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Part t. The Equations Of Motion 
Summary. 

An integrated analytical treatment is presented which deals with the equilibrium and stability of the flexible 
aeroplane in flight. The analysis embodies those methods currently employed to investigate the behaviour of 
the flexible aeroplane stemming on the one hand from the stability theory of the rigid aeroplane and on the 
other from conventional aeroelastic studies. The integrated treatment serves to clarifT~ the regions of application 
of these restricted methods. 

In Part I the equations of motion for a flexible aeroplane are developed in as general a manner as possible. 
In Part II the general analysis is applied to a detailed study of the equilibrium and stability of the slender, 

integrated aeroplane configuration. 

1. Introduction., 

The effect of flexibility on the stability and control of aeroplanes is recognised as being of 

paramount importance. Yet this problem tends to be treated either as a modification of rigid-aeroplane 

stability theory or as aft extension of the methods common to flutter analysis. In the first case the 

rigid-aeroplane equations of motion are modified by the use of so-called 'modified derivatives' 

which include an allowance only for the steady or equilibrium deformation of the aeroplane structure. 

The  flutter equations are extended to include small translation and rotation of the aeroplane as a 

whole about a zero position: but the zero position can not, with the modification adopted, be a true 

equilibrium state for the aeroplane in flight. Both these approaches are, to some extent, deficient in 

dealing with the general problem of the stability and control of the flexible aeroplane. 

The  advent of the slender, integrated aeroplane configuration which is currently thought to be 

suitable for a Supersonic transport demands the development of an analysis dealing with the 

dynamics of the deformable aeroplane in as fundamental  a manner as possible. Part I of this paper 

~' Replaces A.R2C. 24,060. 



presents such an analysis in general terms: it is natural that the choice of an axis system for an 

aeroplane in flight should be, in a generalised sense, body axes and a central consideration of the 
analysis is the definition of body axes for a deformable aeroplane. Part II applies the general analysis 
to the investigation of the trim states and the stability of these trim states for the slender, integrated 
aeroplane configuration. This type of aeroplane configuration is very different from the classical 

layout and illustrates well the extent to which overall aeroplane stability is inseparable from aeroplane 

flexibility. 

2. The Equations of Motion. 

2.1. The Equations of Motion of a Deformable Body in the Absence of Kinematic Constraints. 

2.1.1. Introduction.--The equations of motion are to be set up for a body which possesses, 
in addition to an overall spatial motion, a local deformation motion due to its inherent flexibility, the 

body as a whole being subjected to gravitational (body) forces and such external forces as are caused 

entirely by the relative motion of the body surface through a fluid medium. In particular, the body 

suffers no external kinematic constraints. 
It is assumed in all that follows that the relative displacement of any point of the body from the 

position it occupies in some assigned reference configuration is small in comparison with a typical 

overall linear dimension of the body: thus second and higher powers of the displacement are 

neglected. This assumption is that usually made in the Classical Theory of Elasticity: it implies 

that the strain at any point is small and, in addition, that the relative rotation of any element is 

small. As a consequence of these restrictions a set of linear relations connects the strain and 

displacement components at a point. It is not necessarily assumed that the relation between stress and 

strain is a linear one. 

The lack of kinematic boundary conditions means that the Elastic Boundary Value Problem is the 

Neumann Problem 1, any solution of which is, arbitrary to the extent of a small rigid-body displacement 

and rotation. The resolution of this arbitrariness will be discussed at length in connection with the 

choice of reference axes moving in a generalised sense with the body. However, it may be emphasised 
at this point that the arbitrary nature of the Neumann Solution is quite inadequate to describe the 
overall motion of the body because of its necessary smallness: indeed, any interpretation in this 

light is essentially misleading. 
The equations of motion must be referred to inertial or space axes and for the purpose of 

aeroplane stability and control the motion of the earth may be neglected and 'earth' axes adopted. 
However, as in the case of the motion of rigid bodies it is advantageous to interpose a set of axes 
moving with the body and in a conventional sense the motion is then referred to body axes. In the 
case of a deformable body the specification of such an axis system is not obvious or indeed unique; 
the resolution of this question is postponed for reasons which will become clear. 

Accordingly we shall refer to body axes (origin O) whose position and orientation are not specified 
except in so far as they lie always in the region of a set of axes positioned at a definite point and along 

definite directions in the body in a reference configuration. 
The specification of this reference configuration is not unique but, once chosen, it remains 

unchanged. It may coincide, for example, with a particular equilibrium configuration of the body 
but more naturally it will be taken to coincide with the body configuration when completely free 

from external or body forces. In the latter case it is then essentially an idealised assembly of material 

points in a purely geometric sense. 
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Let the position vector of a general point of the body be r: let the position vector of the same point 
in the reference configuration be r 0 then a displacement vector r '  is defined by 

r '  = r - r o (2.1, 1) 

where, in accordance with the condition of smallness of the displacement, 

r '~ ~ l ~. 

2.1.2. The linear, and angular momenta . - -Let  cr be the mass per unit volume at any point  
and d V  an element of volume. The  linear momentum of the body is 

M =  ~ V +  dt  d V  (2.1, 2) 
v 

where v is the velocity of the origin of the body axes relative to inertial axes and d/dt represents time 
rate of change with respect to inertial axes. 

The  corresponding angular momentum about the origin of the body axes is 

= ~ r x  v + - ~  d V .  (2.1,3) 
H f v  

Let the angular velocity of the body axes at any instant be ~ and let the operator a/at represent 

time rate of change with respect to an observer stationed in the body axes; then the operators 

d~' ~ + ~ ×  
are commutable.  

The  linear momentum {equation (2.1, 2)i~may be written 

f f a r '  (2.1,4) M = M v + M f 2  x r 0 o + ~  x a r ' d V +  a ~ d V  
v v 

where 

M--f 
v 

is the mass of the body and 

1 f ar  0dV r°g = m _ g  

is the position vector of the centre of mass of the reference configuration. 
The  angular momentum (equation (2.1, 3)} may be writ ten 

H = Mrog  x v + (¢i, o + 0 3 • ~2 + 

+ er ' dV  x v + ~r o x d V  (2.1, 5) 
v v 

where 

= [ ~[ro~I - r0ro] ff~0 d V 
d V 

is the inertia tensor (or dyadic) for the reference configuration and 

ff~' = ( e [2r o • r ' I  - (Fr  o + ror')] d V  
O v 

represents (to first order in r') the addition to if% due to the relative deformation. 

3 
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2.1.3. Overall and elemental equations of motion.--The equations of motion for the body 
take the form of two equations which relate the overall force and moment on the body to its motion 
and in which the internal reactions do not explicitly appear and an equation which embodies the 

conditions of equilibrium for the elements of the body. 
Thus if F is the resultant force and L the resultant moment about the origin of the body axes of 

the external (surface) tractions and g is the acceleration due to gravity then 

dM 
dt 

dH 

- -  = F + M g ,  (2 .1 ,  6)  

o.d.}.. 
V 

(2.1, 7) 
dt 

are the overall equations 'of motion. 
The equation of 'motion for an element of the body is 

within ¥, where ~ is the stress tensor. On the surface of the body the statical.boundary condition is 

that the surface stress components must be equivalent to tile external surface traction t~; thus on 

the body surface S, 
n .  I~ = d? ( 2 . 1 , 9 )  

where n is the 'outward normal. The overall equations of motion (2.1, 6) and (2.1, 7) may be 
considered as necessary conditions for the consistency of equation (2.1, 8) and the statical boundary 

condition (2.1, 9). 

2.1.4. Specification of the body axes.--The detailed specification of the body axes may now 

profitably be discussed. Let r' 1 be a solution of equation (2.1, 8) satisfying (2.1, 9) then 

r'~ = A R + A 0  x r  0 + # 1  

where AR(t), A0(t) = 0(r') is also a solution where the rotation may be represented as a vector A0 by 

virtue of its smallness. 
Let A o be an axis system set up in the reference configuration by choosing some (material) point 

as origin and a line of (material) points as an axis of orientation. Then if motion ensues at time t o the 
specification of the body axes (of a similar nature to tile original) may formally be said to be specified 
by a knowledge of AR and A0 at any subsequent time t. For it must be noted that the origin of the 
body axes will no longer necessarily be invested in a material point of the body nor will the axis of 
orientation contain tile initial material points. It need only be demonstrated that AR and A0 may be 
consistently specified in terms of a solution of (2.1, 8): in practice a knowledge of AR and A0 is 

not required directly as will be seen in tile sequel. 
Any number of ways of choosing the body axes exist but in practice three particular choices 

would seem to be worthy of discussion. 

(a) Attached Axes. 
These axes are specified by the simple conditions that 

A R  = AO = O. 



In this case the origin of the body axes remains invested in one m'aterial point of the body while 
an axis of orientation is tangent to the curve formed by the material points originally defining the 
axis of orientation. For example, in the case of Cartesian Axes the axis directions may be the tangent, 
normal and binormal to a curve of material points. Further,  any set of axes which have a fixed 

orientation to such a set of axes, are also Attached axes. 

(b) Mean Axes. ~,a 
These axes are chosen in such a way that, at every instant, the linear and angular momenta  of the 

relative motion with respect to the body axes are identically zero. Thus,  

o r  

I at,2 f ar'2 v ~ T d V =  v~r o x  3t dV= 0 

f s{AR + x r o r' d , A0 dV + c o n s t .  

V l=to 

f x {AR + A0 x r o + r'l} dV = const. (71" 0 
V t=lO 

where, for coincidence of the body axes and reference axis system A o at time t o the constants should 

be taken to be zero. The latter equations are sufficient to determine AR, AO, thus, 

M A R + A 0 x  Mroa = f ~r'ldV 
v 

(2.1, lOa) 

M r o g × A R + A 0 . @ o =  f er o x r '  ldV.  
v 

(2.1, lOb) 

In practice the specification that the deformation motion shall satisfy the conditions 

f crr'dV = 0 (2.1, l la )  
v 

f ar o x r'dV = 0 (2.1, l l b )  

is equivalent to reference of the motion to Mean Axes. Then  equations (2.1, 4) and (2.1, 5) respectively 

take the forms 
M = M v + M K ~  xroa 

H = M r o a X V + ( ~ o + O ' ) ' ~ Z .  

The use of Mean Axes effectively reduces the inertial coupling between the overall and relative 

deformation motions. 
I t  may be noted that if the origin of the reference axis system A 0 is chosen to be the centre of 

mass of the reference configuration then because of condition (2.1, 11a) the origin is always at the 

centre of mass. 

(c) Principal Axes. 
The  basic requirement in this case is that the tensor ~ '  should be diagonal and this is most 

conveniently coupled with the condition (2.1, l l a )  which ensures that r'g is zero. The  equations 



determining AR and A0 are complicated but in the case when the origin of the reference axis system 
d 0 is chosen so that r0g = 0 they simplify to 

= f ~r'ldV (2.1,10a) MAR 
~ V  

and the three scalar equations, 

j .  ~ ' ~ .  k = k .  ~ ' ~ .  i = i .  ~'~ . j  = 0 (2.1, 12) 

where i, j, k are three orthogonal unit vectors parallel to the body axes and 

a [2r o • r'21 - (r'2r 0 + r0r'2)] @'~ dV 
d V 

= f v  cr [2r 0 • r'11 - (r ' l r  o + r0r'l) ] dV 

- A0 × ( E,o i- d r -  ( + dv  × A0. 
d v J v 

The three scalar equations (2.1, 12) are sufficient to determine the components of A0. 

Principal Axes in this sense will most often be combined with the choice of Principal Axes in the 
usual geometric sense situated at the centre of mass for the reference axis system A 0. The body axes 
are then always Principal Axes situated at the centre of mass of the deformed body. The conditions 
(2.1, 1 lb) and (2.1, 12) imposed on r '  by the choice respectively of Mean Axes or Principal Axes are 
more clearly illustrated by writing these conditions in terms of Cartesian components. Thus,  with 

ro = xoi +YoJ + zok, 

r '  = x'i + y ' j  + z 'k  

where, as before, i , j ,  k are a unit (body) triad, conditions (2.1, l l b )  are 

f ~(YoZ'-ZoY') dV= f ~(ZoX'-Xoz')dV = f c~(Xoy'-yox')dV=O (2.1,13) 
v v v 

while conditions (2.1, 12) become 

f ~(yoZ'4Zoy')dv=f  (zox'+xoz')dv=f e(Xoy'+yox')dV=O. (2.1,14) 
v v v 

For shapes which are typical of aeroplanes in which transverse displacement relative to a plane or 

line contributes the main deformation the conditions (2.1, 13) and (2.1, 14) may be identical. For 

example, let the median plane of a plate-like structure be flat in the reference configuration and let a 
Cartesian axis system O, x, y, z be chosen to have the (x, y) plane as the median plane. Then if 

z'(xo, Yo) is the transverse displacement component and it is assumed that terms of O (zox', Zoy' ) are 
much smaller than terms of O (Z'Xo, z'yo) then since the last integral vanishes identically conditions 
(2.1, 13) and (2.1, 14) are identical. This latter assumption is effectively the neglect of rotatory inertia. 

2.1.5. Variational form of the elemental equation of motion.--Having discussed the question 
of the specification and choice of the body axes we may return to further consideration of the 
equations of motion, in particular the differential equation (2.1, 8) and boundary condition (2.1, 9). 

These may convenieritly be combined in a single variational equation of motion. Furthermore, the 
variational form of the elemental equation of motion is by far the most fertile for the deduction of 
approximate representations of the flexibility of the body. 



Let the path of the motion over a fixed, arbltrary time interval t 1 < t < t~ be varied from the 
actual path by the virtual displacement 8r', then since the forces on an element of the body are, at 

every instant, in equilibrium (over the actual path) then to a first-order variation in the path no work 

is performed by these forces through the virtual displacement. Thus, integrating over every element 

and over the time interval t 1 < t < t.,, 

Transforming the third term by the Divergence Theorem, using the boundary condition (2.1, 9) 

and noting that 
Z : VSr' = ~ : ½ (VSr' + St'V) = ~ : 8W 

where W is the strain tensor then, finally, the variational equation of motion is 

;,: {L E (v+ + L ,   21, 
The variation St' is arbitrary except that it must satisfy the same (quasi-kinematic) conditions as 

are satisfied by r' consequent upon the choice of a particular type of body axes. Thus, in particular, 
the variational modes 8r' = const, and 8r' = const. × r 0 are not admissible under any choice of 

body axes so that equation (2.1, 16) does not contain equations (2.1, 6) and (2.1, 7) as special cases. 

Similarly equation (2.1, 8) and any differential equation (relating to some approximate type of 

analysis) deduced from (2.1, 16) may not have as a solution constq + const. 2 ×.r 0. 
To the equations of motion for the aeroplane may be added equations representing control systems 

incorporating servo-mechanisms. With large controls it may be important to include the inertia of 

the control and in that case a part of r' may be allotted to control deflection; a part of the surface 
loading q~ will of course be associated with control deflection. These additional equations of motion 

will embody {in place of the variation in strain energy integral of equation (2.1, 16)} the Transfer 

Function of. the control as related to the demand and::tm the overall and deformation motions of the 

aeroplane. 

2.1.6. Attitude of the body axes in space.--The presence of the gravitational force in the 

equations of motion requires that reference be made to the attitude of the body axes in space since 

this force is fixed in direction relative to 'earth' axes. 
It is necessary to adopt a scheme whereby a sequence of rotations will, from a reference attitude, 

lead uniquely to a final attitude: the following scheme 4 is usually adopted. In the reference position, 
axis 0, 3 of the (inertial) triad 0, 1, 2, 3 is vertically downward; taking all rotations to be right-handed 

the final attitude is obtained from the reference by the sequence of rotations Ca, ¢2, ¢1 each rotat!gn 
being about the carried position of the relevant axis. Thus, using the abbreviations cos¢, = Q 
sin ¢~ = st the orthogonal matrix of direction cosines 5 for the final attitude is 

C2C8 , C2S3 , 

[I] = - qsa+sxs~ca, qca+sls~sa, slc~ • 

SlS a -4- C1S2C3, - -  S1C 3 + CI$2S3, Cj_C2_] 

(2.1., 17). 



Then if the column {v~F } represents the components of a vector v in the fixed (vertical) axis system 
and {V~M } its components in the moving (body) axis system, 

{villi } = [1] ~.veu}. (2.1, 18) 

A kinematic relation is also required between the components of ga referred to the body axes, 
say (p, q, r), and the ¢i and their time rates of change, ¢i. The required relation is 

o l_s  
C1 SlOg ~2 

-- Sl C1£2J ~3 

(2.1, 19) 

2.2. The Deviant Equatious of Motion. 

2.2.1. Introduction.--A consideration of the behaviour of an aeroplane in flight will deal 
essentially with three distinct problems: 

(1) equilibrium of a steady-flight state, 

(2) the stability of such steady-flight states, 

(3) the response of the aeroplane to controls or gusts and behaviour in unsteady manoeuvres 
(rapidly rolling flight, rapid pull-outs, etc.).. 

Of these three problems the last is very Considerably more difficult than the first two. The problem 
of equilibrium by virtue of its definition is independent of time but it may often be non-linear in 
character. The stability of such equilibrium may, by virtue of the stability theory due to Liapunov6, 7, 
be tested by considering the stability of a linearised system having a small disturbed motion about 
the position of equilibrium. If the system returns to its equilibrium position under perturbations of 
sufficiently sma!l magnitude, the equilibrium position is said to be stable. If it does so under all 
possible perturbations of arbitrary magnitude, the equilibrium position is said to be totally stable. 
The linear approximation is not a test for total stability. 

The third problem will generally be non-linear except when the control forces or external 
disturbances are restricted to be small enough to permit linearisation of the equations of motion as 
for stability: in this case the stability and response problems are solutions of the homogeneous and 
inhomogeneous forms of the same set of equations. 

2.2.2. The steady state.--Without discussing in detail the problem of equilibrium 
(see Part II) we may consider the nature of possible steady-flight states. To do this it need only be 
recalled that the aerodynamic forces are not dependent on the position or attitude of the aeroplane 
in space while the gravitational force is of constant magnitude and direction with respect to 'earth' 
axes. 

The most general steady state in a homogeneous atmosphere clearly consists in v = const, and 
r' ~ f(t)  while g~ may be a vertically directed vector of constant magnitude; that is, a spiralling 
motion at constant speed. When the atmosphere is recognised to be vertically inhomogeneous then 
v must be a horizontally directed vector. 
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The most usual steady-flight case is that of rectilinear flight (g~ = 0) for which the equations of 
equilibrium take the forms 

F 1 + M g  1 = 0 

L l + M r o l g x g l  = 0 

t" F 
| ~.1: ~WdK- gl" | e~r'dV- | d?l. ~ r ' d S  = 0 (2.2, 1) 
d V d g J N ! 

where the suffix 1 refers to the steady state. 

These equations determine, for given control forces or settings, the speed of flight, the attitude of 

the aeroplane and the form of the deformation: alternatively, when the speed (and altitude) is specified, 

the required control forces and the resulting attitude and deformation may be determined (see Part II). 

Upon solving the equilibrium problem any equilibrium state rot = r 0 + r '  t may be chosen as a 
new reference configuration in the sense of Section 2.1.1. 

For some purposes it may be possible to neglect gravitational forces. This arises when the 
(integrated) inertial forces, in the steady state are large such as in a rapid pull-out or rapidly rolling 

motions. In this case the attitude of the aeroplane in space is immaterial and the most general steady 

state is v = const., g~ = const, and r '  # f(t). 

2.2.3. The form of thedeviant equations of motion.--The deviant equations of motion 

relate to the disturbed motion of the aeroplane relative to a specified steady or equilibrium state and 

can only be constructed once the relevant equilibrium state has been solved. The variables in the 

deviant equations of motion are so defined that when they are all identically zero the equilibrium 

state is recovered. 

Using the suffix 1 as in Section 2.2.2 to mean an equilibrium state then we define the deviant 

variables (without suffix) by the relations 

Vg = V t + V  

~t = ~2 (2.2, 2) 

rt = (to + r ' l )  + r' 

where the suffix t indicates that the variables refer to the total motion. Similarly, the forces are given 
by the relations 

F~ = F~(vt, r ' J  + F(Vl, r ' l ,  v, ~ ,  r ') 

and 

Lt = Lt(vl,  r ' l)  + L(vl ,  r ' l ,  v, gt, r') 

q~, = +~(vt, r'a) + +(v~, r ' l ,  v, ~ ,  r') 

(2.2, 3) 

g~ = gl + g.  (2.2, 4) 

Also, the total attitude of the body axes is given by the rotations ~il followed by the rotations ~i (the 
deviant rotations). The deviations ~i do not have the same meaning as the rotations ~1 for the 
rotations ~ are carried out about the axis directions of the equilibrium state 1 whereas the rotations 
~il were carried out about the 'vertical' axis system fixed in spatial orientation. Thus if {v~F } 



and {V~M}, are the components of a vector in the 'earth' and equilibrium axes respectively and {V,M } 
its components in the moving axes then 

and, in particular, 

{g211TI} - -  {g)/M}l = ( [ / ] -  I ) [ l ] l {g ) iF  } . ( 2 . 2 ,  5)  

The deviant equations of motion are obtained by substituting (2.2, 2), (2.2, 3) and (2.2, 4) in the 

equations of motion (2.1, 6), (2.1, 7) and (2.1, 16) and using the equations of equilibrium (2.2, 1). 

The  deviant equations of motion are writ ten out in full in Appendix I. 

2.2.4• The deviant equations to first order in the velocities.--The main step in the linearisation 

of the deviant equations is to retain only those terms which are of the first order when v, ~ (and, of 

course, r') are treated as small quantities. It  is shown in Ref. 8 that when v, g~ and r '  are all small 

then the aerodynamic forces are linear (integral or differential) functions of v, g~ and r '  (the 

functional forms are dependent on the actual equilibrium configuration under consideration). This 

degree of linearisation is thus sufficient to make the deviant equations linear except for those terms 
which involve the gravitational force and are dependent on the attitude of the aeroplane in space. 

Thus  for those pr6blems in which gravity may be neglected the equations are already linear. For 
those in which gravity cannot be ignored a further linearisation is required in rotational attitude: no 
restriction is required on the displacement of the origin unless the atmosphere is inhomogeneous.  

2.2.5. Non-dimensional form of the deviant equations to first order in v and g~.--The deviant 
equations are rendered non-dimensional by choosing 

(a) pV12l ~ as the unit of force, 

(b) l, a typical overall dimension of the aeroplane, as the unit of length, and 

(c) l /V 1 as the unit of time, 

where 
V~ = Iv1[. 

Then the non-dimensional deviant equations of motion, to first order in v, $2 and r '  are (see 
Appendix I) 

L ~  + x vl* a n *  a~r '* 

M*r  * x + @o* " - -  + M*rou* x (g~* xv l*  ) + o~ ~ St* 

f ~2r'* f + a*ro* x dV* L ;x" g* F* ~ = + Mroly* x + F* 

{Ov  
dt l*  

852* 
+ - ~ .  

+ 

+ g~* × vl* • ~*Sr*dV* + ~* 
V* V* 

f ~*ro* × 8r'*dV* - g*. f ~*3r'*dV* + 
V* V* 

fv*  E* : 8W*dV* - f s *  q,* • 8r '*dS*) dt* = 0  

= F* + M ' g *  (2.2, 6a) 

x (g** + g*) (2.2, 6b) 

• 8r'*dV* + 

(2.2, 6c) 
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where 

Og ~ 

t 
t ~ .  _ ~ V ~ - -  

( l /V1)  

O "  

o.,~ M S - = - -  

P 
+ + . _  

t ,  

r'  d S  d V  
l , d S  e - l~ , d V *  - la , 

v ~ ,  _ ~ l  , g~ gl 

V ,  ' V1 ' 

M ~o 
, ~ 0  ~0 - -  

pl a pl 5 

F L 
2~ :* - F ~ - - -  L ~ ' -  - -  (2.2, 7) pF? ' p 

In the above equations r0~ has been replaced by r 0 in those terms which would otherwise involve 

products of O(r'2), O(ve), etc. 
The  kinematic relations (2.1, 19) apply with (p, q, r) the deviant angular velocities, the ¢i the 

'carried axis' angular velocities about the equilibrium axes and the ¢i the rotations from the 

steady-state orientation. 

2.2.6. Tke deviant equations to f irs t  order in a t t i t u d e . - - T h e  deviant equations are fully 
linearised by taking the deviant rotations ¢i to be small. The  form of the equations (2.2, 6) is 
unaltered except for those terms involving g. The  relations (2.1, 19) and (2.2, 5) are linearised, 

the rotations ¢i becoming the components of a vector qb; thus, 

= ¢2 (2.2, 8) 

and 0 
{vi~,z} - {V~M}~ = -- ¢a 0 ~ [l]~ {V~F } . (2.2, 9) 

In (2.2, 9) the antisymmetric matrix is equivalent to a vector multiplication by ~ .  

2.3. The Forces on the Aeroplane. 

2.3.1. The grav i ta t i ona l fo rce . - - In  the deviant equations of motion the components of 
the vector g {equation (2.2, 4)} are given by an application of equation (5.2, 5), thus, 

g = ( [ l ] - I ) g l  (2.3, 1) 

so that, to first order in the deviant rotations ¢i, 

g = qb x gl .  (2.3, 2) 

2.3.2. The propulsive f o r c e . - - T h e  propulsive force will generally have a fixed direction 
relative to tile power unit but  its direction may vary relative to the body axes by an angle which 
will be of the same order of smallness as r'. The  magnitude of the force while being controllable 

will also change with the motion of the aeroplane and in particular with changes in forward speed. 

2.3.3. The aerodynamic forces . - -The  surface traction d /due  to the motion of the aeroplane 
through the air is obviously extremely difficult to specify for a general motion. It will depend upon 
the whole history of the motion (due to wake effects): the pressure and shears at any point on the 
surface will depend on the integrated effect of the whole motion of every part of the aeroplane. 
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In addition, the type of flow regime encountered will depend on the variation, throughout the 
motion, in the values of a typical Reynolds number and Mach number for the aeroplane. 

For the deviant motion relative to a steady-flight state the appropriate Reynolds number may be 
taken to be that of the steady state but the variation in the Mach number may still require to be 
taken into account particularly in the transonic regime. 

The problem becomes tractable when the deviant motion is linearised in the velocities v and gl. 
The first-order deviant aerodynamic forces may then be said to be given by a sum of the following 
contributions: 

(1) the (first-order) change in the (unit-order) equilibrium forces due to (first-order) change in 
speed treating the equilibrium stress coefficients as constant, 

(2) the (first-order) change in the directions of the (unit-order) overall equilibrium force 

coefficients due to (first-order) rotation of the resultant velocity vector relative to the body 
axes, 

(3) the (first-order) chang e in the (unit-order) equilibrium stress coefficients due to (first-order) 
change in the Mach number of the equilibrium state and 

(4) the (first-order)unsteady pressure field generated by the (first-order) motion of the 
aeroplane when changes in Mach number are ignored: this component will generally be 
treated on an inviscid-flow basis. It is shown in Ref. 8 that this pressure field may be 

derived from the standard linearised potential unsteady-flow theory when due allowance 

is made for the difference between body axes as used here and the steadily translating axes 
employed in the standard theory. ' 

2.4. Representation of the Aeroplane Structure. 

2.4.1. Introduction.--The equations of motion (2.1, 6), (2.1, 7) and (2.1, 16) are not, in 
themselves, sufficient for the solution of the aeroplane motion even when the surface tractions are 
completely specified as functions of the surface motion. The additional equations required are: 

(1) the stress-strain relation, 

(2) the equations of strain compatibiiity. 

In effect, in order to proceed with a solution of the motion it is necessary to solve the Elastic 
Boundary Value problem for the aeroplane structure in terms of a general surface loading. When it 
is assumed that the stress instantaneously attains its equilibrium value consequent upon a rapid 
change in strain then the elastic problem is effectively reduced to the solution of the aeroplane 
structure under general steady surface and body forces when the inertia forces are represented by 
their instantaneous yalues (d'Alembert's Principle). However, the assumption of an instantaneous 
(conservative) stress-strain relation may not be justified in application to unsteady aeroelastic 
problems since it cannot allow for internal damping: the solution of the elastic problem if this 
assumption is abandoned becomes difficult and involves the history of the motion. A theoretical 
treatment of internal damping in elasticity is given in Ref. 9. 

In what follows here it will be assumed that the stress-strain law is the Generalised Hooke's 
Law: the modification of the equations of motion consequent upon the presence of structural damping 
may then be made for those cases covered in Ref. 9: as a consequence of assuming an instantaneous 
stress-strain relation there is no need to retain the integration with respect to time in the variational 
equation of motion, (2.1, 16). 
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2.4.2. Suitable forms for the displacement field.--On the aeroelastlc scale, e the classical 
aeroplane consists of an assembly of beam-like and plate-like structures, while the modern integrated 
aeroplane may consist largely of a single plate-like structure. More particularily, from. an aeroelastic 
point of view the deformations of interest are solely those at the surface, the internal displacement 

field being of secondary importance. 
As a consequence wide use is made of the simple bending theory of plates and the simple bending 

and torsion theories of beams sometimes with approximate corrections for shear deformation. When 

the simple theories of bending are inapplicable then methods of structural analysis 1~'14 are used 
based on the consistent assembly (by displacement or force compatibility) of all the internal 
elements of the structure and the external (point) force system. Nevertheless, in this case also the 
part of the solution of interest to the aeroelastician is that which relates the 'transverse surface 
displacements' of the structure at a finite number of points to the loads at these points. 

Having synthesised the structure in some way then two main methods are available for 

representing the characteristics of the structure in the equations of motion: 

(a) in the case when beam or plate theory is applicable resort may be made to a Rayleigh-Ritz 
analysis thereby expressing the surface displacement in terms of a series of weighted 
co-ordinate functions; this approach stems directly from the variational equation of motion 

(2.1, 16); 

(b) the Green's or Influence Function for beam or platemay be calculated or for more general 
structures a set of influence coefficients and solution of the equations of motion obtained 
by numerical integration (collocation); the variational equation (2.1, 16) yields the integral 
equation of motion directly by the simple device of taking the virtual displacement to be a 
(small) arbitrary constant times the appropriate influence function when the variation in 
strain-energy integral becomes, by definition, the displacement at the general point. 

In both instances the result is to replace the variational equation by a finite set of ordinary 

differential equations with time as the independent variable. 

2.4.3. Application of the Rayleigh-Ritz p~ocedure.--The method is extremely well known' 

and the only point of interest here refers to the choice of body axes. Thus whatever axes are used 
each co-ordinate function should satisfy the appropriate axes conditions {e.g. equations (2.1, lla), 
(2.1, l ib)  for Mean Axes}. When in-vacuo vibration modes (normal modes) are used as co-ordinate 
functions they will already satisfy the mean-axes conditions. It is commonly asserted, for example, 
that normal modes are 'orthogonal to rigid-body modes' as if this were a unique property of normal 
modes whereas in fact it is a consequence of referring the" vibration modes to mean body axes: 
so-called arbitrary modes can always be chosen to be 'orthogonal to rigid-body modes' simply by 
applying the conditions (2.1, 11 a), (2.1, 11 b). The role of the overall body motions in vibration studies 

is discussed in Appendix II. 

2.4.4. Application of the Influence Function.--In like manner our main interest in discussing 
the application of the method (b) above is in defining the Influence Function for a structure which 
is not subject to kinematic constraints, in conjunction with the choice of body axes. 

e Omkting local aeroelastic effects such as panel flutter. 
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The following discussion will naturally also have reference to those cases where a set of influence 
coefficients rather than an Influence Function is available but some remarks are added a t  the end 
which refer more particularily to these cases. 

The  existence and nature of Influence Functions 10,11 for plates and beams is well known so that 
it will be convenient here to pursue the discussion with reference to the simple bending of beams; 
corresponding results for other cases are obvious. 

At the outset, in defining the Influence Function for a beam, it is necessary to consider the beam 
to have sufficient kinematic constraint to prevent bodily motion and, for our purposes, it is 

convenient but not essential to consider a cantilever beam since conditions at the free end already 
satisfy the requirements regarding lack of kinematic constraint. 

Thus,  let 

d~ /E d2w\ 

be the equation of the loaded beam 

W ~--- - -  

p(x) ,  0 < x < 1 (2.4, a) 

subject to the boundary conditions 

d w  
= O a t x  = 0, 

dx 

EId w d 
dx ~ = dx \ dx2] = 0 at x = I. (2.4, 2) 

A formal solution of the differential equation and boundary conditions is given by a Fredholm 
Integral Equation 12, thus, 

w(x) = G(x, ~)p(~)d~ (2.4, 3) 
0 

where the Influence Function G(x, ~) satisfies the differential equation 

-dx ~ E I ~  = ~(x-~) ,  (2.4, 4) 

being the Dirac Function, and the boundary conditions 

dG 
G -  dx - 0  a t x = 0 ,  

a.c d (E±a.% 
El-d~x~ = dx \ dx~] = 0 at x = l. (2.4, 5) 

As a consequence of the fact that (d2/dx2)(EI(dZ/dx")} is a self-adjoint differential operator, the 
function G(x, ~) is symmetrical. 

i 

In the case of a beam without kinematic constraint and in which the ends are unloaded it is a 
necessary condition for the consistency of the differential equation (2.4, 1) and the boundary 
conditions 

EI dZw d / d2w\ 
dx ~ = d-xv (EIjzx2) = 0 at x = O, l (2.4, 6) 

that 

f p(x)dx, = f t  xp(x)dx = 0. (2.4, 7) 
0 0 
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Since these conditions will be satisfied by any real motion involving the beam (by virtue of the 
application of the overall equations of motion) we may, for the purpose of defining an Influence 
Function, equilibrate the unit load 3 ( x -  ~) by any convenient loading system provided only that it 
alone cannot satisfy (2.4, 7). This arbitrary balancing system will clearly vanish from any real 
solution by virtue of the satisfaction of the overall equations of motion (2.1, 6), (2.1, 7). A convenient 

balancing system is the loading a + bx where a, b satisfy the equations 

giving 

j ,z - (a + bx)} dx = f '  x - (a + bx)} dx = 0 (2 .4 ,  8)  
0 0 

6 

It is easily verified that a + bx by itself cannot satisfy equations (2.4, 7) unless a = b - 0. 
The Influence Function G'(x, ~) for the beam without kinematic constraint is then 

0 

(2.4, 9) 

The function G'(x, ~) is not symmetrical. The function G'(x, ~) obviously satisfies the differential 

equation 

d z d G 
dx ~ EI-d~-x2 -- 3 ( x -  ~) - (a+bx) (2.4, 10) 

and the boundary conditions (2.4, 6) with G' written for w. 
As it happens the function G' will still satisfy the conditions G' = dG'/dx = 0 at x = 0 but 

these conditions are no longer necessary. In fact, G' is, for fixed ~, arbitrary up to a small rigid-body 

displacement so that, in general, 

G'(x, ~)~- G(x, ~) - G(x, ~')[a + bf'] d~' + A(~) + B(~)x. (2.4, 11) 
0 

In the context of the equations of motion of this beam the functions A and B are determined by the 

choice of body axes. Thus, for attached axes A = B = 0 while for mean axes 

m(x)G'(x, ~)dx = m(x)xG'(x, ~)dx = 0 (2.4, 12) 
0 0 

where re(x) is the mass per unit length of the beam: these two conditions yield simultaneous 
equations for A(~:) and B(~:) which are always consistent. There is, of course, no need to choose as 

origin of co-ordinates one end of the beam but should an intermediate point be chosen then G' will 
be an amalgam of two abutting cantilever influence functions: the application of the conditions 

(2.4, 8) (embodied in the balancing load system) ensures continuity of shear and moment between 
the parts of the beam meeting at the origin. For example, in a conventional aeroplane the origin will 

generally be in the region where the fore and aft fuselage beams and port and starboard wing 

beams meet. 
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By choosing the centre of mass as origin an alternative balancing system may be employed which is 
particularily convenient when also mean axes are used. This system is 

a(~)m(x) +b(~)xm(x) 

and, as before, it is easily verified that this system alone cannot satisfy (2.4, 7). The equations 
(2.4, 7) lead to 

Mk:; ~ 
upon using the fact that 

f ~ m(x)x = dx 0 
0 

where M is the mass of the beam and hg the radius of gyration about the centre of mass. When the 
mean-axes conditions are used to determine d(~) and B(~) the resulting influence function is, 
conveniently, symmetrical. Other forms of balancing systems may be advantageous in specific cases: 
the extension to two and three dimensions is obvious. 

In those cases where a matrix of influence coefficients represents the structure then the structure 
will have been assumed to have sufficient kinematic constraints to prevent bodily motion: the 

foregoing integral operations for deriving the 'unrestrained' influence function may then be 

interpreted suitably as matrix multiplications preferably with the addition of a matrix which 
represents a consistent set of integrating weighting numbers. 

The  matrix of influence coefficients for an unrestrained structure is necessarily singular, in  fact, 

if this matrix is of order m then its rank is ( m - n )  where n is the number of necessary external 

equilibrium relations to be satisfied. As an illustration consider a beam deflecting in a principal 

plane: in this case there are two necessary external equilibrium relations, namely that overall force 
and moment in the principal plane should be zero. 

Let G be the matrix of influence coefficients for the beam under (m-- l )  point loads {p} when the 

beam is suitably constrained. Again, the manner of constraint is arbitrary but we choose the 

cantilever as being most convenient. Then if the ( m -  1) deflections at the load stations are {w}, 

{w} = G{p}: (2.4, 13) 

the built-in end is not included as a point-direction. To construct the influence matrix for the 
unrestrained beam we proceed as for the influence function but first include the root as a station by 
writing 

E 
where w o and P0 are the displacement and (point) load at the root station. The balancing load is 
again taken as dj{1} + B~{x} where A 3. and By are given by the overall equilibrium equations 

1 - ( 1 ) '  {1}A~. - {1} '  (x}B~.  = 0 

x i - { x ) ' { 1 ) A s - { x } ' { x } B j  = 0,  j = 0 to m. (2.4, 15) 
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The matrix G' is given by {cf. equation (2.4, 9)} 

° ° 
GI ~ 

0} 0} 
and clearly takes the form 

[ o {o}' l 
{C21} C22J 

finally, 

[:I--o 

then 

{ ; ' ]  {A:.{1} + BjfX}}' (2.4,16) 

(2.4, 17a) 

(2.4, 17b) 

That  G' (of order m) is of rank ( m -  2) may be demonstrated by noting that for the loading systems 

E{o} ]p = [{I}]i and E{;]P = [{O}]x 

Thus the columns of G' are connected by two linear relations, that is, the rank of G' is ( m - 2 ) .  In 

addition since 

a{1}' / P ° [  = 0  and /~{x}'{p} = 0 
L J {p} 

for all ~,/3 when the loading system py is self-equilibrating we may add to G' the arbitrary columns 
{1} and fl{x}. Similar results follow for other balancing load systems. 

3. A Discussion of the Equations of Motion with Reference to Current Methods of Investigating 
Aeroplane Stability. 

3.1. Introduction. 
This discussion relates the foregoing general analysis to the methods currently used to estimate 

the static and dynamic stability of flexible aeroplanes. Emphasis is laid on the estimation of the 
stability of the trimmed, level-flight state. 

Broadly speaking, current methods'for dealing with these problems fall into two types, one an 
extension of the classical flutter analysis, the other an extension of classical, rigid-aeroplane stability. 

The slender integrated configuration differs considerably in layout from the classical aeroplane 
and i t  is by no means obvious that behaviour known to be typical of classical aircraft will apply 
to this configuration. Here, attention is drawn to some of the points over which some doubt may 
arise, while in  Part I t  this type of configuration is dealt with in some detail. 

3.2. A Discussion of Current Methods. 
3.2.1. Inclusion of the 'rigid-body modes' in flutter analyseY.--When, in addition to the 

assumption of small change in attitude of the aeroplane, it is also assumed that the displacement 
of any point of the aeroplane from a rectilinear flight path !s small then the equations of mot ionmay 
be constructed so as to refer the motion to steadily translating (i.e. Newtonian) axes. A procedure 
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of this type is usually followed in investigations of the flutter of aeroplanes including the so-called 
'rigid-body modes' (of pitch and vertical translation, for example, in the symmetrical case). 

The chief drawback of this approach is that changes in forward speed must be excluded from the 
deviant equations of motion in order to eliminate aeroplane motions which imply deviations from a 
rectilinear flight path which are many times larger than a typical aeroplane reference length (motions 
of phugoid type). The result of this is to suppress any reference in the deviant equations of motion 
to the actual equilibrium configuration under consideration: the trim speed is irrelevant except in 
so far as it is implicitly present in the ratio of a typical structural stiffness to a typical dynamic 
pressure. In practice, in these cases it is usual to imagine an 'equilibrium state' in which all forces 
both elastic and aerodynamic are zero: weight is necessarily ignored. 

With the advent of the integrated configuration it is felt that stability investigations should 
properly include the full overall motion of the aeroplane. The deviant equations of motion then yield 
information relating to the static stability of the aeroplane whereas the roots of lowest frequency 
for the abbreviated equations yield information about a mode which often resembles the short-period 
motion of a rigid aeroplane: whenever this mode shows a 'static' instability the neglect of change in 
forward speed is not justifiable. 

3.2.2. The method of modified derivatives 16, 4.--Until fairly recently the approach used in 
aeroplane stability and response calculations which take account of flexibility has been based on the 
idea of frequency-separated systems. The method is essentially a modification of the rigid-aeroplane 
equations of motion and quasi-steady aerodynamic forces are used based on the assumption that, for 
the modes of interest, the frequency parameter will be low. The number of equations of motion 
remains unaltered but the lowest-order coefficients are modified by an allowance for flexibility, such 
allowance being based on an equilibrium or steady-deformation analysis of the aeroplane structure 
(e.g. interia forces are neglected). Practically speaking, this approach is applicable whenever the 
typical overall-motion frequencies are much smaller than the lower typical vibratioil natural 
frequencies of the structure. But the vibration frequencies of interest are those of the aeroplane in 
flight and these frequencies may depart considerably from their 'still-air' values: under such 
conditions the principle of frequency separation may often fail and the number of equations of 
motion should be increased. 

Further, in calculating modified derivatives it is usual to imagine the major parts of the aeroplane 
to be kinematically constrained (i.e. built-ir 0 at various points. For the classical layout this procedure 
leads to modified derivatives which are physically meaningful but it would not be an exaggeration 
to say that the concept of the modified derivative as applied to the integrated configuration is 
vitiated by the lack of obvious physical meaning to be attached to such derivatives. 

The pitfalls associated with the application of kinematic constraint)of any kind to the slender 
configuration are discussed in Ref. 15. 
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A P P E N D I X  I 

The Deviant Equations of Motion 

+ ~ x  (v l + v )  + - ~ -  × Mrol o+ or'd + 
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+ ~  x ~ x Mr01a+ or 'd  + 2 ~  x ~ - ~ - d V  
v v 
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g 
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Mrol a + o r '  d x ~ / +  ({I~Ol + ~ ') • ~ -  + 
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+ T t -  
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A P P E N D I X  II  

Motion under no Forces--Free Vibration 

In the usual approach to the free vibration of unrestrained structures the motion is referred 

directly to Newtonian Axes with the result that bodily motion may only be allowed for within the 

restrictions of small overall displacement and rotation. Overall equations of equilibrium are then 

applied which lead to conditions on the resulting motion which are identical to the mean-axes 

conditions (2.1, l la) ,  (2.1, 11b). The  result is to refer the motion to mean axes which are at rest 

and are therefore, ipso facto, Newtonian Axes. 

However,  there is no need to assume that the mean axes are at rest and more general motions 

exist which satisfy the equations of motion when no external forces act on the system. Of all these 

general motions only that involving steady, non-rotating translation (v = const., ~ = 0) of the 

mean axes will yield what  is normally referred to as free-vibration modes. 

But above all it should be noted that the equations of motion When no external forces act contain 

no reference to positioh or orientation in space so that these are, at all times, arbitrary and without  

limit. This  conclusion is quite outside the scope of the solution, const. 1 + const. 2 x r 0 associated 
with the Neumann  Problem in elasticity. 

Finally, while it is certainly convenient to refer vibration motion to mean axes it is not essential: 

the contributions of overall and deformation motions will merely be altered to yield the same 
total motion. 
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Part I I . - -A Study of the Trim State and Longitudinal Stability 
of the Slender Integrated Aeroplane Configuration 

Summary. 
The general analysis developed in Part I is applied to the calculation of the equilibrium states and the 

longitudinal stability of such equilibrium states for the slender, integrated aeroplane configuration. 
The slender configuration is treated essentially as having only longitudinal flexibility but an extension to 

include spanwise flexibility is included. 
Slender-wing theory is employed both in the trim state and in the deviant equations of motion to give the 

aerodynamic loading. 
The method of solution of the equations of equilibrium and the deviant equations of motion is by a collocation 

procedure well suited to digital computation. 
A simple numerical example is presented to illustrate the application of the analysis. 

1. Introduction. 

In this Part the general analysis of Part I is applied to the estimation of the stability of the 
symmetric motion of a slender flexible flying wing this being a model of the slender integrated type 
of aeroplane configuration which may  prove suitable as a supersonic transport cruising in the 

Mach number range 1.8 to 2.2 or thereabouts. 
Before the stability of the motion relative to a specified trimmed state can be studied the trimmed 

state itself must be determined at all airspeeds so that the calculation of this steady state forms an 

integral part of the following analysis. 
The trimmed state is taken as level trimmed flight and the atmosphere is treated as being 

homogeneous from the point of view of the deviant motion. 
The main interest is in the stability of the aeroplane as a whole and not in flutter as such. Thus 

only those modes of motion having significant contributions from overall body motion are of direct 

interest. Hence the slender wing is treated essentially as a flying beam bending longitudinally and 

laaving rigid spanwise sections bu t  the extension of the analysis to include spanwise flexibility 

is discussed. 
Linearised slender-wing theory is used in setting up the deviant equations of motion and the 

equations for the trim state. However, the aerodynamic theory used in determining the trim state 
need not be identical to that used to obtain the deviant forces and may allow for non-linearity. But 

it should be borne in mind that since the relative deformation is assumed to be small the change 
in the local angle of incidence over the wing surface due to flexibility will also be small: hence if 
a non-linear aerodynamic theory is to be used it should take the form of a suitable Taylor Expansion 

in the relative deformation about a mean overall incidence. 
The actual method of solution of both the deviant equations of motion and the equations of 

equilibr!um is by collocation. That is, the variational equation Of motion is satisfied at only a finite 
number of points, in this case distributed along the wing root chord. By this means the continuous 
system is reduced to one having a finite number of degrees of freedom and the usual methods of 
solution are available. In deriving the deviant equations of motion and equations of equilibrium for 
this equivalent dynamical system it will be seen that the only numerical technique required 

throughout is that of numerical integration. 
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An idealised point force is supposed to act at the trailing edge of the wing in order to be able to 
trim the aeroplane. This control force is assumed to be infinitely disposable and no attempt is made 
to elucidate its origin but it is a close representation of a flap-type Control situated at the trailing 

edge of the wing. 
Finally, the analysis is applied to the simple example of a delta wing having a given mass 

distribution and whose overall characteristics are probably typical of an aeroplane suitable as a 

supersonic transport. 

2. The Integrated Slender Configuration. 

2.1. General Specification. 

The general layout of an idealised, slender configuration is shown in Figs. 1 and 2: the 

cross-section could be more generally a wing-body shape. Fig. 1 shows the main geometric parameters 
of the aeroplane while Fig. 2 shows the sense of the linear and angular velocities, forces and 

moments and loading per unit length. 
The reference length is taken as the root chord 1 and the origin of the axis system is at the mid-point 

of the trailing edge. 
The control force P represents an idealised aerodynamic control; in practice P would be supplied 

by elevator-type controls giving a short region of distributed pressure loading. The force P being 

aerodynamic in origin will have the form 

P = p V~l ~ (control coefficient) 

for fixed control angle relative to the trailing edge of the wing. On the basis of Slender-Wing Theory 
the control force may be altered by varying the control coefficient without affecting the pressure 
distribution_ on the rest of the wing: the control coefficient (symbol P'~) may be loosely referred to 
as elevator angle. It is assumed that the control is irreversible so that in a perturbed motion the 
control coefficient is constant. Thus the control force P varies in proportion to the deviation in 
forward speed (Section 2.3, 3, Part I). 

2.2. Numerical Integration. 

As pointed out in the Introduction all the numerical operations required for solution of the trim 
equations and the deviant equations of motion are based on the evaluation of definite integrals. 

The reduction from a continuous system to a dynamical system is made by representing the 

continuous (longitudinal) displacement curve ~(x) by its values .~ at a chosen set of collocation points: 
thus every numerical integration will be based on this set of points throughout the calculation. The 

points will be associated with a preferred numerical integration formula and may not, in consequence, 

be equally spaced. 
In the general form of the deviant equations of motion and the trim equations the set of collocation 

points is not specified beyond an indication of their total number. The integration formula is 
represented as a set of numbers assembled into a diagonal, weighting matrix indicated by the symbol 

Efl o 
2.3. Structural Influence Coefficients. 

Since spanwise sections of the wing are treated as being rigid the wing behaves essentially as 
a non-uniform beam in bending. The simple theory of bending is assumed to hold but no difficulty 
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where 

is presented if an approximate allowance for shear deflection is made based on the usual simple 
theory of shear in slender beams. A discussion of the calculation of influence coefficients when 
spanwise flexibility is included is given in Section 5. 

Let EI(x) be the bending stiffness of the wing when treated as a slender beam of variable 
cross-section; then the Influence Function for the beam considered as built-in at the trailing edge 
is most conveniently expressed by the Unit Load Equation (Principle of Virtual Complementary 
Work) in the form 

c(~, ~) = f f  (x-  x') (~-  ~') 
o EI(x')  dx' ,  x < 

3o E~(x') dx', ~ < x. (2.3, 1) 

In the general case these integrals will be evaluated numerically to y i e l d a  set of influence 
coefficients for a chosen set of collocation points (the root station contributes a null row and 
column, see Part I, Section 2.4.4). 

The  Influence Function for the unrestrained wing is given by {equation (2.4, 11), Part I} 

G'(x, ~) = G(x, ~) - G(x, ~')[a(~) + b(~)~'] d~' + d(~) + B(~)x (2.3, 2) 
0 

2(2/-3~) b(~)= 6 ai~) = ~ , ~ (2£- l). 

The second integral may be evaluated numerically using the influence coefficients Gij. 
The  unrestrained Influence Function referred to Attached Axes at the trailing edge is given from 

(2.3, 2) by taking A -- B - 0. The  unrestrained Influence Function referred to Mean Axes at the 
trailing edge is given by taking A, B as in equations (2.4, 12), Part I: these equations may be 
evaluated numerically. 

It will be seen in Section 3 that in setting up the equations of motion the quantities 

3C'(x, ~) and e2C'(x' ~) 

are required for the unrestrained Influence Function referred to Attached Axes. These are given from 
equation (2.3, 1) as 

aG' aG f ,  a(x, ~,) [& db 1 
~: - a~: o ~ + ~ '  d~'; (2.3,3) 

3~G ' 8~G 
a~ 2 0 ~  ' 

where 

and 

a -y= j0z - i~ (~ , )& ', ~ < ~  

f 
~ (~-  ~') 

= oEI (~ ,~&' ,  ~ < ~  (2.3, 4) 

32G 
-a~2 = 0  , x <  

- E I ( ~ ) '  ~ < x .  (2.3,  5) 

23 



The foregoing relations (2.3, 1), (2.3, 4) and (2.3, 5) constitute all the information required on 

the elastic properties of the wing. 
In writing the equations of motion and the trim equations the Attached-Axes unrestrained 

Influence Function is used. The  reasons for adopting Attached Axes are given in Section 3.1. 

2.4. The Aerodynamic Loading. 
For the calculation of the deviant, unsteady aerodynamic pressure loading {item (4) of Section 

2.3.3, Part I} the Slender-Wing Theory is'a9 is employed; spanwise sections being rigid then the 
local loading per unit root chord is dependent only on the downwash at that section. 

Although the same theory need not necessarily be used in calculating the trim state it is convenient 
to do so. However, significant non-linear effects may be present in this type of wing due to leading- 
edge separation so that incalculating the trim state a non-linear theory might be preferable. But 
there seems no alternative at present to the use of linearised unsteady aerofoil theory for zero 
mean incidence in calculating the deviant forces. The use of non-linear aerodynamic theory in 

calculating the trim state is dealt with in Ref. 15.  
In application it is assumed, w i t h  resulting considerable simplification, that the frequency 

parameter of the motion is not too high so that, in the cross-flow plane, the velocity potential 
satisfies Laplace's Equation (see Ref. 20 for these conditions in detail). Then  contrary to almost all 
other unsteady theories it is feasible to dispense with the restriction of simple harmonic motion 
and since a general motion may be dealt with the deviant equations of motion may be solved 
completely in the sense that the frequency and damping of each constituent mode of the total motion 

may be determined. 
The deviant aerodynamic forces are derived as for a flat wing but no difficulty ensues if the 

cross-section is taken as a wing-body combination. The  inclusion of spanwise flexibility is discussed 

in Section 5. 
The  deviant aerodynamic loading per unit  length l(x), taken positive in the negative z-direction 

(Fig. 2), is given by 
( ~  ~ )  (2.4,1) l*(x*, t*) = ~ a?* o~* [s*~w1*] 

where the non-dimensional scheme of Section 2.2.5 of Part I is employed and wi*(x*, t*) is the 
fluid velocity normal to the wing surface (downwash velocity). This velocity is given in terms of 

w*, q* and ~* by (Ref. 8) 
0~* 0~* (2.4, 2) 

and finally, 

The  derivatives with respect to x* do not lend themselves to accurate numerical evaluation; 
however, it will be seen that in setting up the equations of motion these derivatives may be 

eliminated by repeated integration by parts. 

3. The Symmetric, Deviant Equations of Motion for the Slender Configuration referred to Attached 

Axes at the Wing Trailing Edge. 
3.1. The Deviant Equations of Motion. 

For the deviant equations of motion the attached axes are most conveniently taken to be 'wind'  
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(or stability) axes: further, in conformity with the adoption of a linear aerodynamic theory, it is 
assumed that the trim-state, local incidence of any section of  the wing is small. Then in the general 

deviant equations of motion (2.2, 6) of Part I we have, for symmetric motion, 

v e. = ( . . ,  o, we ) ;  ~ .  = (0, q . ,  0 ) ;  ¢ ,  = ¢3 = 0 

¢2 = 0 

~ e  = ( x * ,  o, z e ) ;  L .  = (o, Q e, o) 

and for simple longitudinal bending of the wing as a beam, 

r'  = ( - ~ O[ (x ) '  O' --gFx 

to first order. 
Neglecting rotatory inertia terms and setting 

~ ( ~ )  = c ' (x ,  ~)~c 

in the variational equation (2.2, 6c) Part I, then the deviant equations of motion are: 

du e 
m~,el ~ ~ f i  + w e o  = X e (3.1, 1) 

- - a - f i & e / = z *  (3.1, 2) 
[_ d te  

• dwe '  x eqe  + _ fm(xO)x  e ~ dx  e = Q e  (3.1, 3) m"* ~ - x°e -dU + o ~ J  o 

( d w *  _ q .  dqe 6 :e + d6 :e = 0 (3.1, 4) 
~*(x*) + o ~ef~(x.,  ~e) l . (~. )  + m~%~(~.) ~, ate - ~ i  ~ o t W  

where the reference length l is taken as the root chord (Fig. 1) and k e is the (non-dimensional) 
radius of gyration of the wing about the y-axis. The mass and flexibility parameters mr e, Cr e are 

defined at the reference section as 

m ,  ' pV214 (3.1, 5 and 6) 
m,. e = ~ ,  c~* = EI~ " 

The mass distribution and influence function are expressed in terms of these parameters by writing 

m e ( x  e) = m r e f m ( x * ) ,  G ' e ( x * ,  ~*) = c/*'f~(x e, ~*) 

where the ~c, functions are purely numerical functions of x*, ~*. The mass of the aeroplane is given by 

M e = m e ( x e ) d x  e = m~.e f ~ ( x e ) d x  e = i~m, e (3.1, 7) 
0 0 

where/~ is constant for a given mass distribution. 
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The aerodynamic forces are the sum of the four contributions outlined in Section 2.3.3 of Part I 
where, in this case, the unsteady contribution is given by equation (2.4, 3) based on Slender-Wing 
Theory. 

The trimmed-state aerodynamic forces are 

Z1 W. 
- -  = C ~ 1 '  + C ~ , ~ ' w , *  - 
p V~l  ~ p Vlel ~ 

x~ = o = G 4 -  c~' 
p V I ~ P  " 

Q1  i W x g  m Wl '~Xg ~ 
pVl~l 3 - CMd pVdl~  

pVl~ - l l * ( x  ~) + PlV3(x *) 

- G* (3.L 8a) 

(3.1, 8b) 

(3.1, 8c) 

(3.L 8d) 

where 3(x '~) is the Dirac Function representing the (idealised) control force and it has been assumed 
that the thrust line is along the tangent to the wing at the trailing edge. The dash on the lift, drag 
and moment coefficients is to denote that they are based on 13 and not on wing area: the more usual 
coefficients are given by 

Cz' = CL' T , etc. 

The control coefficient P1 ~ and steady loading/le(X "~) can only be determined by solving the trim 
problem for the flexible configuration; this is done in Section 4. 

It is assumed that thrust remains constant throughout the deviant motion and any change in the 
trim-state drag coefficient due to the deviant deformation is ignored. 

Finally 

d {OCD'~ ]VII + 2CD1' u~ -- Czl '  \ 0o~ ]1 + 

\ 3 M ] 1  M1 + + d 1/~**dx*} 

{ ( d) fl } fl a~. f, - ~rG~ 1 + x~ v -d~ - o la**dxV q~ + rn;~ o fm - ~  dx;* + l;,V~edxV = O, 
o 

I c l  as[* 1 
X ~ _ _  

), ] 6" ~ ofo(x*, ~ )  [/1~(~ :~) + Px*3(~:e)] M,  + 2[lle(~:* ) + Pz~'3(~*)] u* + 

+ G*(~*)~* + l~,~(~-~)q* + l~**(**)¢*(~*) + 

I - d ~ -  q~ @~ ~~ ~*(~"!- I  } 4:~ = o. (3.~, 9) 
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are the complete deviant equations of motion for the slender configuration where lw, o, lq, o, l~, ° 

are the linear operators, 

( a  3)sO2 (3.1, lOa) 

0 

l~ *° - ~ ~[o 

Ox* s*2x* (3.1, 10b) 

Since the integrals involving the aerodynamic operators lw, °, la, ° and l~, ° are to be evaluated 
finally by numerical integration it is clearly important that only ~°(x°) and not its derivatives should 
appear in these integrals since the presence of a derivative of the unknown ~o would require the 
use of numerical differentiation which is notoriously inaccurate. It is possible to achieve this by 
repeated integration by parts at the expense of introducing derivatives of the influence function G' 
and the semi-span sO: however, equations (2.3, 4), (2.3, 5) show that the derivatives of G are 
available as integral expressions and it is assumed that the wing planform will be known closely 
enough to allow calculation of the derivatives of s. But the complete elimination of the derivatives 
of C ° from these integrals depends on the use of Attached Axes situated at the trailing edge of the 
wing and the fact that the wing (or wing-body combination) is pointed. These conditions are 

explicitly 
s ° = 0 at x ° = 1, 

0x o 
_ ~ o -  0 at x ° = 0 .  

Details of the above reduction are not given here {but see equation (3.1, 12)}. 
The integro-differential equations of motion are now replaced by a finite set of ordinary differential 

equations by replacing the function ~°(x°) by the vector {~o} the elements of which are the values 
of ~°(x*) at the (n + 1) collocation points, xj, j = 0 to n. The integrals are evaluated by numerical 
integration using a weighting matrix [f]D as outlined in Section 2.2. Equations 

-(Da n + bll) b12 c13 

b31 ( Da~ + b2~ ) D( Da28 + b2a ) 

b31 ( Da3~ + ba~,) , D( Daa3 + b38) 

{b}~ (D{a}e + {b}~) D(D{a}a + {b}a ) 

(D~{a}'2+D{b}'~+{c}'2) ] - u °  ] 

(D2{a}'3+D{b}'3+{c}a) ] ;o = 0 (3.1, 11) 

are now the (dynamical) equations of motion for the aeroplane where, for convenience, the symbol D 
replaces d/dt °. The origin of axes at the trailing edge will normally be a collocation point but since, by 
definition of attached axes ~e = 0 there, the vector {~o} need not contain a value of C ° for this point. 
Hence the vector {C °} contains only n elements for n + 1 collocation points one of which is at the 
trailing edge. However, the numerical integration and hence the weighting matrix [f]D are carried 
over n + 1 stations. 
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The scalars and row, column and square matrices appearing in the dynamical equations (3.1, 11) 
are as follows: unless otherwise stated row, column and square matrices are of order 1, (n+ l ) ;  
(n+ l ) ,  1; (n+l ) ,  ( n + l )  respectively; a dagger t indicates that the element, row or column 
appropriate to the trailing-edge station has been omitted. 

(3Cj)'~ 
an  = l~rn~ ; b11= \ 3 M ] 1  M1 +2CDI'  

_ ( O C D ' ~  . 
b12 = - CLl' \ O~ ]1 '  qa = CLI' 

= ( O C ~ , ' ~  
b~l \ a M  / i M1 + 2 Czl '  

a~,a = ffm,. * + ~r {1}' {s*2} ; b~ = C, , , '  + rrs *~ 
D 

1) 

D 1) 

t { b ) ' :  ~ . , (c}'~ = 0 
t ~ )  D 

ba, = \ a M  ] 1 M ,  - 2 CL, ' x  d 

aa2=-tzmr*xa*-rr{x~}' I l l  {"~}; ba2=-7r{1}' I f ]  <s "~2} 
1) D 

1) 

If7 {f} tfa}'a = m,  *~ ~.mX*} ' - rr {x'~s*~=} ' 
D D 

d$~2 / t 

~ - ~ +  2)~ 
3p ~ ) 

/le + M ~ -  + 2P ~ {fo}s=o 
1 
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D D 

Eli T(b}~ = - 7r [fo] tdT~) 
D 

13 D 

[:o] E:l EJl ,:]o D I) 

T[c] -- ",: \La~J n 

F d:] [:1~ + [I~] I f  In Ld-?-j~ , 

[:]n 
+ La~eJ LJJn Ld:-: :ej: 

(3.1, 12) 

3.1.1. Steady-state Mach number.--All the aerodynamic forces derived from unsteady 

aerofoil theory are fundamentally functions of the steady-state Mach number. However, in this 

instance for the particular form of Slender-Wing Theory used the dependence on Mach number is 
absent: this fact will be used in the ensuing development but the restriction is not necessary to the 

analysis. 
In addition since the configuration is slender the variation of the steady-state aerodynanfic forces 

with Mach number is likely to be small; that is, we may take b:11, b~l, b a, and {b}l to be, independent 

of Mach number. 

3.2. Solution of the Dynamical Equations qf Motion. 
The solution of the set of homogeneous equations (3.1, 11) is of the form 

u e,  W ~, O, ~i ~ oC e vt* 

where v is in general complex. It is convenient to use the symbols u e, w e, 0, ~i e also as the complex 
amplitudes of the motion e ~* and then the algebraic equations for the determination of the modal 

columns 

and the characteristic roots v/~ are simply equations (3.1, 11) with D replaced by v. The presence of 
a positive real root v k indicates a divergence while the presence of a complex root with positive real 

part indicates an oscillatory instability. 
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The equations are most conveniently dealt with by reducing the second-order equations to an 
equivalent set of first-order equations when the % and the modal columns appear as the eigenvalues 
and eigenvectors of a single matrix with real elements. The form of the equations of motion (3.1, 11) 
is, in terms of partitioned matrices, 

where 

[ AnD + Bn , 

A21D + B21, 

q l - l w ~ l  

A~2D ~ + B2~D + C2~ j q2 

and q2 - 
is 

= 0 (3.2, 1) 

The vector ql contains the ignorable co-ordinates u '* and w% 

Introducing the velocities corresponding to the non-ignorable 
subsidiary variables then equation (3.2, 1) may be rewritten 

where 

and 

( D e  + ' r ) y  = r:0:] 
0 =  I 

LA I 0 A~2 1 

Y =  q~ • 

6 

co-ordinates q2 - Dq~ as 

0 (3.2, 2) 

LB21 C= 

, W =  

The order of the matrix equation (3.2, 2) is (4+ 2n) where (n+ 1) is the number of collocation points 
covering the wing root chord. 

The standard eigenvalue problem is usually stated as 

(vI+ U)x = 0 (3.2, 3) 

and a variety of methods are available, suitably embodied in digital computer programmes, to deal 
with this equation. 

Programmes do not seem to be available to deal directly with equation (3.2, 2). The point seems 
trivial since a premultiplication by 0 -1 or tF-1 will yield (3.2, 3). However, in this case the use of 
the unrestrained influence coefficients renders • singular; in fact • is of rank 2(1+n) (see Part I, 

Section 2.4.4). This is seen immediately if it is noted that parts of the matrices A21 and Az~ are 
derived from the influence matrix [fa] by multiplication by non-singular matrices. The matrix ~ is 
not generally singular due to the presence of the unit matrix in C22: however, it will certainly be 
singular whenever the static stability is limiting, that is, when v = 0 is a root of equation (3.2, 2). 

In view of these considerations the following course is adopted. Let/3 be any arbitrary constant, 
real or complex; then equation (3.2, 2) may be written 

((v-/3)O + ( ' r + / 3 0 ) ) y  = 0. (3.2, 4) 

Let/z = 1/@-/3) then the equivalent eigenvalue problem is 

+ ,I)y = 0 (3.2, 5) 

wherein the root v = 0 appears simply as - 1//3. The matrix W + /30  will only be singular if it 
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happens that 3 is an eigenvalue of equation (3.2, 2). The choice of/3 is best dictated by a knowledge 
of the probable value of the roots of smallest modulus of equation (3,2, 2). It is clearly convenient 

and indeed essential for many digital-computer programmes to take ]3 real. 
For a given aeroplane layout the non-dimensional scale parameters to be specified for a solution 

of the equations are: 
mr pVI~I~ and Wx s = W 

m r * = - ~ ,  c , * -  EI  r p Vl~12. 

Also, before the equations may be solved the trim state must be known: we thus study the stability 
of the trim state appropriate to a forward speed V 1 and weight parameter W£% The parameter WI* 
is thus necessarily a variable parameter for a complete study of stability. Should the altitude be fixed 
(at least for one series of Calculations) then the parameter mr s is fixed: the parameter crs is most 

conveniently replaced by the quotient 

er e 
o'S = WI* 

where 
W12 (3.2, 6) 

= EZ,. 

is a fixed parameter for the aeroplane. It may be noted that since W = Mg then 

WI* = Ixmr*gl* (3.2, 7) 

where gl* is the Froude number gl/V1 ~. 
Thus in the equations of motion (3.1, 11) the factor 1/cr* multiplying the unit matrix is replaced 

by WlS/er *. Then the~coefficients b n ,  b n ,  q3, b~, bst, the column {b}l and the factor W~*/%.* vary 
according to the trim state considered: all other coefficients are fixed except for b22 but if we neglect 
CDI' in comparison to 7r(s*2)x.=0 (the lift-curve slope of the rigid aeroplane) then this coefficient may 

also be considered constant. 
It may be noted that when the change in forward speed u s is suppressed the first row and first 

column of equations (3.1, 11) are eliminated. These contain all the coefficients dependent on the 
trim state with the result that reference to the trim state is now completely absent from the deviant 
equations of motion; the most significant term dependent on the trim state is {b}l. The significant 
parameter for this reduced set of equations is cr*: this is a purely aeroelastic parameter in the sense 
that change in stiffness EI r is indistinguishable from change in V ~ (for constant altitude). 

The free vibrations of the aeroplane are given from equations (3.1, 11) by taking all forces except 
inertia forces to be zero. The two parameters mr* and crs now combine to yield the single parameter 

vrs = v~m~%* (3.2, 8) 

provided the contributions to the inertia coefficients due to aerodynamic inertia are ignored 
(in-vacuo vibrations). It is much more convenient for the calculation of vibration modes and 
frequencies to replace the attached-axes influence coefficients by influence coefficients referred to 
mean axes (at the trailing edge); the equations for the in-vacuo vibration modes are then simply 

1 (3 .2 ,  9) 
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where [aM] is given by the appropriate equation of the set (3.1, 12) with the mean-axes influence 
coefficients substituted for those derived for attached axes. It may be recalled that, as defined, the 
inertia coefficients [am] are proportional to m**. 

4. The Trimmed-Flight State for the Slender Configuration. 

4.1. Trimmed Level Flight. 

The calculation of the trim state is based on the application of Slender-Wing Theory for rigid 
spanwise sections as for the deviant equations of motion. Accordingly it is assumed that the 
aerodynamic forces are not dependent on Mach number. 

The aeroplane structure is again represented by the influence function for attached axes at the 
trailing edge, the control force is represented by a concentrated load at the trailing edge and the 

thrust is assumed to be adjusted to give level flight at a given airspeed. 
As defined in Part I, Section 2.1.1 suffix 0 is used to designate a reference configuration which is 

not necessarily a real equilibrium configuration for the aeroplane. Here it is taken to mean the 
aeroplane configuration when completely unloaded. Thus the specification that the aeroplane has a 
certain 'built-in' camber refers to this idealised state: the uncambered aeroplane is defined to have a 
plane mean surface in the reference configuration. It may be imagined that the reference 
configuration will result" from the aeroplane being supported at a great many points so that the 
weight is locally equilibrated. When reference is made to the 'rigid' aeroplane it is to be understood 
that the corresponding invariable configuration is the reference configuration with or without 
built-in camber as the case. may be. 

For the calculation of the trim state the attached axes are most conveniently taken so that the 
x-axis is tangential to the wing mean surface at the trailing edge; the (x, y) plane then defines the 
mean surface of the uncambered reference configuration. The overall incidence of the aeroplane 
is the incidence of the trailing-edge section for this choice of axis orientation. 

The aeroplane is taken to have a built-in longitudinal camber ~0*(x*) which leads to the 
aerodynamic loading lo:~(x*): the total aerodynamic load is thus 

II~(X *) = lo~#(X q¢) -- 71" ~ -- d x  * ].j  

and if lo* is also calculated on the basis of Slender-Wing 

Assuming the local incidence to be everywhere small, 

equations (2.2, 1)} 
M'g1* + ZI* = 0 

where 

Theory then 

- d x . ]  1 • 

(4.1, 1) 

(4.1, 2) 

the equations of equilibrium are {Part I, 

M * g l * x o * -  Qz* = o 

( ) - c**fa( x~,  ~ )  {~1"(~) + m~(~q~)glg~)d~* 0 
o 

= - 11.(  , )  - 

is the total aerodynamic loading. 
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(4.1, 4) 



The  expanded forms of these equations are: 
t , i  

7rS#2 ~*=0 Wl~ -- CollgOl@ -- J o  

V~ *x * - ~r s*edx * wi* - "rr ~i*dx* - lo*xedx* 
o o 

¢ i * ( x * )  + fa (x* ,  ~*) -- ~ gOie+ = - ~  S *~ + 
c, " ~  o 7r d~:* ] 

+ lo*(¢*) + P~*~(~*) - %.%~(~*)/ 
1 

where  

lo*dx* - Pt* = 0 (4.1, 5a} 

= 0 (4.1, 5b), 

= 0 (4.1, 5c), 

Wi* = M*gi* = ~m~*gi* = ~w~i*. 

As with the deviant equations of motion these equations of equilibrium are replaced by a finite 

set of algebraic equations in the unknowns PI*, wi* and the vector {~*}i using the same set o f  
collocation points: as a consequence some of the resulting matrices are identical to those already 
derived and where this is the case the same symbol is employed. The  resulting inhomogeneous,. 

algebraic equations of equilibrium are: 

0 {c}'3 WI* (4.1, 6), 

? 01 
where {fa0} is the first column of [fa] and 

1 i/o] If I {f~} (4.i, 7), { h } =  - ;  D 

b~o = 0 

bao = - {c}'~ {¢*}o (4.1, 8). 

{b}0 = - [c] {~*}o 

when 10* is calculated from Slender-Wing Theory {equation (4.1, 2)}. It should be noted that the 
expressions (4.1, 8) apply only for attached axes which are tangential to the wing at the trailing 
edge: the fact that bz0 is zero for these axes for example is merely reflected in the particular meaning 
given to overall incidence w*. Attached axes could equally well be chosen so that the x-axis jo ined 

the trailing edge to the wing apex for the fixed camber shape ~0". 

4.2. Solution of the Trim Equations for Level Flight. 

Since interest is fixed in high-speed-flight 'conditions it is convenient, with close approximation,. 

to replace WI* by the lift coefficient CLI'. 
Equation 4.1, 6 shows that the trim-state solution is the sum of two parts: 

(1) the trim state of an uncambered aeroplane, 

(2) the equilibrium state of a weightless~ cambered aeroplane. 

It is convenient to retain this division of the complete solution and for this purpose the suffices 

u and c are used to refer to solutions 1 and 2 above respectively. 
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The distance of the aerodynamic centre of the rigid aeroplane from the trailing edge appears 
naturally as a parameter in the trim solution. When Cz) ,' is neglected the coefficient b2~ is the lift 
of  the rigid aeroplane per unit angle of attack {equations (3.1, 12)} while ba= is the (aerodynamic) 
moment about the trailing edge per unit angle of attack: thus if we define ~e as the distance of the 
:aerodynamic centre of the rigid aeroplane from the trailing edge then 

ba2 = - ~*'b2~. 

'The quantity x~ e - ~ will be recognised as the c.g. margin of the aeroplane. 
Rearranging the force and moment equations of the set (4.1, 6) {and using the first Of equations 

,(4.1, 8)} we have 
P~*~* = CL~' ( ~ * - % * )  + ba0 - {c}'a {~}~ (4.2, la) 

Wl" . _ Cz.,'%*" ba0 {c} ~3 ¢~ex (4.2, lb) 
b22£e bzzg ~ + b~2ge t .I1 

.and substituting in the last n equations of (4.1, 6), 

CL 1, {foo} - ~ {b}~ 
L ~  l + [el - ~,, {c!'~ {/~'~}1 

ba°-'] b"°~. (4.2, 2) 

The calculation of {~e}~ from (4.2, 2) involves simply the solution of n simultaneous equations: 
-the left-hand-side matrix depends only on the stiffness and aerodynamic characteristics of the 
.aeroplane. Substitution of the solution {~*}x in equation (4.2, lb) then gives w~e and thence p c  is 
.obtained from equation (4.2, 1.@ 

At low speeds the left-hand side is effectively (C~,'/e,2)I so that the part solutions {~*}~ and 
{~e}e tend to 

{b}zxo*] (%* 1) (~*},~o,,,.~vo~a = er * [ - ( { k } +  b~z2* ] +  {foo} \2~ - ] (4.2, 3) 
:and 

{~}~ Io,vsveoa CL ~, __ b z ~ # , ]  - {fGo} 2~_j. (4.2,4) 

Thus at low speeds (PI~) j~  is effectively that for a rigid aeroplane with" the constant camber shape 
{~}~lo,v~v~od while (P**)j~" is effectively that for a rigid aeroplane with the total camber shape 
{~;~}0 + {~}c ~ow ~p~a ({~**}~ is inversely proportional to CL~' ). Equation (4.2, 2) can now be written 
in the alternative form 

where 

[C 1 I _ CLI' 1 
Le - + [K] - • er~ e~. e 

IX]  = [ c ] -  {c}'3 • 

T h e  expression in the bracket on the right-hand side of equation (4.2, 5) is constant. 

(4.2, 5) 

(4.2, 6) 
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Finally, substituting the expressions (4.1,.8) in equation (4.2, 4) it is seen that 

1 
er.y¢. (eL1  t {~  }e low s!oeed) = [K]) f~ ' :~}o • (4.2, 7) 

4.3. Behaviour of the Trim Solution. 

The following is a brief discussion of tl~e typical behaviour of the trim solution for the slender 
configuration with variation in speed. This behaviour is most clearly illustrated by a consideration 
of the trim curve of the aeroplane, that is, the curve of control coefficient, P1 e, against lift coefficient, 

Czr 
A quite general picture of the probable behaviour of the trim state for the slender configuration 

can be deduced by consideration of equation (4.2, 5). It may be shown for example that the shape 

of the trim curve at high speed is determined largely by the low-speed camber shapes {~}u low speea 
and {~}c low speea" This conclusion appears in Ref. 21 wherein a full discussion of the trim state is 
undertaken together with the connection between the shape of the trim curve and the static stability 
of the aeroplane. Ref. 21 also deals with the application of the usual ideas of manoeuvre theory 16 to 

the slender configuration, normally embodied in the concept of 'elevator angle per g'. 
The control coefficient P1 ~ (proportional to elevator angle), incidence wl*" and displacement 

{~}1 become indefinitely large for zeros of the determinant 

c 1' s + [K] . 

er g< 

Thus the speed, glmax which gives the first zero {i.e. (CZ, lt)min } of this determinant represents a 
theoretical maximum for a possible trimmed state of the aeroplane: from a practical point of view 
Pt e, w~ e and {~*}1 will become large as thi s speed is approached: Hancock ~5 has termed this the 
Maximum Trim Speed. Since linear aerodynamic theory is being used coupled with the assumptio n 
of small relative deformation such effects need to be suitably interpreted: the numerical example 
of Section 6 shows that deformations remain quite small up to near the Maximum Trim Speed 

although the effect on control coefficient is considerable. 

Clearly 
( C L / ) m i n  EIr = 

is the largest (dominant) eigenvalue of the matrix [K]. The Maximum Trim Speed depends only 
on the aerodynamic and stiffness properties of the aeroplane and not on the weight distribution. 
A variation in stiffness EI~. is indistinguishable in this context from a variation in pV 2. The 
eigenvalue itself depends only on the relative distributions of stiffness and local aerodynamic loading. 

Let V s be the (lowest) speed for limiting static stability of the aeroplane, then (Appendix I) at 
this speed the slope of the trim curve, ¢lPeJdCz ', is zero. If V s < Vm~ x then (Appendix I) the slope 
of the trim curve suffers a change in sign between some low speed and the Maximum Trim Speed 

while if V s > Vma ~ there is no such change in sign. 
Some typical trim curves for an aeroplane without built-in camber are shown in Fig. 3. Curve 1 

consists of the CL-axis and the two branches of the Maximum-Trim-Speed line: it will occur in 
the very particular case when the local weight is exactly balanced by the local aerodynamic loading 
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= "" = 2 e. If xoe = 2"* but the weight and of the rigid aeroplane, that is, {k} {b}2/b~ and xy 'x- 

aerodynamic loading (due to incidence) do not coincide the trim curve will be as curves 2 depending 
on the sign of {c}' 3 {[le}. In the usual case {k} and {b}~/b22 will differ and for an aeroplane which is 
statically stable at low speed xg e > 2 e. The basic trim curve Of the rigid aeroplane is a straight 
line of slope - (xo*-2 e) passing through the origin C L' = 0, P* = 0: such a line is shown in 
Fig. 3. Generally speaking the trim curve for the flexible aeroplane will be like curve 3 or 4, the 
shape of these curves being determined primarily by the 'natural', low-speed camber shape, 

{~*}~lows~a. While these curves are probably typical it cannot be asserted that a trim curve 
cannot cross or re-cross the corresponding rigid-aeroplane trim curve (Ref. 21). Trim curve 3 
indicates that static instability occurs before the Maximum Trim Speed. 

5. Allowance for Spanwise Flexibility. 

When spanwise flexibility is to be allowed for, the matrix of influence coefficients refers to an 
• ordered grid of collocation points distributed over the wing surface. Similarly, the mass and 

aerodynamic loadings are functions of position in a plane. A consistent integrating scheme for 
integrals applying over the wing planform is required to replace that applying only along the root 
chord of the wing. 

When Slender-Wing Theory is used then the pressure loading over any spanwise section is 
dependent only on the (slSanwise) variation of downwash over that section. When the 'low-frequency' 
form of Slender-Wing Theory is adopted the determination of the pressure at a collocation point 
in terms of the downwash is straightforward. Thus as in Refs. 18 and 19 the velocity potential is 
expressed, on the wing or wing-body combination, as a Fourier sine series whose coefficients are 
determined by definite spanwise integrals of the downwash. These coefficients may thus be expressed 
in the form {k}' {wl} where w/i is the downwash fit station i and i carries only the values pertaining 
to stations on that section. The velocity potential and hence the pressure at any point in the 
cross-section is given by 

{p} -- [ a] {w,} 
for a single spanwise section. 

Finally the matrix of aerodynamic influence coefficients consists essentially of a partitioned matrix 
whose matrix elements (of different order) lie only along the diagonal: each 'element matrix' refers 
to one spanwise section. The downwash w/i at any point is then expressed in terms of w*, qe and 
{~'} as in equation (2.4, 2). 

In carrying out the spanwise integrations it is more/ important that the scheme of numerical 
integration used be dictated by aerodynamic rather than structural considerations. 

6. A Numerical Example. 

6.1. Introduction. 

The following numerical example illustrates the application of the general analysis for the 
slender configuration to a specific case and the numerical results obtained serve to illustrate some 
of the conclusions already drawn concerning the behaviour of this type of aeroplane. No attempt 
has been made to choose stiffness and mass distributions which are likely to be met in practice but 
the overall stiffness, mass and weight parameters have been given values which are probably typical 
for a possible supersoni.c transport. 
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The configuration is chosen to be a delta wing; the stiffness distribution varies directly with the 

local span and is therefore linear. Two mass distributions having the same total mass and c.g. 

position but which give very different low-speed camber shapes are assumed. 

More realistic configurations will differ from this in having higher stiffness over the central 

parts of the wing and. less stiffness at the trailing edge. At the apex there will, in a practical case, be a 

nose extension having a not inconsiderable mass and some stiffness. The  general mass distribution 

is likely to resemble the stiffness distribution being somewhat concentrated in the central part of 

the wing. All these points are however incidental to the presentation and illustration of the general 

analysis for the slender configuration and belong properly to an extended design study of this 

type of aeroplane. 
The calculations are carried out for a fixed altitude of 40,000 ft. at which height the cruising 

Mach number would be expected to be close to 2. 

6.2. General Specification. 

The reference cross-section is taken to be at the wing trailing edge. The stiffness distribution 

EI(x*) is taken as 
EI(x ~) = E I / 1 - x ' %  (6.2, 1) 

The two mass distributions, referred to as (A) and (B) respectively, are taken as 

me(x e) "m"*~ (2 - x ~ - x ~2) = ~ -  

me(x ~) = rare (1 + 9x* -- 25x .2 + 20x *a - 5x .4) 

and 

giving a total mass M* = (7~12)mr* or {equation (3.1, 7)}/z = 7/12. 

(A) (6.2, 2a) 

(B) (6.2, 2b) 

The centre of mass of both distributions (6.2, 2) is at xg e = 5/14 while the aerodynamic centre 

due to incidence for a delta wing is at 2~ = 1/3 so that c.g. margin = ( x g ~ - 2  e) - 0.0238 . . . 

The weight/stiffness parameter er e = Wl2/EIr is taken to be unity: this va lue  gives static 

deflections of the wing due to loads of the order of the weight of the wing of order 1/20. The  

stiffness parameter cre for e/e = 1 is then 

p V 2# 1 
c ~ * -  EL  - C~"  

The relative mass parameter M ,  = M/pl  a is chosen to be 3.5 at 40,000 ft (about '0.9 at sea level). 

The  wing loading is also, in effect, fixed by the choice of M* since 

W 4Mg _ 4gM*pl 
wing loading - s~.l - 12 

so that, at 40,000 ft, wing loading ~ 0-271. While an actual specification of l is not necessary for a 
solution of the non-dimensional equations of motion and equilibrium it will be convenieilt to choose 
a typical value for l; this is done by fixing on a wing loading of about 55 lb/ft 2 giving l = 200 ft. 

The  cruising lift coefficient (based on wing area) at 40,000 ft and Mach 2 is then 0.05. 
The foregoing specification is summarised in Table 1 together with a diagram showing the two 

mass distributions. 
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6.3. Numerical Integration. 

The number  of collocation points used is seven, distributed evenly along the wing root chord with 

the end points at trailing edge and wing apex. The numerical integration formula used is Weddle 's  

1 

20 

Rule giving the weighting matrix 

-1 
5 

for integration with respect to x e. 

6.4. The Influence Coefficients. 

1 
6 

1 
5 

1 

For the simple stiffness variation of equation (6.2, 1) the cantilever influence function for the 
wing 'built-in' a t t h e  trailing edge is simply 

xe2 
fa(x e, see) = (1 - see) {(xe - 1) In (1 - x  e) - x e} + -2--' xe ~< see 

see2 
= ( 1 -  xe) {see - 1 )  In (1-se  e) - see} + 2 - '  see ~< xe. (6.4, 1) 

An evaluation of these expressions gives }he matrix of influence coefficients referred to the 
collocation points; these are given in Table  2. 

The  unrestrained influence function for attached axes at the trailing edge js given, through an 
application of equation (2.3, 2), as 

xe2 
fo(x e, see)[ attaes~a ax~s = ( 1 -  see){(xe-1) In  ( 1 - x  e) - x*} + T - 

X#2 
12 2 e) + see (6 + 2 e_ . e  < #, 

see~ 
= (1 - xe){(se e -  1) In (1 - se*) - see} + - 2  _ 

Xe2 
12 {6see + 2(see- 1)xe + (1-2see)xe2}, x e > see. (6.4, 2) 

The  matrix of unrestrained influence coefficients referred to attached axes at the trailing edge is 
given in Table 3. 

The  unrestrained influence function for mean axes at the trailing edge is given through an 
application of equation (2.4, 12) of Part I; there is no advantage in giving the analytical expressions 

explicitly. The  matrix of unrestrained influence coefficients referred to mean axes at the trailing 
edge is given in Table  4. 

The  simple stiffness variation chosen has allowed the analytical determination of the influence 
functions but  in the general case the matrices of influence coefficients will be the outcome of numerical 
integrations. However,  the general appearance of the matrices of influence coefficients will always be 
similar to those matrices given as Tables 2, 3 and 4. 

The  derivatives offa(x e, see-) {equations (2.3, 3), (2.3, 4) and (2.3, 5)} are also simply determined; 
these matrices are not given here. 
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6.5. The Deviant Equations of Motion. 

Little comment is required on the particular form taken by equations (3.1, i i )  and (3.1, 12) for 

this numerical example. 
However, three points require brief mention. First, the drag polar is taken as 

1 
C D = 0-020 + - C5 ~ (6.5, 1) 

qT 

giving 

- -  C L .  

In evaluating b2~{equations (3.1, 12)} the contribution from Cz~ is neglected; this gives a maximum 

error in b~2 at C L = 0.4 of 5%. 
Secondly, since for the delta wing 

dse2 
- 2s,.e(1 - U') 

then {equations (3.1, 12)} 

{bh 
1 3  

But by the definition of the unrestrained influence function used (Section 2.4.4 of Part I) 

0 f o   e)(1 - e = 0 

so that, for these particular circumstances, {b}~ = 0. 
Thirdly, at the wing apex the mass, weight and aerodynamic loading are always zero. The result 

is that the apex point does not constitute an independent collocation point although it is of 
importance when carrying out the numerical integrations. Thus the displacement of the apex point 
~G e may be completely determined in terms of the remaining ( n - 1 )  displacements and the 
variables u e, w e and 0. In effect the last column of the deviant equations of motion (3.1, 11) consists 

of zeros except for the diagonal term which is simply CL1'/6. e. The last row and column may be 
omitted and the remaining set of equations solved; the last row then gives ~6 ~" in terms of the 
remaining variables. This circumstance is a result of the unreal conditions existing at the wing apex 

in this idealised example. 

6.6. The Equations of Equilibrium. 

The remarks made in the previous paragraph concerning {b}~ and the role of the apex station 
also apply to the equations of equilibrium (4.1, 6). The solution of five simultaneous equations and 
substitution in the sixth gives {~e}l; wl e and P1 e are then found from equations (4.2, 1). These 

calculations are easily performed on a desk calculator. 

6.7. Sohttion of the Trim State. 
6.7.1. Maximum trim speed.--The Maximum Trim Speed was found by determining the 

dominant eigenvalue and eigenvector of the matrix [K] {equation (4.2, 6)} by simple matrix iteration 

performed on a desk calculator. This gave 

E L . 1 1 
P(Vm~x)~l 4 c,2 164 
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When the connection between C L' and q.'~ is made by the choice of er 'x~ (Table ]) then 

1 
( CL'),,m, - 164 

o r  

(CL)mix~ = 0.049. 

Thus the Maximum Trim Speed is fractionally above the noxninal cruising speed of this particular 
aeroplane. 

The corresponding eigenvector (relative to attached axes which are tangential to the trailing edge) 

is plotted in Fig 4 normalised to unit amplitude at the apex station. The x-axis is rotated through 

the appropriate angle w, :~- to give the shape of the aeroplane relative to a horizontal velocity vector. 

6.7.2. Trim curves in levelfl ight.--For each mass distribution the trim curve Pe  ~ C L for 
level flight is plotted in Fig. 5. It is seen that for mass distribution A the aeroplane is statically 
unstable at speeds greater than thatcorresponding to C L ~ O. 1. 

The deformed shapes of the aeroplane at a series of speeds are shown in Figs. 6a and 6b wherein 
the deformation is plotted relative to the 'tangential' attached axes while in Fig. 7 curves are plotted 
of incidence w~ e against C L. The order of magnitude of the relative deformation even at speeds 
approaching the maximum trim speed fully justifies the use of small-deflection theory. 

6.8. Solution of the Deviant Equations of Motion. 

6.8.1. The rigidaeroplane.--As a basis of comparison the deviant motion of the idealised 
rigid aeroplane appropriate to mass distribution A was computed. The roots of the resultant quartic 
characteristic equation typically representing the short-period and phugoid motions are represented 
by dotted curves in Figs. 9 and 10. The idealised rigid aeroplane appropriate to mass distribution B 
differs only in the value of the radius of gyration and since this difference is small (Table 1) the 
roots are little different from those for mass distribution A: the frequency of the sh0rt-period 
motion may be expected to be increased by the factor huA/h,a~ , that is, by about 8%. 

6.8.2. The normal modes of free vibration.--The normal, free (in.-vacuo) vibration modes 
were computed from equation (3.2, 9) which uses the matrix of influence coefficients referred to 
mean axes. Only the first two modes and first three frequencies are considered to "be of acceptable 
accuracy. The normal modes are plotted in Figs. 8a and 8b for each mass distribution together with 
the corresponding values of the non-dimensional mass-stiffness-frequency parameter %.* {equation 

(3.2, 8)}: the true frequencies are also given assuming a reference length of 200 ft, other parameters 
being as given in Table 1. At 40,000 ft the still-air natural frequencies are of the order of 98~/o of 
these frequencies. 

6.8.3. The flexible aeroplane.--The complete deviant equations of motion when reduced 
to an equivalent first-order system as detailed in Section 3.2, yield a matrix equation of order 
14 x 14. The characteristic roots were obtained by the application of a matrix iterative programme 

to the matrix (~F+~q~)-lq) of equation (3.2, 5). The complete programme received the matrices 
() and ~F as data. 

These calculations were performed for a series of values of CL, the first eight roots only being 
found: higher roots would be of doubtful value with the small number of collocation points employed. 
The roots computed thus included those roots corresponding to the second normal mode. The 
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results are presented in Figs. 9 to 12 as curves of the inverse of (real) time to half (or double) amplitude 

and curves of frequency in cycles per (real) second plotted against C1;. The roots are easily 
identifiable as stemming from either the rigid-aeroplane roots or the free-vibration motion and these 
figures are titled in this sense. This type of root label is used for convenience in presentation only 
and should not be taken to imply that the mode of motion associated with any particular root or 
root-pair remains similar in character at all speeds. 

Since the model is not particularly representative there is little point in refining the calculation 
by employing more collocation points. 

6.8.4. Trim curves in shallow pu l l -ou t . - -The  relation of the manoeuvre theory of Gates 
and Lyon to the possible dynamic behaviour of the short-period motion is discussed in Ref. 21. The 
curve of control coefficient per g (equivalent to 'elevator angle per g') against C L is easily deduced 
from the equations of equilibrium for a shallow pull-out with constant centripetal acceleration when 
the variation in the direction of the gravity vector relative to the body axes is ignored. These equations 
are identical to equations (4.1, 6) except that the column 

1 

nCLI' 
1 

is added to the right-hand side. Thus for this 'trim' state we may write 

P1 ~ = (Pl*)u + (Ple)e + n(Ple)n 

where n is the centripetal acceleration. Since, at constant forward speed, 

dPz* 
dn - (Px~)n 

this last is effectively the 'elevator angle per g'  of Manoeuvre Theory.  Vanishing of the 'elevator 
angle per g' indicates limiting static stability of the deviant equations of motion when the change in 
forward speed is suppressed but it is precisely when this occurs that the exclusion of this variable 
(and with it the attitude angle 0) is inadmissible. The connection between 'elevator angle per g' 
and dynamic stability needs to be established for the slender configuration by the investigation of 
many numerical examples. 

The curve of 'control coefficient per g' against C L for the particular aeroplane considered here is 
given in Fig. 13 (for 40,000 ft). 

7. Discussion and Conclusions. 

This discussion is concerned more with the application of the general method presented in Part II 
for assessing the dynamic behaviour of the slender configuration than with the particular numerical 
results found in Section 6. 

Although the scalars and matrices appearing in the equations of motion were obtained on a desk 

calculator for the example of Section 6 it will be clear that this stage of the calculation could readily 
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be programmed for a digital computer, the only operations involved being scalar and matrix 
multiplications. The basic data would then consist of: 

(1) a set of weighting numbers relating to the collocation points; 

(2) the values of bending stiffness, EI, at the collocation points; 

(3) the values of semi-span and its derivatives at the collocation points; 

(4) the values of mass per unit length at the collocation points; 

(5) the relevant non-dimensional scale parameters; 

(6) distribution of built-in camber, if any. 

The trim problem being readily amenable to programming then the solution of this and the deviant  
motion become available from one simple set of basic data. 

The drawbacks of the method are, first, the neglect of spanwise flexibility and, secondly, the 
use of Slender-Wing Theory. On the first count the main defence is one of ease of application and 
simplicity. It was indicated in Section 5 how an allowance could be made for spanwise flexibility 
and although this is straightforward the directness of equations (2.3, 1) etc. is lost. Similarly the 
use of Slender-Wing Theory is justified by its simplicity compared to other low-aspect-ratio theories 
for unsteady flow. Also, in the region of interest the main flow is supersonic so that the main 
drawback of this wing theory-that it does not satisfy the Kutta condition in subsonic flow is not 
serious. Furthermore the use of any other unsteady-wing theory leads to the usual restriction to 
simple harmonic motion. 

A third criticism may be directed at the large number of degrees of freedom required to obtain 
reasonable accuracy up to say the .third or fourth pair of roots of the deviant equations of motion 
compared with the use of normal modes as co-ordinate functions. This is, of course, true but it must 
be remembered that the calculation of the normal modes will have involved in general the use of 
three to four times the number of degrees of freedom as the number of modes obtained. 

Fourthly there is the representation of a flap control by an unspecified concentrated force applied 
in the immediate region of the trailing edge. This defect is easily overcome by replacing this force 

by that derived from a flap control using Slender-Wing Theory and the introduction of a finite 
stiffness connection to the wing proper. 

T h e  author considers the method as presented to be suitable to the assessment of the effects of 

flexibility on the overall motion of a slender configuration in the vital early design stage when the 

structure is largely unknown in detail. At this stage the application of an involved analysis is 
impossible both for lack of information and for lack of time. The ability to more or tess arbitrarily 
change the basic data outlined at the beginning of this section quickly and easily is the paramount 
consideration. 

For the very simple example considered interest in the numerical results lies in the change in 
behaviour of the perturbed motion with change in mass distribution. In  particular, how far does 
the low-speed camber shape reflect the probable dynamic behaviour of the aeroplane ? 

Mass distribution A gives a trim camber shape which is always convex upward (Fig. 6a) and the 
trim curve (Fig. 5) indicates a static instability at C L ~ 0.1: the transition from a pair of complex 
roots to a real pair is extremely rapid and in the region 0.10 < C L < 0. 125 the iteration of these roots 
is very slowly convergent. Normally a static instability is accepted with some equanimity but in this 
case the time to double amplitude is down to 5 sec by C L m 0.06 (Fig. 9a) and is rapidly decreasing 
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with further decrease in C 5. The modes associated with the 'phugoid' roots alter in character 
throughout the speed range and at high speed both the stable and unstable modes show increased 
contributions from change in incidence and elastic deformation; the mode associated with the 

'short-period' roots does not change in character. 
Mass distribution B gives trim camber shapes which are (largely) concave upward (Fig. 6b) and 

the trim curve (Fig. 5) indicates no static instability. The curve of control coefficient per g (Fig. 13) 

however shows first a reduction and then a change in sign of P,,,e at C L ~ O. 06: this would indicate 

a static instability of the equations of motion with change in forward speed suppressed. The full 

equations of motion cannot show an initial static instability with decrease of C L and any instability 
must be of a dynamic nature. For this mass distribution the modes associated with both the 

'phugoid' and 'short-period' roots change in character as speed is increased, the former having 

increased contributions from change in incidence and elastic deformation, the latter having 
increased contributions from elastic deformation only. The 'short-period' frequency drops to zero 

at almost exactly that value Of C z for which the control coefficient per g is.zero (Figs. 10a and 13) 
and subsequently this motion becomes a pair of subsidences. The 'phugoid' frequency (Fig. 9b) 

increases rapidly for speeds greater than that for C 5 ,,~ 0-08 and a dynamic instability appears 

in this mode at C L ~ O. 065 giving roughly the same order of time to double amplitude as for mass 

distribution A. 
Two general points should be mentioned. First, any change in the low-speed camber shape (or 

indeed the trim camber shape at any speed) depends on the difference between the mass distribution 
and the steady aerodynamic loading and hence any uncertainty in the steady aerodynamic loading 
will be reflected in the dynamic behaviour of the aeroplane: this leaves aside the question of the 
accuracy of the unsteady aerodynamic loading. An accurate assessment of the trim state and dynamic 
behaviour for this type of aeroplane places a heavy demand on the aerodynamic theory and in this 
respect the position, at present, is far from satisfactory. An additional point of importance for the 
slender aeroplane is the fact that since weight and aerodynamic loading are reacted locally then 
strength considerations cannot be expected to yield the same order of stiffness margins as may be 

expected from a conventional aeroplane configuration. 

The second point concerns the. representation of the aeroplane by its normal-modes either for 
static or dynamic calculations. The change in first normal-mode frequency for the two mass 

distributions is not large nor is the first normal mode shape very different (Figs. 8a and 8b). The 

result is that the equations of motion for these two cases in terms of the overall degrees of freedom 
plus one normal mode may not be adequate to reflect the large differences in the dynamic behaviour 

of the aeroplane. It is clear that a representation in terms of small translation, small rotation and 
first normal mode will certainly be inadequate to describe the dynamic behaviour. While the use 
of the first normal mode in estimating the trim curve might be adequate for mass distribution A the 
presence of the reflexed region in the trim camber shape for mass distribution B (Fig. 6b) means 

that this representation would be inadequate in this case. 

The question of the response of the aeroplane to controls or gusts has not been discussed. When 
the equations of motion are linearised for these cases the deviant equations of motion simply become 
an inhomogeneous set and the usual methods of solution are available. While the vanishing of the 
control coefficient per g is not necessarily a serious stability consideration it probably indicates 
undesirable response characteristics: this exardple, since it does not include response calculations, 

cannot shed light on this point. 
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NOTATION 

Air density 

Airspeed 

Reference length 

Mass per unit volume 

Total mass 

Euler angles 

Position vector 

Displacement vector 

Velocity of origin of body axes 

Angular velocity of body axes 

Gravitational acceleration vector 

Inertia tensor 

Change in inertia tensor due to displacement 

Overall force 

Overall moment 

Surface traction 

Stress tensor 

Strain tensor 

Transverse displacement of slender beam 

Loading on slender beam 

Influence function for slender beam 

Denotes rate of change of vector relative to moving axes 

Denotes rate of change of vector relative to inertial axes. 

Reference state 

Equilibrium state 

Fixed axis system 

Moving axis system 

indicate row, column, square and diagonal matrices respectively 
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NOTATION--continued 

PART 

g 

l(.) 

w 1 

Y 

s(.) 

M 

W 

xo 

c d  

II (in addition to the Notation of Part I) 

l Reference length--length of slender configuration 

Gravitational acceleration 

Aerodynamic loading per unit root-chord length 

Fluid downwash velocity 

Complex frequency parameter 

Local semi-span 

Mass per unit length 

Total mass of aeroplane 

Total weight of aeroplane 

Position of centre of mass 

Position of aerodynamic centre due to incidence 

Bending deflection 

Lift, drag, etc. coefficients based on l 2 

Lift, drag, etc. coefficients based on wing area 

Asterisk denotes corresponding non-dimensional quantity 

Subscripts 

r 

Ef o 

Reference section for definition of overall parameters 

Trim solution for uncambered aeroplane 

Trim solution for weightless, cambered aeroplane 

Trim solution for shallow pull-out 

Weighting (or integrating) matrix 
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APPENDIX I 

Neighbouring States of Equilibrium--Static Stability 

Consider the neighbouring states of equilibrium wl e, P1 e, {~e}l appropriate to CLI' and w2 e, 
p-*-, {~e}z appropriate to CL(: when the states 1 and 2 are close then we write 

and 
a w *  = w~ e - w l  e ; A P  e = p e _ p c ;  {ACe}  = {~e}2 _ { ~ e } ,  

ACGt = Cz2' - ~ l t  

where the increments Aw e etc. are assumed to be small. Since change in C L' represents solely a 
change in speed A V = V~ - V  1 then 

W W 2CLI' A V .  (AI, 1) AC L' - 
pV,,2I ~ pV121 ~ V 1 

Writing equations (4.1, 6) for states 2 and 1 and subtracting we obtain, on using the relation 
(AI, 1), 

ba~ 0 {c}'a _ A C L I '  

2CL,' {b}, {/oo} ([c] + Cm-~'le,.e , {A~ ~} L{b}lJ. 
( A I ,  2)  

where the suffix 1 on the matrices indicates that they are to be evaluated in the state 1. It should be 
noted, in this derivation, that {equations (3.1, 12) and (4.1, 7)} 

2CL1' {k} + e,.--X- ] = ( - {b}1)1. 

The slope of the curve pe  N C L' for C L' = C m' is given by 



Equation (AI, 3) may be rewritten in the equivalent form 

--CLI'Ier. + [c ]  - -  (b~l {b}2 A-s- b2~ {b}l) {c}'3 

_ '  ( CL1 I +  [c] - {fa0}-b~{b}~ er* 



T A B L E  1 

General Specification 

Parameter Reference Value Remarks 

1llrN 

h ¢/:k ~: 

f f13 ''~ 

Aspect Ratio 

c.g. Margin 

C L cruising 

Landing Speed 

Wing loading 

Wing Area 

A.U.W. 

6 at 40,000 ft 
~nr~ 

m~(~ ~) = -~ (2- ~ - ~) 

#Zr "~ 
m-%~) = --2-- (1 + 9~-'- - 2 5 ~ : ~ +  2 0 ~ * ~ -  s~  ~ )  

3' 5 at 40,000 ft 

0. 239 

0-218 

1.0 

0- 023 . . . 

1-0 

~ = ~  

Radii of gyration about c.g. ' 

1 
= (x y~-  ~ ' ~ )  - ~ .~  s 

Weight-Stiffness Parameter 

0-05 

125 m.p.h. 

55 lb./W" 

10,000 ft 2 

550,000 lb 

M = 2 at 40,000 ft 

CL max ~ 1 '0  
Assuming 
l = 200 ft 

.(A) 

(B) 

C L = 8C z '  
etc. 

l/c,.':~ = C L' 

Relation between coefficients based on 1pV2S and 
p V21 ~ respectively. 

EI  
pV2I 4 - C s ' ( 1 -  x*) 

o ~ / 7  . . /  \ , ,  

~ . /  /'/ 
" / "  Normal ised m a s s  d is t r ibut ions 

, ~  t /  q 
i I I 

6 5 4 3 2 
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1-O 

O-B 

0.6 

0"4 

0.2 
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T A B L E  2 

Symmetrical Matrix of Influence Coefficients for Delta Wing Cantilevered at Trailing Edge 

0 0 0 0 0 0 

0-00161219 0.00406753 0.00652287 0.00897921 0.01143355 0.01388889 

0~01354005 0.02404392 0.03454780 0-04505168 0.05555556 

0.04828679 0.07385786 0.09942893 0.12500000 

0.12206803 0.17214513 0.22222222 

0.25810443 0.34722222 

0.50000000 

T A B L E  3 

Matrix of Influence Coefficients for Attached Axes at Trailing Edge of Delta Wing 

0 0 0 0 0 0 0 

0.0070730 -0.0010248 -0.0006913 -0 .0003577 -0.0000241 0.0003094 0.0006430 

0.0514403 -0.0073356 -0.0120618 -0.0064743 -0.0008869 0.0047006 0.0102881 

0.1562500 -0 .0042157 -0.0546996 -0-0379654 -0.0079491 0.0220671 0.0520833 

0.3292181 +0.0211950 -0.1209143 -0.1256189 -0.0413224 0.0616433 0.1646091 

0.5626286 +0.0714685 -0.1978457 -0.2595687 -0.1379023 0.1161952 0.4018776 

0.8333333 +0.1388889 -0-2777778 -0.4166667 -0.2777778 0.1388889 0-8333333 

x 10 -1 

T A B L E  4 

Matrix qf Influence Coefficients for Mean Axes at Trailing Edge of Delta Wing 
(Mass Distribution A) 

+ 1.046366 

+0-041491 

-0 .590442 

-0-617951 

+0.036124 

+ 1.294623 

+2.926065 

+0'166566 -0"396318 -0"525533 -0"269922 +0"226458 +0-808271 

+0"052128 -0"017616 -0-077264 -0"060916 +0"023401 +0"135921 

-0"115168 +0"254293 +0"313415 +0"139705 -0"138839 -0"446409 

-0-188158 +0"213530 +0"450351 +0-278330 -0"171325 -0"707236 

-0-038240 -0"063002 +0"025661 +0"153846 +0"001829 -0"260760 

+0-360306 -0"446701 -0"861991 -0"602705 +0-357653 +1"433145 

+0"930321 -0-860407 -1"981125 -1"792212 +0"378439 +5-068922 
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Reference~section ~ y  " 

I 

Z 

FIC. 1. Typical slender configuration. 

X,LI 

/ 
axes at trailing edge / Attached 

tz Z,W 

Linear velocities utv: steady-state velocity V: 

Angular velocity q 
Forces X,Z; aerodynamic loading L('x} 
Control force P 
Moment Q 
Bending deflection ~(x) 

FIe. 2. Typical slender configuration. 

p* 0' 

5 Low-speed comber shape 

FIG. 3. Trim curves for uncambered aeroplane. 
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6 5 4 / 3  . 2 . I ~ . C o l l o c a t i o n  p o i n t  

FIG. 4. Configuration at maximum trim speed. 
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FIG. 5. Level-flight-trim curve. 
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FIG. 6a. Configuration in level flight--mass distribution A. 
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FIG. 6b. Configuration.in level flight--mass distribution B. 
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FIG. 7. Incidence in level flight. 
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FIe. 8a. Normal modes--mass distribution A. 
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FIG. 8b. Normal modes--mass distribution B. 
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FIG. 9a. 'Phugoid' mass distribution A. 
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Fie. 9b. 'Phugoid'  mass distribution B. 
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