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Summary.

A theory of blockage constraint on the flow past a bluff body in a closed wind tunnel is developed, using
an approximate relation describing the momentum balance in the flow outside the wake, and two empirical
auxiliary relations. The theory is well supported by experiment and leads to the correction formula

Aglg = eCpSIC
where Ag is the effective increase in dynamic pressure due to constraint, and ¢ is a blockage factor dependent
on the magnitude of the base-pressure coeflicient. The factor ¢ is shown to range between a value a little
greater than 5/2 for axi-symmetric flow to a little less than unity for two-dimensional flow. But the variation
from 5/2 is found to be small for aspect ratios in the range 1 to 10.

The theory is extended to stalled wings, and an appropriate technique for the correction of wind-tunnel
data is evolved.
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The flow past a symmetrical body immersed in an airstream bounded by rigid walls is subject

to what is commonly C(l’;ﬁ The rigid boundaries prevent a free lateral

displacement of the airflow by the bedy, in the neighbourhood of which velocities are higher than
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they would be in an unlimited stream. The dominant effect is usually taken to be equivalent to a
simple increase in the free-stream velocity, related in part to the volume distribution of the body
itself (solid blockage), and in part to the displacement effect of the wake (wake blockage). Appro-
priate corrections to the observed velocity of the stream can be calculated by standard methods,
provided that the given body gives rise to an cssentially streamline flow.

Little attention has been given to wall constraint on the non-streamline flow past a bluff boedy or,
more generally, a stalled wing, since Glauert’s' treatment of the two-dimensional problem in 1933.
Glauert’s interest in the problem appears to have been stimulated by the experiments of Fage and
Johansen®? on the flow past an inclined flat plate spanning a wind tunnel. He pointed out the
nature of the blockage effect associated with the thick bluff-body wake, and his remarks led Fage
and Johansen to test several plates of different sizes and hence, by extrapolation to zero chord, to
establish the drag coefficient of a two-dimensional flat plate normal to an unlimited stream. Mean-

1

while Glauert proposed a theory, based

i

part upon the Helmbhboltz model of the flow past a bluft

o9
w

body, according to which the drag . in an unlimited stream is related to the drag D in the wind

tunnel by

where ¢ is the thickness of the bluff base, % the tunnel height, and % an empirical factor. But the
presence of the empirically determined » reduces Glauert’s formula to an interpolation between
known experimental results, which are not sufficiently accurate to give adequate support to the
proposed functional dependence upon #/A. The formula seems not to have been widely used, the
wake blockage correction

Ag 1 o S

g 2 ¢
(where Ag is the effective increment in the dynamic pressure of the undisturbed stream, .S the
representative area on which the profile drag coefficient Cp, is based, and C the cross-sectional
area of the tunnel) gencrally being preferred to it.* However, there is little doubt that the latter
correction holds only for streamline flow, and that the blufi-body problem requires a different
ireatment.

This paper presents a simple theory of the constraint which is well supported by observation.
Interest in the problem, especially in its three-dimensional form, was revived when marked
differences were noticed in the high-lift characteristics of models of a particular aircraft tested in
different wind tunnels. The models in question were basically delta wings of moderately small
aspect ratio. And from the onset of stall, which began at the wing tips and then spread inboard with
increasing incidence, the different sets of results could be reconciled only through some form of
wall interference grossly bigger than those covered by the standard corrections. The purpose of the
present investigation, therefore, was to establish the existence of such an interference more con-
vincingly and then to provide appropriate corrections for it.

Since it was evident, from the outset, that the effect was connected with the breakdown of
streamline flow over the wing, it seemed worth while to concentrate attention, in the first instance,
upon the extreme situation occurring when a wing-like shape-—for example, a thin flat plate—is set

* See, for example, Pankhurst and Holder.
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normal to the windstream. The blockage constraint on this type of bluff-body flow in a wind tunnel
with solid walls is therefore the subject of the first part of this paper. A theory is developed which
provides an estimate of the effective increase in the dynamic pressure ¢ of the stream, due to the
constraint, in the form

q. k? Cp, S

g k2 R2—-1C
where 2 = 1 - C,,, C,, is the base-pressure coeflicient, and where the suffix ¢ refers to effective,
or corrected, quantities. The theory is shown to be well supported by experiments on a set of

Db

square flat plates in two different wind tunnels. And since it is clear from the work of Fail, Lawford

1y

and

o

“yre®, that the base-pressure coeflicient for squares, circles and equilateral triangles, is about
— -4, the blockage correction appropriate to this range of three-dimensional shapes follows as
Lglg = (5/2)C,, S/C, 1.e. roughly five times the correction appropriate te the same drag in stream-
line flow. For the two-dimensional Sow studied experimentally by Fage and Johansen, for which
the corrected base-pressure coefficient is more nearly — 1, the predicted blockage correction is
roughly Aglg = Cp S/C, Le. only twice the corresponding correetion for streamline fow.

The remainder of the paper is concerned with the extension to stalled wings, with particular
reference to wings of moderate to small aspect ratio where both the effect and its practical significance
are greatest. To make the extension possible, it is necessary to assume that the breakdown of a
three-dimensional streamline How tends to give rise to discrete regions of nearly axi-symmetric
fow, closely similar in structure to the bluff-body wakes previously considered. This assumption is
suggested by measurements, by Kirby and Spence®, in the wakes behind medels of particular
delta~wing and swept-wing aircraft. And it is further supported by the work of Fail ¢f ¢/, who show
that even when a bluff-bedy wake is far from axi-symmetric near its origin, the subsequent tendency
towards axial symmetry is very strong. In consequence of this assumed property of the general flow,
the theory developed for non-lifting bluff bodies continues to hold, in principle. And it suggests,
further, that the slowly varying factor 1/(k,2—1) in the expression for the blockage correction may
usually be replaced by the empirical constant 5/2.

It remains only to identify that part of the measured drag to be included in the blockage parameter
C,, S/C. For a partially stalled lifting wing there are three contributions to the total drag coefficient:
the induced drag C,,;; the profile drag associated with the regions of streamline flow, €, and
the profile drag associated with the stalled regions, €, . It is, of course, this last contribution that
has to be identified. And a composite wake-blockage correction formula is proposed, with the object
of ensuring that the high correction appropriate to the effect considered in this paper is applied
automatically as the need arises.

The bulk of the work on which this report 1s based was completed in 1955, and the principal
formula derived was given a limited circulation at that time.

2. Bluff Bodies.

2.1. Properties of the Bluff-Body Wake.

Fail, Lawford and Eyre® report detailed measurements in the wakes behind flat plates of finite
span set normal to a windstream. Although the flow is highly unsteady, they detect a distinct mean
flow structure, which is little affected by aspect ratio (for 4 < 10) or shape (in the range——circle,
square, equilateral triangle). They find a strong tendency towards axial symmetry, with properties
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like the drag and base pressure varying very slowly in the range of their experiments. Hence their
typical example is the axially symmetric wake formed behind a circular disc. And its main feature is
a closed ‘bubble’, bounded by the stream surface which separates from the sharp edge of the disc,
along the forward half of which the static pressure® is constant and equal to the base pressure. A
similar picture of the corresponding two-dimensional flow is given by the work of Fage and
Johansen?3,

The classical, discontinuous, model of the bluff- body wake is thercfore consistent, qualitatively,
with the experimental evidence. It a equatdv defines the form of the inner houndary condition on
the flow external to the wake, in the neighbourhood of the body. And this is sufficient for the
present purpose.

It is proposed, accordingly, to represent the wake by the stream surface illustrate
This extends downstream from the edge of the body, and sustains a constant pressur
corresponding constant velocity Hemg RU, where U is the velocity of the undisturb
far as the station 2, where the cross-sectional area of the wake is a maximun. T
ment of the wake is of no 1mmed1ate interest

'The shape of the constant-pressure surface is unknown. And there is no theor v availab :
for the magnitude of the factor k. Nevertheless the essence of the present pmNer“ is to obtain 2
quantitative estimate of the effect of wall constraint on k. It differs markedly, in this re
the superficially similar problem of the blockage effect on the cavitating hvdrodvnamlc
bluff body. Tor although the same wake model is appropriate in both cases, the pressur

arameter.

cavitation pressure in the hydrodynamic problem, and so can be properly regarded as =

ance under Constraing.

Before proceeding further with the proposed fow model, it is worth while to con

to which wall constraint can be regarded as equivalent to a simple increase in velocity of the
undisturbed stream. Esact equivalence implies that the form of the pressure distribution over the
body is invariant under constraint: if p is the pressure at any point (3, 2) on the surface of the body,
and H is the total pressure of the undisturbed stream, then (p—p,)/(H - py) = f(v, 2), independent

of constraint. And, since H — p, = &%, it follows that
-5 = constant )]

independent of boundary constraint, where €, is the drag coefficient D/¢S, and Sis a representative
arca of the body. It also follows that the velocity U, of the unlimited stream which gives rise to a
pressure distribution identical to that observed is such that k.U, = kU. Hence

v = L - Cn (2)

Uz RrE Oy '

In order to test the validity of the relation (1), measurements of the drag and base pressure were

made, in the 4 ft x 3 ft and No. 1 111 ft. x 8} ft wind tunnels at the Rovyal Aircraft Establish-
ment, Farnborough, on a set of geometrically similar sharp-edged square plates, using the technique
described by Fail et al.

* This pressure is measured just outside the wake, and not strictly on the bubble boundary itself.
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TABLE 1

Experimental Data for Shayp-Edged Square Flat Plates Normal to the Windstream

Wind tunnel 4{tx 3 ft | No. 1113 ft x 84 ft

CTed o

cross-sectional i |

area C (ft?) ! 11-55 | 93-0
Plate arca S (in?) 7‘7 5-06 5 | s s s TW 236
S/C 0-0030 | 0-01590 7‘ 0-0301 0-0451 ;‘ 0-0019 i_ 0-0056 00191
_CD S/C 0-00345% 0-(}18071 0-0376 | 0-0602 ‘ 0-6022 ?40-0066 0-0233*
R—1=— (_jpb ‘ 0-375 0-427 A‘ 0505 O-Sé‘:ﬁh: 0-386 ——0-398 0-46 o
bj, | — 1-200 | 1-249 1-335 } 1-158 771~17S —
CplR? — 0-84-1—“71 0-830 —‘ 0-840 ‘ 0-835 5‘ 0-840 = —

* ('}, estimated from the relation Cp,/k* = 0-837.
The results, recorded in Table 1 and plotied in Fig. 2, are closcly represented by
20837 (3)

in formal agreement with the relation (1}. Moereover, the results from which equation (3) has been
deduced cover a fairly wide range of conditions, the measured base-pressurc coeflicient C,,;, ranging
from — 0:386 to — 0-589.

Interpretation of the constraint as an effective increase in stream velecity is, therefore, well
supported by these experiments.

2.3. Conservation of Momentum.

Consider, now, the controi surface illustrated in Fig. 1. This is formed by the solid walls of the
wind tunnel, the surface of the body and the constant-pressure surface bounding the effective wake,
and two planes normal to the undisturbed velocity vector—plane 1 lyving upstream of the body, and
plane 2 located where the cross-sectional dimensions of the bubble are greatest. Let u, v, w be
orthogonal components of velocity, with u in the direction of the undisturbed velocity U. And let
suffices 1 and 2 denote conditions at the planes 1 and Z respectively. Then conservation of momentum
in the fluid passing through the control surface requires that

D pB = || (ot puy ds - ] oy as 4)
O—1

Je

o

where D is the total drag on the body, C the cross-sectional area of the wind tunnel, and B the
cross-sectional area of the effective wake at the downstream plane 2.
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Since the Huid 1s wholly outside the wake, Bernouili’s equation gives

2 5 2 on 2y — ag 2t e e }
P+ %P 1112‘%‘61 +wt) = py + %,O(lz Tt WYty = P+

where P, U are the pressure and velocity in the u: P stream. And equation {4) may be
written

D= (P-p)B -

Now the work of Fail 7 o/ suggests

neighbourhood of the plane

the plane 1 chosen to lie for upstr

is likely to be neg

blufl-body flow, it follows that, o b
reduced to
£ For
o Pl ﬁ 5 /
15 == L] [ .“*\))
'é cj o Aji j {13

since

b+ kU

Now write

where

sa that I/ is the m

is the mean velocity

UC = ULC-- (7)

equation {6) may be written

D o= Lpk2U2E — dp

Assuming that #," and u,” are

the following relation for the drag coefficient

Cp = mE2—1-m8/C) 9

where m = B/S, and where (mu;
Data obtained by Fail et af for e 4 ft x 3 ft wind tunne]

= 0'015 the measured base-

1iF
are in close agreement with eguation
pressure coeticient was — §:425 and th measurements of the *docity
field in the wake, the radius of the maxi iy ection of the bubble was approximately

£-9 inches, and the displacement thickness of the vortey laver outside the bubble at the same



cross-section was approximately 008 inches. Hence, since the wake boundary of the mathematical
model should coincide with the displacement boundary of the true wake, rather than with the
observed bubble boundary, for the present purpose

B = #4-982in?
giving
m = 3-12.

Then, from (9)
Cp = 3-12(0-425-0-047) = 1-17°

compared with the measured 1-18.
2.4, Distortion of the Wake.

A relation between Oy, k, and =, appropriate to the equivalent unlimited stream, is obtained

by putting S/C = 0 in equation (9). Then, using (1) and (9)

Cp, Cp, m y W wm* ,
,sz = 77; = 5 ~1=mS[C) = ;7 (k2 1) = const. = - (k*=1). (10)

But the equations (10) are not sufficient to define the blockage effect completely. A further relation
is required, to account for the distortion of the wake under constraint. This involves considerations
outside the scope of the theory developed so far.

The significance of distortion is easy to demonstrate. So far as the equations (10} are concerned,
constraint could give rise solely to distortion of the wake, the pressure distribution over the body,
and hence k, remaining invariant. In that case m, would take the value m*, and the blockage velocity
would be zero. On the other hand, if there were no distortion, the required auxiliary relation would
be simply

m, = m
which, combined with equations (10), leads to

C, B Qi s .

CJ)(,' B kr'z o k .: - 11 C \ )

lat plates 1n the

This relation can be compared with the data obtained with the sci are
139, k2~ 1 = 0-361.

M
o
o,
o

s

-
o
o
=

4 ft x 3 ft wind tunnel, for which extrapolation to S/C = (0 gives (. =
Then, according to (11)

Sy + 3~15§,

Che C
leading to C,, = 1-142 €}, at §/C = 0-045 (the highest value of §/C reached in the experiments)
compared with the measured €, = 1-335 = 1172 .. Thus it appears that equation (11)
underestimates the apparent increase in drag coefficient due to constraint by nearly 20%,. And in
view of the close agreement between experiment and the equations (1) and (9) an attempt to take
some account of wake distortion is evidently desirable. To don this theoretically would involve a
greater understanding of the internal mechanics of the wake than is available at the present time.
The problem, therefore, is to find a suitable empirical relation between m, and .
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The equations (10) show that m* < m, so that constraint at constant & {and therefore zero blockage
velocity) implies a thickening of the wake. But according to the foregoing comparison with experi-
ment, constraint at constant m leads to too small an increase in %, indicating, as might have been

expected, that in fact the wake contracts. Thus

m, > m > wF

an inequality such that all three of the parameters involy end to the same value as the ratio
S/C —0 but, it might be expected, in such a way as to mu 1' the ratic {(m—m™)/(m, —m*) =1,
This ratio is therefore expected to b 1 ve, in the Uit 5/C ->0, in precigely the same manner as
the contraction ratio {C'— B)/C of the externea! stream. And it might be profitable to examine the
consequences of assuming
m — m* C— B ms
m, — n* C ) C
which is readily reduced, using equations (10, to
7?” — (Ll:ﬁ‘ln ) “v (!7\;
4 2 i
i, (R=1) (k-1 C

neglecting, as before, terms of O(S/C).
The equation (12) is to be regarded, at this stage, as no more than a plausible auxili

1

But it 13 well supported by the experimental data obtained with t

43
C

,, (5]0), I
. £ E-E39 (363
i G-015 f-200 §-427
2 (- 045 1-335 1589

7 Hi, .
b 6-0059; TE L) - 0-0415
7, H,,
vhence
Wy — W, . Wy — T
T = 00356 = =7
m, 7y

Now, taking the wake to be axi-symmetric, with  the mean radius of its maximum cross-section,
and { the length of side of the square plate; and taking #; = 4-98 inches, as for the circular disc
(see Section 2.3), then r /I, = 0-996 and

e S R (1 ~ "2} = 0-0356
whence

e ogo018.

This can be compared with an observed lateral displacement of about 0-02, due to constraint, in
pressure distributions through the wakes behind the two plates (see Fig. 3).
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2.5. Blockage Correction.

From equations (10) and (12), it follows that

k? C S
) ”

5 = 1+ e — L O{S/O) (13)

k2 k2 —1 c’
so that the effect of distortion is to replace 'y, in the correction term of equation (1) by the
measured (. Alternatively, writing ¢ for the dynamic pressure and using (2), this result may be
written

Ag  Cu8

— = e (14)

q ¢ \
\x'h e A = i — 7 is the Fe 17 b 1 2 1YY lf it d
where Lg = g, 1s the effective increase in dynamic pressure of the undisturbed stream due to

g
constraint, (} 5/ is the usual wake blockage parameter, and where

is the so-called blockage factor for the bluff- body fiow.

In order to determine ¢, given measured values of % and Cy,, 1t 18 nece

equation (13). It is not normally sufficient to replace k2 in (15) by &% An iter:
has been found convenient, using the formula

1 S 1
i O 5 A‘) i
¢ D p
k2, =k (14 ., Cr (16)
l kk(i‘)nr 3 - - [
where (£,2), is the nth approximation to k2, and with (22, = &
Measured valics of drag and pressure coeflicients can now be corrected to the efoctive dynamic
pressure ¢, according to
1-C c, By,
CRNS T (17)

PR — ] 2
L= Cj}c Cf)c kd q
2.6. Discussion.

So far the base pressure has been assumed uniform. Rut this is not necessary. A mean base
pressure can be defined by

22

} ~
y o # d, 7
by = B ( beyva

he effective wake, With
Py 80 defined, equation (4) remains unchanged, and equation (9) follows to the same order of approxi-

the integral being taken over the base m“ the body and over the surf
mation as before. It appears that even a substantial non- uniformity in base pressure need not
invalidate the theory. It is reasonable to suppose, therefore, that the theory holds for almost all
two-dimensional bluff-body flows, and for the wide range of three-dimensional flows for which the
wake is closely axi-symmetric at the downstream plane 2.

There is one important possible exception to this rule. An implied assumption in the theory is
that the origin of the wake (i.e. boundary-layer separation on the body) is independent of constraint,
And so it may be necessary to exclude well-rounded bluff bodies (like the circular cylinder), for which
a small change in pressure distribution might lead to a significant movement of the separation front.

With the base pressure uniform, it is evidently possible to determine the blockage factor € from
a single measurement of static pressure somewhere on the base of the body. It 1s then a simple

10



matter to provide for this measurement in the design of a wind-tunnel model. But since with a

non-uniform base pressure it is strictly necessary to measure the detailed pressure distribution

over the entire base of the body and over the surface of the wake, it is fortunate that the experimental

cvidence analysed below suggests that it is probably sufficient, for most practical purposes, to take
= 1 for two-dimensional flow and e == 3/2 for three-dimensional How,

2.7. Comparison with Experiment.
2.7.1. A = 1.—The best available test of the theory is provided by the data obtained in
the experiments on a set of geometricaily similar sharp-edged square ulatesy recorded in Table 1,

1 I

to which reference has already been made. In these experiments the s found to be
closely uniform, so that determination of the parameter & was stz‘mghtfor\\‘ard. \ ll:xpai results
?:/ ¢ been shown (Fig. 2) to be C‘Loscl}; vted by the relation (3), viz. Cp/k% = 0-837. Only

»ase pressures could be measured on tw t wind tunne]
and the largest in the No, 1 114

have therefore been estimated from

.
cocthictents

rection of the
observed pressures.

a4

Independent solutiens of equation (123) provide two grot

1ps of corrected base-pressure coeflicients,

one for each wind tunnel. These are recorded in Table 2.
TABLE 2

Corrected Base Pressure Cogf

4 ft x 3 ft wind tennel | Noo UL o 8 £ wind funned
C\DS | C)h — & 1l | CUM:
C (R2—1) (A1) (k21
NPV BN Caner L naee 1 pvame

0-00345 0-375 - 0022 -336 ! 0-378
0-0180 ‘ U-427 0066 {-398 0-373
0-0376 ‘ 0-505 <0233 0-460 ; 0-375

0-0602 ‘ 0-589 f ‘

! |

Mean | 0301 Mean 0-375

'The systematic difference between the two groups of corrected results, though difficult to explain,*
is not relevant to the present investigation. What matters here is the very close agreement between
the results in each group This strongly %UpnorLs the theory.

* (Great care was taken to avoid significant experimental errors. All the observed results quoted are mean
values of several independent observations showing, as a rule, less than + 19 scatter. In particular, each
drag coefficient is an average of about ten separate readings of the drag balance, usually taken over a period
of several days. Furthermore, each wind tunnel was recalibrated during the investigation, with special reference
to the flow in the neighbourhood of the models. The more obvious sources of error therefore appear to be
ruled out. There remains a marked difference in turbulence level of the two airstreams: in the 4 ft x 3 ft
wind tunnel, the r.m.s. value of the streamwise component of the turbulent velocity is known to be about

0-019 of the undisturbed velocity, whereas the corresponding figure for the No. 1 11 ft x 8% ft wind
Tunncl 1s likely to be nearer 0-3%.
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The corresponding corrected values of the drag coeflicient follow from (17), and are listed in

Table 3.
TABLE 3

Corrected Drag Coefficients for Non-Lifting Square Plates

4 ft x 3 ft wind tunnel No. 1 114 ft x 8% ft wind tunnel
c.S oS o
.‘._gg i C ' C De ”'8 i CD CD(;
0-0180 i 1-200 1-143 0-0022 | 1-158 : 1-151
0-0376 | 1.249 ; 1-131 ‘ 0-0066 1:175 1-154
0-0602 1-335 1-144 ‘
Mean 1-139 ! Mean 1-152

Here again the results support the theory very well. Moreover, it is worth noting that both pairs of
mean values defined in the tables satisfy relation (3) almost exactly, viz.
Cp. 1-139  1-152

= - = 0-837.

k2~ 1-361  1-375

These mean values, together with the relations (13) and (17), lead to the graphical comparison

between theory and experiment shown in Fig. 4.

2.7.2. 4 = owo.—Data given by Fage and Johansen®? for a sct of four thin flat plates,
spanning a 7 ft wind tunnel, provide further support for the present theory. However, the data
are rather less complete than for the square plates considered above, since detailed measurements
of the flow were made behind only one plate.

Fage and Johansen found the pressure along the surface of the wake to be constant, within the
accuracy of measurement, but to be slightly greater than the constant pressure measured on the rear
surface of the plate. The pressure p, appropriate to the theory must consequently be defined accord-
ing to Section 2.6. It is not, in this case, directly equal to the measured base pressure. The relevant
data are: S/C = 0-0715, C;, = 2-13, base-pressure coeflicient — 1-38, mean pressure coefficient
along wake boundary — 1-30, and the maximum width of the wake 1-85 times the breath of the
plate. Hence the mean base-pressure coefficient from which the parameter £ is to be determined,
is — 1-34

Now, solving equation (13) for &,, gives

e = 1/1-04 = 0-962

and, by (14) and (17), the set of corrected drag coeflicients given in Table 4 are obtained from the
measured values given by Fage and Johansen.

The fourth estimate of €, in this set is rather lower than the others, perhaps because at so large a
value of the blockage parameter ', S/C the pressure distribution over the plate becomes distorted.
The mean value quoted in the table is therefore based on the first three results. The relations (13)
and (17) then lead to the comparison between theory and experiment illustrated in Fig. 5.

12



TABLE 4

Corrected Drag Coefficients for Non-Lifting Two-Dimensional Plates

C,S

€S c, .

0-0439 1-928 1:845

0-0976 2050 1-87

0-152 2130 1-86

0-204 2-144 ‘ 179
Mean ] 1-86

2.7.3. The effect of aspect ratio.—It may be inferred that the blockage factor ¢ ranges, in
magnitude, from something rather greater than 5,2 for an effectively axi-symmetric flow, to a little
.ess than unity for two-dimensional flow. Moreover, the theory is well supported by experiment at
both these extremes. In view of the strong tendency to axial symmetry observed by Fail ef af in the
wakes behind rectangular plates of aspect ratio 1 to 10, almost all bluff-body flows of any practical
interest might be expected to fall within the scope of the theory.

This argument justifies the use of the theory by Fail et al to correct their observations for
blockage. They show that the base pressure is strictly uniform only at the extreme aspect ratios
4 =1and 4 = oo. Between these limits the pressure distribution varies in the manner shown in
“ig. 6, and the parameter k must be determined from the mean base pressure, according to Section

4

6. The resulting blockage factors are tabulated in Table 5 and plotted against 1/4 in Fig. 7.
g 5 F = &
TABLE 5

Blockage Factor for Non-Lifting Rectangulor Plates

|
1 | 277
2 ? 270
5 ! 241
10 } 213
20 | 1-47
o0 \ 0:96

In the interval 4 = (1, 10) the blockage factor lies roughly in the range ¢ = 5/2 + 1/4. And
the constant value ¢ = 5/2 leads to errors of + 0-1Ag at the extreme points of the range. This
amounts to an error of no more than 0-01g, if Aq is not itself allowed to exceed 0-1g. In practice,
therefore, € = 5/2 is probably a satisfactory approximation for three-dimensional flow.

3. Stalled Wings.
3.1. Properties of the Wake.

A wing of finite span usually stalls gradually, in the sense that the transition from streamline flow
to complete stall can occupy a substantial incidence range. The streamline flow tends to break down
first over a limited part of the span, and the stalled region or regions then increase in extent with
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increasing incidence until they eventually envelop the entire wing. It is-not until this final stage is
reached that the flow as a whole closely resembles the bluff-body flow considered so far. And even
then there is the additional complication of the lift sustained by the stalled wing, and its possible
influence on the wake structure.

However, there is some evidence to suggest that a localised region of stall does not differ materially
from a bluff-body flow. And there is evidence, also, to indicate a very strong tendency to axial

ymmetry in the wakes behind bluff bodies that are themselves far from axi-symmetric. In conse-
quence, there is reason to hope that a simple extension of the foregoing theory might account
for the blockage effects on stalled and partially-stalled wings.

The stalled wing of infinite span presents no serious difficulties. Provided that the stall is
sufficiently developed for reattachment of the separated boundary layer on to the upper surface of
the wing to be impossible, the wake is plainly of the bluff-body type. The presence of lift does not
affect the analysis of Section 2.3—there is no induced drag—and the only problem likely to arise is
the magnitude to be assigned to the blockage factor .

3.2. Recommended Forms of Correction.

3.2.1. Finite span.—Assuming that the tendency to axial symmetry in stalled regions of
flow is universal—at least within the range of practical wing shapes—and that all such regions are
similar in structure to the axi-symmetric bluff-body wake, the blockage factor might be expected to
take the value ¢ = 5/2, derived in Section 2.7.3, for most three-dimensional non-streamline flows
of aerodynamic interest. But because of the effects of lift and partial stall, the drag coefficient
relevant to the blockage parameter Cp, S/C cannot correspond to the total measured drag. With
lift, the contribution from the last two integrals in equfztlon (5) corresponds to an induced drag D,
and is non-negligible. And, in addition, there is a momentum defect associated with that part of the
wake within the streamline region of flow which corresponds to the conventional profile drag I, of
streamline flow. The consequential medifications to equation (9) then result in the relation

CZ)§ = Cp— Cpy— Cpy = m(R*~1-mS/C)

and the formulae (13) and (14) continue to hold provided that the €7, in them is replaced by €.

The problem, now, is to determine th j rag coeflicient O, associsted with the ctalled regions.
There is no way of doing this directly, and the solation depends, in practice, on the choice of a
suitable variation of induced drag in the post-stall regime. Great accuracy is not required, and perhaps
the most logical course is to define (', by extrapolation from the measured properties of the
unstalled wing. Visual observation of the flow development—for example, by the surface-oil
technique—is a great help in locating the onset of stall. And linear extrapolation of that part of the
measured Cp, ~ C,2 relation appropriate to streamline flow—in the manner sketched in Fig. 8§—
is then probably suflicient for most purposes. This technique ensures that the desired €7, 1s zero
for the unstalled wing, as it should be.

Once the various components of the measured drag have been identified—there is also a drag

D, associated with the support rig used in a wind-tunnel experiment, and assumed here to corres-

pond to streamline flow-—it is possible to formulate the composite correction

n 1 58
% =14 (CDP+C1)0) ) C(CD_CDi“ Cin) (18)
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which reduces automatically to the correct formula for streamline flow at incidences below the stall,
where the last term vanishes. Flowever, inclusion of the second term on the right-hand side of the
formula (18) is largely for the sake of completeness. It can usually be ignored in practice. For in
most well-designed experiments the blockage corrections are insignificant until the final term in the
sxpression (18) begins to take effect. In consequence there is also little need for precise definition
SHE 0P

In order to illustrate the effectiveness of the correction formula, Fig. 9 shows the result of applving
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it to data obtained with two sizes of complete model in the No.

The model in question had a wing of delta planform of aspect ratio 3. And the results from cach
size of model have been corrected separately, using the technique described above,

3.2.2.

“actor 1s in doubt. And
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wver the upper surface o
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formula (13). In view of the observed variation of bas onding

variation in the blockage efiect on two-dimensional fla

anlikely to differ much from unity once the stall is full

4. Concluding Remarks.

Since the factors Which ccn‘aroi the pr(}putles of a bluff-body wake have not been established
‘heoretically, ! s recessarily includes a

elations

% £

'*\;rimar'?} the observation that CUp/&*

celation (12) governing wake distortion
depends only on an approximate expression of consery
wake, Tt leads to the surprising, but experimentally Comm:mcd9 result
of constraint is greater {or a three-dimensional (axi i

sne by a factor of about 23, a result that provide

-4 dependence of the bleckage factor on ’basc D

i

he crucial assumption underlying the e

od regions of flow are essentially th@se of axi syrnmetoc |

known detailed observations are in obvious

established quantitatively. The asymmetric fovm of a flow pattern aszociated

)-\-s
.A.A

this ciass of flows

cvant stream surfaces v naualiy impossible to define experimentally. An

al corfeciion itself,
formulae. But on the
ctor ¢ = 5/Z%1 is universal
T
Sigc

the main support for the theory comes ultimately from tests of the fis
Ne doubt there are limits to the range of apphcabzh of

A

evidence available at present it seems logical to assume that the

for three-dimensional flows. It seems logical, also, to assume that the theory holds for slender wings

* The pressure coefficients plotted in Tig. 10 correspond to mean base pressures defined according to
Section 2.6,

+ This is believed to be adequate for most purposes. But slightly different values of the blockage factor
might be more accurate for sp c1ﬁc cases. For example, € = 2-75 is better than ¢ = 25 for the axi-
symmetric bluff-body flow.
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with vortex breakdown-—which gives rise to axi-symmetric regions of flow resembling bluff-body
wakes—provided that the breakdown occurs sufficiently well forward of the trailing edge. There
is little doubt that, in the absence of vortex breakdown, the flow past a slender wing or body is, for
the present purpose, a streamline flow, subject only to the conventional wake-blockage correction.

In many ways the most difficult part of the stalled-wing problem is to identify the induced drag
which, by subtraction from the measured drag, effectively defines the component of drag associated
with the blockage effect. 'T'he empirical extrapolation proposed here is, at best, plausible. It is
believed to be adeqguate, at least for a moderate range of incidence beyond the onset of stall, where
practical interest is greatest. But the theory should obvicusly be applied with judgement. And
experiments should be designed so as to make the correction small, and thus to minimize the effects
of errors in the empirical parameters that enter the correction formulae. It is also advisable to obtain

visual observations of the onset of stall.
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X, Y, R

U, v, W

U, P,

Py
c,
D

Dy, D, D, Dy,
Cp

k

S

C

B

Py

11/

mn*

(90895}

SYMBOLS

Rectangular Cartesian co-ordinates, with x measured in the direction of

the undisturbed stream
Velocity component in the &, y and 2 directions
Velocity, static pressure and total head of the undisturbed stream
Dynamic pressure of the undisturbed stream
Static pressurc
Base pressure
Pressure coefiicient {p — P)/g
Drag
Components of the measured drag {Scction 3.2.1)
Drag coefhicient D/gS
Base-pressure parameter (Section 2.1)
Reference area of model
Cross-sectional arca of wind twnne
Cross-sectional area of wake
Aspect ratio
BIS
A datum value of m (Scction 2.4)
Blockage factor {equation (14)]
Operator denoting increment due to constraint

Suffix denoting effective, or corrected, valucs
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and ¢ is a blockage factor dependent on the magnitude of the base-pressure
coefficient. The factor € is shown to range between a value a little greater
than 5/2 for axi-symmetric flow to a little less than unity for two-
dimensional flow. But the variation from 5/2 is found to be small for
aspect ratios in the range 1 to 10.

The theory is extended to stalled wings, and an appropriate technique
for the correction of wind-tunnel data is evolved.
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