, {,, €) and dealt with separately while the remainder is dealt with by using the interpolation
procedure. The procedure is similar to that of Mangler and Spencer®.

Write the identity

AED, LINE, L, ©) = Ry, o YEZ0)

Hy, (e, {) (L~ o) log L = & +

V-0

n [Xz(fé”, LINSL, &y, €) —

. V(-2 vty

WD, DY H e 1) (L= log [£ - o] | (90)

The lowest order logarithmic singularity is missing in the expression in square brackets so the
interpolation process is to be applied to that expression. We then obtain approximately

RGO NI G €) = Ae0, 0 =8 1, e, ) (=L og [ - @] +
+ 5 [ TR pNAG 1 0) -
V({1 — )

ML, §) v Ho, £(e, ) (L= ) log [ ¢ —ml] &™) (1)

V(I-0)

and

! Az(fz 3 ZO) n _ X2(§i(l), C) 2 1 B 3 _
J‘ (C )2 N (&, Lo, €)dL = \/—“(1_0 Ho,v;( e, [) l:fo log |§ COl\/(l {)d L,

m (m
__Z (é—m)ﬂoglé—mW J)J gz )(50))2 :|+
Co)

dl,. (92)

L5 S, )Ny, €) f

j=1
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The function H (e, {) can be worked out, as in Ref. 6, Appendix IV. It is

Ho e, ) = - 5 = (1= M) 1 2 eh(e) + et @) (09)
Also :
[ 10812 = fivii-tat, = Srog 2] + 3 (- optog | V0D - Sji- g - 5. 99

The lowest-order logarithmic term is 1'em0ved from I(n, n,, €) and the remainder dealt with
by interpolation procedures in order to evaluate the principal-value integral in cquation (80).
For 5, > 0 write the identity

K&, )0, o, £) = K(E0, ) % ”%)>p {08, m) (1=m0)* log | = mo| +

+ [Xl(é“ri(”, ) (7, My, €) —

() Y—/%—__%) Fo, (€, m) (n—mo)* log |7 — %I] . (95

For »n, < 0 write the identity

B AT s ©) = RE 1) AT By 906, ) (1= ) Tog [ = ] +

-+ [%(Sé’), o) L (0, Mo €) —

~ M(E9, ) */((11770)) ) &€, 1) (n—1o)* log |7 — 770[} . (96)

The lowest-order logarithmic singularity is missing in the expressions in square brackets in

equations (95) and (96), so the interpolation process is to be applied to these expressions. On doing
this and integrating, we get

1 o
f /\1(55 s 7]0) ] ()))(7], No» é':)(]/](]
1 (=)

! )\ (57( > T]O) ](,;)
0 (=m0

= Xl(éj‘i(l)a nF, 0,7 (&, ) I: /(1 77) {f log l77 - 770'\/(1_770){["’}0 -

0 ‘ X gl([)’
(’7: o> f)d”’)n f ‘L‘_( *“%)‘ I(”)(ﬁ’ o> é)d%
o (n— 7]0)

)
—E(n ;)2 log | — m;|v/(1—75) f &"n) dn}+

(7= o)
1 1
+ T {f@ log |77 + noi\/(l—ﬂo)d”?o -
n ()

= X (1 nlog |1+ /(1 f ni(} j ] +

. ()
+ 24 A (fz ’ 77;)[ (7’)(77’ Mg g) f ((gj ( 0))2 d +
- % KD, =) [,y €) f 800 g (97)

gt 7)o ()
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The function F, i(”)(f, n) is quite analogous to Hy (e, ) of equation (93) and is given by

$1

01 (597)) 4-7-rc(y)
The other integrals in equations (80) and (81) have no singularities in the range of integration,
though the integrands can be of rapid variation near the origin. This is taken account of by the
factors (s355m Lo)/(512m2 + 5:24,%)% and (sy85m0)/(5,%00% +5,2(%). These integrals are then evaluated by
using the interpolation formulae

[~ Q=M@ + 27 D + GO} ()

M(€9, L) (0y Loy €) = T A€, )T, 155 )8, (Lo) (99)
j=1
T (€D, )M (0,8, €8 (ne) M9 >0
- =1
/\1(51'(1), Uo)Mi(n)("lo: g, 6) = 7m »
3 A9, — ) M (=5, £, €)g(— o) g < 0 (100)
j=1

and integrating term by term.
The equations (80) and (81) may then be replaced by the approximate equations

5(69) = 5 AE Do (6 ) [y ([ 108 10— ol v -

g(n ;)% log | — my[4/(1— J)f 0 (7;70) %}+

U‘ log [77 + 70| v/ (1 —mo)dno —

i
§ (n+mn;)? log !77 + 771‘\/ 1+771)f (71+(':]7()))2 Mo H +
+ %1 2 1(51@» 773)]( (7, iR &) f 7)0) d770 +

gjon)(nﬂ) d

LSS G(ED, - )L, =1, ©) f

i=1j5=1 + )9
+ z z Ao £, ;)T n,,f)f G sl“iiii"g 5 877 Lo)d L (101)

w6 0= 3 3 hE" WM, L, ) [ i s e -

A X ‘ Y $1597L m
zgl ]§ (gi(l)s - 7']j)zwi( )( M5 C, 6) J‘ (3127]02+‘[; zcz)z ,gj( )(Wo)d’?o -+
+ 2 MED DH 6 D | g =5 [ 1og 1 wlvit-taas, -

_ 2 (L—n,)2log | L — m;|+/(1— J)f (- (50))2 ZJOH—{—

¥ §1 gxﬂ(fﬂ)’ MNEAL, 7y €) f = (§°)) al. (102)

17
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If equation (101) is written down for the 2 mz velocity points on the tailplane and equation (102)

is written down for the mn velocity points on the fin, there results a set of 3 mn simultaneous linear

equations for the 3 mn unknowns A(£9, n;), A(€0, —n;) and A€, u;) for i =1, 2,.

,

J=12,...,m; in terms of the known values of (£, ») or @ye, n) at the velocity points. These

equations are

1 1
(6, 1) = T AR 1P X, 1) [ | [ og [, = ml V(L= midn -

Ge=1

m

v )21 1— ga( (1) d
— % (n,— )2 log [, — ms|v/(1 =) 5 Aoy +
J=1

0(71 )

1 1
+ ) {fﬁ log |n, + 7oA/ (1—no)dny —

mi ) 1 gj(m)(no)
= 2 () log [, + m|«/(1+m-)f —kdno}J +

d=1 o (1, +n0)?
no M m)
£ (o)
+ 3 8 NED, )L, 0y, & (””)J <L 20 dn, +
i=17=1 (M —mo)?
n o m On)
D g} (7}0
+ EQ — ) (y,, — &, f dna +
i=1 )2:]1 ( 7)]) (7)) X ) 771 + 770)2 7
i m _ $.8 ,7,] C
X (€0, )M , £, 172 7r>0 m(rNd L
+ 1‘§1 j§1 Z(EL ) (7]1 » 5 gl ) (Slz'ﬂ,z‘l‘s ZC 2)2 8 (Co) CO
k=12 ...,n
r = 1,2 , M

(103)

al(g,'c(w)’ - 7’1) = _‘L Xl(gi(l)’ - 771')‘[(‘0, 'i,(”)(gk(u»! - 777) [\/(1 N, ) {J IOg ‘7}7 770| \/(1 - 770)d770 -

(m)
- 2 (779'”'773')2 log 1777- - 77}!\/(1 _773') g] (7]0)2 dny } *
‘ G=1 ( My 7]0)

S lo » + 1—n,)d
\/(1_#77? {f g ’77 Uol\/( N9 —
m ")
— 5 (g4 ) log |, + mlvaw)f & (’72))2 o]+
oo
n m 1 gy (1)
5 &)
+ X A éi(l): 1 Ii(,m T s g g‘;(w) = d +
z‘él 12::1 « M= g5 648) o (7, 10)? o

n nr

by 1 g (m)
+ 25 AED =)L (=, =y, ) f &_(7}2)_2 dny —
i=ti=1 O('r]r"‘no)

o (£ ) wn [+ SiSambo o)
— 2 X AEDL, ) (=, 1y, flcw)f ( 5 87 (Lo)d L.
0 \°1

i=1j=1 $170% + 5,2 0o%)
k=1,2,...,n
r=12...,m
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noom 1 $.8 %,
a2(5 zc(W)’ 77r) =% X Al(gi(b; Wj)Mi(n)(”’lj » N 3 k(w))f ——‘iﬂ— gg()n)(ﬁo)dﬂo

i=1j=1 sp* 10" + 857, %)?
G ! 5152707
- 3 3 AES, =) MO (—1;, m,, €454) f m 2 ™(me)dng +

4=1j=1

£ K0, m)Hy (6, 0, [ { f tog |, 1= )
i§1 o( ), (€, m,) NS g"? 770!\/ 770) No —

_él (m,— ;)% log |7, — m /(1 m)f & (:0) dlo” "

noomo gj (), CD)
-+ 2 Z )‘2(572(1): nj)Ni(m(”’/]r3 7}7" fI(W)) f
i=1j=1 - Zo
k=12,...,n
r=12...,m , (105)

The simultaneous linear equations (103), (104) and (105) can be put in matrix form and this is

done in the next section.

5. Matrix Formulation of the Equations.
The set of simultaneous equations (103), (104) and (105) may be written as the matrix equation

[aﬁ" = [Aptt Ayt A11+__| Pﬁ (106)

&t Ap™ Aptt Ayt AT
LafJ Ayt At An_—J tjf

where the elements of the submatrices are defined below.

[7;] is a column matrix of mn elements with the element

k=1,2,...,n,

(£ 0y 107
(& ) r=1,2...,m, (197)

in the n(r — 1) + &’th row.

[@"] is a column matrix of mn elements with the element

R=12...,n,
. a2(flc(w), 771') (108)

r=12...,m,
in the n(r — 1) 4+ &’th row.

[&,] is a column matrix of m#n elements with the element

k=12,...,n,

azl(flc(w)) —7]1') ;=12 - (109)

in the n(r — 1) + £’th row.
X+ is a column Mmatrix of 7#n elements with the element
1
i=12,...,n,

K€, 7,) o (110)

in the #(j—1) + 7'th row.
19
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[A,*] is a column matrix of mn elements with the element

i=12...,n,

Xz(fi(l): 77]') ] _ 12 m (111)

in the n(j — 1) + ¢’th row.

A, is a column matrix of mn elements with the element
1
i=1,2,...,n,

£0 —y 112
M % i=12...,m, (12

in the n(j —1) + #’th row.

[AytF] is a square matrix of order mn x mn with the element

1 (m),
8"(n0)
L,y g, £ | 22270 5 A1y +
i ("’Ir - 770)

1 1
+ 8,80, ME, m,) [\—/*1_— :f log [, — mo| v/ (1 =mo)dng —

- Z (mp—m)? log |9, — [ v/ (1= m)f (3032 d%} +

+~—\/(1_77‘) {fo log |, + 70| /(1 —mo)dmy —

= 5 () log [, + /(14 fl s g, ”
jo o oGt
i=1,2,...,n, R=1,2,...,m,
) (113)
J=12...,m, r=12,...,m,
in the n(r—1) + £’th row and #(j—1) + 7’th column, where §; , is Kronecker’s delta.
[A,™"] is a square matrix of order mn x mn with the element
1 $18om,.¢
(@) gy | TR
Jz (7]7" M55 él:]c ) J-() (5127}7‘2_*_‘922502)2 g] (Zo)d ZO
i=12,...,n, k=1,2,...,n,
] (114)
j=12...,m, r=12,...,m,
in the n(r —1) + £’th row and #(j— 1) + 7’th column.
[A4; 7] is a square matrix of order mn x mn with the element
&™(0)
I( ) ry > g o) J‘ 2L d
N O
i=1,2,...,n, ’ k=12 ...,n,
. (115)
i=12...,m, r=1,2...,m,

in the #(r — 1) + £’th row and »(j — 1) + ¢’th column.
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[Ag "] is a square matrix of order mn x mn with the element

(n) (w) ! .5‘1.5'27}0’)’]7
M™(n;, my, €45%) Wé’g N 19)d7q
i=1,2,...,n, k=1,2,...,n,
j=12...,m, m=1,2...,m,

in the n(r — 1) + &’th row and #(j— 1) + £’th column.

[Age™*] is a square matrix of order mn x mn with the element

(o)

(n— Lo)? dfy +

N, 71, f;(w»f 8L

+ &5 o Ho fEL, m,) |:

- 3 =t log o~ vt [ B H

(m,— 20)2
i=1,2...,n, k=1,2,. 7,
i=4L2,...,m, m=1,2,...,m,

in the #(r — 1) + &’th row and n(j—1) + #’th column.

Since the tailplane is symmetric the other submatrices are given by the relations

\_/al:’q—) {fl log ’777 - 770|\/(1—770)d’70 -

[A21+ ] = [A21++]
[An +] = [An+ ]
[Ap] = — [AptT]
[Ay] = [Ayp ]

(116)

(117)

(118)
(119)
(120)
(121)

The arrangement of elements in the above matrices corresponds with counting the points along

a chord starting with the point nearest the leading edge on the spanwise section nearest the line of

junction CD and proceeding outwards towards the tip along each spanwise section in turn for the

port half-tailplane, fin, and starboard half-tailplane respectively.
Let the elements in the column matrices in equation (106) be written as the sum of symmetric

and antisymmetric components

where

(122)

(123)



Then from (106) in virtue of the relations (118) to (121), we have

w7 = [Ag™ Aptt At AT, 3¢ = [Aygtt Aptt Ayt A
0 A Agy™ Ayt |10 @* Mgt Ayt Ayt A (124)
o° Ayt At Ay LAS - A= Apt A LA

which may be replaced by

At AT Attt — AL A _
e e e R e e (125)

at Agy ™t Agp™t Agt

6. Modes of Oscillation and Associated Generalised Forces.

A number % of independent modes of oscillation of the T-tail will be assumed and these will be
numbered from 1 to k. Let

Zy(%, y, 1) = Lfi{P(x, y)e! (126)
Y, (%, 2, ) = If,!P(x, z)ett (127)

be the normal displacements of the tailplane and fin respectively in a harmonic displacement in the
p’th mode, p = 1,2,..., k. Let the corresponding loadings be /,®(x, y)e! on the tailplane and
LP)Yx, z)e'! on the fin. Then the generalised airforce P, , may be defined by

P,,= ff Ly (xq , yo)li (g 5 yo)dxgdyy +

tailplane
+ ff 3% (g, 2)e Dy, 2o)dxed2y . (128)
fin

If, corresponding to-equations (7) and (8) we write

L2y, yo) = poV A (%, 3o) (129)
L9 (05 20) = poV AP (g, 2) (130)

then we have
P,,=pV0Q,, (131)

where

1 .
Qua= 2 ff FiPxq, yo)AM D%, yo)dxgdy, +

tailplanc

1
+ 2 fffz(p)(xo s Ro) AP (g , Zo)dxodZ, . (132)
fin
The quantity Q,, ,
number. For similar wings oscillating in similar modes one can see from dimensional considerations

is a generalised aerodynamic force coefficient and is a dimensionless complex

that it depends only on the Mach number M of the flow and the frequency parameter v, where
V== (133)
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By making the transformation of variables from (%, ¥o) to (£, 1) and from (x,, %) to (&, {y)
as defined in equations (22), (23), (26) and (27) in the integration variables of (132) there results

Qp,q = l Cl(yo) dn f S, yo)hy ('Z)(xmyo)dfo

N sl2 zo) i, f 122 5 2o)AD(xy, 2o)de,

C
Z 1(:)/0 d f fl(p)(qco, yo) g—ionglV ) ((I)(goa no)ng

l Cz(zo) dat, f Foi®ag, 2p)e 920 Xy(ey, Lo)de, - (134)

Then using the expressions (71) and (72) with the suffix ¢ attached to the A’s this becomes

n m

- % 2R0E0 ) f A90) o witneydn, x

11]1

1
* f b Eoe~mol” f{(Pxg, yo)d &y +
0

m

3
+ X X

i=1j=1

0 ¢
AOED, —1,) f i(lxo—) &1 — no)dny x
-1

@N|%

1
* f h(&g)emiwnolV iy , yo)d &g +
0

+ 3T 2ROE, ) f 2L L, X

i=1j=1
x f B eg)eiomo £, 2y)dey- (135)
0
We shall assume that an adequate approximation to

ex(Yo) iy, yo)e im0 (136)

is given by a double polynomial of not greater than the »’th degree in §; and #’th degree in 7, over
each half of the tailplane, and that an adequate approximation to

ca(Zp) f2 ¥ %y, 2p)e ol (137)

is given by a double polynomial of not greater than the #’th degree in ¢, and #’th degree in {, over
the fin.

These approximations may not be so good near points of discontinuity of slope of leading and
trailing edges, but this is expected to be only a local effect and is equivalent to modifying the
contour of the tailplane and fin surfaces so that there are no such discontinuities. Also the values of
(wxe/ V) must not be too large anywhere on these surfaces, its greatest permissible magnitude being
determined mainly by the number of chordwise points. If large values of (wxy/V) occur then
oscillations in the function e~*#¥ become important and this would need special treatment.
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If a(¢,) is a polynomial of degree not greater than the #’th in & and b(n,) is 2 polynomial of
degree not greater than the m’th in 7,, then by a property of interpolation functions

[ ateominegag, = aeome (138)
and ’
[ bndggaobang = Gy (139)
where
H® = f " hiede, (140)
and ’
Gm = f : 2™ (ng)dn, - (141)

Using this property, we may write instead of (135)

Op.a Z Z H(”’G""’ 7 (71,57) %

i=1j4=1
) ® + w S@(ED
X [iP g 4 O y1, ) exp | — 7 M MDESD, my) +
m
+ Z by 1H(”)G<’") 1(3’“ ) x
i=1j=1

fw _
X [y 5 50, y17) exp (_ 7 i,y’) MDEL, —n;) +

nw m

£ X3 THOGM (35 x
i=1j=1
X [l %9, 4,195 %5, ;) €XP (“ Z; Xg, i,j) XO(EQ, 1)) (142)
or, in matrix form
1) q [fl el f2, ])+ fl,p_] Bl+ [xl,q+
Byt Xz, 0 (143)
B~ L)\l,q

The submatrices appearing as elements in equation (143) are defined below.

[f1, 1] is a row matrix of mn elements with the element

i=12...,n,
F1P(xy, 5,0 v1,5™) i=1,2...,m (144)
in the #(j—1) + ¢’th column.
[fs, »t] is a row matrix of m#n elements with the element
=12,...,n,
FP(%q, 1. %, 2, 1) i=12... (145)

in the #(j — 1) + ¢’th column,
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[f1, p~11s a row matrix of mn elements with the element

: 1=1,2,...,n,
£ 5 2 157 =12, .m (146)
in the #(j — 1) + ’th column.
[B;*] is an mn x mn diagonal matrix with element
s L iw i=1,2,...,n,
L Y I (147)
in the #(j—1) 4+ #’th row and column,
[B,1] is an mn x mn diagonal matrix with element
s iw 1=1,2,...,n,
L & B (14)
in the 7(j —1) + 7'th row and column.
Since the tailplane is symmetric we can write
[By7] = [B,1]. (149)

The column matrices [A; ,*], [A, ;7] and [, ;7] are defined by (110), (111) and (112) only now with
the addition of a suffix ¢.
The equation (143) may be replaced by

Opo = U o1 (Bt 2R, ) + [fo o fon] [ B 2%, (150)
Byt | | Ayt
where
[fl,ps] = %[fl, ])+ +f1,27_] b [fl. pa] = %[fl,p+ —fl, p_] (151)
[ o] = 3[A " + Aol AT = A — Ayl (152)

The matrices [2A; 7], [2A, ,4] and (Ay ,*] in equation (150) are obtained by solving equations (125)
with suffices ¢ added to the A’s and &’s, and on using these solutions in (150) there results

Ayt + Ayt

Oy = Uiy 1B [ 522 [, 1 +

At — AL A 1
+ [f, 0% fo, '] | Bit LZ_L At 0" (153)

‘ . P
Byt Agy*F Agptt & q"

where &, , and @, , are obtained from equations (3), (4), (5), (6), (15) and (30) on adding suffices g.
So

o iwl
O, 3) = Lo 19, 3) + 55 9 9) (154)

9 iwl
A, y) = Lo [0, 9) + 37 [0 ¥). (155)
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Now define column matrices [oy ,*1, [oq ;7] and [o, ,*] as follows:

[y, ;7] is a column matrix of mn elements with the element

R

C\‘1, q(x], i, 1'(10)’ y 1, 7'+)

in the n(r — 1) + £’th row.

2

=1,2,..
=12 ...

[y, ,7] is a column matrix of m# elements with the element

k

%1, Q(xl, k, 7'(10): ¥ 1, r—)

in the n(r — 1) + &’th row.

2

=1,2..
=1,2,...

[ ;1] is a column matrix of mn elements with the element

otg, o(®s, 7,/ 22, Zi
in the #(r — 1) + k’th row.
As before, define
[, ] = #lon,* + o], o, =

Then, with a symmetric tailplane,

(@ 41 = [D1"] [e, 4*]
5‘1, 4 I = D1+ O‘l, qa
Ty, " Dyt | Loy oF

[D;*] is a diagonal matrix of order mn x mn with the element

where

1w
exp 7 X1, ke, r

{w) k=
v

in the n(r — 1) + k’th row and column.

=12 ..
=12 ..

I

1,2,...
1,2, ...

[D,*] is a diagonal matrix of order mn x mn with the element

iw
eXP |37 ¥, 1,1

w k
’

in the n(r —1) + &£’th row and column.

The expression for Q,, , may now be written

_ Attt + AT
Opq = Ufo] [BrF] [ S 20

+ [fl, pa’ fz, ;p+] Bl-(_

7D o]

FAL L — AL +—
Ay Ay

=12 ...
=1,2...

‘Jn)

y 11,

Sy H,

L, 1,

',m)

— %,q

Jn?
Jm7

» 1,

, HI,

1.

(156)

(157)

(158)

(159)

(160)
(161)

(162)

(163)

(164)



If f9%(x, v) = fiP(%, —y) and fz@(x, v) = 0 then the displacements of the T-tail surfaces are
symmetric about the mean plane of the fin, whereas if f;?(x, y) = — f,(x, y) the displacements
are antisymmetric. In flutter theory the modes of oscillation usually considered are either symmetric
or antisymmetric. If p and ¢ refer to modes which are not both symmetric or not both antisymmetric
then

0,,=0. : (165)

s

If p and g both refer to symmetric modes then

An“j _A11+_

Ono = Ui (B[22 ] (D4 [0, 7] | (166)

while if p and ¢ both refer to antisymmetric modes then

0. = + 1| B+ Ay — Ay AL - D.+ + 167
Zoq [flp ’f2,p 1 1 2 12 1 %1, ¢ (167)

By* Ayt Agy™t Dyt | | o, "

The generalised force coefficient corresponding to T-tail symmetric modes is independent of the
presence of the fin, as one would expect. This case can be dealt with by applying plane-wing theory
(see e.g. Ref. 6) to the tailplane only and so it will not be considered further in this paper.

Equation (166) as it stands determines just one of the possible &2 generalised airforce coefficients
0, , if there are & modes of oscillation.

If the rows [fy, ,*, fo.»*], # = 1,2, . . ., k are arranged consecutively beneath each other to form
a rectangular matrix [f] of order & x 2mu and if the columns

[XI’ q+j\

%,q"

are arranged consecutively alongside each other to form a rectangular matrix [«] of order 2mn x &
then for antisymmetric tailplane modes

= 1| B+ At — Ay At - D+ 1
[0] = [/f]| By — A 1 [o] (168)
B,* Ay Agg*t L Dyt

~where [Q] is a square matrix of order £ x k with the element Q, , in the p’th row and ¢’th column.
The matrices [f] and [«] are made up of numbers associated with the displacement and upwash
points on the port half-tailplane and on the fin. The matrix obtained from the product

AL -1
Br | [P ] o (169)

Byt L Ayt A22++J [_ Dy*
is called the influence matrix. It depends on the Mach number of the mainstream flow, the frequency

parameter of the oscillations and the wing geometry, but it does not depend on the shape of the

modes of oscillation.
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7. The T-Tail with Reflector Plate at the Base of the Fin.

If the T-tail is attached to an infinite wall at the base AB of the fin with the tailplane parallel
to the wall, as shown in Fig. 2, then it is possible to obtain the generalised airforces by using the
method of images. The generalised airforces on a T-tail in a wind tunnel approach these values if
one of the wind-tunnel walls acts as a reflector plate at the base of the fin.

The pair of integral equations corresponding to equations (9) and (10) and appropriate to this
case is found from the method of images to be

1
a(®9) = = [ [ Moo y0Ki—50, 7~ sy~

tailplane

1
- ff A%, YO)Ka(x— %9, ¥ —¥0, 285)dnedyy +

tailplane !

1
+ yo ff Ao{g, 20)Ko(e— 2y, ¥, 2o )dxydz, +
fin
1 .
T f f Ao » 20) Ko — g, 3, 255 — ) dgdz, (170)
fin

1
(%, &) = - A%, J’o)Kz(x — %o &, Yo)dxedy, —
4

tailplanc

1
~ i ff A, Yo) Kol — g, 25y — 2, yy)dxedy,y +

tailplanec

1 .
+ y ff Ag(g 5 2o) K% — 9, 2 — 2g)dxodzy +
fin

. :
o ff A0 5 20) Ko(% — %y, 2+ 29— 255)dydz, . (171)
fin

The kernel functions K; and K, are given by (11) and (12) as before. The kernel function Ky(x, v, 2s5)
is given by (see Appendix)

. © ) 1% + Y2 — 85,2
K_’s(x, v, 282) = g—iwzlV I:J‘ e—toullV _2_—32}_%5/2 du +
(—a-- MR 1—1?) (2 + 3%+ 4s,%)

iw [— x + MR, } M(Mzx + R,) 45,2M(Mx + R,)?
e { v ( 1= M ) {R3(x2+y2+4s22) T Ryt A

452 M1 — M2 8s2M(Mx+Ry) i 4s,2M>(Mx + Ra)ﬂ (172)

R4y A5 | R+ 1450 V Rty 4 45y))
where
Ry = /{x* + (1 - M?) (y%+45,0)}. (173)
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The pair of integral equations (170) and (171) may be reduced following the procedure of Section 2 to

&1( 3 77) =

s +1 1 .
o [ o [ e RS0, +

+ (¥ M€, 770)161(3)(‘% —%g, Y —yo)td o +
s +r - N
+ ‘ﬁr f 1(¥0) ML, ) KD — 20, D 30), ¥ —30) o —
—1

51

+1 1 .

 A4g f e1(Yo)dny f {M(Eos mo) KB (e~ x4, ¥ — Y4, 283) +
T J - 0

+ e ¥)MD(€ys 170)133(3)(x—x0 » ¥ —Yo, 285)1d €y —
$1

+1 B R
- f (o)A P(L, me) K — x0( ), ¥ — Yo » 250) dg +
-1

§

1 1 .
| et [ (e, RSG5, 5 )+
+ co(20) AP (eg » é’o)sz)(x — Xy, Y, %)} dey + |
1 — A
+ Zij‘r fo ca(2) AL, Lo) K — s0p®(20), ¥, %) d Ly +

Y

1 1 R

+ 4_2 f ¢o(2p)d Lo J. {Aalgs L) KD — 2y, p, 25— 2,) +
T Jo 0

+ ¢o(20) A&y, ZD)K2(3)(x~x0 » Vs 283 —2p)dey +

1
+ ;;_jr J‘ 0 ca(30)As™(1, Lo) Ko™ — x,%(20), 3, 25, —20)d L

s [+ 1 R

f f ci(yo)dng J. {A(&os ) KB (x—x,, 2, 30) +
mJ 1 ]

+ e(¥o)A (€ ﬁo)Kz(?’)(x—xo’ 2, Yo)pd &y +

O - o
c 3 | abme RO =50, 2 ydn -

+1 1 .
— | abodn [ R, RS-, 2550 +
-1 0
+ a(¥o)MP(&p s ﬁo)Kz(g)(x —Xg, 285— 2, Yo)y d €y —
s [T < -
- 4_—717 J- &3(30)MP(Eg s M) KD~ x5, 25— 2, yo)dmg +
-1
sy [ 1 5 o
+ i J co=0)d Lo f {Aa(eg, Lo)K P —2y, 2—20) +
0 0
+ ¢a(26) A€ CO)KI(?')(x — %y, 3—2)}deg +
s [* < >
+ ATj_r f . €a(20) A1, L) KW — xp®(20), & — 29)d Ly +
sy (1 LI N
+ 47 f eo(20)d Ly j A€ LK P —x, 2+ 20— 255) +
0 0
+ ¢5(20) ANy, Co)Kl(?’)(x —Xg, B+ 2y~ 2s;)}dey +
$ 1 - N
+ Zj; f o ca(20) A1, Lo) Ky W% — xp(=0), &+ 29— 2sp)d {
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where

5 * . u? 4+ y? — 85,2
K%, y, 255) = f etV — 2
(ot MRgIA—2) (uP + 7+ 4s,7)5

du

+ 2 Vo) - I o) -

2 .
DK GVt il |5 o)) |
0 ' 2+ 92 — 8s,2 :
+ - pioulV 2 du . 176
f (—a-- M Rgl(1-319) (P + Y2 + 45,%) (176)

, io (— %+ MR\ ( M(Mx+Ry)  45,2M(Mx+ Ry
R®(x, y, 25,) = — B s =
(% 3, 255) = exp [ ( =2 )} [Rg(xz-l— Vs Ry(E+yt 1 AP

14

4s2ME(1— M) 8s,2M(Mx+Ry)  iw 4s2M2(Mx + Ry) -
RP(a2+ 17 +45,2  Ry(®+yP 445 V R32(x2+y2—|—4322)} ' 77
R iw (— x4+ MRN) 1 [ (Mx+Rp)?  1262(Mx+ Ry
Ry®(x, 7, 25) = exp | — o (ZXT 28 2 o _ o1
$(® 5, 20) = exp { v ( 1— e )] R, {(x2+ Y rds ) T (Pt dsy2) ] (178)

The procedure for solving the pair of integral equations (174) and (175) is similar to the procedure
for solving the pair of integral equations (38) and (39). The main difference is that Ay(¢,, ;) does
not tend to zero as {, — 1 but remains finite. A suitable approximation to the fin spanwise function
A(€9, L) is then given by a polynomial of degree (m—1) in {,. We define a set of polynomials
@ {,) of degree » which are orthogonal over (0, 1) i.e.

1 .
| Bt = 5, (179)
0
These polynomials are related to the Legendre polynomials by the formula
_ 2r +1
mi) = [ (F5—) 2w (180)
where P,({,) is the Legendre polynomial of order # in the usual notation.
Let
g j=12,...,m, (181)
be the m roots of
(&) = 0. : (182)
Then again it is very convenient from the point of view of mathematical formulation if the span-
wise loading points on the fin are taken to be the {;,j = 1,2,...,m.

To avoid complications of numerical evaluation the velocity points on the fin are taken to be the
points

L. r=1,2,...,m, (183)



instead of the more logical values which are the roots of

ﬁm( Z::) =0 (184)

where

)
Bl l) = f Rt (185)

The positions of the loading points and velocity points on the fin are then obtained from equations
(74) and (77) by replacing u; and 7, by {; and , respectively.

Corresponding to each point {; an interpolation function g9({,) is formed which is unity at the
point {; and zero at the other (m—1) spanwise points on the fin, and which is a polynomial of

degree (m—1)in {;:

£0L) = o) . (156)
G- |77 MQ)L g
057

The function g;({,) in equation (71) is then to be replaced by g"™({,) in order to get the approxi-
mation to Ay(€y, {,) in terms of interpolation functions. The numbers G/ are obtained from
formula (141) by replacing g,”(»¢)dne by 2;7({)d Ly .

By substituting the approximations (60) and (61) for Ay(ey, {;) and A(&), n,) into the forms
(174) and (175) of the integral equations we obtain

o [ AED M) £ e [yzo @) ¢
%(é ) = ( 2 L, no5 E)dny — X A&, m0) P (n, mg, E)dne +
i=1J —1 \M— %o ) i=1d 1
f (5,2 siz_zé;og 22 2(57,([)’ Lo)s (”)(77, o, )l +
1 2 B (
+ 3 [ o R I 2 4, B (157)

n +1 ‘5‘1S2770€ o
o\ €, T e 5 .37 Oy )M (g, £, €)dng —
OLZ(C é) § 4 (81 ’7702+S 2C2) l(g 7]0) (770 Z C) 7’0
N $155m0(2 = 0) 3
- NED, )M (my, 2— L, €)dn, +
§ J‘—_l [51 7']0 T 5 (2 Z)g]g ( 7)0) (7]0 ) 7o

1)\ z 5, o) @
+ zf it 50)2 N, &, €)d Ly +
s ( ’L ’ ZO) (7). 2_
‘:: ((: o) NONL 21, €)d L, (188)

where
) 1 ~
B, m, £) = ‘—1-71—7 (%) |:f {AENKP (e — %4, ¥ — Yo, 2855) +
0

+ el Vo)t ™( §0)K3(3)(x — %y, ¥ — Yo, 25014 &,
+ B KD — 200 (3g), ¥ —yo)} (189)

and we define
co( 285~ %) = cy(3) (190)

in order to get J®™(n, 2— 4, &), M (e, 2— 1, €), NS, 2—{,, €) from the definitions (83), (84)
and (85). :
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The evaluation of the principal-value integrals in equation (187) is exactly parallel to the evaluation
of the principal-value integrals in equation (80).
For the evaluation of the principal-value integrals in equation (188) write the identities

Xz(gi(l): LN L, Ly, €) = Z2(fz'(l)a g)Ho, e, §) (£~ Ep)? log IZ - Co{ +
+ €9, LINSL, Lo, 6) — A8, OHy, e, L) (L= L) log [£ — Lol] (191)

and
A6 LINS(E, 2= Lo, €) = A(€0, OHo, e, §) (§+5—2)* log | L+ L = 2| +
+ AL, LN, 2= Lo, €) — M(£0, DH, (e, §) (L+ =2 log [£+ Lo = 2[]. (192)
In virtue of the expansion (88), the lowest-order logal‘ithmic singularity is missing in the
expressions in square brackets in identities (191) and (192). In identity (192) the definition (190) has

to be used. We therefore expand these expressions in terms of interpolation functions ,7({,). On
doing this and integrating, we get

1 XZ(gi(l)’ g0) (D)
fo (C—Co)z Ni (C’ Lo» €)d o . g
= A6, OH,, e, c)U log|c—co\dzo (c z>2log|c—c|f o 2;’2 L] +
b3 0 N 1,9 [ 2 f")dco (193)
and -
RO L) s o
Nevam, RGACE 5""‘?““
= (e DH, e O | [ tog |2+ o= 2]ak, -
é(ﬂé 2R log | L+ & - |J' (C+§(C°)2)2d§0
m G )
+ 3 D, N 2- c],c)f (f;—ﬁ%dzo] (194)

To evaluate the other integrals in equations (187) and (188) we use the interpolation formulae

'gl (€9, )P, 15 E)g7 (o) Mo >0
R(ED, )P0, mg, €) = (7 (195)
2 AEL, =) P, — 5, ff)gj(”‘)(— 7o) 79 <0
§=1
(€D, L), Ly, €) = § A(E0, LT, &, f)gy‘” (o) (196)
A(E0, L), 2— 4y, €) gl AED, T (n, 2= &5, E)E™(Lo) (197)
3 LED, )My, 2= L, gl ) 70> 0
K(ED, )My, 2= 8, 6) = {7 (198)
Z 1(5 O, — "7 )M (n)( 779 3 2 C: e)gJ(M)( "70) 7]0< O
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and the formula (97). The equations (187) and (188) may then be replaced by

) = B A DR [ = [ tog = v = nona =

m (m)
- % (n=my)tlog |7 — ns|v(1 =) 4 _(%)2 d%} *
Pl o (71— "0)

{ f log |7 + 70 /(1 no)dn, —

\/(1 + 7
()
- E (n+9;)* log | + 15[ v/(1+ ;) E (%)2 d%” +
=1 o (0 10)
n.oam , g](m) 770)
5 3 NEN )0, 0 [
i=1j=1
n mo (m)
+ 35 2 A& _77])1 £, — "M £) f & 7’“) dy]u -
i=1j=1
-y 3 Y (€9, “79') pi(n)(,,], Ny g)G],(m) —
i=135=1
- Z E Xl(fi(l)’ ‘ﬁ;‘)Pi(n)(”}; —77]’> f)Gj(m) +
i=1j4=1 .

n m 1 §.5 C
O N, L _ %0 5wy
+ 121 721 )\2(§ CJ)JZ (777 é] 3 g) j 312772+S gg 2)2 gj (é[))d CO +

” $159m(2 — Ly) m v
+z21]21)\2(§a> LT (n, 2~ g],g)f e e B (199)

. noom s C
&2(6, é) E Z )\1(51(1)) 'r]g)M (ﬂ) 77]’ CJ C) f e gcg f)gj( )(7}0)017]0

2
i=1=1 ($1%70% + 53

n m o o 1 3132770§ o
— 3 2 ANES, —n)M& (=, L €) 0(slznng (ma)dn, —

i=1g=1
K m 1 5.5 7] (2_ (é) )
— by (1)’ M (x;, 2, f 172770 o) N
121 le (g 7’3) (771 C ) [3127][)2_;_&,22(2_ C)g]g g] (7]0) 7o

£ 3 5 M0 M=y, 2- 4 0) [ IS g, +
=1j=1 o [51%n0" + 8:%(2— )7

£ 35 R0 NG 5,9 [ B & 4

i=14=1 (L—&y)?

wnomo m) g)

> O LN 2— 0, ¢ &%)
*?‘1,-21 R&0, LNL 2= 1, €) fo At

2
+ z WD, D (6, ) [ f log | — Ly|d Ly —

- X - Griog|2- g [ B ar, -
1% (L G- zzlooqmc-z[f -‘%—Z")Wch ©(200)
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If the equation (199) is written down for the 2mn velocity points on the tailplane and equation (200)
is written down for the mn velocity points on the fin, there results a set of 3m#n simultaneous

equations for the 3mn unknowns A(£9, n;), M(£0, —n;) and (£, ;) for 1 =1,2, ..., n,
J=1,2,...,m;in terms of the known values of (¢, 7) or @€, m) at the velocity points. These
simultaneous equations can be written as the matrix equation

lﬁl_j = [ A= At tARTT + A, Apt = Ayt Ir At (201)

g TARTY = FA T, A o+ T A P, FAL T = F AT | At

{EI—J An™ = Ay, At AT, Ay — A |,X1_

The submatrices that are different from the ones appearing in equation (106) are defined below.

Aygttis a square matrix of order mn x mn with the element

P 'L'(n)(nr > 77j1 glﬁ(W))Gj(’m)

i=1,2,...,n k=1,2,...,n
b ) b > b b t) > 02
ji=12...,m, r=12...,m, (202)
in the n(r —1) + &’th row and #(j — 1) + #’th column.
tA ;s a square matrix of order mn x mn with the element
n w ! $1527rLo 7.
T 5 Ly €407) \ m)“zgj( (Lo)d &y
i=1,2,...,n, k=1,2,...,n,
i=12...,m, r=12...,m, (203)
in the n(r —1) 4+ &’th row and n(j — 1) + #’th column.
18 a square matnX of order mn x mn with the element
TALT 1 q ix of ord h the el
1 §18m,(2— &p) -
T (n,, 2=, £ f 127 0 AT
(771 gj fk ) o [512%2"‘322(2_ Zo)z]z g7 (ZO) ZO
i=12...,n kR=1,2,...,n ’
? > b b ) b N 3 b 2
=12 ...,m, r=12...,m, (204)
in the n(r — 1) + &’th row and »(j — 1) + 7’th column.
A3+~ is a square matrix of order mn x mn with the element
P z'(n)(nr » T Wy g /c(W))Gj(m)
i=1,2,...,n k=1,2...,n
H b ) b b ) b b 2
i=1L2...,m, r=12...,m, (205)
in the n(r —1) 4+ £’th row and n(j — 1) + 7’th column.
tAg T is a square matrix of order mn x mn with the element
1 8185108,
@)y wy | 12Msr o amy, \g
Mz (7}] ’ Z-:T’ é:h“ ) f() (3127}02_*_822&1'2)2 g] (7]0) o
i=12 n k=12 ...,n
» yror 0 3 3 bl > b 206
i=12...,m, r=12,...,m, (206)

in the n(r —1) + k’th row and »(j — 1) + 7’th column.
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TA, 57 is a square matrix of order mn x mn with the element

1 $15am9(2—C,)
[COTON (w) 1270 7 ),
Moy, 2= 66) [ S s g

i=1,2,...,n, k=1,2,...,n, .
i=1L2...,m, r=12...,m, (207)
in the #(r — 1) + &’th row and u(j —1) + Z’th column.
tA, o™t is a square matrix of order mn x mn with the element
() @) ' &™) (g ) '
Nz’ (Cri gj’ gk ) dCO + 83 1H0 i (gl g) lOg ig) - Zoldgo -
o (&= Go)? 0
m ()
&) 4
-3 @ trioslo -t | az,
iz ( J) g | ]l (C g )2
i=1,2,...,n, k=1,2,...,n,
J=12,...,m, r=12,...,m, (208)
in the n(r — 1) + £’th row and #n(j — 1) + ¢’th column.
tA, g+ is a square matrix of order mn x mn with the element
()
N®(L,, 2-;, fkw)f ———(CO) 2)2 d iy + 85, Ho 6™, L) I:f log ‘C"‘ Ly — Zldgo
&%)
_ +7—2)2log |4+ =2 f I F CON J
z(z G-2plog |6+ =2 | S dl,
i=12...,n, kR=1,2,...,mn, 209
i=12,...,m, r=12...,m, (209
in the n(r — 1) + &’th row and »(j — 1) + ’th column.
Since the tailplane is symmetric the other submatrices are given by the relations
[TAs ] = — [TAx*] (210)
[TAg™] = — [TAg™] (211)
[Ag™] = [Au*] (212)
[tA7] = — [TAn"™] (213)
[tA] = — [tAw™] (214)
A~ = [An™] (215)
If we assume only antisymmetric T-tail oscillations then
@] = — &l (216)
and in virtue of relations (210) to (215) we must have
= = [A7] (217)
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and the matrix equation (201) may be replaced by

e A" = Ay = At + Ay
&g 2

&;J L TAgy T — TAyHT T AT + T AT /_\2+J

Equation (218) may be compared with the second equation (125). Tt is seen that these equations are
similar, but that equation (218) contains extra elements arising from the reflection effect of the wall.
There are also the minor differences connected with the different location of the velocity and
loading points on the fin.

By following the argument of Section 6 it is casily shown that the matrix [+ Q] of the generalised
airforces for antisymmetric oscillations of the T-tail is given by

(218)

s TARTT + FAT le'l“l

TFTA T — A, — — ATt + A " —1
711 11 2 13 13 , ,I~/\12_,,_|_ + 'I‘Arlél“_

[(TO] = [1/1] B
15,1 TAn T — TAyt T AT+ T AT

x | Dyt [To] (219)

TDg*

where [f/f] and [t«] correspond with the [f] and [«] of equation (168) only that the values of the
elements of [1f] and [t«] are for the new loading and velocity points on the fin. The definition of
[TB,"] is similar to [B,*] given in equation (148) only that G has to be replaced by G, and
%y, ; and x, ;¥ replaced by the values corresponding to the new loading and velocity points on the
fin. The definition of [+D,*] is similar to the definition of [D,*] given by equation (163) only that

%o, 7, has to be replaced by the value corresponding to the new loading and velocity points on
the fin.

8. The Treatment of Control Surfaces.

There may be control surfaces on the T-tail, such as elevators on the tailplane and a rudder on
the fin. The displacement functions f,%”(x, y) and f,®)(x, z) of equations (126) and (127) will not be
smooth across all the inboard edges of the control surfaces, when the mode p is 2 mode of oscillation
involving relative motions of the T-tail and these control surfaces. Also the reduced normal-velocity
functions o @(x, y) and «,@(x, 2) of equations (154) and (155) are not smooth across the inboard
edges of the control surfaces, when the mode ¢ is a2 mode of oscillation involving relative motions
of the T-tail and these control surfaces. When a mode of oscillation does involve relative motion of
the T'-tail and control surfaces we shall say that it is a control-surface mode.

The generalised airforce coefficients O, , may be determined when both p and ¢ do not both .
refer to control-surface modes at the same time, The functions ;") (x, y) and £,"(x, 2) of the control-
surface modes are replaced by equivalent smooth functions and the functions o@(x, v) and
ay(xx, %) of the control-surface modes are replaced by equivalent smooth functions. The procedure
for doing this is described in Ref, 6.

The values of these equivalent functions at the loading and velocity points are then taken instead
of the values of the actual function f,”(x, y), £, x, 2), «(x, ¥) and a,(x, 2) to form the matrices
[/]and [«] of equation (168) and the matrices [1/] and [t«] of equations (219). It is necessary only
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to write down the values of these functions at the loading and velocity points since their derivation
is exactly analogous to the derivation given in Ref. 6.

If fieo(x,y), f&P(x, 2), o,@Px,y) and o*P(x, ) denote the functions equivalent to the
functions f;®Xx, y), 5P, 2), oy D(x, ¥), aP(x, 2) then for the isolated T-tail

fl(c, 7))(“71, i, j«): 1, i+)

1 1 1 1
=g G ¢ (v, ) f‘] ey ¥0)g " (10)d75 fu Fi Pz s o)l (Eo)d &y . (220)
f(C IJ)(x Z,] ’ zo ])
1 1 1 | 1
~ GG e ) AL [0, 2GS, (221)

(xl(c’ Q)(xl, ke, r(W)a yl, 1'+)

1
= H, . ™G o0 Cl(y ) j 1(30)8, (o) g f o (g, Vo)t rea®(1— &) &y (222)

ap® m(”z, k, r(L A 2y, r)
1
H n——k—‘rl(mGr(m) 62(22, 1')

When there is a reflector plate at thie base of the fin, the equivalent values of the displacement
“and reduced normal-velocity functions on the tailplane are still given by equations (220) and (222).

1 1
ca(%0)g " (Lo)d Ly f agP(xg, )1 = Eg)d & - (223)
0 0

On the fin, however, we now have

Jo P (g %)

1
.= Hi(»n)G;?(Tz) Cz(m 3 f co(=0)g " La)d L f Jo g5 Sl (E)d & (224)
ay® m('xz,l @, 23,1) .
1 1 1
e ) | SEENENG [, - G (@29

where now ¥, ; ¥, 2, ;, %5 ;. ,%, 2, , refer to loading and velocity points on the fin, modified as a
result of introducing the reflecting plane and obtained from (74) and (77) by replacing 7; and 7, by
{; and {, respectively.

The matrix of generalised airforce coeflicients is then obtained either from equation (168) or
equation (219) according as to whether the T-tail is isolated or has a reflector plate at the base of the
fin. Values for Q,, , when p and g both refer to control-surface modes at the same time are obtained
in these matrices, but it must be remembered that the procedure for obtaining these is not valid.
Nevertheless these values may be used as estimates of the correct values until a proper procedure for
obtaining them becomes available.

9. The Numerical Procedure.

The values of the displacement functions and of the reduced normal-velocity functions are to be
given at the loading points and at the velocity points respectively on the T-tail. The loading points
and velocity points are given in equations (74) to (79) in terms of £0, £, and »;. If there is a
reflector at the base of the fin then {; is also required.
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The £9 are obtained by solving equation (57) and then the £,%9 are obtained from (54) and (55).
Values of £% and £, are given in Table 1, corresponding to the first few values of n.

The 7, are obtained by solving equation (68) and the [, are obtained by solving equation (182).
Values of »; and {; are given in Table 2, corresponding to the first few values of m.

The numerical values of the elements in the matrices

AL
Ay Ay

LW (226)
Agytt s Mgyt
and )
Ayt — Ay ; Attt + A LA+ FA T (227)
FAg T — T s T A ™+ TAg ™

of equations (125) and (218) have to be determined. The elements are determined by use of
expressions (113) to (117) and (202) to (209). These expressions involve the integrals

= [ e

which are independent of the shapes of the tailplane and fin. These can be worked out and their
values corresponding to the first few values of m are given in Table 3.
The expressions (113) to (117) and (202) to (209) involve the integrals

1

1 $159m,.C s ‘
w2l D 152M0";
fo (5-127) ng(n )(Co)dgo, . W b) (7]0)(1770 s
,
1 $48 g - 1 5.5 C
152050 = () 152M0 6, )
jo (i 152l (L) Ly, f{) G52 L) £ (o) »

5 8i"(E0)d Lo,

fl [ $183M(2 ~ L) $18am(2— () gj W m)do (232)

o [s:%0, + 8552 = L)) o [$1%m0° + 852 L)%

which are dependent on s, and s,. These integrals can be worked out only when s, and s, are known
s0 their values cannot be given here. In order to work out their values expressions for the functions
£ () and g,0({y) must be known. These are given in Table 4. Values of G, and G,™, which
are also required, are given in Table 2.

The expressions (113) to (117) and (202) to (209) involve Fy (€%, n,), Hy (€,%, n,) and
Hy 0(&,8, ¢.) and these depend on the values of A,/(€,%)), p,09(€,®) and A% D&, ), which are
given in Table 5 for the first few values of #.
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The expressions (113) to (117) and (202) to (209) also involve I,™(n,, 7;, &), L(n,, —n;, £,
T,y g 89, ME(nz, mpy 6599, N0y 55 689, BP0, m55 65, POy — 5, ),
I, Zj’ &), I (n,, 2— &, &), M»;(”)(m" Ly &) Mi(n)(nj’ 20, &), NSL,, &, £,
N L, 2=, €5,

If r = j, then I,(x,, n;, &), N (n,, n;, £, N, , &, €,%7) cannot be worked out using
numerical integration for the integrands in the definitions (82) and (85) are singular. The values are
obtained from the formulae

I(x, 9, £) = %T 61_513)—) (€ (233)
I, g, 6 = 2i %(_z_) B €) (234)
T g

which are obtained from (82) and (85) by proceeding to the limits 7, = n and {, = {. The derivation
of these formulae is given in Ref. 6, Appendix V.

All the other quantities listed can be worked out by numerical integration. In order to do this,
expressions for the functions £,(¢) and %,~™(&) are required and these are given in T'able 6 for
the first few values of #.

The numerical values of the elements in the matrices (226) and (227) can then be determined and
the matrices inverted for use in equations (168) and (219). Equations (168) and (219) also require
the numerical values of the elements of the matrices [B,*], [ByT], [t Byt], [D11], [D:7], [1D,y7], and
these are easily determined. The values of G, G and H™ required are given in Tables 1 and 2.

10. Examples.

As a first example we shall consider the tailplane to be rectangular and of aspect ratio 2 and the
fin to be rectangular and of aspect ratio 1. The chords of the tailplane and the fin are of equal
length and this length is taken to be the typical length / of the T-tail. The T-tail is immersed in a
subsonic flow with free stream Mach number M = 0-866 and is assumed to be oscillating with a
frequency parameter v = (-3 in one of the six modes of oscillation defined by

f05) = 0 S0 %) = 1 (235)
A903) = 0 Ji900, %) = (236)
£, 3) = ol £9(5, 2) = 7 (29) 237)
A9 3) = sy £, %) = Jy2(50=3) (239
A9, 3) = 203 Fi9(5, %) = 3y (o) (239
1965 5) = syl 190, 2) = Jyw(s0— 2 (240)

where the origin has been taken at the leading point of the chord of junction.
Calculations were made on an electronic digital computer to obtain the matrix [Q] of the

generalised airforce coefficients using different numbers 7 and # of spanwise and chordwise points.
The results for the elements Q, , of the matrix [Q] are given below for the different combinations
of m and n used. Q,, , is a complex number so it is separated into real and imaginary parts by

Qp,q = Qp,q/ + iQp,q”' (241)
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The results are:

On' 01’ Q15 O O’ O’

m 7
3 2 0-0556 — 1-3849 0-0381 —1-1334 0-0348 - 0-9000

3 3 0-0550 — 1-3836 0-0372 - 1-1304 0-0337 - 0-8971

3 4 0-0538 — 1:3828 0-0357 —1-1297 0-0319 - 0-8966

4 2 0-0561 - 1-3839 0-0383 —1-1257 0-0353 - 0-8861

4 3 0-0564 — 1-3838 0-0382 - 1-1240 0-0351 —0-8844

4 4 0-0560 —1-3837 0-0376 -~ 1:1242 0-0343 — 0-8845

5 2 0-0556 —1-3839 0-0377 —1-1251 0-0345 — 0-8843

5 3 0-0560 —1-3841 0-0378 —1-1238 0-0344 —0-8830

5 4 0-0560 — 1-3843 0-0375 — 1-1241 0-0339 - 0-8833 (242)
m n On" 01" 01" 014" 015" 016"

3 2 —0-4165 —0-5300 —0-3390 —0-4004 —0:3670 —0-3106

3 3 —0-4162 - 0-5275 —0-3380 —0-3957 —0-3654 - 0-3063

3 4 —0-4158 —0-5213 - 0-3378 —0-3887 —0-3651 - 0-3003

4 2 —0-4166 —0-5329 —0-3370 —0-4008 —0-3623 — 0-3090

4 3 —0-4166 —0-5351 —0-3365 —0-4007 —0-3612 — 0-3085

4 4 —0-4166 —0-5328 —0-3365 —0-:3975 —0-3613 — 0-3057

5 2 —0-4166 —0-5310 —0-3368 —0-3984 —0-3617 — 0-3060

5 3 - 04167 —0-5341 —0-3364 —0-3992 —0-3608 — 0-3063 :

5 1 —0-4167 —-0-5335 —0-3364 —0-3975 —0-3609 — (-3048 (243)
e n Ou’ O’ O’ 7%% Qss’ Qs

3 2 0-0495 - 0-2123 0-0391  —0-1953 0-0414 - 0-1598

3 3 0-0499 - 0-2058 0-0397 —0-1935 0-0423 - 0-1592

3 4 0-0494 - 0-2096 0-0390 —0-1986 0-0413 - 0-1637

4 2 0-0500 - 0-2118 0-0393 —0-1928 0-0413 - 0-1559

4 3 0-0508 - 0-2037 0-0402 —0-1893 0-0426 — 0-1539

4 4 0-0506 —0-:2032 0-0399 —0-1903 0-0421 —0-1549

5 2 0-0499 —0-2129 0-0392 —0-1938 0-0411 —0-1567

5 3 0-0508 — 0-2059 0-04062 —0-1913 0-0425 —0-1555

5 4 0-0508 —0-2046 0-0400 - 0-1915 0-0422 —0-1558 (244)
m 7 Oz” Oy Oss” sy Oss” Oss”

3 2 —0-0707  ~0-3116 —0-0639 —0-2445 —0-0746 —0-1918

3 3 —0-0690 —0-3153 —~0-0635 —0-2473 —0-0747 —0-1940

3 4 —0-0700 —0-3118 —0-0648 —0-2433 —0-0764 — 0-1906

4 2 —0:0706  —0-3139 —0-0632 —0-2454 —0-0730 —0-1911

4 3 —0-0685 —0:3200 —0-0624 —0-2504 - 0-0727 —0-1950 -

4 4 ~0-0684 —0-3185 —0-0626 —0-2482 —0-0731 —0-1931

5 2 —0-0709 —0-3133 —0-0635 —0:2447 —0-0732 —0-1902

5 3 - 0-0692 - 0-3202 —0-0630 —0-2503 —0-0733 —0-1946

5 4 —0-0688 —0-3198 —0-0630 —0-2491 —0-0735 — 0-1935 (245)
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-0374
0365
-0351
-0381
0381
0375
-0377
-0378
-0375

—1-
—1-
—1-
—-1-
—1-
—1-
—1-
—1-
—-1-

—0-
—0-
- 0-
—0-
-0
—0-
-0
-0
~0-

—0-
—0-
-0
—0-
—0-
— 0
-0
—0-
~0-

Os’

1234
1208
1201
1223
1209

1223
1213
1216

”
QBZ

-3956
-3912
-3844
-3992
-3993
-3961
3975
-3984
- 3968

Qu’

1935
1919
1968
1923
1890
1899
1932
1910
1911

O’

2417
2445
2404
2442
2490
2468
2436
2492
2479

1210

0
0
0
0
0
0
0
0
0

-0
~ 0
-0
-0
-0
-0
-0
-0
-0

OO OO OO oo

Oss’

-0584
-0576
-0562
-0585
-0585
-0580
-0578
-0580
0578

"
O

4133
4127
4124
-4113
4111
-4110
4111
-4110
4110

’
Ous

- 0495
- 0499
0492
-0497
-0504
-0501
- (495
-0504

0-0503

"
Q43

-0701
-0689
-0701
-0696
-0680
0681
-0700
-0688
-0686

41

Q34,
—1-3713
—1-3694
—1-3686
—1-3637
—1-3630
—1-3630
- 1-3633
—1-3628
—1-3630

Osd

— 0-5365
— 0-5327
—0-5258
—0-5361
—0-5371
— 0-5341
— 0-5333
—0-5352
— 0-5338

Q/MI
— 0-2100
— 0-2052
— 0-2097
— 0-2083
— 0-2018
—(-2021
— 0-2096
— 0-2043
— 0-2038

Qu”
— 03095
—0-3128
—0-3089
—0-3103
—0-3159
—0-3139
— 0-3094
—0-3158
—0-3148

Oss’
0-0854
0-0845
0-0830
0-0855
0-0856
0-0851
0-0845
0-0848
0-0846

"

35
—0-5617
— 0-5613
— 0-5608
— 0-5570
— 0-5570
— 0-5569
— 0-5565
— 0-5566
—0-5566

QO

’
Qus

-0683
-0687
-0630
-0683
-0691
-0689
0681
0691
0-0690

[l e RN e i o i e BN e B« B oo

"
Qs

- 0-0914
— 0-0893
— 0-0905
— 0-0904
— 0-0879
— 0-0877
— 0-0909
— 0-0888
— 0-0884

—1-1869
~1-1853
—1-1847
~1-1731
—1-1726
—1-1726
~1-1716
~1-1713
~1-1714

(246)

(247)

(249)
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Q51’

-0340
-0329
-0312
-0349
- 0347
-0339
-0344
-0344
-0339

"
QSl

-3600
-3586
-3582
»3600
-3591
-3591
-3600

-3592
-3593

Ot/

-0300
-0304

-0298
-0303
-0311
-0307
-0302
-0311

-0309

QGIH

0509
-0508
0520
0507
0502
0505
0509
0507
-0508

—1-
—1-
—1-
1.
—1-
—1-
—1-
-1
-1

-0
—~0-
—0-
—0-
—0-
—0-

—-0-
—0-

(s R e B v B« BN oo Bl oo B o B e i e

0

OO OO oo o O

—0-
—0-
~0-
—0-
—0-
—0-
-0
—0-

Oss’

-0853
-0844
-0829
-0853
-0854
- (849
0845
-0847
-0846

953”

+5583
-5579
+5575
+5560
+5560

-5559

-5558
-5559
-5559

Qs

-0428
0431
-0425
-0430
-0435
-0433
-0428
-0435
-0435

QG3”

-0591
0579
0589
0587
0572
0572
0591
0579
0577

42

Q54,
— 1-8470
— 1-8454
— 1-8444
—1-8383
- 1-8379
— 1-8378
—~1-8379
—1-8378
—1-8380

Osa”
— 0-7506
—-0-7471
—0-7390
—0-7496
— 0-7517
— 0-7484
— 0-7462
— 07492
— 07478

Qu’
—0-1762

— 0-1717

—0-1754
—0-1748
— 0-1690
— 0-1691
—0-1761
—0-1711
—0-1707

"
Qea

— 0-2678
— 0-2706
— 0-2674
— 0-2684
—0-2731
— 0-2716
— 0-2677
— 0-2730
—0-2723

el e e B e R R e i == R e}

|
el = = ==

0

oo oo o oo

Oss’

- 1407
-1400
-1383
- 1406
1410
- 1407
1393
1399
-1400

- 8295
-8298
8292
-8241
- 8248
- 8246
- 8235
- 8243
-8243

Oss’

-0614
-0616
-0610
-0613
-0620
-0618
-0611
-0619
-0619

”
QG5

-0787
0764
0774
0778
0753
-0751
-0783
-0762
-0758

—1-6517
— 1-6507
—1-6499
— 1-6358
— 1-6359
— 1-6358
—1-6341
— 1-6345
— 1-6345

— 0-1504
— (-1459
— 0-1491
— 0-1480
— 0-1424
—0-1424
— 0-1492
— 0-1444
— 0-1438
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The results show that the calculated generalised airforce coefficients do not change very much
with the different combinations of s and #, especially those relevant to rigid oscillations. The
greatest change seems to occur on increasing m from 3 to 4 and on increasing # from 2 to 3. For
the remaining examples we shall take m = 4 and # = 3 and assume that results are obtained with
good accuracy for this choice of m and .

As a second example we shall consider the tailplane to be rectangular and of aspect ratio 1 and
the fin to be rectangular and of aspect ratio 1. The typical length [ is again taken to be the length
of the chord of either tailplane or fin. The T-tail is immersed in a subsonic flow of free-stream
Mach number zero, and is assumed to be oscillating in one of the four modes of oscillation defined by

9, 9) = 0 £, 2) = 1 (254)

£i¥(x,9) = 0 £, 5) = 1~ § (253)
173

£, 9) = ! Y e (256)

A% 9) = ol £, %) = 0 (257)

where the origin has been taken at the leading edge at the chord of junction. Calculation of [Q] was
made on an electronic digital computer for a selection of values of the frequency parameter v. Some
of the elements of [ Q] obtained are given below.

y=0 »=01 »=02 »=05 »=07 wv=10
0, = —1-0865 —1-0854 —1-0832 —1-0748 —1-0696 — 1-0640

Qn = +0:3282  +0-3280 +0-3280 +0-3300 +0-3331 +0-3418
Op = — 12306 —1-2293 —1.2268 —1-2172 —1-2112 —1-2047
O = —0:0717 —0-0716 —0-0715 —0-0708 —0-0704 —0-0698
0, = 0-0000 —0-0774 —0-1560 —0-3972 —0-5615 —0-8116
0, = 0-0000 —0-0104 —0-0204 —0-0490 —0-0672 —0-0936
Qg = 0-0000 —0-0849 —0-1710 —0-4358 —0-6163 —0-8913
0," = 0-0000 —0-0036 —0-0073 —0-0187 —0-0265 —0-0386. (258)

Using the theory of Fin-Body-Tailplane arrangements given in Ref. 9 and taking the radius of
the body zero we calculate

Oy, = — 1:0587
0, = — 0-0705

when » = 0, and these are in good agreement with the relevant results in (258).

(259)

Experimental values have been obtained for an oscillating T-tail with rectangular tailplane and
fin surfaces and are reported in Ref. 10. As the experimental values were obtained in a wind tunnel
we should use the theoretical model of the T-tail with a reflector plate at the base of the fin.
Calculations were performed on an electronic digital machine for » = 0-5 and the following results
were obtained.

Qo= —1-7816 —{0-3878 = — 1-8233 exp (£ 12°17")
Qs = + 0-4805 — i 0-0857 = + 0-4881 exp (—¢ 10°7’)
Qsp = — 1-8714 —70-4014 = — 1-9140 exp (£ 12°6")
O = — 0-1006 — 7 0-0140 = + 0-1392 exp (i 7°55").

I
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'The corresponding experimental values, in our notation, are

le =

022 =
Osz =
Oy =

— 2-06 exp (£ 9°)

+ 0-54 exp

~1-81 exp (i 3°)

+ 0-16 exp (—i 3°).

(
(—i20°)
(
(

The moduli of the generalised airforces are thus seen to be of the same order of magnitude in both
the experimental and theoretical cases. The phases are not in good agreement.

As a final example we consider the case of swept back fin and tailplane, as shown in Fig. 3. The
typical length / of the T-tail is taken to be the length of the chord of junction and the origin is
taken as the leading point of the chord of junction. The T-tail is immersed in a subsonic flow with
free-stream Mach number M = 0-8 and is assumed to be oscillating with a frequency parameter
v = 05 in one of the six modes of oscillation defined by

S, y) = 0
Jix,3) = 0

(%, y) = yll

(0] = [+0:
-0-
+0-
+0-
—0-
L™ O
+i[=1-
+0-
<0942

-1

1

+0-
5684
—._ 0.

2164
0129
0859
0201
0451
0563

0246
3185

1324

2163

%% y) =0

[, y) = 25,91

J1Ox, v) = y/l

Calculations were made on an electronic digital computer with w = 4 and # = 3 for the isolated
T'-tail and for the T-tail with reflector plate at the base of the fin. For the isolated T-tail the matrix
[Q] of the generalised airforce coefficients is

— .
+0-
—2.
+0-
— 3.
—0-
—0-
—0-
-0-
—0-
—0-
+ 0-

0977
6847
2202
2922
1942
4522

7804
1498
6104
1723
5691
0264

1589
0261
-1759
0414
-2505
-0334

-9654
-1489
6627
0477
-2206
7215
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1%, 2) = 1

19, 2) = il
1
f®¥(x, 5) = 7 (55— %)
£, 5) = 3 5(5,— 3)
(5) 1 A2
JP(x, z) = IE (52— %)
f[O9x,2) = 0.

-1

~0-
-0
-0
—-0-
— 0
—0-

-7000
+0-
2.
+0-
-3
—-0-

3520
0574
1658
0975
4372

6946
1612
7025
1987
8174
0163

o o O O O

-3

~1

1529
-0529
-3505
-0661
<7556
- 1889

-2249
+ 0
-0422
—0-
—6-

0703

0271
8032

- 7757

-0
+0-
+0-
+0-
+ 0
+ 0
-0
-0

—0-

—-0-
—1-
~0-

00167
0047
0764
0047
2304
0762

11917
0122
6391
0222
6910

5126 | .

(260)
(261)

(262)
(263)

(264)

(265)

(266)



For the T-tail with a reflector plate attached to the fin the matrix [Q] of the generalised airforce
coefficients is

[0] = [ 0-1633 —4-0155 —0-2035 —2.7973 —0-5674 — 0-1266]
+0-1813  +1-2695 +0-2143  +0-4973  +0-2890 -+ 0-0262
~0-3858 —3-8891 —0-25904 —3-1439 —0-2869 — 0-0252
+0-1201  +0-4187 +0-1356 +0-1743 +0-1826 + 0-0129
~0-8453 —5-6930 —0-3958 —4-8000 —0-1032 -+ 0-1166
| —0-2158 —0-9024 —0-0763 —0-7532 +0-0702 -+ 0-0696
+i[~1-8334 —0-0574 —1-4569 —0-1158 —1-7800 — 0-1712
+0-5678 —0-7720 +0-1472 —0-6228 —0-0736 — 0-0611
—~1-8023 +0-2201 -2-2442 —0-1877 —3-8973 — 0-7819
+0-1798  —0-4995 - 0-0039 —0-4681 —0-1844 — 0-0659
—2-6355 +0-7964 —4-2391 —0-0469 —8-4671 — 2-0150].
| — 04099 +0-2922 —0-9365 +0-1285 —2-1611 —0-5973|.  (267)

It is seen that the presence of the reflector surface at the base of the fin modifies the isolated
T-tail generalised derodynamic force coefficients considerably. No comparisons with other theoretical
work or with experimental results to check the calculated effect of the reflector surface have been
possible.

11. Conclusions.

A theory, based on ordinary plane-wing lifting-surface theory, for determining generalised
airforces on a T-tail oscillating in subsonic flow has been described. The calculations are long but
straightforward and are best carried out on an electronic digital computer. For this purpose
programmes RAE264A and RAE265A have been constructed for use with the Ferranti Mercury
Computer. Programme RAE264A obtains generalised airforces on an isolated T-tail and programme
RAE265A obtains generalised airforces on a T-tail with a reflector plate attached to the base of
the fin.

Some examples have been given. The first example illustrates the effect of taking different
numbers of spanwise and chordwise points. Some of the results in the second example may be
compared with theoretical results in steady flow and also with experimental results in oscillatory
flow. The third example gives results for a T-tail which has swept-back tailplane and fin. The
comparison of the theoretical results is good, but the comparison of the experimental results, though
it gives tolerable agreement in the absolute magnitude, shows discrepancies in the phases of the
generalised airforce coeflicients.
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a,(Lo)
b,(Lo)
[B.*], [Bs*], [By7]

()
cs(R)
[D,%], [Dg']

E (&, ), Fy (€ )
Ji(%, »)

fal%, 2)

[P, v)

JiP(%, %)
[fl, p+]: [fz, p+]! [fl, p_]

lf]

F9 2 (xy 0 9 v )

Fe P xg ;19 29 5)

[fl, 178]’ [fl, pa]
21" Lo)

&%)
Gj(m)

Gj(m)

G, (% 1, go)

Gs, i(n)(. & z)! I_Is, i(n)(ex Z)
h{™(&o)

h{b™(€)

Hi(n)

SYMBOLS

Speed of sound in undisturbed main stream
Coeflicients appearing in equation (44)
Coeflicients appearing in equation (47)

Diagonal submatrices, the elements of which are defined in
equations (147), (148) and (149)

Chord of tailplane at spanwise station y
Chord of fin at spanwise station 2

Diagonal submatrices, the elements of which are defined in
equations (162) and (163)

Coeflicients appearing in expansion (87)
Shape of tailplane surface, see equation (1)
Shape of fin surface, see equation (2)

Shape of tailplane surface in the p’th mode of oscillation,
see equation (126)

Shape of fin surface in the p’th mode of oscillation, see
equation (127)

Row matrices, the elements of which are defined in equations
(144), (145) and (146)

Matrix whose rows are the row matrices [f; ,%, fo, »7]

Equivalent values of tailplane displacement defined in
equation (220)

Equivalent values of fin displacement defined in equation
(221) for an isolated tailplane and in equation (224} for a
tailplane with a reflector surface

Defined in equations (151)

Spanwise interpolation functions, defined in equation (69)

Spanwise interpolation functions, defined in equation (186)

Defined in equation (141)

Defined in equation (141) with g(n)dn, replaced by
Z{"(Lo)d Lo

A Jacobi polynomial, see equation (66)

Coeflicients appearing in expansion (88)

Chordwise interpolation functions, defined in equation (59)
Defined in equation (86)

Defined in equation (140)
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L™, 19, £)

I, Ly, €)

Ki(x, )

Ky, 3, 2)

Ky(x, y, 2)

Kl(x! ), Kz(x> ¥, &)
K%, ), K,®(=, y)
K, 3, %), Ky(=, p, %)
R®(x, y), Ky¥(x, v, )

Ie:%(l)(x’ ¥, 232)’ K3(2)(x’ ¥ 232)’
K3<3)(x, ¥ 2s5)

)

(=, )
lz(x’ 2’)

l l(p)( x, y)

lZ(P)(x’ 2)
L(x, y, 1)
Li(X, Y, 0

m

M
M (g, &, €)

n

N{XL, Lo, €)
p

bo
P

n,q
By 0, Py b

P, 74, £)

SYMBOLS—continued

Defined in equation (82)

Defined in equation (83)

Kernel function defined in equation (11)

Kernel function defined in equation (12)

Kernel function defined in equation (302)

Modified kernel functions defined in equations (17)
Constituents of K,(x, y) defined in equations (34) and (35)
Constituents of Ky(#, ¥, 2) defined in equations (36) and 37)
Defined in equations (42) and (43)

Defined in equations (176), (177) and (178)

Typical dimension of the T-tail
Loading function on the tailplane
Loading function on the fin

Loading function on the tailplane in the p’th mode of
oscillation

Loading function on the fin in the p’th mode of oscillation
Loading at time £ at a point x, ¥ on the tailplane
Loading at time # at a point X, ¥ on the tailplane

Number of spanwise points on the half-tailplane and on the
fin

V/a, Mach number of the main stream
Defined in equation (84)

Number of chordwise points on the half-tailplane and on
the fin

Defined in equation (85)

Ambient pressure

Free-stream pressure

Generalised aerodynamic force, defined in equation (128)
Defined in equations (228) and (230)

Defined in equation (189)

Velocity of a fluid particle relative to X, ¥, Z coordinate axes
Matrix with elements Q,, ,

Generalised aerodynamic force coefficient, defined in equation

(132)
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! n”
Q.?J, q:’ QP, q
ij T(m)’ Qj, 7_(m)

u(e, L)

v

w,( )

w,(£)

wy(%; ¥)
Wy, 2)
wy(%, ¥, 1)
wo(X, 2, 1)
wis(%, ¥ %, 1)

X, ¥, %

X, Y, Z

X
x

x

x

X, 4, j(l)> 9,
%y g 0 et

T —
1,4, V1,5

2w
xz, 7.:,1-( )J 22, 7
{3 +
xl, e, 'r( )’ yl, ”

a3 —
xl, k, 1'( )a yl. 7

SYMBOLS—continued

Real and imaginary parts of Q,, ,

Defined in equations (229) and (231)
Defined in equation (277)

Defined in equation (294)

Defined in equation (14)

Defined in equation (13)

Defined in equation (173)

Semi-span of tailplane, see I'ig. 1

Span of fin, see Fig. 1

Time

Defined in equation (51)

Main-stream speed

Defined in equation (63)

Defined in equation (185)

Tailplane velocity function defined in equation (3)
Fin velocity function defined in equation (4)
Defined in equation (273)

Defined in equation (274)

Defined in equation (304)

Rectangular Cartesian coordinates, stationary with respect to
the mean position of the oscillating wing

Rectangular Cartesian coordinates, stationary with respect to
the main-stream flow

7O y) equation of leading edge of tailplane
x79(2) equation of leading edge of fin
() equation of trailing edge of tailplane
() equation of trailing edge of fin

Loading points on fin, defined in equations (74)
Loading points on port half-tailplane, defined in equations (75)
Loading points on starboard half-tailplane, defined in
equations (76)
Velocity points on fin, defined in equations (77)
Velocity points on port half-tailplane, defined in equations (78)
Velocity points on starboard half-tailplane, defined in
equations (79)
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Y(x, 2, 1)

Z(x, v, 1)

Y (%, 2, t)
Zy(%, 3, 8)

oy(x, ¥)

oy, 2)

(%, ), Ba(, 2)

& (€, 1), (¢, 0)
%, (€ M)y T, (€5 §)

oy @ Doty g, y1,,)
ag® Ny, 1, ), 2g,r)
on(€)

[&*], [2*], [37]
[°], [®]

[og, o 1T [exs, P |

[, o] [2,4%]
[o]

€

€o

4

AR

SYMBOLS—-continued

Normal displacement of a point «, 2 on the surface of the fin
at time ¢

Normal displacement of a point %, ¥, on the surface of the
tailplane at time ¢

Normal displacement in the p’th mode of oscillation of a
point x, % on the surface of the fin at time ¢

Normal displacement in the p’th mode of oscillation of a
point x, ¥ on the surface of the tailplane at time ¢

Reduced tailplane velocity function, defined in equation (5)
Reduced fin velocity function, defined in equation (6)
Defined in equations (15)

Defined in equations (30)

Functions &,(¢, 1), @(¢, {) appropriate to the g’th mode of
oscillation

Equivalent values of tailplane reduced normal-velocity
function, defined in equation (222)

Equivalent values of fin reduced normal-velocity function,
defined in equations (223) or (225)

Normal velocity on a two-dimensional wing, corresponding
to a loading distribution Z(£,)4/{(1 — €y)/€o}

Matrices, the elements of which are defined in equations

(107), (108) and (109)
Matrices defined in equations (123)

Matrices, the elements of which are defined in equations

(156), (157) and (158)
Matrices defined in equations (159)

Matrix whose columns are the column matrices [al’ qu:l
Defined in equation (24) e
Defined in equation (26)

Defined in equation (25)

Defined in equation (27)

The roots of equation (182)

Defined in equation (21)

Defined in equation (23)

The roots of equation (68)

The real roots of equation (65)
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A(%, ), A, 2)

A, ), Apl, 2)
M(&os M0)y Aol 2)

M @20, ¥o)y A%, o)
As* (e, L)

(241, [A*], TA]

: ]

(AL [Ag ] [Ay ]
[Ag 1] [Ag 2] [An ]
(A~ (A7) [A ]
[tA17], [TAT] [Agg™]
[tAg 1771 [TAg 5], [TAg 2]
[tAs 7], [T A o771 [TAg477]
[tAz 5™ [As™], [Arp]
[tAL™T] [As]

1 Lo)

(o)

pa(2)s a7)

(X, Y, 8), mo(X, Z, 1)

v

3

&
£0
£,
Po

¢
Xo

w

SYMBOLS—continued

Reduced loading functions defined in equations (7) and (8)
Defined in equations (16)

Defined in equations (31)

Defined in equations (129) and (130)

Approximation to A€y, {,), defined in equation (44)

Matrices, the elements of which are defined in equations

(110), (111) and (112)
Matrices defined in equations (123)
Matrices [A,*], [As*], [A;~] appropriate to the ¢’th mode
Matrices defined in equations (152)

Submatrices, the elements of which are defined in equations

(113) to (121)

Submatrices, the elements of which are defined in equations

(202) to (215)

The polynomial of degree r in {, satisfying equation (62)
The polynomial of degree 7 in {, satisfying equation (179)
Doublet strengths, appearing in equations (275) and (276)
Doublet strengths, defined in equations (279) and (280)

wl
v
Defined in equation (20)

, frequency parameter

Defined in equation (22)

Chordwise loading points, defined in equation (58)
Chordwise velocity points, defined in equations (54) and (55)
Free-stream velocity

Velocity potential

Defined in equation (288)

Circular frequency

The sign 1 placed before symbol indicates that the symbol is appropriate to the case of a reflector

plate attached to the base of the fin.
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APPENDIX
Derivation of the Integral Equations

Besides the system (x, v, 2) of right-handed Cartesian coordinates in Section 2 of the main text,
another system (X, Y, Z) of right-handed Cartesian coordinates is introduced which is stationary with
respect to the main-stream flow and which coincides with the system (x, y, 2) at time ¢ = 0. Then
at time ¢ the following relationships exist between the coordinates of a point in the two systems

x=X+Tt
y=Y . (268)
2 =2.

If the flow of air about the wing is assumed to be irrotational then a velocity potential ¢ exists
such that the velocity q of a fluid particle relative to the (X, Y, Z) coordinate system is given by
b .3 9

A=ipptizptkyy

where i, j and k are unit vectors directed along the X, ¥ and Z axes respectively.-

With the usual assumptions of linearised theory it is found from Euler’s equation of motion of
inviscid flow, the continuity equation, and the adiabatic equation of state that ¢ satisfies the wave
equation

(269)

(‘ a2 3> c> ) 4 = 1 9% 270)

ax: T ave T oz 2P

The airflow must be tangential to the surfaces of the tailplane and fin and this leads to boundary

conditions. Within the accuracy of linearised theory it is permissible to apply the boundary con-

ditions at the mean position of theé tailplane in the plane Z = 0 and at the mean position of the fin
in the plane ¥ = 0 rather than on the surfaces. The conditions may then be written

0
(%)H — w(x, 9, 1) @71)
(g%) = wy(%, 2, t) (272)
¥=0
over the mean positions of the tailplane and fin respectively, where
a 0

wy(x, 9, ) = ( Vot &) Z(x, v, 1) (273)

t vV 6 .8 Y t : 274

w0 = (Vg +5) Yo 20 | (274)

and Z(x,y, t) and Y(x, %, t) are respectively the normal displacements of a point (x, y) on the
surface of the tailplane and of a point (x, %) on the surface of the fin at time 2.
The functions '

XY, 2,0 = = o (1) (275)
WX V20 = - {M} (276)

where
e VXX (Y=Y @z @)
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and p,(f) and u,(f) are arbitrary differentiable functions, satisfy the wave equation (270) and
correspond to potentials about doublets of strengths p,(2) and wu(f) at time ¢ placed at the point
(Xy, Yy, Z,) and pointing in the positive directions of Z and Y respectively.

If there are doublet layers on the planes Z = Z, and ¥ = Y, then the potential of the flow about
them, by the principle of superposition, is

¢(X’ Y’ Z’ t) [ LJ‘J‘ I:_a_ [lu‘l(XO’ YO’ t—?’/a)}} dXOdYO =
4‘7T XD’YO 3Z ZO=Z1

1/‘
planc

1 3 (1n(Xys Zo, t—
S f f [__ {”’1( 0 %o 7/")” dX,dZ, 278)
4'77 XO’ZO aY ¥ Y0=Y1

plane
As is usual with doublet layers, there is a discontinuity of potential across the layer. It may be
shown, as in Appendix II of Ref. 6, that the discontinuity in potential across a layer at any point on
it is of amount equal to the strength of the layer at that point, so that

Xy, Yo, Z1+0, 1) = §(Xo, Yo, Z,=0, 8) = (X, Yo, 1) (279)
$(Xo, Y140, Zy, 1) — $(Xy, Y1 -0, Zg, 2) = pa(Xo, Zy, ). (280)
'The linearised Bernoulli equation is
o (2= (281)
ot Po

where p is the pressure at a point in the flow, p, is the free-stream pressure and p, is the free-stream
density.

In linearised theory the wakes shed from the trailing edges are plane and parallel to the main-
stream flow. The T-tail and the wakes will be replaced by doublet sheets and the strengths of the
sheets will be adjusted so that the boundary conditions (271) and (272) are satisfied on the T-tail
surfaces and so that no loading is sustained by the wakes. If there is a reflector surface at the base
of the fin then the flow about the T-tail is the same as if the T-tail and the wall were replaced
by the T-tail and its image in the wall. The wakes on the T-tail will also have corresponding image
wakes.

Let us investigate the velocity field about a surface which sustains a given load distribution. We
shall take the tailplane to be this surface. We replace the tailplane and its wake in the plane Z = 0
by a doublet sheet of strength p,(Xy, Yy, ) at the point (X, ¥,) at time %

Let
LI(XD! YD) t) = P(XO’ YOa —07 t) _P(XG’ YO: +0: t)

0
= Poa_t[¢(X0’ YO’ +0, t) - ¢(X0’ Y0> -0, t)]

0
= fo E :“1(X0 ) Y0> t) (282)

be the pressure force per unit area, or loading, in the positive direction of z at the point (X, ¥o)
on the tailplane or its wake at time 2.
The equations of the leading and trailing edges of the tailplane are respectively

% = 5,909), #=0 (283)
x = ap(y), z =0, (284)
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Since the two systems of axes coincide at time ¢ = 0, the point (X,, ¥,, 0) is on the leading edge
of the tailplane at time

(1) —
10 = L (Y;D;) Xy (285)

provided
| Yo| < sy (286)

Before time 7, the strength of the doublet layer at the point (X, Y, 0) is zero for the tailplane
has not yet reached it. By integrating equation (282) and making use of this last observation we get

(X, YV, ) = %J f l{m,}vu'{,)_xo}/v LyX,, Yy, u)du (287)
and then on making the change of variables

o = Xo+ Vu (288)
in the integral in equation (287) we get

X+t
ot Xo — X,

L, {Xo, v, X } dyy. (289)

1
Nl(XO’ Yy, t) = 7.1.
Po¥ J ;0w

The contribution to the velocity potential from the doublet layer is then

19 1 (XotVe-ria) Xo — X, '
-t ax,dv, |1 L lx,, v, X~ d/} (290
¢’1 47TP0V EYA ff o Yo !:1’_[ 1 { 0 0 74 ; Xo Zomt ( )

(1)

x ¥y
tailplane L 0
and wakc '

If we write
hixg, yo, 1) = Li(Xy, Yy, 8) (291)

where (%, ,) in the (x, ¥, ) coordinate system corresponds to (X, Y,) in the (X, ¥, Z) coordinate
system, then /,(x, y,, ) is the loading distribution on the tailplane and its wake as a function of the

coordinates fixed relative to the mean position of the tailplane, and it is non zero only on the
tailplane.

Since

Ll Xo; YO,XO—XO}

- X -
) = v (05, v, X

Xy
)

=1 {XO, YO,X"I_,W"H} (292)

the expression (290) for ¢ becomes

1 2 = © dxy (%o—Hh Yo — %o
¢ = —— — — 2
bu(x, v, 2, 1) TrpeV 3% f dy, f f L {Xo»}’o 7 + i] dxo (293)

—s1 o Vyg [7] 27Dy
where
[r] = V{(x—0)? + (¥ —30)* + 2% (294)
V
= —. 295
M-l (295)
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The order of integration of the inner two integrals in (293) is to be changed. The expression for
¢ then becomes

+s1

1 e}
XY, 8t = — —— — d f dy, %
¢u(x, ¥ ) JmpyV 35 f_51 Vo a0 Xo

[ve]
0~ %o dxg
X f L {Xo:yo:—V }
o120} {(yg—o+ My yg—02+ 1312 {y—y P22} []

U L e
= 477,;0V8_zf_1 J’of Xo X

s e
x f l {Xo’yo’t_g] do
{01209} {316y 3/ g2+ 1202 {ly—yp 42231} V] V{(o—x+x0)? + (y—y)* + 2%
. (296)
If the tailplane is oscillating harmonically, then we may write
hix, 3, 1) = L%, y)e! (297)

where only the real or imaginary part of a complex function represents the pertinent physical
quantity. So, using the fact that

Lz, y,7) = 0 (298)
for '
% > 2 0(y) (299)

i.e. beyond the trailing edge, the expression for the potential becomes

gl 3 +s1 P 21 (W) ; p
» Vs 3, t) = — 7 A ] X
b1(x, y ) FrpgV 3% f_SI Vo fo(l)(ng 1(Xo» Yo)dxo
) d
f e—ivolV - i . (300)
{32/—2aD} { Mg+ v/ Cyg—2-+0—02) {Gy—yg)2+22}1} Vi{(o—x+x0)® + (¥ —20)* + 2%

The contribution w;(x, y, 2, ) from the tailplane and its wake to the component of velocity in the
positive direction of z is then

B

etol +sl mT(l)(Zlo)
= 78 f f L(xos Yo)dxe x

47TP 0 -8 xr Dy

wy1(%, ¥, 2, £)

do
_ e—iwo'lV
0z* f {21202} {BGeg—)+ v/ g—22-+1— 1 {ly—y)P+o2}} Vi{{o—x+x0)% + (¥ —y0)? + 2%

etvt
[ heo y0K =30, 330, S)sdyy (301)

tailplane

4'7'fP0
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where

0% e do
Ky, ,z:__,_f : e—iwolV
o2 3, ) 02% J {aria—u®} {—pa+ R} VAilo—x)% + 3% + 2%

2 [e3)
— g—toxlV __a_ f e—iwulV —_Eit—_
022 J (g Mmia-m® V(U + 52+ 2%)

o©w
— g—tonlV i — f e—toulV __ du S
0z | (—z+DM RIQ~D12) (u? + y% + &%)

. iw(—x+ MR
Mz CXP{'T?( 1= 2 )}
R - x + MR\? 5 )

S =)

o>
= — e—’iwl’lV — |:___ zf —twufV _A_____dji____ .
oz (e MRIA—D12) (uP+y% + 2232

Mx(Mx+ R) b {_iw (’——x+ MR)H

— 1o,

TRyt P\ VU IS ME
— g—iozlV [on é—iquV u? + y? — 222
(ot MBNL—M2) (u®+y%+ 222
. jo (— %+ MR\| { M(Mx+R)  Mz*(Mx+ R)?
P { 7 ( 1= 2 )} {R(x2+y2+z2) TRy
M1 —M»etx  2M2*(Mx+ R)  iw MP¥(Mx+ R)} (302
TR+ 42T RaPHyirRtE VR aP+)?+27) } ' )
If we take & = 0 in equation (302) we get
I<1(x’ y) = KTB(x: Ys 0)
® du
— e—ia)le liJ' e—iquV _ 4
(at MRIA—11 (u®+ )32
M(Msx+ Ry) iw (—x+ MR
s = -7 (o)) (39%)

K,(x, y) has a non-integrable singularity at ¥ = 0, y = 0 and the resulting integral in (301) has to
be dealt with by Hadamard’s ‘Finite Part’ method of integration when z = 0.

The contribution w,(x, ¥, 2, ) from the tailplane and its wake to the component of velocity in
the positive direction of y is then

0
wie(%, Y, 3, 1) = (’%)
. e’ia)t +81 i z‘T(D(?/o) ] ( )d
—_ — piml ’ ><
o N Vo fo(l)(yo) 14 X0 Yo)@Xo
o - ] do
o J‘ e—za)v/V
Y02 J {aria—1r} {mrg—at v g 21022 {y—ype+e211} Vi{(o—x+x0)* + (¥ —30)* + 2%}
eiwl
= ff ll(xo,yO)Kz(x—xo, 3, Yo —¥)dxgdyy (304)
4mpV
tailplane
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where

02 do
Ko, 2, 9) = _.._J‘ —~two|V
« 7) 0y9z J {pria—m®) {-prxrr} Vilo—x)? + y% + 2%
— p—ioalV ? f ol du _
992 J Corarmia—md V(P 4y + 2%)
— e—iwwll’/’ i |:_ J.m e—iquV 2 du _
ay (B RY(1—112) (u?+y% + 22)32
Mzx(Mx+ R) tw (—x+ MR }]
R +y5 2% 7 { v ( (e )
— e—imx/V [fm e—'iquV ; 33’? dllq _
(-t RN —112) (1 + %+ 22)F

. iw (—x+ MR M(Mzx+ R)® M1 — M?)x
veow {7 (575 )| | Rersorrom * e
ZM(Mx+R) iw M*Mx+ R)
+ R(x2+y% +22)2 §74 R2(x2+y2+z2)ﬂ ’
We have found above the contributions to the velocities in the directions of ¥ and # from a surface
in the Z = 0 plane which sustains a given load distribution. By similar arguments we can obtain

the contributions to the velocities in the directions of y and 2 from a surface in the Z = Z; plane
which sustains a given load distribution and from a surface in the plane Y = 0 which sustains a

(305)

given load distribution.

If there are several load sustaining surfaces then by the principle of superposition the velocities
in the directions of y and  at any point is obtained as the sum of the separate contributions from
each of the load sustaining surfaces. Thus the velocity in the z direction at the surface of the isolated

tailplane is

wi(x, y, 1) = wy(, y)e'! ‘ (306)
where .
1
wy(x, y) = yr—"4 ff L(#y, ¥o)Ky(%— g, y — yo)dxody, +
0 tajlplanc
1 :
+ oV ff L(xg, 20)Ka(x— %4, ¥, 2g)dxydz,. (307)
fin ) ) .
The velocity in the y direction at the surface of the fin is
wy(x, 2, t) = wy(x, 2)e'! ‘ (308)
~ where '
: 1
Wy, 2) = r—e ff li(%0, Yo)Ko(3 — g, 2, yo)dxody, +
° tailplane
1
L f f (o s 2K y(%— g , 5 — 20)dgd, (309)
fin

If equations (5), (6), (7) and (8) of the main text are used in the integral equations (307) and (309),
then the pair of integral equations (9) and (10) of the main text are obtained.
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When there is a reflector plate at the base of the fin, then, as has already been mentioned we
replace the T-tail and reflector plate by the T-tail and its image in the plane wall.

If I,(x, y, ?) is the loading at the point (x, y, 0) on the tailplane, then the loading at the point
(x, v, 2s,) on the image tailplane is — /(x, y, £). If l(x, 2, £) is the loading at the point (x, 3, 0) on
the fin, then (x, 2s,— %, £) is the loading at the point (x, 25,— 2, 0) on the fin. The velocity in the
direction of z on the surface of the tailplane and the velocity in the direction of y on the surface of
the fin are then obtained by summing the contributions from each of the load sustaining surfaces
on the T-tail and its image. This leads to

1
wy(x, y) = W ff Lo, yo)Ky(e —xg, ¥ — ¥o)dxodyy —

tailplane

1 .
BRTTNY ff Ly, o) Ka(x — %y, ¥ — Yo, 285)dxedy, +
tailplanc

1
+ 47TPOV f‘[ ZZ(x07 zO)Kz(x—xo y y, zo)dxodzo +
fin

b | [ Mo R0, 20 s (310)
TrpoV
fin

and

1

wy(%, B) = GrrpgV jf Mg, Yo) Kol — %o, 2, Yo)dxodye —

tailplane

1
~ i JJ Mg » Vo) Ko — g, 282 — 2, Yo)dogdyy +
TPe

tailplane
1 .
+— f f Ao » 20)Ki(x — g, 2 — 2p)dxydzy +
4rpgV
fin
1
+ v ff Aoy, Zo)Ky(w— g, &+ Bg — 28)d%edZy - (311)
0
fin

If equations (5), (6), (7) and (8) of the main text are used in the integral equations (310) and (311),
then the pair of integral equations (170) and (171) of the main text are obtained.
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(92140)

TABLE 1

Values of £,0, £, and H,™

n=2
E = 1 2
£,® = 0-095492 0-654508
£ = 0-345492 0904509
HSm™ = 0-369316 - 0-597566
n=273
kE = 1 2 3
£, = 0-049516 0-388740 0-811745
£ = 0-188255 0:611260 0-950484
Hm = 0-194727 0-437547 0-350885
n=4
k= 1 2 3 4
£,@ = 0-030154 0-250000 0-586824 0-883022
£ = 0-116978 0-413176 0-750000 0-969846
H®™ = 0-119388 0-302300 - 0-343763 0-224375




TABLE 2

Values of v;, G, {; and G,

m=2
j = 1 2
N = 0-178838 0-710051
GJ.(”I') = 0-429397 0-515454
Cj = 0:211325 0788675
éj(m) ‘ = 0-500000 0-500000 i
m=3
j = 1 2 3
n; = 0-099194 0-450132 0-835290
Gj(m) = 0-245790 0-414821 0-309928
Z; = 0-112702 0- 500000 0-887298
G'j o) = 0-277778 0-444444 0-277778
m=4
j o= 1 2 3 4
0 = 0-062666 0-301052 ‘ 0-623775 0-894860
Gj("” = 0:157373 0-302055 0-319702 0-202559
g = 0-069432 0-330009 0-669991 0-930568
Gj("”‘) = 0-173927 0-326073 0-326073 0-173927
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TABLE 2—continued

m=75
7 1 2 3 4 5
7 0-043069 0-213120 0-466878 0-730539 0927346
Gj("” 0-108913 0-222795 0-272040 0-242100 0-141674
& 0-046910 0-230765 0-500000 0-769235 0-953090
Gj("”‘ 0-118463 0-239314 0-284444 0-239314 0-118463
m=0
j 1 2 3 4 5 6
7 0-031384 0-158013 0-357473 0-587387 0-798854 0-946889
Gj“’” 0-079687 0-169061 0-222636 0-228864 0-186408 0-104298
ij 0-033765 0-169395 0-380690 0-619310 0-830605 0-966235
@j(’”) 0-085662 0-180381 0233957 0-233957 0-180381 0-085662
TABLE 3

(92140} -

Values of P; ™, Q; o, P, @ and Q;

m=2
Pj,'r(m)
y j=1 2
1 —9.518531 2548367
2 2-807973 —9-417170
Qj,r(M)
r =1 2
1 4-567635 —-0-031926
2 0563100 0-237099
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TABLE 3—continued

B, o
r j=1 2
1 | —8-281038 2-281038
2 2-281038 —8-281038
@j,ﬂv(m)
¥ i=1 2
1 0-190525 0-518351
2 0164525 3.741983
m=3
P}' r(m)
v j=1 2 3
1 —16-398798 4070202 1-341310
2 - 3-0638673 —11-581868 4- 008660
3 0-126345 5-469741 —15-853708
Q;,,
v j=1 2 3
1 8430222 —0-223962 1-133921
2 0-833395 0-486518 0-202195
3 0282898 0-248674 0-112578
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TABLE 3—continued

P‘j’r(m)
v j=1 2 3
1 —14-658324 3-988877 .0-669448
2 3-333333 —10-666667 3-333333
3 0-669448 3-988877 —14-658324
Q—j.r(M)
7 j=1 2 3
1. 0-088982 0-228858 0-279318
2 0-150672 0-425942 0-756719
3 0-607306 0-056694 7-310269
m=4
Pj,'r(m)
| A
y j=1 2 3 4
1 —25-451941 5-932427 3-104863 —0-956458
2 5-022717 —15-825107 5-770737 0-189552
3 0-152620 5-631828 —15-308302 5-445832
4 0-372449 (-095233 8-627186 —24-322979
Qj r(m)
v j=1 2 3 4
1 13-475880 —(-493871 2-447914 —0-642971
2 1-211599 0-799357 0-400114 0-127882
3 0-334841 0:351460 0-206935 0-086985
4 0-171784 0-210896 0-138913 0-063072

63



TABLE 3—continued

Pj, 7‘(m)
r =1 2 3 4
1 —23-188159 5-848081 2-043919 —0-181066
2 4-644974 | —14-652359 5-277936 0-206675
3 0-206675 5-277936 —14-652359 4644974
4 —0-181066 2-043919 5-848081 —23-188159
Qj r(m)
7 j=1 2 3 4
1 0-050135 0-127515 0-204893 0-174086
2 0-067554 0-182648 0-324604 0-318946
3 0-104272 0-343017 0-721327 1-109725
4 —0+152388 1-732847 —0-172940 12-060018
m=>5
Pj 7(m)
v j=1 2 3 4 5
1 —36-654032 §-204778 5-284580 —2-441495 1-718142
2 6-812513 —21-395018 7842744 0-415356 0-345390
3 0-193307 6692443 —17-946446 6- 828673 0-070062
4 0-371843 0-111502 7728426 —20-312798 7-278869
5 : 0-058549 0-797841 0-067790 12-451713 — 34806374
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TABLE 3—continued

Qj,7'(m)
r j=1 2 3 4 5
1 19-706913 —0-832375 4-028973 —1-613904 1-092911
2 1-686414 1-181859 0-627216 0-244812 0-122642
3 0-419532 0-480300 0-313584 0-167662 0-073508
4 (-182049 0-250043 0-189902 0-113274 0-051617
5 0-115671 0-171255 0-139994 0-088044 0-0412006
Fj r(m)
r j=1 2 3 4 5
1 —33-861386 8-062735 3-965818 —1-174384 0-640618
2 6-349251 —19-949937 7-332571 0-333492 0-301223
3 0-198913 6-334420 —17-166667 6+334420 0-198913
4 0-301227 0-333492 7-332571 —19-949937 6-349251
5 0-640618 —1-174384 3-965818 8-062735 —33-861386
gj,r(m)
y j=1 2 3 4 5
1 0-032612 0-080647 0-134758 0-170711 0-118482
2 0-039962 0-101021 0-176710 0-239171 0-177913
3 0-056323 0-147837 0-285653 0-446802 0-396718
4 0- 089206 0-223424 0-561607 1-085863 1560804
5 0-442992 —0-775040 3-183321 —0-483796 17-994713
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TABLE 3—continued

m==~6

P,
7 j=1 2 3 4 5 6
1 —49-997973 10-900261 7879665 —4-284168 3-785728 —1-629086
2 8-974522 | —28-147670 10-305251 0-680211 0-449913 0-229954
3 0-244704 8-200450 —21-895089 -8-444675 0-147159 0-525785
4 0-412270 0-135013 8:296396 | —21-458991 8-265228 0-036664
5 0-059968 0-741709 0-078680 10-170993 —26-427640 9:495349
6 0-145874 0-061559 1-221566 0-049932 16-977256 —47-296467

0,
¥ j=1 2 3 4 5 6
1 27-124013 —1-237307 5-895373 - 2-570997 2-328977 —0-906849
2 2-254827 1-635617 0-890982 0-370479 0-231522 0-071421
3 0-527679 0-634688 0437271 0-254895 0-140445 0-060773
4 0-208168 0-304171 0-249505 0-165717 0-097088 0-044262
5 0-115613 0-184630 0-166528 0-119077 0-073039 0-034215
6 0:083268 0-138478 0-130865 0-097216 0-061170 0029079
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TABLE 3—continued

By,
rolj=1 2 3 4 5 6
\
1 —46-674227 10678482 6-366758 —2-701571 2-117525 —0-438162
2 8-424154 | —26-429205 9.732129 0-529855 0-507723 0-128051
3 0236004 7-783803 —20-809157 7-971187 0-195836 0-380819
4 0-380819 0-195836 7-971187 —20-809157 7-783803 0-236004
5 0-128051 0-507723 0-529854 9-732129 —26-429205 8-424154
6 —0-438162 2-117525 —2-701571 6-366758 10-678482 —46-674227
Q_j r(m)
r j=1 2 3 4 5 6
1 0-022937 0-055873 0-093057 0-128966 0-139861 0-085665
2 0-026529 0-065373 0-111273 0-159473 0-180365 0-114661
3 0-034060 0-085852 0-152412 0-234064 0-289880 0-200886
4 0-047050 0-123506 0-232928 0-404973 0-594749 0-499325
5 0-062006 0-195600 0-347214 0-815892 1-521543 2-105954
6 —0-237792 1-373232 —1+679025 4-943319 —0-866137 25-115319
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TABLE 4

Expressions for g () and g"({)
m =2

&13(n) = (1-475049 —2-0773857)4/(1 - n)
£59(n) = (—0-625217 +3-4959937)/(1 — »)

(L) = (1-366025 —1-7320517)
ZP(0) = (—0-366025 +1-7320517)

m =3

£1%(n) = (1-533547 —5- 2428359+ 4-078690%2)1/(1 — 1)

£:3(n) = (—0-826657 +9-3233869—9-97704392)1/(1 — )

£3%(n) = (0-388054—4-7741519+ 8-69093192)/(1 — )
(
(=
(

%) = (1-478831—4-624328({+3-333333(%)
Z(L) = (—0-666667 + 6- 666667, — 6666667 (2)
Z89(L) = (0-187836—2-042339( + 3-333333(2)

m =4

() = (1559280 ~9-421666% + 16- 88480172 —9-27895873)1/(1 — 1)
£:M(m) = (—0-915869 + 17-1068937 — 41403255792 + 26 1830337%)4/(1 — 7)
£3(m) = (0-560687 — 11-4362547 +41-79975772 —33-21190672)+/(1 — 7)
£28(m) = (—0-270920 + 5- 6574855 — 2273394992 + 23 - 0218797%)+/(1 — )
90 = (1~526788—-8-546023C+14-325858{2~7-420540§3)

2:%(0) = (—0-813632+13-807167,— 3138822202+ 18-7954493)

£59(8) = (0-400762—7-417070L + 24998126 L2 — 18- 795449 (3)

248 = (—0-113917 +2-155927, — 7935762 (% + 7- 420540 (%)

m =75

&.%(n) = (1-572822—14-597797v + 4443314412 — 5454932143+ 233327787+ /(1 — 1)
£:"(n) = (—0-962982+26- 7784139 — 10907733272 + 153 - 24739712 — 70+ 6915335%)4/(1 — 1)
£5%(n) = (0:652261~19-8014207 + 11657627372 — 200 7747207 + 104 - 8938997 4/(1 — 1)
£4%(n) = (—0-414763 + 12- 9120337 — 834237009 + 172 2506647 — 104 - 36820744)4/(1 — )
g:7(m) = (0202926 — 6- 3762867 + 42+ 58749072 — 94 - 22206973 - 64 - 819543944/ (1 — )

§19(8) = (1551408 —13-470285( + 38~ 64449972 — 44- 988985 (3 + 18- 339721 %)
Z:(L) = (—0-893158+ 229243347 — 88-22281112+ 1178634153 — 51-939721 (%)
Z5(L) = (0-533333 —14-933333( + 82~ 1333332 — 134-400000 3 + 67 - 200000 £4)
248(8) = (—0-267942+7-689927( —46-2708922 + 89- 895469 (3 — 51-939721 (%)
25%(%) = (0-076359—2-210643{ + 13- 7158712 —28- 36989942+ 18339721 %)
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TABLE 4—continued
m=0
£,9(n) = (1580813 — 207660957 + 94~ 142330m2 — 1915466697 + 1794267517 —
—62-98733675)/(1 —7)
2:9(n) = (—0-990835 + 383170047 — 231-2506937% + 536 - 758939+ — 5410647837 +
+198-7756815%)4/(1—7)
2:9(m) = (0-706560 — 29 8186667 + 254 - 40884972 — 714 - 68069072 + 808 - 90263474 —
: —320-6714919%)4/(1—n)
2:9(n) = (—0-500279 + 216608407 — 20231916472 + 665 - 4985112 — 8553339677 +
+373-0826307%)4/(1—n)
259(n) = (0-323501 — 14152607+ + 136957984 7% — 481 62547277 + 682 83329344 —
—328-1045047%)4/(1 —7)
2:9(n) = (—0-159325 470013647 — 68 78320672 + 248 - 9961337 — 370 261279+ +
+191-5364785%)4/(1—17)
F9(0) = (1-565673 —19-388900( + 83-356172{2— 1616334495 + 144893361 —
‘ —48-847570¢5)
Z9(0) = (—0-940463 +33- 947557, — 194- 5900412 + 431- 24421123~ 416671896 {* +
+ 14720243205
Z.9(0) = (0616930 — 24290507 4 1953041652 — 5234162613+ 5684164874 —
—217-01004325)
Z9(0) = (—0-379228 4153152247 — 134- 5461232+ 419850741 {2 — 516 - 633728 [* +
+217-010043 %)
F9(0) = (0-191800— 7824684 + 71- 1355382 — 236 58095043 + 319 - 340266 L+ —
— 1472024325

ZO(L) = (—0-054713 +2-241310 — 20- 6597122+ 70- 5357083 — 99 - 3444920 +
+48-8475705)
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TABLE 5

Values of h(€, ), h(£,%) and hbm(£,0)

n=2

h@(E) = — 1-346625
R (£,0) = 1-515542
RO = 0-084458
h® (£ = — 2-946625

n =3

h®(£,0) = — 2260026
B = 2-327923
h®(EM) = 0-391361
B (£ = 0-081594
ho®'(£) = — 2-651387
h®' (£, = 2-677075
(£ = — 0-025688
h®'(£0) = 0-365672
h®' (£, = — 5-753671

n=4
bW (£,) = — 3-509302
(£, = 3-429725

B @£ = 1-119379
h(£,99) = — 0-760505
(£ = 0-102414
B (£ = — 3366212
@) = 3-415907
B (£ = — 0-204048
Y (E09) = — 0-021762

@ (£ = 0-296296
h®' (£ = — 4-030576
R (£ = 3991186
@€ = 0-011265
ha®' (£, = — 0-129271
(€)= 0694747
R (€49 = — 9-444874
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h@(EW) = 0:247214
hP(£,) = 0-847214
h@(€,) = — 0-047214
P& = 0647214
OE®) = 0-229125
h®(EW) = 0-998274
ha®(&,@) = — 0-371982

CR®(E,M) = — 0-031405
RB(E,0) = 499137
(&) = 0-641994
(&) = 0-015702
(€, = — 0-158559
@£ = 0-743964
(&) = 0222222
ha®(£,@) = 1-057505
h®(£0 = — 0-521621
hO(E™) = 0-256156
B®(£,0) = — 0-026803
h®(£,2) = 0-458706
hO(&M) =« 0-750974
hO(EM) = — 0-222222
h®(E™) = 0-010585
R, = — 0-111111
h®(&@) = 0-593166
hyO(&) = 0-582580
O = — 0-007131
(£ = 0-067868
h®(E) = — 0-222222
(€M) = 0-784909

kl(l, 2)( gl(w)) =
hz(l, 2)(5 1(w)) =
hl(l, 2)( gz(w)) =
],lz(l, 2)( ¢ 2(w)) =

By 3)(§l(w)) =
hz(l, 3)(51(10)) =
h3(1, 3)(§l(w)) = —
by 3)(g2<w)) =
PReR 3)(52(@0)) =
k3(1, 3)(52(w)) =
]21(1, 3)( 53(“’)) =
h2(1, 3)(§3(w)) =
Byl 3)(§3(w)) =

h a, 4)( £ (w))
Rl (£ o0)
h3(1, 4)( g (w) )
h4(1, 4)(§ (W))
hl(l, 4)( f 2(10))
) =
)
)
) =

I

It

fl

hz(l, 4)( g 2<u;)
ha(l, 4)( gz(w)

I

T (£,
Jy 0 8 £00)
o (£, =
B () =
h4(1, 4)(53(10)) =
O£, =
h 2(1, 4)( éﬁ 4(w)) =
Bl (£, =
R B(E,4) =

0-349981
0-036772
0372707
0-555307

0- 184626
0-026019
0-003760
0-196205
0-410162
0-023056
0-194119
0-443600
0-325165

0113207
0-017865
— 0-003375
0-000879
0-120262
0-283682
0-021663
— 0-002844
0-119090
0-305700
0-321609
0-015019
0-119558
0300683
0-348976
0-207712



TABLE 6

Expressions for h™(€) and b ™(€)
n=2

I®(¢) = (0380423 — 0-581234¢) \/ (L;_f)

(&) = (—0-235114+2-462147¢) \/(1_;_5)
B ®9(§) = 0-235114 sin~1 4/¢ + (0-525731—0-290617£)4/{&(1 - £)}
By 2(€) = 0-380423 sin~! 4/£ + (~0-850651 +1-231073¢)1/{¢(1— £)}
n=3

1 —
7y ®(€) = (0-278551—1-059699¢ + 0- 882727 £2) J (_g_f>
1—-¢
h®(€) = (—0-223380+4-786503¢£—5-557555¢2) \/ (“g‘“)

B®(€) = (0+123967 — 2282249 + 6- 440282£2) J (1;_5)
hy®9(€) = 0-123967 sin~t 4/ + (0-433135 0+ 603410¢ + 0+ 294242£2)1 /{£(1 — £))
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Fic. 1. Diagram of the isolated T-tail.

Fic. 2. Diagram of T-tail attached to a reflector plate
at the base AB of the fin.
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