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Summary. 
The aerodynamic loading is formulated for a family of symmetrically tapered wings describing simple 

harmonic pitching oscillations of low frequency in supersonic flow. The planforms have supersonic leading 
and trailing edges of constant sweep, the variable parameters being the angle of rake of the side edges and 
the ratio of span to root chord. 

For Mach numbers ~/2 < M ~< 2:4, the investigation covers supersonic and subsonic side edges which 
act as leading edges, streamwise tips or trailing edges. The lift and moment are evaluated to first order in 
frequency on the basis of linearized thin-wing theory. In the case of.subsonic trailing side edges, it is more 
convenient to obtain the total forces by use of the reverse-flow theorem. 

The theoretical values of the pitching-moment derivatives are compared with experimental results obtained 
on half-wing models with alternative pitching axes and a basic 5 ~ double-wedge section. An estimate of 
thickness effect is calculated by applying two-dimensional aerofoil theory on a strip-theory basis. When 
corrected for thickness the theoretical values are in good agreement with the experimental derivatives for 
Mach numbers greater than 1.6. 

1. Introduction. 

The aerodynamic forces acting on oscillating hexagonal wings in a uniform supersonic airstream 

are to be determined for comparison with experiment. On the basis of linearized theory 1, 2, a formal 

solution for the perturbation velocity potential on a wing of arbitrary planform and zero thickness 

is known for simple harmonic oscillations of small amplitude and general frequency. To evaluate 

the integral for the velocity potential, it is necessary to impose restrictions either on the frequency 
of oscillation, on the planform of the wing or on the Mach number of the airstream. Since the 

experiments gave only low frequency, this will be assumed sufficiently small for the neglect of 
second-order effects. Then ,  for certain types of planform, an exact solution can be obtained for the 

velocity potential and hence for the lift distribution. 

* Previousiy issued as A.R.C. 22,186. Published with the permission of the Director, National Physical 
Laboratory. 



The planforms to be considered have symmetrical taper and supersonic leading and trailing 
edges of 15 ° sweep. Each wing has a different aspect ratio and side edges which are raked at a varying 
angle ¢ as shown in Figs. 1 and 2. The side edges act as the outboard part of the leading edge if 
¢ > 0, or the trailing edge if ~ < 0, and they will be supersonic or subsonic according as M is 
greater or less than cosec I¢1" 

The velocity potential over that part of a polygonal planform which is influenced only by 
supersonic edges, is defined directly in terms of the upwash field on the planform, and can readily 
be evaluated. For the tip region of a planform, influenced by a subsonic leading side edge, Evvard ~ 
uses an equivalent-area concept to simplify the Velocity-potential integral for steady flow. For 
oscillatory motion, Stewartson ~ derives a direct integral for the velocity potential in the tip region; 
to first order in frequency this integral depends only on the known upwash over Evvard's 
equivalent area of the planform. This analytical treatment can be extended to cases when the two 
tip regions overlap, provided that their upwash fields off the planform are independent. Formulae 
for the velocity-potential distribution over wings with subsonic leading side edges are evaluated 
analytically for low-frequency pitching oscillations in Section 3. The total lift and pitching moment 
for a particular planform and Mach number are then obtained by integrating the appropriate 
formulae over the wing area. 

A subsonic trailing side edge greatly complicates the solution, even when formulated in terms of 
the acceleration potential as suggested by .Stewartson 2. For present purposes however it is not 
essential to know the distribution of lift. By applying the reverse-flow theorem for oscillatory 
motion 4, the total forces on a wing with subsonic trailing side edges can be determined from solutions 
for the same planform when the direction of flow is reversed but the Mach number and frequency 
of oscillation are unchanged. The application of the reverse-flow theorem for low-frequency 
pitching oscillations is considered in Section 4. 

The stability derivatives are evaluated for eleven planforms and the range of Mach number 

~¢/2 ~< M ~< 2.4. For each planform, measured values of the pitching-moment derivatives have 
been obtained for two or three axis positions from low-frequency tests made on half-wing models at 
the N.P.L. 6. These models have a basic 5% double-wedge section, and it may be assumed that the 
effects of thickness are additive to those of planform, provided that the aspect ratio is not too small. 
An estimate of the thickness correction is therefore obtained by applying Van Dyke's 5 two- 
dimensional theory of oscillating aerofoils on a strip-theory basis (Appendix D). 

Additional values of the pitching derivatives are calculated for the wing 9 f greatest span with 
streamwise tips at Mach numbers 1. 035 ~< M ~< @2. This planform was chosen for further 
investigation to provide some results by linearized theory for Comparison with transonic tests which 
are being made at the N.P.L. For M = 1.035 the leading and trailing edges of this planform are 
sonic and the solution is obtained by considering the limiting form of the velocity-potential 
distributions when ~ = fl tan ~ -+ 1. 

2. General Theory. 

2.1. Linearized Equations. 

In formulating the basic equations of flow it is supposed that an infinitely thin wing of arbitrary 
planform describes simple harmonic oscillations of small amplitude about zero mean incidence 
in an otherwise uniform ideal fluid, Effects of wing thickness and viscosity are thus ignored, and 
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squares of perturbations from the uniforrh supersonic free-stream velocity are neglected throughout 
the field of flow. The perturbation ag(x, y ,  z, t) in velocity potential then satisfies the linear 

differential equation (Ref. 1, Table 1) 

02aP ~(I) 02~ 2M 2 ~2q) M ~ 02q5 
(M 2-1)  ax 2 Oy ~ az 2 + U ~  OxO~ + Uo~ ~ Ot ~ - 0; (1) 

the pressure at any point is given by 

. / ~ ¢ P  0ag) 
p - p ~  = - p~ ~ +  u ~  • -  , ( 2 )  

where U~, P~o and p~ are respectively the velocity, pressure and density of the free stream. 
The vertical upward displacement of the wing from a mean position z = 0 is 

z(x, y, t) = Zo(X, y)e '~t (3) 

where Zo(X , y) is an arbitrary mode of oscillation to which there corresponds a perturbation potential 

of complex amplitude 

¢(x, y, z)  = ¢(x ,  y, z, t )e - i~ .  (4) 

The linearized boundary condition for tangential flow over the wing is that the amplitude of the 

upwash 
w = (~¢10z)~:o = iO~o + u~o(O~olOx). (5) 

In the wake 
[i~¢ + U~(a¢/ax)]o=0 = 0; (6) 

by eqn. (2) this ensures that the pressure is continuous across the wake. Since ¢ is antisymmetrical 
with respect to the plane z = 0, ¢(x, y, + 0) = - ¢(x, y, - 0), and it follows from eqn. (2) that the 

lift distribution on the wing is 

l(x, y, t) = 2po~[io) + Uoo(8/8x)] [¢(x, y, + O)]d ~' . (7) 

The problem is therefore to solve eqns. (1), (4), (5) and (6) for ¢(x, y, + 0). 

2.2. Integral for the Velocity Potential. 

The various formal solutions for the velocity potential on the upper surface of the wing (e.g., 
Refs. 1, 2, 3), lead to the integral expression 

1 
¢(x ,y )  = -;ffw(x',y')Kdx'dy' (S) 

in the present notation. Here 

w(x', y') = [0¢(x.', y', z)10zL=0, (9) 

- V -  i°~M2(x-x')q cos F oJMr ~ (10) 
= r l exp L- i~-13-G2 _I L(M ~ -  1 ) v . J  

K 

with 
r = [ ( x - x ' )  2 - (M  2 -  1) (y-y ' )2]  ~j~, 

and the area of integration A is the part of the plane z = 0 bounded by the forward Mach cone 
from (x, y) and the wave front defined as the envelope of trailing Mach cones with vertices on the 
leading edge of the wing. When the wing has only supersonic edges and A lies within the planform, 
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eqn. (8) is explicit, since the upwash w(x ' ,  y') is known in terms of the wing motion by eqn. (5). 
If A includes any subsonic edges of the wing, w(x ' ,  y ' )  is initially unknown over the part of A which 
lies off the planform and has to be evaluated to satisfy (9) before ¢(x, y) can be determined from 

eqn. (8). The precise treatment will depend on whether the subsonic edges in question are leading 
or trailing edges. 

2.3. F a m i l y  o f  Wings .  

The wings to be considered are symmetrically tapered with side edges inclined at an angle ~/J to 

the direction of the free stream. A typical planform is defined by the apex angle 2A, the root chord c o 
and the semi-spans s 5 and s T of the leading and trailing edges (Fig. 1). When the side edges are 
raked outwards, s L < s T = s and i/f > 0: when they are raked inwards, s~, < s• = s and ~b < 0. 
The particular planforms for the family of wings are given in terms of h (=  75°), s/c o and ~/J in 
Fig. 2. 

In a free stream of Mach number M > cosec ;t, the leading and trailing edges of these wings are 
supersonic. Any wing of the family associated with a particular Mach number M = cosec/z can 
be classified according to the type of side edge into one of the following five cases: 

Case Semi-span Range of ~b Side edges act as 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

ST < SL = $ 

ST < SL = S 
sL = S r =  S 

SC < ST = S 
S L <  S T = S  

~b~< - / ~  
- ~ < 4 , < 0  

4~=0 
0 < ¢ < ~  

supersonic (sonic) trailing edge 
subsonic trailing edge 
streamwise tips 
subsonic leading edge 
supersonic (sonic) leading edge 

On any of these wing planforms consider the region S o which lies upstream of the Mach lines 
from the points y = + s z on the leading edge. For all cases (i) to (v), the velocity potential ¢ at any 

point in region S O is determined by eqns. (5) and (8), where the area of integration A = A 0 is 
bounded by the supersonic leading edge x = ]Y] cot)t and the forward Mach lines from the point. 

In case (i) the region S o is identical with the planform. In all other cases the velocity potential is 

required outside the region So, over the region of the planform where 

x > [s5cotA + (s L -  [yl)cot~] (11) 

and ~(x, y) is influenced by the side edges. Case (iii) with ~b = 0 can be regarded as a particular 
example of case (iv), and both cases are considered in Section 2.4: case (ii) is discussed in Section 2.5. 
In case (v), where the planform has supersonic leading side edges, eqn. (8) can be applied directly 
but the area of integration A is more complicated than A0: an alternative approach by means of the 
reverse-flow theorem is therefore adopted in Section 4. 

2.4. Subsonic  Lead ing  S ide  Edges. 

Over that part of the planform covered by (11), the velocity potential in cases (iii) and (iv) is 
influenced by the upwash field between the leading side edges and the wave front. Furthermore, 
as shown in Fig. 3, ~6(x, y) in region S 1 or S 2 is influenced by only one side edge, whereas in region 



Sa there is a contribution from both side edges. Region S 3 occurs when the Mach lines from the tips 

(sz cot A, + SL) intersect upstream of the trailing edge, so that eqn. (11) and 

x > [sLcotA + (sL+ lYl)cotff] (12) 

are both satisfied. The velocity potential over each region S~ is denoted by (¢s)~. 

By the concept of an equivalent area, Evvard 3 has simplified the integral for (¢s),~ in steady flow. 
Moreover, Stewartson's 2 analytical treatment for general frequencies leads to an integral for (¢s)~ 
which is independent of the upwash field off the planform. These procedures can be applied to 
(¢s)3 over the whole area S a provided that the Mach lines from the tips do not intersect the opposite 
side edges. It follows from Refs. 2 and 3 that the required velocity potentials can be obtained from 

1if w(x', y')Kdx'dy' + 0(co2), = ; (13) 

where K is given in eqn. (10), the areas of integration A~(n = 0, 1, 2, 3) are defined in Fig. 3, and 
the upwash w(x', y ')  is determined by eqn. (5). In the region So, the potential (¢s)0 follows from 
eqn. (8) if terms of 0(~o ~) are neglected. To first order in frequency ~o, the complete solution for 

cases (iii) and (iv) can therefore be evaluated from eqn. (13). 

2.5. Subsonic Trailing Side Edges. 

In case (ii), the velocity potential ¢(x, y) over the part of the planform defined by (11) is 
influenced by the upwash field downstream of the trailing side edges and the wave front. To determine 
¢(x, y) from eqn. (8), the upwash w(x', y') must first be evaluatedover the part of A which lies off 
the planform; it is difficult to estimate the contribution from the wake and to satisfy the wake 
condition (6). Stewartson's ~ alternative approach in terms of the acceleration potential yields a 
convenient integral expression for the lift distributioi1 l(x, y, t) over S t and S~, the regions of the 
planform influenced by one subsonic trailing edge. The effect of both side edges over the region S 3 
defined by (12) would lead to a more complicated expression. Accordingly, no attempt is made to 
derive the distribution of lift in case (ii). For the limited purpose of obtaining the total forces on a 
wing, the reverse-flow theorem will be applied (Section 4). Case (ii) is thereby reduced to a problem 
for a wing with subsonic leading side edges which can be treated by the principles of Section 2.4. 

3. Pitching Solutions for Cases (i), ( i i i )  a n d  ( i v ) .  

3.1. Functions for the Velocity Potential. " 

It follows from Section 2 that, in cases (i), (iii) and (iv), ¢(x, y) to first order in frequency can be 
expressed directly in terms of the upwash w(x, y) on the planform. For pitching oscillations of 
amplitude 0 0 about the axis x = 0, the wing motion in eqn. (3) is 

Zo = - xOo. 

Then by (5), the upwash distribution is 

w = - Uo~[1 + ivoX/Co]Oo, (14) 

where the frequency parameter v 0 = oJeo/Uoo. By taking eqns. (10) and (13) to first order in v0, 
the corresponding velocity potential is 

ff I 1 ¢(x, y) U~Oo 1 1 + ivo 
~,~ 7 ~ co(M ~-  1) 
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where the area of integration A n is defined in Fig. 3 for a point P = (x, y) in each region S~ of the 
planform. For pitching motion it is only necessary to determine ¢(x, y) over the regions So, S 1 and 
S 8 of the half-wing. 

It is convenient to transform to non-dimensional co-ordinates (X, 11) such that 

x = coX~/(M 2- 1) / .  
(16) 

Y coY ] 
then all Mach lines in the (X, Y) plane correspond to constant values of (X + Y). In these co-ordinates 
the leading, side and trailing edges of the planforms shown in Figs. 1 and 2 become respectively 

1 [Yl for 0 < I YI < YL X = X d Y) = 

X s ( y  ) = l [ y [ + _ 7  ( 1 _  7/11 YL for [Y[ between Yr, and YT , (17) X =  

1 1 
x = x ~ ( Y )  - p ~ l Y1 for 0 .< ]YI -< Y~ 

where 
]3 = c o t .  = "v/(M 2 -  1 ) /  

/ a = fl tanh t> 

7 = f l tan~ ~ (18) 

YL = ,~/c0 J YT = s~/co 
and 

1 1 
I ( Y n + Y T ) +  (YT Y z ) = ~  • (19) 
O" T 

Then case (i) is defined by ~ < - 1 and Yz = S/Co; case (iii) by T = 0 and Yz = Y:r = s/co; 
case (iv) by 0 < ~ < 1 and YT = S/Co. Typical planforms and Mach lines for cases (i) and (iv) 
are shown in Figs. 4a and 4b respectively. A limitation on Mach number is imposed in cases (iii) 
and (iv) by thecondit ion that the Mach lines from the tips ( Yz/cr, + Yz) do not intersect the opposite 
side edges, so that 

fl(Y~+ Y , ) ( ~ + l )  1> ~. 

In terms of the parameters Y~, = S/Co, )t and ¢ which define the planform in cases (iii) and (iv), 
this condition becomes 

(M2-1)  ~/~ I> (1-2Y~cot l ) / (2Yr- tan~) ,  (20) 

which gives M/>  1. 208 for the wing (S/Co,)t, ¢) = (0-625, 75 °, 15 °) and less restrictive limits for 
the other planforms. 

In the non-dimensional co-ordinates the velocity potential in eqn. (15) becomes 

~(~, ff II+-fiv° {(l+2fl2)X,_(l+fl~)X}l dX'dY' , (21) 

where 
R = [ ( x - x ' ) ~  - ( y -  y,)~y/o 

and A n is now the transformed area of integration when (X, Y) is in the transformed region 
Sn(n = O, 1, 3) of the half-wing. When the leading edge is supersonic (a > 1) and has a kink at 



the origin, the limits of integration in eqn. (21) will vary within each region S~. In case (i) where 
only So occurs, the half-wing subdivides into regions A and B in the (X, Y) plane as can be seen 
from Fig. 4a for the wing (S/Co, A, ~b) -- (1.37, 75 °, - 4 5  °) at M = 1.6. In cases (iii) and (iv) all 
the regions So, $1, S 8 may occur; in the most complicated example to be considered when 
(s/co, A, ¢) = (0. 625, 75 °, 15 °) at M = ~/2, Fig. 4b shows seven distinct regions as follows: 

S O subdivides to give A + B 

S 1 subdivides to give C + D + F )  ; 

S 3 subdivides to give E + G 

(22) 

of the corresponding areas of integration in the (X, Y) plane, A~ and A B are the same as in Fig. 4a 
and A s for J = C, D, E, F, G, are defined in Fig. 5. At lower Mach numbers  consistent with 
eqn. (20), it is possible to have a further subdivision of Sa, namely J = H, which extends downstream 

of region G to the kink at the trailing edge. For (X, Y) in region H, the correct application of the 

equivalent area concept (Section 2.4) gives the area of integration shown in Fig. 5 where the forward 
part of A m which is shaded black, must  be taken as a negative area of integration. 

In terms of the general function 

f f I (X')'~dX'dY', F j(X, Y )  = - # (23) 

where A s is the area of integration corresponding to any region J = A, B . . .  H,  eqn. (21) may be 

wri t ten as 

It  should be noted that the velocity potential ¢ = Uo~coFms corresponds to the upwash  distribution 
w = U~X ~ in steady motion. Analytical expressions for F ~ j  are derived in Appendix A. Formulae for 

Frnj( J -- A, B . . . H and m = 0, 1) are given in Appendix B in terms of the non-dimensional 
co-ordinates (X, Y) and the planform parameters cr > 1, YL and T. The  velocity potential distribu- 

tion ¢(X, Y) can be determined for any case (i), (iii) and (iv), by eqn. (24) and the appropriate 

functions F~ j .  
On a planform with sonic leading edge [~ = 1] and subsonic leading side edges which do not 

interact [2/3(YL + YT) /> 1], the regions J = A, C, D, E and G do not occur and the distinct regions 

which can arise are 

S o =  B, $ 1 =  F, S8 = H .  

The  planform (S/Co, ;~, ~b) = (1.37, 75 °, 0) at M = 1.035 is shown in Fig. 4c as an example of 
case (iii) when regions B, F, H occur. When  cr = 1, the velocity potential distribution is given by 
equation (24) and the limiting form of the functions F~ j .  The  functions F~ j ( J  = B, F, H and 
m = 0, 1, 2) can be derived from the formulae in Appendix B by suitably expanding all the cos -1 
terms as power  series in (a 2 -  1) 11~ and taking the limit of F ~ j  as a -+ 1. However,  Appendix C 
describes a direct and simpler derivation of the formulae for Fins; these are expressed in terms of 
the co-ordinates (2(2, I"7) and the planform parameters YL and ~-. 
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3.2. Pitching Derivatives in Terms of Fro, J. 

The lift and pitching moment  can now be obtained for low frequency v o -+ 0 and supersonic 
free-stream Mach numbers consistent with eqn. (20). The  total forces are 

, (2s)  

Jw - f f , xz(x, y)ax+ ) 
where l(x, y) is given by eqn. (7). I f  the lift distribution l = Ij(X, Y)d o't over any region J of the 
half-wing, then it follows from eqns. (7), (16) and (24) that to first order in v o 

1 , iv o 
l~= - 2 p .  Uo~2Oo[~Foa+~{( l+2f i2 )F ' l x - ( l+p~)XF 'os_Foj}] ,  (26) 

where F ' ~ j  = OF,~j/OX. Thus  eqn. (25) can be written as 

2fiCo%i~Y~ ( (  l j d X d Y  ] 
L = J ~ s  ~ ,  

(27) 

s 12~CO~e'°"~ffXZ,dXdVJ~ [ 
where the summations extend over all regions J = A, B . . . H which occur within the half-wing. 

The aerodynamic derivatives, based on root chord Co, are now defined by 

L = p~ Uo~2SOo[lo + ivolo]e i~ ] 

~/~ P~ U~o~ScoOo[mo + ivomo] d~t J (28) 

where S = area of the planform. Therefore by eqns. (26) and (27) the aerodynamic derivatives 
for the pitching axis h o = 0 in cases (i), (iii) and (iv) are given by 

4c0 ~ f f l° S ~ ~ F '° jdX d Y  
g 

4Co 2 

4CO 2 

4Co 2 

4. Pitchin¢ Sol.tions for Cases (ii) ang (v). 

4.1. Statement of the Reverse-Flow Theorem. 

X{(I + 2fi2)F'~a - (1 + fi~)XF'oj - F0j } d X d Y  

(29) 

Consider any wing describing simple harmonic oscillations of frequency 02 in a uniform 
supersonic free stream. The reverse-flow theorem is derived by Flax 4 in the form 

where the integrations over the complete wing area S are referred to co-ordinates (~, ~) fixed in 

the wing. Here I and we ~ are the lift and upwash distributions over the wing which correspond to 



a given motion in a direct flow of velocity Uo~ ; lq and ~qe i°Jt are the lift and upwash distributions 
over the same wing when the motion is arbitrary and the direction of flow is reversed to give a 

free-stream velocity - U~o. Eqn. (30) is valid within the limitations imposed by linearized theory and 
holds for any planform provided that the Kut ta  condition is satisfied at the trailing edge of the 

wing for both the direct and the reverse flow. 
It  is convenient to use the co-ordinates (~, ,/) for the wing describing pitching oscillations in 

direct flow U~o, in place of the co-ordinates (x, y) as defined in Fig. 1. Thus  for pitching about  the 

axis ~: = 0, the upwash distribution is 

w(~:, ~) = - Uo~[1 +ivo~/co]Oo. (31) 

For this motion the total lift 

L 

are required to first order in 

and pitching moment  about  ~ = 0 

the frequency parameter v 0 = COCo/U~o. N o w  if 

~ ( ~ ,  7)  = w0 = u ~ ,  

it follows from eqns. (30) and (32) that the lift can be expressed as 

f; L = io(~, 7, t) w(~, 7) d~d~ 
s 

where i o corresponds to w0. Then  by (31) 

d d  S 

Similarly by taking 

~ ( ~ ,  7) = wl = u~/co, 

the pitching moment  can be expressed as 

d d  ,S' 

(32) 

(33) 

(34) 

(35) 

(36) 

where l 1 corresponds to ~1. Hence to determine L and ~ for slow pitching oscillations, the lift 

distributions l 0 and i I over the wing in reverse flow are required to first order in v 0. 

4.2. Application of Reverse-Flow Theorem. 
As explained in Sections 2.3 and 2.5, when the side edge acts as a subsonic trailing edge in case (ii) 

or as a supersonic or sonic leading edge in case (v), no attempt is made to obtain the distribution of 
lift. The  total lift and pitching moment  are determined from eqns. (34) and (36) where  the solutions 
10(~, ~7), ZI(~, ~7) correspond to the respective upwash distributions N0(~, ~7), NI(~, 7) defined by 
eqns. (33) and (35). 

9 



In order to obtain the solutions for reverse flow by use of Section 2.4, it is necessary to transform 
to an equivalent problem of the reversed wing in direct flow, whose co-ordinates are 

x = Co - ~ ] 

J (37) 
Y = - ~7 

The  reverse-flow solutions required in eases (ii) and (v) are thus transformed to direct-flow 

solutions for cases (iv) and (i) respectively. The  latter correspond to the upwash distributions 

~0(~, ~) = Wo(., y)  = u +  ] 

J 
(3S) 

Wl(~, ~) = ~01(X, Y) = U+(co-x)lco 

Solutions for the corresponding velocity potentials Cq(x, y), (q = 0, 1),'are derived to first order in 
frequency by using eqn. (13). The  required lift distributions in the (x, y)  co-ordinates, 

iq(¢, ~7, t) = lq(x, y, t) (39) 

can then be determined from eqn. (7). 

The  derivation of Cq(x, y)  to first order in v0 is similar to the analysis for cases (iv) and (i) in 
Section 3.1. In  the non-dimensional co-ordinates of eqn. (16), ¢~(x, y) can be expressed as 

g ~ - ~  • 

In terms of the general function Fma(X , Y) defined in (23), eqn. (40) becomes 

¢1(2, Y) ¢0 - g~c0[(~ - i~0(1 +~)x}FI~ + i~0(1 +~ )F~] ) 

where (X,  Y) is in any region J = A, B . . . H on the half-planform of the reversed wing. Formulae 
for Fmj(X,  Y) when c~ > 1 are given in Appendix B for m = 0, 1 and 2: the parameters ~, YL 
and ~- in these formulae now correspond to the semi-apex angle, semi-span of the leading edge, 
and side-edge angle of the reversed wing. For the particular case a = 1, expressions for F m j ( X  , Y) 
are given in Appendix C. Thus  ¢0 and ¢1 can be determined over any reversed planform which 
classifies as case (iv) or (i) by using eqns. (41) and the appropriate functions F ~ j .  

4.3• Pitching Derivatives in Terms of F,~ a. 

The lift and pitching moment  for low frequency v o -+ 0 can now be obtained in cases (ii) and (v) 
in terms of the lift distributions l o and l 1 on the reversed planform. By eqns. (34), (36), (37) and (39) 

L = - 0 o -~(fsl°(x' y, t)[1 + ivo(1-x/co)]axdy 

; (42) 

coooffzi(.,y,,)[l+ i=o(a-x/co)]ax+ j 
where the integration is over the planform S. 
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I f  le(x, y, t) = lea(X, Y)e i~t over any region J of the reversed half-planform, then it follows from 

eqns. (7), (16) and (41) that to first order in vo 

• 11 l°a = 2p*U*2 I~F ' °J+z~2  { ( l + P 2 ) F ' l a - ( l + f l 2 ) X F ' o j - F ° a }  , (43)  

'1.I Ioj- 2p.U~ [F'IJ +~{(I+'2)F'~z-(I+~2)XF'Ij- FIJ}]) 
where F'mj  = OFmj/~X. Thus  eqn. (42) can be writ ten as 

L -- - 2PCo 00e'°' Z f f  10 [i + i o(1-px)]dxdr t 
J , (44) 

J g  2~coaOoe'~°'~j f f z l ' j [ 1  * i v o ( 1 - f i X ) ] d X d Y  ) 

where  the summations extend over all regions J = A, B . . . H which occur within the reversed 

half-planform, and any terms 0@02) are to be neglected. 
Then  by eqns. (28), (43) and (44), the aerodynamic derivatives for the pitching axis h o = 0 in 

cases (ii) and (v) are given by 

44 ffF'ojdXdY lo= S ~  j 

lo = lo - ~ - -  4c°2 ~ f fs) {(1 +]32)F'lJ - ( 1+  2fi~)XF'os - Foa}dX d Y  , (45) 

4e°  f f BY'l#X dY m o = - 1 o ~ ' - ~  j 

mo = (mo-lo+lo)  - - - N -  __ffj {(I +fl~)F'~j - (I + 2 ~ ) X F ' I j  - F lx}dX d Y  

where the non-dimensional co-ordinates (X, Y) and the functions Fmj refer to the reversed planform. 

5. Evaluation of Derivatives. 

The  derivatives for low-frequency pitching oscillations about the axis x = hoc o = 0 have been 
calculated for eleven wings of the family defined in Figs. 1 and 2. The  six Mach numbers  M = ~/2, 
1 .6  (0.2) 2 .4  were included for all these p!anforms, and extra solutions for M = 2/~/3 = 1. 155 

were obtained for the two wings of greatest span with $ = 0 and 45 °. Fur ther  solutions for the 
wing (s/c o = 1.37, $ = 0) were evaluated for M = 1.102, 1.065 and 1.035; these correspond 

respectively to the following cases: 

(a) Mach lines from both tips intersecting the trailing edge on the root chord [fls = e o - s cot )t], 

(b) Mach lines from apex reflected in side edges and intersecting the trailing edge on the  root 

chord [/3s = Co], 

(c) Sonic leading and trailing edges [/3tanA = ~ = 1]. 

By the classification defined in Section 2.3 the calculations for each of the wings and Mach numbers  

a r e  grouped into cases (i) to (v) ,as shown in Table  1. 
The  derivatives lo, l o, m o, mo defined in eqn. (28) are evaluated from eqns. (29) in cases (i), (iii) 

and (iv), and from eqns. (45) in cases (ii) and (v); analytical expressions for the functions Fra:l are 
given in Appendix B for ~ > 1 and in Appendix C for cr = 1. Since the sweep of the leading and 
trailing edges remain the same when the planform is reversed, the limits of integration in eqns. (45) 
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are precisely those for which eqns. (29) are to be evaluated. Moreover, as the integrands have 
several terms in common, the calculation of the derivatives in case (ii) or (v) is relatively simple 

'once that for the corresponding case (iv) or (i) has been completed. The complexity of the integration 

depends on the number  of regions J which occur on the half planform. In cases (i) and (v) there are 
only the two regions A and B; the derivatives were evaluated analytically by means of standard 

integrals and numerical values were then obtained for each particular planform and Mach number 
by inserting the appropriate limits. I f  cr > 1, then in cases (ii), (iii) and (iv) the regions A, B and C 

always occur, and, as listed in Table 1, one or more of the regions D, E, F and G arise as the aspect 

ratio and the Mach number  decrease. From Appendix B it can be seen that Fmj in regions J = C . . .  H 

are complicated expressions depending on the side-edge parameter ~ =/3tan~b. Although the 

chordwise integration of these formulae was carried out analytically, it was more convenient to 

evaluate the spanwise integrals numerically for each particular planf0rm and Mach number.  

The values of the derivatives lo, lo, too, m 0 for all combinations of planform and Mach number are 

presented in Tables 2 to 4 for pitching about the axis x = 0. The derivatives for any axis position 

x = hoc o can then be obtained from the well-known formulae 

10(h0) = lo(0 ) - ho~(0) 

16(h°) l°(O) - h°l~(O) l " (46) 

mo(ho) too(O) + ho[So(O) - mXO)] - hgZo(O) 

mo(ho) mo(O ) + h o [/6(0 ) m~(O)] ho2S~(O) ) 

For low-frequency oscillations v o -+ O, the plunging derivatives are 

so(o) = mXO) = 0]  
s (o) s0(0) ) ,  

mo(0) 

and the derivatives in eqn. (46) for a general pitching axis can therefore be evaluated from their 
tabulated values for h 0 = 0. 

Since the root chord c o is constant for the family of planforms in Fig. 2, the definition of derivatives 

in eqn. (28) has been used throughout.  However, the derivatives are often referred to chord lengths 
other than co: in such cases eqn. (28) would be replaced by 

L = po~ U~ZSOo[lo + ivlo]e i~°t ] 

p o~ U~zSdOo[mo + ivmo]e i~°t } ) ' (47) 

where v = cod/U~ and d is an arbitrary length. It follows that the derivatives lo, lo, mo, m o in eqns. (29) 

and (45) have to be multiplied by the factors 1, co/d , co/d , (cold) 2 respectively. The  geometric (first) 
mean chord 

e = c ( y ) d y / s  = S / 2 s ,  (4S) 
0 

and the aerodynamic (second) mean chord 

g = (y )dy  c(y)dy (49) 
o 

are frequently chosen as the representative length d. For ease of transformation the values of the 

factors Co/g, (Co~g) ~, cole , (Co/{) ~ are given in Table 8 for each of the planforms under consideration. 
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6. Discuss ion  o f  Resu l t s .  

The stability derivatives for the family of wings in Fig. 2 are presented in Figs. 6 to 16 for various 

positions of the pitching axis x = hoc o and Mach numbers in the range ~/2 ~< M ~< 2.4; results for 
lower M are plotted for two wings of largest span. Section 6.1 considers the values of the lift and 

pitching-moment derivatives obtained by linearized theory and plotted in Figs. 6 to 10 for a selection 

of the planforms. The theoretical effect of profile shape is discussed in Section 6.2. These results 
are compared with measured values of the pitching-moment derivatives in Figs. 11 to 16, which are 

analysed in Section 6.3. 

6.1. L i n e a r i z e d  T h e o r y .  

In Fig. 6, values of 1 o are plotted against [M + sic  o + O. 01 [¢1] to show the variation with Mach 
number, wing span and side-edge rake. Since v o -+ O, l o is independent of h 0 and by the reverse-flow 
theorem is shown to be independent of the sign of ¢. Additional values of this derivative were 
computed for I¢I = 15° and I¢] = c°sec-lM to facilitate the drawing of Fig. 6. The curves show 

that the variation in the planform parameter s/c  o produces a large change in l o when M = ~/2 and 
progressively smaller changes as M increases up to 2.4. For constant M and S/Co, the curves of l o 

show marked discontinuities in slope when the side edges become sonic (tel = c°sec-lM) • The 
derivative decreases slightly as I¢[ increases above or decreases below this value; the latter effect 

becomes more pronounced as the wing span becomes smaller. 
For the planform (S/Co, ~b) = (1.37, 0) in Fig. 7, the lift and moment derivatives for h 0 = 0 

show large rates of change with M at the lower values of M. The stiffness derivative - m o appears 

to have a maximum value near M = '1 .  064 and to decrease sharply as M decreases to 1. 035; the 

damping derivative - m o becomes negative for M < 1.3. The graphs of Fig. 7 for M > 1. 155 are 
typical of all planforms having s/c  o = 1- 37, as it can be seen from the values in Table 2 that the effect 

of ¢ is very small. Fig. 8 shows the effect of wing span on the derivatives lo, - too, = mo for the mid- 
chord pitching axis. The lift derivatives l o in Fig. 6 and l0 in Fig. 8a show the least variation with 
Mach number (M > ~/2) for the wings of smallest span. There are marked differences in the 

pitching-moment derivatives for the three spans; unlike that for the lift derivatives, the variation 
with Mach number in Fig. 8b is most pronounced for the wings of smallest span. The left and right 
diagrams of Figs. 8a and 8b confirm that the effect of raked trailing edges is small and only becomes 

important as s/c  o decreases. 
The variation of the damping derivative - m o with pitching axis is illustrated in Figs. 9 and 10. 

On the planforms with streamwise tips at M = ~/2, there is considerable variation with h 0 and with 
wing span; negative damping is indicated in Fig. 9a on planforms s/c o > 1 at axis positions in the 
neighbourhood of h 0 = 0.35. When M = 2, the effect of aspect ratio is small andthere is less variation 
with h 0 in Fig. 9b. For axis positions forward of mid-chord the increase in M gives greater damping 
for the two larger planforms with streamwise tips, but a loss in damping for s/c o = 0. 625. Similar 
effects on a streamwise tip planform and two raked planforms are illustrated in Figs. 10a to 10c 
by curves for various fixed Mach numbers. The wings of largest span exhibit large negative damping 
when M ~< 1. 155 for pitching axes forward of the mid-chord; for the wing (S/Co, ¢) = (1.37, 0) in 
Fig. 10a, the axis position for zero damping moves from h 0 = 0.54 to 0.41 as M decreases from 
1. 102 to 1. 035. The close similarity between the curves for M = 2 .4  in Figs. 10b and 10c, illustrates 
the decreasing influence of aspect ratio and side-edge rake at the higher supersonic Mach numbers. 
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6.2. Thickness Corrections. 

To extend the usefulness of the comparison of theory and experiment, some allowance is made 

for the finite thickness of the wings. The half-wing models with streamwise tips had symmetrical 

double-wedge sections with constant thickness/chord ratio of 0.05. Each model was cropped at the 

angle $ to give a blunt raked side edge. In the particular case (S/Co, ~b) = (1, _+ 30°), the model was 

later chamfered to give a sharp side edge and a 5% double-wedge streamwise section across the 
whole span. 

Van Dyke's theory ~ for a two-dimensional oscillating aerofoil of small finite thickness is applied 

to the three-dimensional wings by using simple strip theory. Van Dyke's theory assumes that the 

aerofoil has a sharp leading edge with attached shock wave. It can therefore be applied to the 

wings with blunt or sharp trailing side edges and to the wings with streamwise tips. Application to 

the wings with leading side edges is rather dubious, but it has been used for the chamfered model. 

On this approximate basis, the thickness corrections to lift and moment for slow pitching oscilla- 

tions are formulated in Appendix D. For the particular wings having a 5% thick double-wedge 

section the incremental corrections to the derivatives are given by eqn. (D.7) with ~ = 0.05. It 

can be seen that Al o = 0 and that for wings with raked side edges Al 6 and Am o are independent of 
the sign of $. 

Values of the thickness corrections Alo, Al6, Amo, Am 0 are given in Tables 5 to 7 for the eleven 
wings at the six Mach numbers M = ~/2, 1.6 (0.2) 2.4; the values are for wings with either blunt 
trailing side edges (~b < 0), streamwise tips (~b = 0) or sharp leading side edges (~b > 0) and are 

referred to the pitching axis h 0 = 0. The thickness corrections decrease as the Mach number 

increases and are small compared with the values of the derivatives given in Tables 2 to 4 for wings 
of zero thickness. Apart from Al o for blunt trailing side edges, the thickness corrections are practically 

independent of side-edge angle; similarly Alo, Am o and Am 0 are hardly affected by chamfering to give 

a sharp trailing side edge. When the wing is pitching about an arbitrary axis x = hoco, the thickness 

corrections can be obtained from the transformation formulae in eqn. (46). For all planforms, 

-Amo is negative for h 0 = 0, but for axis positions h 0 > ½ the thickness correction to the damping 
is always positive. 

It should be borne in mind that, since the flow over the wings is nowhere two-dimensional, the 

use of strip theory will lead to error; this applies especially to the region influenced by the wing 

tips. However, Tables 5 to 7 may be expected to give the sign and order of magnitude of the small 
corrections for thickness. 

6.3. Comparison with Experiment. 

Pitching-moment derivatives were measured on half-wing models in the N.P.L. 11 in. Supersonic 

Wind Tunnel for 1.38 < M < 2.47 by the free-oscillation technique described in Ref. 6. The 
oscillations corresponded to low values of the frequency parameter v 0 = COCo/U~o < 0.03 and mean 
amplitude of 00 ~ 0. 017 radians. For some of the tests the value of - m 0 varied with amplitude; 
the result quoted is the mean value for the whole amplitude range (0. 006 < 00 < 0.03). Planforms 
having a raked trailing edge (~b < 0) were tested for the two pitching axes h o = 0.4 and h o = 0.5. 
By inverting the models, results for raked leading edges ($ > 0) were obtained for h 0 = 0.5 
and h 0 = 0.6. The planforms with streamwise tips were oscillated about all three axis positions. 
A limited comparison of the calculated and measured values of - m o and - m 0 for the eleven wings 
is made in Figs. 11 to 16. 
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The variation of the derivatives with Mach number is shown for three wings in Figs. 11 to 13. 

Each wing has a different span, type of side edge and thickness distribution across the span: the 

side edges of the two raked wings are supersonic for M > 2 and subsonic for M < 2. It can be 

seen from Figs. 11 to 13 that - m o from linearized theory exceeds the measured values for all three 

wings and each axis position; however, the rates of change of - m o with M are very similar. By 

allowing for thickness, the agreement between the theoretical and experimental values of - m o is 

considerably improved. The calculated values of - m o for the three wings agree quite well with the 

measured values when M > 1.8. At these Mach numbers, the effect of thickness is almost negligible 

when h 0 = 0.5, and gives only a slight loss or gain in damping as the pitching axis moves to h 0 = 0.4 

or h 0 = 0.6 respectively. When M < 1.8, the thickness correction to - m  0 is very small for 

h 0 = 0.4 but increases as the axis moves downstream; the agreement between theory and experiment 

is significantly improved by allowing for thickness, even though the discrepancies become larger 

as M decreases to ~/2. It can be seen from Figs. 11 to 13 that the comparison is fairly consistent for 

all three wings. 
The effect of varying the pitching axis x = hoco of the wing (S/Co, ~) = (1, 0) is shown in Figs. 14a 

and b for Mach numbers M = ~/2 and M = 2. Comparison with measured values indicates that 

the thickness correction improves the calculated values of both - m o and - rn6; the variation with 

axis position is similar to that measured. For h 0 < 0.37 it is noted that the thickness correction 

reduces the calculated value of - m o for both M = ~/2 and M = 2, and gives some negative damping 

at the lower Mach number. 
In Figs. 15 and 16, the moment derivatives for the mid-chord pitching axis are presented for all 

the eleven wings to'sl~ow the effect of raking the side edges when M = 5//2 and M = 2 respectively. 
The thickness corrections given here correspond to a 5% double-wedge section; for ~ < 0 these 

corrections differ only slightly from the values for blunt trailing side edges (see Section 6.2). Even 
at M = ~¢/2, chamfering the half-wing models had but small effect on the measured pitching 

moments for the two wings (S/Co, ~) = (1, + 30°). Both the calculated and measured values of 
- m o and - m 0 show that side-edge rake has an important effect as the wing span becomes smaller 

and as the Mach number decreases. The thickness corrections improve the agreement with 

experiment in all cases except (S/Co, ~b) = (0.625, + 15°). For these low aspect ratio wings, the 

tip effects become more important and thickness corrections based on two-dimensional strip 

theory are likely to be unreliable especially at low Mach numbers. 

7. C o n c l u s i o n s .  

1. Exact linearized solutions for low-frequency pitching derivatives have been obtained for the 

combinations of Wing planform and Mach number defined in Section 2.3. The methods of solution 

can be extended to other modes of oscillation and to more general hexagonal planforms. The 

functions Fmj given in Appendix B can be utilised for any wing having supersonic leading and 

trailing edges and non-interacting side edges. 

2. For the Mach number range V'2 ~< M < 2-4, exact linearized theory gives values of the 

pitching-moment derivatives in qualitative agreement with experiments on eleven planforms; the 

calculated and measured values indicate the same trends with Mach number and axis position. 

3. As described in Appendix D, the effect of small finite thickness on three-dimensional wings 

can readily be estimated on the basis of two-dimensional strip theory. For the 5 o/o thick double-wedge 
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section, the thickness corrections are not large but they improve significantly the comparison between 
theory and experiment. At the lower Mach numbers such thickness corrections should be used with 
caution when the aspect ratio is small.. 
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A P P E N D I X  A 

Evaluation of F~nj(X, Y)  

The function F , , j  defined by eqn. (23) is required for (X, I1) in each region J = A, B . . . H of 

a planform with supersonic leading edge (~ > 1) which classifies as case (i), (iii) or (iv). The  areas of 
integration Aj are defined in Figs. 4a and 5, and these can be expressed most simply in co-ordinates 

(u, v) and (Uo, %) such that 

u~/2  = X ' -  Y', v~/2 = X ' +  Y' (A.1) 
and 

Uo~/2 = X -  Y, Vo~/2 = X + Y. (A.2) 

By equations (17) and (18), the leading and side edges of the planform are respectively 

Uo = 7% w h e n v  o > u o(positive Y) t 
(A.3) / 

v o =TUo w h e n v  o < u o(negative Y) 
and 

where 

u o = T  o = 8 % - e Y L  w h e n v  o > u o} ,  (A.4) 

V o = V o  = 3 U o - e Y r ~  w h e n v  0 < u 0 

r = (~ - ~)/(~ + ~) "~ 

= (1 - ~)/(1 + ~) ) . 

( ~ -  ~) v'2 
e -  ~(1 + r) 

Thus  the area of integration Aj  for any point (u0, %) is defined in the following table: 

(A.5) 

Region 
J 

A 

B 

C 

D 
E 

F 

G 
H 

Area Aj is bounded by u = uo, v = v o and the lines 

u = T V  

U = ~ V ,  

U = y V ,  

U = ~, '% 

u = 7v ,  

v = T u  

V : 7 R ,  U = U0,  V = ~0  

: '~U~ '12 : U0 

~0 ~ ~ /~ ,  ~ = U0~ V = 3 0 

V ~ 7U, U = UO, 7) = TO O 

By eqns. (23), (A.1) and (A.2) the integral for F~,j becomes 

where 
A5 

fo,(u, v) = - - -  
1 { u + v ]  m 

~v'2 \ v'2 / (%- u)-ll~(v°- v)-l12 
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This  is evaluated by considering the following double integrals 

~=0 

fvl fux .f.~(u, v)dudv , j ~ ( . , ,  v,) = (A.8) 
v=ul/" / u=yv 

(Ul f~l k,,~(.,, ~) f~( . ,  v)& a, 
vU=vzl  Y v=yu 

where u 1 <~ u o and % < v o are arbitrary limits. By consideration of eqns. (A.4) to (A.8) and the 

definitions of Aj in the above table it follows that 

FmA 

FmO 
F~D 

Fm~. 

FmI-I 

= jm(Uo, %) 

= im(**o, ~o) + j.~(o, ~o) + k,~(.o, o) 

F ~ ( - o ,  %) -J~(~o,  ~o) 

FmB(Uo, Vo) --J,~(uo, %) 

Fm~(%, %) - k.~(~o, ~o) 

k~,~(.o, ~'o) - k~(~o, ~o) 

Fred .o ,  ~o) - k.~(.o, ~o) 

f mF(Uo, %) -- Fm~(Uo, Vo) + J,*(Uo, Vo) -J~(uo, ~o) 

(A.9) 

The  integrals of eqns. (A.7) and (A.8) were evaluated in terms of (ul, %) by standard integration• 

Each of the functions Fma(Uo, %) for J = A, B . . . H was then derived from eqn. (A.9) by inserting 

the appropriate values of u 1 and %; formulae were obtained for m = 0, 1 and 2. By use of 

eqns. (A.2), (A.4) and (A.5), the formulae for F,~j were expressed in terms of the non-dimensional 

co-ordinates (X, Y) and the planform parameters % YL and r defined in eqns. (18). 

A P P E N D I X  B 

Formulae for F,,~j; J = A, B . . . H, m = 0, 1, 2 

The  formulae presented here apply to planforms with a supersonic leading edge (0 ~< 1/a < 1) 

and side edges which act as subsonic leading edges (0 < r < 1) or as streamwise tips ( r  = 0), 

providing that any region J on the planform is independent  of the flow in the wake. T h e  method of 

evaluation is described in Appendix A: ~ = a / ( a " -  1) 1/2 
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Region A 

where 

F o l k  = - -  A 1  

F l i  = X F o i  + ½A~ 

F~a = 2XF~A - X~.Foa - ~..{(2a 2 + 1)/aZ}A3 

Ap = ~z~-i X - -  
o" 

Region B 

where 

and 

FoB = - -  B I ] 

F,B = XFoI3 + }B2 - (~z/cr)XH~ t 

FzI~ = 2 X F ,  B - X~Fou - ~, {( 2a2+ 1)/a2} Ba + t2u 

B 1 )  - 

= 

j x - ; Y cos -1 (~-;{ ~ 2 t  + x + ~ Y cos-~ (~-X ~-- Y t 

_1 [x~_  y~]1)/~ 
33" 

i) B = (~4/3 ~a) [(4G2 + 2)X~H, _ 3H3].. 

Regions C and D 

where 
P0 

Pi 

P2 

The functions C1) and 

Yi  = ( Y -  YL); then 

Cp 

and 

For (X, Y) in region C, Free = FmA(X, Y) - P m  I ,  

For (X, Y) in region D, Fred Fm~(X, Y) Pm J 

_-- _ C I 

= X P o  + ½ c .  + {(,~-2)/3~}4 
= 2 X P 1 -  XzPo - {-{(2c~2 + 1)/c~2} C3 + no. 

~ ~e  co.~enie.tly expressed ~n ,e~m~ o~ ( ~ ,  Y1)where ~1 = ( ~  - -~ ~-), 

C I 

G = 

~C -- 

G 

I ~, 1y~ COS-- 1 1 __ (7.+ 1) (o.XI__ y1 ) _ i  1 
cr 

_ 2 - - + •  1 5 - ~  4 - - - + ~  )21--~Y~ /3 
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Region F 

F~F = XFoF + ½D2 - {(~+2)/3¢}J 3 

F2F = 2XFIF - X2FoF - ~}{(2~2+ 1)/ee}Da - O D 

It is convenient to express the functions D~ and J~ in terms of the co-ordinates (X~, Y2) such that 

then 

Dp = ~2~-2 X ~ + -  Y2 D1 (r 

DI=- X=+-Yz --COS -1 1 2(0" -1- 'T) (X2 -1- Y2) t 1 
- (~+ 1)(~x~+ Y~)) j  + ]~ 

a n d  

f ~ D = ~  2+-+or ~ J s - ~ -  4 + - - + ~  X 2 + -  Y 2 e  Ja 

Regions E and G 

where 
Qo 

Q1 
Q~ 

It can be shown that 

E~ 

K~ 

where 

For(X, Y) inregionE, F ~  = F m D ( X  , Y )  - Qm ] 

For (X, Y) in region G, F ~  G F . ~ ( X ,  I7) Q~  I 

_-- _ E 1 

= XQo + ½E~ + {(~- 2)/3~}K~ 
= 2XQ, - X2Qo - ~{(2~2+ I)/~2}Ea + g2~. 

= c A x 3 ,  Y~) 

= ao(X~, r . )  

G = ( X - I Y L ) - ~  , r 3 = - ( r + Y L ) .  

Region H 

For (X ,  Y )  in region H, it can be shown that 

F ~  = &n~(x, r) + F,~(x - Y )  - F ~ d X ,  r ) .  
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APPENDIX C 

Functions Fmj(X,  Y ) f o r  Sonic Leading Edge 

The function Fmj(X ,  Y)  defined by equation (23) is required for (X, Y) in each region 
J = B, F, H of a planform with sonic leading edge (a = 1) and side edges which act as subsonic 

leading edges (0 < ~ < 1) or streamwise tips (~ = 0). 
For the particular case a = 1, equations (A.1) to (A.7) of Appendix A apply with y = 0. The area 

of integration Aj for a point (Uo, %) in region J is defined in the following table. 

Region 
J 

B 

F 

H 

Area A s is bounded byu = u0, v = v 0 and the lines 

u = O ,  v = O  

"0 = O~ u = u  o 

u = Uo, v = 7v o 

The integral for Fmj is given in (%, %) co-ordinates by equation (A.6); by considering the double 

integral i,~(ul, vl) of equation (A.8) and the above definitions for A j, the functions Fro. 1 can be 

expressed as 

F ~  = im(Uo, Vo) 

FmF = F~B(Uo, Vo) -- 4~(~0, ~o) 

F ~  = F~F(no, Vo) -- i~(Uo, ~0) 

where 

~o = 8(~o- ~/2Y~), 

~o = 3(Uo- ~/2 Yz), 

8 = (I - ~)/(I +.). 

Expressions for F~j(~[ = B, F, H and m = 0, 1, 2) have been obtained by inserting into the standard 

integrals ira(u1, Vl) the values (ul, vx) appropriate to each- region J. The resulting formulae for 
F m j ( X  , Y)  can be expressed concisely in terms of the following functions tFm(P , Q): 

tF ° = _ _ 2 ~ / ( p o )  
q7 

1 [p + Q] ~ / (pQ)  
tF1 - XtF° = -T~ 

where the definition of the parameters (P, Q) in terms of the non-dimensional co-ordinates (X, Y) 

is dependent on the region J. 
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Region B 

where 

Region F 

F,,~B(X, Y) = tFm(P , Q), 

P = X - Y } .  

Q = X + Y  

f, ,~(x, y) = %~(P, Q), 
where 

Fx - yq } 
P = 2 \  r + l  ] 

Q = x2 + Y~ 
and 

x ~ = x + a Y z ,  Y,,= Y - ~ Y ~ .  

Region H 
F.m(  X,  Y) = F.~F( X,  Y) + Fm~(X, - Y) - F~,m( X , Y) .  

APPENDIX D 

Estimation of Thickness Corrections by Strip Theory 

In the main body of this report, the lift and pitching-moment derivatives have been evaluated on 
the assumption that the wings are of zero thickness. The models used in the N.P.L. experiments 
had finite thickness as defined in Section 6.2, and it is desirable to estimate its effect on the 

derivatives. 
Van Dyke 5 has derived a solution for the loading on two-dimensional aerofoils of small finite 

thickness oscillating in supersonic flow. For slow oscillations of a symmetrical profile, the 
contribution made by the thickness to the lift distribution over the aerofoil surface is 

t (M2N-2) z ' -  i~ F2M~(N-1) Z + 

]I + 13 ~ x Z ' +  fi2 hcZ' , (D.1) 

where z = + Z(x), (0 <. x <. c), is the equation of the symmetrical aerofoil, 

hc is the distance of the pitching axis downstream of the leading edge 

N = (y+ 1)MZ/2fi 2 = 1.2MZ/fi 2 for air, 

and Z' = dZ/dx.  

Eqn. (D.1) applies to aerofoils having an attached shock wave at the nose; the leading edge must 
therefore be sharp, though the trailing edge may be blunt. 

To estimate the effect of thickness on the three-dimensional wings, the above equation was 
applied on the basis of simple strip theory. If the pitching axis is at a distance hoc o downstream of 
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the wing apex (Fig. 1) and the equation of the leading edge of the wing is x = x~(y), the local pitching 
axis is defined by 

h(y) c(y) = hoc o - x~(y). (D.2) 

Then the thickness correction to the total lift on the wing is 

A L  = f s  fx,(v)+c(V)Aldxdy ' (D.3) 
y = - s  d x=xl(y) 

and the increment to the total pitching moment about the axis x = hoc o is 

AMY = - ( x - hoco)Al dx d y , (D.4) 
d y = - s  d x=xl(Y) 

where Al(x, y ,  t) is given by eqn. (D.1) with x and hc replaced by {x - xz(y)} and {hoc 0 - x~(y)} 
respectively, since these are now the distances of the point (x, y) and the local pitching axis from 
the leading edge. 

When the streamwise aerofoil section is a symmetrical double-wedge with thickness/chord ratio 
equal to 8, the integration of eqns. (D.3) and (D.4) in the chordwise direction is particularly simple. 
With Z = ½S{c - Ic - 2 ( x - , ) l ) ,  (x, <. ~ . < ,  + c), 
it follows that 

A (Local lift per unit span) = - ½po~ U~2Ooei~tc~ Fh°c ( M 4 N  --  3--M2 + 2)1 (D.5) 
Lu~ \ f i '  ' 

and 

A (Local pitching moment per unit span about axis hoco) 

= ½~ v~Oo,,O,c~, l[ M2N-2) + i~c F[M~N-2)(1-2h) M~(N-l)hi (D.6) 

where h is defined by (D.2). Hence for a three-dimensional wing having a double-wedge section of 
constant ratio S across the whole span, the total forces of eqns. (D.3) and (D.4) can easily be obtained 
by integrating (D.5) and (D.6) across the span. Then, the increments to the lift and pitching-moment 
derivatives as defined in eqn. (28) are found to be 

Azo = o 

Amo =, (~)'[M~N-N 2)f: (~)~o dy , ( D . 7 ,  

A m  0 , ( ~ )  M 2 N  - c z pfSX__t c ~ _ h o P f : ( ~ o ) 2 d y l  [( 2) f : +  oco 
where 

p 2(M~N-2) M e ( N  - 1) 
- + 

and 
N = l '2M~/ f i  2. 

The wings with blunt trailing side edges do not have a double-wedge section across the whole 
span (Section 6.2). To calculate the thickness corrections for these wings, the modified profile 
Z(x) at the streamwise sections s~ < ]y] < s was used in eqns. (D.1) to (D.4). 
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T A B L E  1 

Regions of Integration for the Various Planforms and Mach Numbers 

Planform 

s = 1"370c o 

¢ 45 ° 

; = 1"370c o 

4' 30° 

s = 1.370c o 

4 , = o  

s = 1'370c o 

= 30 ° 

s = 1"370c o 

¢ = 45 ° 

M 

, /2  
1"6 
1"8 
2"0 
2"2 
2 ' 4  

@2 
1.6 
1.8 
2-0 
2"2 
2"4 

1. 035 
1.065 
1.102 
1.155 

# 2  
1"6 
1 '8  
2"0 
2 .2  
2 .4  

~/2 
1-6 
1-8 
2"0 
2 ' 2  
2"4 

1.155 
v'2 

1-6 
1-8 
2"0 
2"2 
2"4 

Case* 

(i) 
(i) 
(i) 
(i) 
(i) 
(i) 

(ii) 
(ii) 
(ii) 
(i) 
(i) 
(i) 

(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 

(iv) 
(iv) 
(iv) 
(v) 
(~) 
(v) 

(iv) 
(v) 
(v) 
(v) 
(v) 
(v) 
(v) 

Regions J 

A, B 
A, B 
A, B 
A , B  
A, B 
A, B 

as for 
s = 1-370c o 

¢ = 30 ° 
A, B 
A, B 
A, B 

B, F, H 
A, B, C, D, E, F, G 
A, B, C, D 
A, B, C, D 
A , B , C  
A, B, C 
A, B, C 
A , B , C  
A, B, C 
A , B , C  

A, B, C, D 
A , B , C  
A, B, C 
as for 
s = 1"370c o 
= -- 30 ° 

A, B, C, D, E 

as for 
s = 1.370c o j ~ =  - 4 5  o 

* Cases (i) to (v) are defined in Section 2.3. 
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T A B L E  1--continued 

Planform 

s = 1.O00co 

30 ° 

s = 1.000c o 

~ = o  

s = l'O00c o 

.~b = 30 ° 

s = 0"625c o 

~ =  - 1 5  ° 

s = 0 . 6 2 5 c  o 

~ = 0  

s = 0'625c o 

~b= 15 ° 

M 

~/2 
1'6 
1'8 
2.0 
2.2 
2.4 

1.6 
1 . 8  

2.0 
2.2 
2-4 

~/2 
1.6 
1.8 
2.0 
2.2 
2.4 

.,/2 
1'6 
1"8 
2"0 
2"2 
2"4 

Case* 

(ii) 
(ii) 
(ii) 
(i) 
(i) 
(i) 

(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 

(iv) 
(iv) 
(iv) 
(v) 
(v) 
(v) 

(ii) 
(ii) 
(ii) 
(ii) 
(ii) 
(i!) 

Regions J 

as for 
s = 1-000c o 

~ =  30 
A, B 
A, B 
A, B 

A, B, C, 
A, B, C, 
A, B, C 
A, B, C 
A, B, C 
A, B, C 

D 
D 

A, B, C, 
A, B, C, 
A, B, C, D 
as for 
;= ooo:o= _ 

~/2 
1"6 
1"8 
2"0 
2 '2  
2"4 

5/2 
1.6 
1.8 
2.0 
2"2 
2"4 

(iii) 
(iii) 
(iii) 
(iii) 
(iii) 
(iii) 

(iv) 
(iv) 
(iv) 
(iv) 
(iv) 
(iv) 

l as for 
s = 0'625c o 
~b= 15 ° 

A, B, C, 
A, B, C, 
A, B, C, 
A, B, C, 
A, B, C, 
A, B, C, 

A, B, C, 
A, B, C, 
A, B, C, 
A ,B ,  C, 
A, B, C, 
A, B, C, 

D , E  
D 

D,E,F 
D, E, F 
D 
D 
D 
D 

D, E, F, G 
D, E, F 
D, E 
D, E 
D , E  
D 

e Cases (i) to (v) are defined in Section 2.3. 
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T A B L E  2 

S t a b i l i t y  D e r i v a t i v e s  f o r  W i n g s  s = 1.37c o w i t h  P i t c h i n g  A x i s  h o = 0 

~b M l o l 0 - m o - m 0 

_ 45 ° 

_ 30 ° 

30 ° 

45 ° 

~/2 
1"6 
1"8 
2"0 
2-2 
2"4 

-,,/2 
1.6 
1.8 
2.0 
2.2 
2.4 

1' 035 
1" 064 
1" 102 
1"155 

~/2 
1"6 
1-8 
2.0 
2-2 
2-4 

v'2 
1"6 
1"8 
2"0 
2"2 
2"4 

1.155 
~2 

1"6 
1'8 
2"0 
2"2 
2"4 

1-9349 
1-5658 
1-3148 
1-1404 
1.0105 
0.9093 

1.9109 
1.5567 
1.3124 
1.1412 
1.0111 
0.9097 

4.1077 
3.8766 
3.5173 
3.0271 
1.8928 
1-5396 
1-2967 
1.1270 
1.0001 
0.9008 

1.9109 
1.5567 
1.3124 
1.1412 
1.0111 
0.9097 

3.0452 
1.9349 
1.5658 
1-3148 
1-1404 
1-0105 
0-9093 

0-3458 
0-4555 
0.4636 
0.4432 
0.4163 
0.3893 

0.3483 
0.4582 
0.4668 
0.4468 
0.4194 
0.3920 

- 9 .2227  
- 5 . 5 4 4 2  
- 3 .0357  
- 1-2496 
+0-3518 
+0.4590 
+0.4662 
+0.4455 
+0.4184 
+0.3912 

0.3549 
0.4634 
0.4711 
0.4504 
0.4227 
0.3950 

-1 .1841  
+0-361I  
+0.4687 
+0-4749 
+0-4532 
+0-4252 
+0.3973 

0.9432 
0.7670 
0.6459 
0.5613 
0.4980 
0.4485 

0.9349 
0.7663 
0.6484 
0.5651 
0.5012 
0.4513 

1.5419 
1-6754 
1-6295 
1-4441 
0.9290 
0.7599 
0.6421 
0.5592 
0.4969 
0.4481 

0.9415 
0.7715 
0.6526 
0.5687 
0.5045 
0.4544 

1.4591 
0.9585 
0-7801 
0.6572 
0.5712 
0.5069 
0.4565 

0.1921 
0.2615 
0.2689 
0.2583 
0.2433 
0.2279 

0.1940 
0.2634 
0.2711 
0.2607 
0.2454 
0.2298 

- 3 . 8 8 7 4  
-2-9333  
- 1-7608 
-0-7551 
+0.1961 
+0.2639 
+0.2706 
+0.2598 
+0.2447 
+0.2292 

0.2004 
0.2686 
0.2753 
0.2643 
0.2487 
0.2327 

- 0.6920 
+ 0- 2071 
+ 0- 2743 
+ 0.2799 
+ 0.2680 
+ 0.2520 
+0.2358 
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T A B L E  3 

Stabil i ty Derivatives for  Wings s = 1. OOc o with Pitching Axis  h o = 0 

4~ M l o 16 - m o  - mO 

_ 3 0  o 

30 ° 

V2 
1-6 
1"8 

2 " 0  
2"2 
2"4 

V2 
1"6 
1'8 
2 '0  
2 '2  
2 '4  

~ / 2  
1"6 
1"8 
2"0 
2 '2  
2 '4  

1.7922 
1"5041 
1.2898 
1.1335 
] ' 0057  
0-9057 

1-7380 
1.4475 
1.2357 
1.0829 
0.9665 
0.8742 

1.7922 
1-5041 
1-2898 
1-1335 
1-0057 
0.9057 

0-3426 
0-4352 
0"4457 
0.4297 
0'4051 
0'3797 

0.3451 
,0"4418 
0.4509 
0.4332 
0.4085 
0.3832 

0'3879 
0.4707 
0"4750 
0.4547 
0.4277 
0~4003 

0.8364 
0.7158 
0.6203 
0.5484 
0-4874 
0"4395 

0.8311 
0.7024 
0.6043 
0.5321 
0.4763 
0'4318 

0"8817 
0.7514 
0-6495 
0-5735 
0-5100 
0-4601 

0-2025 
0.2564 
0.2635 
0.2547 
0.2406 
0.2258 

0.2047 
0.2625 
0.2689 
0.2588 
0-2445 
0.2296 

0.2453 
0.2906 
0.2921 
0.2794 
0.2629 
0.2461 
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T A B L E  4 

Stability Derivatives for Wings s = 0" 625c o with Pitching Axis h o = 0 

4, M So I6 -mo  -mo 

_ 15 ° 

15 ° 

~/2 
1"6 
1"8 
2"0 
2"2 
2-4 

~/2 
1-6 
1-8 
2"0 
2"2 
2 ' 4  

~/2 
1"6 
1"8 
2"0 
2-2 
2-4 

1.3830 
1.2471 
1.1187 
1.0112 
0.9218 
0.8468 

1.3483 
1.2065 
1.0762 
0"9677 
0.8787 
0.8047 

1-3830 
1-2471 
1.1187 
1.0112 
0.9218 
0.8468 

0.5026 
0.4842 
0.4561 
0.4265 
0.3979 
0.3717 

0.5142 
0.4965 
0.4678 
0-4376 
0-4082 
0.3811 

0.5835 
0.5447 
0.5047 
0.4679 
0.4342 
0.4040 

0.5495 
0-5339 
0-4986 
0-4609 
0-4262 
0-3954 

0.5688 
0.5409 
0.4985 
0.4562 
0.4187 
0.3864 

0.6303 
0.5944 
0.5472 
0.5022 
0-4625 
0-4278 

0.3401 
0.3076 
0.2832 
0.2626 
0.2441 
0.2275 

0.3498 
0.3194 
0.2947 
0.2736 
0.2544 
0.2371 

0.4038 
0-3619 
0-3292 
0.3025 
0.2794 
0.2593 
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T A B L E  5 

Thickness Corrections for Wings s = 1 . 3 7 c  o with Pitching Axis h o = 0 

S e c t i o n  ~ M A I  o - A m  o - A m  O 

a - 4 5  ° 

t 

C 

- 3 0  ° 

30 ° 

45 ° 

1 ' 6  

1 ' 8  

2 ' 0  

2 ' 2  

2 ' 4  

~/2 
1"6 

1"8 

2"0 

2 - 2  

2"4  

~/2 
1 -6  

1 -8  

2 - 0  

2 "2  

2 . 4  

V2 
1"6 

1"8 

2 ' 0  

2 ' 2  

2 "4  

V2 
1"6 

1"8 

2 . 0  

2"2  

2"4  

0 . 0 1 0  

0 . 0 0 7  

0 . 0 0 6  

0 .005  

0 .005  

0. 

O . 

0. 

0. 

0. 

0. 

0. 

0 
0 
0 
0 
0 
0 

- 0- 098 

- 0 - 0 5 1  

- 0 - 0 3 5  

- 0 . 0 2 9  

- 0 . 0 2 6  

005 - 0 . 0 2 4  

005 - 0- 098 

003 . - 0 . 0 5 2  

003 - 0 . 0 3 6  

002 - O. 030 

002 - O. 027 

002 - O. 025 

- 0 . 0 9 9  

- 0 . 0 5 2  

- O. 037 

- 0 . 0 3 1  

- O. 027 

- O. 026 

- 0 . 1 0 0  

- 0 . 053  

- 0 . 0 3 7  

- 0 . 0 3 1  

- 0 . 0 2 8  

- 0 . 0 2 6  

- 0 . 1 0 0  

- 0 . 0 5 3  

- 0 - 0 3 8  

- 0 . 0 3 1  

- 0.  028 

- 0. 026 

- 0 . 0 4 5  

- 0 . 0 3 2  

- 0 . 0 2 6  

- 0 . 0 2 4  

- 0- 022 '  

- 0 . 0 2 2  

- 0 - 0 4 8  

- 0 . 0 3 3  

- 0 . 0 2 8  

- 0 . 0 2 5  

- 0 . 0 2 4  

- 0 . 023  

- -  O. 049 

- - 0 . 0 3 4  

- - 0 . 0 2 8  

--  O. 026 

- - 0 . 0 2 4  

- 0 . 0 2 4  

- 0 . 0 5 0  

- 0 . 0 3 5  

- 0 . 0 2 9  

- 0 . 0 2 6  

- 0 . 0 2 5  

- 0 . 0 2 4  

- 0 . 0 5 0  

- 0 . 0 3 5  

- 0 . 0 2 9  

- 0 . 0 2 6  

- 0- 025 

- 0- 024 

- 0 . 0 5 5  

- 0 . 0 3 6  

- 0 . 0 2 9  

- 0 . 0 2 6  

- 0 . 0 2 4  

- 0 . 023  

- O. 055 

- 0 . 0 3 6  

- O. 029 

- O. 026 

- O. 025 

- O. 024 

- 0 . 0 5 5  

- 0 - 0 3 6  

- 0. 029 

- 0 - 0 2 6  

- 0- 025 

- 0 . 0 2 4  

- 0 - 0 5 6  

- 0 - 0 3 7  

- 0 . 0 3 0  

- O- 027 

- O. 025 

- O. 024 

- 0 . 0 5 6  

- O. 037 

- 0 . 0 3 0  

- O. 027- 

- 0 . 0 2 5  

- O. 024 

a B lu n t  t ra i l ing s ide -edges  (see Sect ion 6.2). 

b 5 ~ d o u b l e - w e d g e  sect ion.  

c Sh a rp  lead ing  s ide -edges  (5 ~ d o u b l e - w e d g e  section).  
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T A B L E  6 

Thickness Corrections f o r  Wings s = 1. OOc o with Pitching A x i s  h o = 0 

Section ~ M A l  o AI  6 - A m  0 - A m  6 

a - 3 0  ° 

30 ° 

v~2 
1"6 
1"8 
2-0 
2-2 
2-4 

~/2 
1 '6  
1.8 
2"0 
2"2 
2"4 

@2 
1-6 
1-8 
2.0 
2.2 
2.4 

0.018 
0.013 
0.010 
O. 009 
O. 009 
O. 009 

0 
0 
0 
0 
0 
0 

- 0 . 1 0 8  
- 0 . 0 5 5  
- 0 . 0 3 7  
- 0 . 0 3 0  
- 0.027 
- 0.025 

- 0 . 1 0 7  
- 0- 057 
- 0.040 
- 0 - 0 3 3  
- 0 . 0 3 0  
- 0.028 

- 0 . 1 0 8  
- 0 . 0 5 7  
- 0.040 
- 0 . 0 3 3  
- 0 . 0 3 0  
- 0.028 

- 0. 046 
- 0 . 0 3 2  
- 0.027 
- 0 . 0 2 4  
- 0. 023 
- 0- 022 

- 0 - 0 5 4  
--0-037 
- 0 . 0 3 1  
- 0" 028 
- 0. 026 
- 0 . 0 2 6  

- 0 . 0 5 4  
- 0 . 0 3 7  
- 0 . 0 3 1  
- -  0" 028 
-- 0. 027 
- -  0- 026 

- 0 . 0 5 8  
- 0 . 0 3 8  
- 0 . 0 3 0  
- 0 - 0 2 7  
- 0 . 0 2 5  
- O. 024 

- 0 . 0 5 9  
- 0 . 0 3 9  
- 0 . 0 3 2  
- 0.029 
- 0. 027 
- 0 . 0 2 6  

- 0 . 0 6 0  
- 0 - 0 4 0  
- 0 - 0 3 2  
- 0- 029 
- 0 . 0 2 7  
- 0 . 0 2 6  

a Blunt trailing side-edges (see Section 6.2). 

b 5 ~  double-wedge section. 

c Sharp leading side-edges (5 9/00 double-wedge section). 
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T A B L E  7 

Thickness Corrections for  Wings s = 0. 625c o wi thPi tch ing  Ax i s  h o = 0 

Section (J M AI o Al  O -- Am o -- Am 6 

a --15 ° 

b. 

15 ° 

@2 
1.6 
1.8 
2.0 
2.2 
2.4 

~/2 
1-6 
1-8 
2"0 
2"2 
2"4 

~/2 
1"6 
1"8 
2-0 
2-2 
2"4 

0.021 
0.015 
0.012 
0.011 
0.010 
0.010 

0 
0 
0 
0 
0 
0 

-0 -120  
--0-060 
--0.041 
--0.033 
-0"029 
-0 .027  

- 0 . 1 1 8  
-0 .063  
- 0 . 0 4 4  
- 0 . 0 3 7  
-0 .033  
-0-031  

- 0 . 1 1 6  
-0 .061  
-0 .043  
- 0 . 0 3 6  
- 0 . 0 3 2  
- 0 . 0 3 0  

- 0 . 0 5 0  
-0 .035  
- 0 . 0 2 9  
-0 -026  
-0 .025  
- 0 . 0 2 4  

-0 .059  
-0 .041  
- 0 . 0 3 4  
-0 .031  
- 0 . 0 2 9  
- 0 . 0 2 8  

- 0 . 0 5 8  
-0 -040  
-0 .033  
- 0 . 0 3 0  
-0 .029  
-0 .028  

- 0 . 0 6 2  
- 0 . 0 4 0  
- 0 . 0 3 2  
- 0 . 0 2 9  
- 0 . 0 2 7  
-0 -026  

-0 -063  
-0 .043  
-0 .035  
-0 .031  
- 0 . 0 2 9  
- 0 . 0 2 8  

0. 063 
- 0. 043 
-0 .035  
-0 -031  
- 0- 029 
- 0- 028. 

a Blunt trailing side-edges (see Section 6.2). 

b 5 % double-wedge section. 

c Sharp leading side-edges (5 % double-wedge section). 

T A B L E  8 

Conversion Factors for  Derivatives [see Eqns. (48) and (49)] 

) 
S/Co i I~1 Aspect ratio Co/8 (Co~g) 2 co/~ (Co/~) ~ 

1.370 

1.000 

0.625 

45 ° 
30 ° 
0 

30 ° 
0 
15 ° 
0 

4-5844 
4.4531 
4.3292 
3.0372 
2-7321 
1.71t4 
1.5014 

1.67313 
1.62523 
1.58000 
1-51862 
1.36603 
1.36914 
1.20116 

2.79936 
2.64139 
2.49641 
2.30620 
1.86603 
1-87455 
1-44277 

1.39503 
1.40444 
1.42070 
1.30141 
1.30763 
1.20750 
1.18517 

1.94610 
1.97245 
2-01837 
1-69368 
1.70989 
1.45806 
1.40463 
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FIGS. la  and b. Planform and streamwise section 
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FIG. 2. Definition of family of wings. 
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for P:  (x ,~  in ~qions A and B. 
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\ 
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( b )  Case ( i v ) w i t h  subsonic leodin9 side-¢dge._~: 

x : T s ~  ~ = o . 6 2 s  % , ~ : l s  ° M = ~ / 2  

Regions of typical planforms in the (X, Y) plane. FlCS. 4a, b and c. 
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(a) Mach number M ~ , / ' 2  (b) Mach number  M = 2 
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