T
| R N S T |
gy on

P “iz T g5 e Ly
Pl AL AIRCRAFT ESTABLILMMENT

E;E:i)r@k[). R. & M. No. 3298

MINISTRY OF AVIATION

- AERONAUTICAL RESEARCH COUNCIL
' REPORTS AND MEMORANDA

Lalculatlon of Stab1hty Derlvatwes for Tapered
'Wlngs of Hexagonal Planform Oscillating in a
Supersomc Stream

By Doris E. Leurian, B.Sc.,

OF THE AERODYNAMICS Division, N.P.L.

LONDON HER MA]ESTY S STATIONERY OFFICE

1963
PRICE: 18s. 6d. NET



Calculation of Stability Derivatives for Tapered
Wings of Hexagonal Planform Oscillating in a
~ Supersonic Stream |

By Doris E. LEHRIAN, B.Sc.,

oF THE ArroDYNAMICS DivisioN, N.P.L.

Reports and Memoranda No. 3298*
September, 1960

)

Summary.

The aerodynamic loading is formulated for a family of symmetrically tapered wings describing simple
harmonic pitching oscillations of low frequency in supersonic flow. The planforms have supersonic leading
and trailing edges of constant sweep, the variable parameters being the angle of rake of the side edges and
the ratio of span to root chord. _

For Mach numbers /2 < M < 2:4, the investigation covers supersonic and subsonic side edges which
act as leading edges, streamwise tips or trailing edges. The lift and moment are evaluated to first order in
frequency on the basis of linearized thin-wing theory. In the case of subsonic trailing side edges, it is more
convenient to obtain the total forces by use of the reverse-flow theorem.

The theoretical values of the pitching-moment derivatives are compared with experimental results obtained
on half-wing models with alternative pitching axes and a basic 5% double-wedge section. An estimate of
thickness effect is calculated by applying two-dimensional aerofoil theory on a strip-theory basis. When
corrected for thickness the theoretical values are in good agreement with the experimental derivatives for
Mach numbers greater than 1-6.

1. Introduction.

The aerodynamic forces acting on oscillating hexagonal wings in a uniform supersonic airstream
are to be determined for comparison with experiment. On the basis of linearized theory®?2, a formal
solution for the perturbation velocity potential on a wing of arbitrary planform and zero thickness
is known for simple harmonic oscillations of small amplitude and general frequency. To evaluate
the integral for the velocity potential, it is necessary to impose restrictions either on the frequency
of oscillation, on the planform of the wing or on the Mach number of the airstream. Since the
experiments gave only low frequency, this will be assumed sufficiently small for thé neglect of
second-order effects. ‘Then, for certain types of planform, an exact solution can be obtained for the
velocity potential and hence for the lift distribution.

* Previously issued as A.R.C. 22,186. Published with the permission of the Director, National Physical
Laboratory. ‘



The planforms to be considered have symmetrical taper and supersonic leading and trailing
edges of 15° sweep. Each wing has a different aspect ratio and side edges which are raked at a varying
angle ¢ as shown in Figs. 1 and 2. The side edges act as the outboard part of the leading edge if
h > 0, or the trailing edge if 4 < 0, and they will be supersonic or subsonic according as M is
greater or less than cosec [4|.

The velocity potential over that part of a polygonal planform which is influenced only by
supersonic edges, is defined directly in terms of the upwash field on the planform, and can readily
be evaluated. For the tip region of a planform, influenced by a subsonic leading side edge, Evvard?
uses an equivalent-area concept to simplify the velocity-potential integral for steady flow. For
oscillatory motion, Stewartson? derives a direct integral for the velocity potential in the tip region;
to first order in frequency this integral depends only on the known upwash over Evvard’s
equivalent area of the planform. This analytical treatment can be extended to cases when the two
tip regions overlap, provided that their upwash fields off the planform are independent. Formulae
for the velocity-potential distribution over wings with subsonic leading side edges are evaluated
analytically for low-frequency pitching oscillations in Section 3. The total lift and pitching moment
for a particular planform and Mach number are then obtained by integrating the appropriate
formulae over the wing area. ‘

A subsonic trailing side edge greatly complicates the solution, even when formulated in terms of
the acceleration potential as suggested by Stewartson?. For present purposes however it is not
essential to know the distribution of lift. By applying the reverse-flow theorem for oscillatory
motion?, the total forces on a wing with subsonic trailing side edges can be determined from solutions
for the same planform when the direction of flow is reversed but the Mach number and frequency
of oscillation are unchanged. The application of the reverse-flow theorem for low-frequency
pitching oscillations is considered in Section 4. '

The stability derivatives are evaluated for eleven planforms and the range of Mach number
V2 < M < 2-4. For each planform, measured values of the pitching-moment derivatives have
been obtained for two or three axis positions from low-frequency tests made on half-wing models at
the N.P.L.%. These models have a basic 59, double-wedge section, and it may be assumed that the
effects of thickness are additive to those of planform, provided that the aspect ratio is not too small.
An estimate of the thickness correction is therefore obtained by applying Van Dyke’s® two-
dimensional theory of oscillating aerofoils on a strip-theory basis (Appendix D).

Additional values of the pitching derivatives are calculated for the wing of greatest span with
streamwise tips at Mach numbers 1035 < M < 4/2. This planform was chosen for further
investigation to provide some results by linearized theory for comparison with transonic tests which
are being made at the N.P.L. For M = 1-035 the leading and trailing edges of this planform are

sonic and the solution is obtained by considering the limiting form of the velocity-potential
distributions when ¢ = BtanA —1.

2. General Theory.
2.1. Linearized Equations.

In formulating the basic equations of flow it is supposed that an infinitely thin wing of arbitrary
planform describes simple harmonic oscillations of small amplitude about zero mean incidence
in an otherwise uniform ideal fluid, Effects of wing thickness and viscosity are thus ignored, and
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squares of perturbations from the uniform supersonic free-stream velocity are neglected throughout
the field of flow. The perturbation ®(x, y, 2, f) in velocity potential then satisfies the linear
differential equation (Ref. 1, Table 1)

2 2 2 2 22 2 2
(M2_1)8_®_29_@ 2M? 20 M a(I)=0; 1

the pressure at any point is given by

: o o0
Zp o= — o 7= (2
P Poo poo(at+ Uoo 8x>’ ( )
where U, p., and p,, are respectively the velocity, pressure and density of the free stream.
The vertical upward displacement of the wing from a mean position z = 0 is
(%, 3, 1) = Zo(%, y)e! )

where 2,(x, y) is an arbitrary mode of oscillation to which there corresponds a perturbation potential
of complex amplitude

(%, y, 2) = O(x, y, &, Hle~tt, 4

The linearized boundary condition for tangential flow over the wing is that the amplitude of the
upwash
w = (9¢/02),_y = twzy + U,(92,/0%). (5)
In the wake
[iwd + Uen(3/0%)]o—g = 03 ' (6)
by eqn. (2) this ensures that the pressure is continuous across the wake. Since ¢ is antisymmetrical
with respect to the plane & = 0, ¢(x, y,+0) = — ¢(x, ¥, —0), and it follows from eqn. (2) that the
lift distribution on the wing is

L%, y, 1) = 2p[iw + U (8/3x)] [$(x, v, + 0)]eit. ™
The problem is therefore to solve equs. (1), (4), (5) and (6) for ¢(x, y,+0).
2.2. Integral for the Velocity Potential.

The various formal solutions for the velocity potential on the upper surface of the wing (e.g.,
Refs. 1, 2, 3), lead to the integral expression

1 ’ ’ s !
49) = = [ [ ww,y)Kavay (®)
in the present notation. Here :
w(x', y') = [0p(x, ¥', 2)[02]smp 9
1 —iwM¥x—x)] [ wMr
== kit A __em 1
K=o [T ] | arnv) (19

with
r = [(a=a) — (MP-1)(y—5'F]",
and the area of integration A is the part of the plane # = 0 bounded by the forward Mach cone

from (x, ) and the wave front defined as the envelope of trailing Mach cones with vertices on the
leading edge of the wing. When the wing has only supersonic edges and A lies within the planform,

3
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eqn. (8) is explicit, since the upwash w(x’, y") is known in terms of the wing motion by eqn. (5).
If A includes any subsonic edges of the wing, w(x’, ') is initially unknown over the part of A which
lies off the planform and has to be evaluated to satisfy (9) before ¢(x, y) can be determined from

eqn. (8). The precise treatment will depend on whether the subsonic edges in question are leading
or trailing edges.

2.3. Family of Wings. '

The wings to be considered are symmetrically tapered with side edges inclined at an angle 4 to
the direction of the free stream. A typical planform is defined by the apex angle 2), the root chord c,
and the semi-spans sz, and s, of the leading and trailing edges (Fig. 1). When the side edges are
raked outwards, s; < s; = s and ¢ > 0: when they are raked inwards, s; < s, = s and # < 0.
The particular planforms for the family of wings are given in terms of A (= 75°), s/¢, and ¢ in
Fig. 2.

In a free stream of Mach number M > cosec ], the leading and trailing edges of these wings are
supersonic. Any wing of the family associated with a particular Mach number M = cosecu can
be classified according to the type of side edge into one of the following five cases:

Case Semi-span Range of 4 Side edges act as
(1) Sp < S, =S < —p supersonic (sonic) trailing edge
(i) Sp < S, =8 —p<d<0 subsonic trailing edge
(1ii) Sp=Sp =2 g=0 streamwise tips
(iv) Sp < Sp=s O<f<p subsonic leading edge
() Sy < Sp=5§ IS/ supersonic (sonic) leading edge

On any of these wing planforms consider the region S, which lies upstream of the Mach lines
from the points y = + sz, on the leading edge. For all cases (i) to (v), the velocity potential ¢ at any
point in region S, is determined by eqns. (5) and (8), where the area of integration A = A, is
bounded by the supersonic leading edge # = |y| cotA and the forward Mach lines from the point.
In case (i) the region S, is identical with the planform. In all other cases the velocity potential is
required outside the region S, over the region of the planform where

x > [spcotd + (sp— | y|) coty] (11)

and ¢(x, ) is influenced by the side edges. Case (iii) with 6 = 0 can be regarded as a particular
example of case (iv), and both cases are considered in Section 2.4: case (ii) is discussed in Section 2.5.
In case (v), where the planform has supersonic leading side edges, eqn. (8) can be applied directly
but the area of integration A is more complicated than A;: an alternative approach by means of the
reverse-flow theorem is therefore adopted in Section 4.

2.4. Subsonic Leading Side Edges.

Over that part of the planform covered by (11), the velocity potential in cases (iil) and (iv) is
influenced by the upwash field between the leading side edges and the wave front. Furthermore,
as shown in Fig. 3, ¢(x, ¥) in region S, or S, is influenced by only one side edge, whereas in region
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S, there is a contribution from both side edges. Region S; occurs when the Mach lines from the tips
(sz,cot A, + s7) intersect upstream of the trailing edge, so that eqn. (11) and

x > [spcotA + (s, + | y|) cot ] (12)
are both satisfied. The velocity potential over each region S,, is denoted by (¢g),, .

~ By the concept of an equivalent area, Evvard? has simplified the integral for (¢g), in steady flow.
Moreover, Stewartson’s? analytical treatment for general frequencies leads to an integral for (¢g),
which is independent of the upwash field off the planform. These procedures can be applied to
(¢g); over the whole area S, provided that the Mach lines from the tips do not intersect the opposite
side edges. It follows from Refs. 2 and 3 that the required velocity potentials can be obtained from

o=~ [ [ oty Ravay + o, (13)

where K is given in eqn. (10), the areas of integration A, (n = 0, 1, 2, 3) are defined in Fig. 3, and
the upwash w(x’, ¥’) is determined by eqn. (5). In the region S, the potential (¢g), follows from
eqn. (8) if terms of 0(w?) are neglected. To first order in frequency w, the complete solution for
cases (iii) and (iv) can therefore be evaluated from eqn. (13).

2.5. Subsomc Trailing Side Edges.

In case (ii), the velocity potential ¢(x, y) over the part of the planform defined by (11) is
influenced by the upwash field downstream of the trailing side edges and the wave front. To determine
#(x, ) from eqn. (8), the upwash w(x’, y") must first be evaluated over the part of A which lies off
the planform; it is difficult to estimate the contribution from the wake and to satisfy the wake
condition (6). Stewartson’s? alternative approach in terms of the acceleration potential yields a
convenient integral expression for the lift distribution I(x, y, ) over S; and S,, the regions of the
planform influenced by one subsonic trailing edge. The effect of both side edges over the region S5;
defined by (12) would lead to a more complicated expression. Accordingly, no attempt is made to
derive the distribution of lift in case (ii). For the limited purpose of obtaining the total forces on a
wing, the reverse-flow theorem will be applied (Section 4). Case (ii) is thereby reduced to a problem
for a wing with subsonic leading side edges which can be treated by the principles of Section 2.4.

3. Pitching Solutions for Cases (2), (#) and (iv).
3.1. Functions for the Velocity Potential.

It follows from Section 2 that, in cases (i), (iii) and (iv), ¢(x, ¥) to first order in frequency can be
expressed directly in terms of the upwash w(x, y) on the planform. For pitching oscillations of
amplitude 6, about the axis ¥ = 0, the wing motion in eqn. (3) is

2y = — x0,.
Then by (5), the upwash distribution is
w = — ULl + ivgx/ce] by, (14

where the frequency parameter v, = wcy/U,. By taking eqns. (10) and (13) to first order in v,

the corresponding velocity potential is ,

U0, 1 (& Mx—x)

™ J‘J‘An;lil-l-zuo C_o_co(Mz'“l)
5

] ax'dy - (15)

P, ¥) =




where the area of integration A, is defined in Fig. 3 for a point P = (x, v) in each region S,, of the
planform. For pitching motion it is only necessary to determine ¢(x, y) over the regions Sy, S, and
S; of the half-wing.

It is convenient to transform to non-dimensional co-ordinates (X, Y) such that

x = X 4/ (M?3-1
. Y‘/( )] : (16)

then all Mach lines in the (X, Y) plahe correspond to constant values of (X + Y). In these co-ordinates
the leading, side and trailing edges of the planforms shown in Figs. 1 and 2 become respectively

X=XL(Y)=}]Y| forOlel<YL
g
1 1 1
X =X(Y)=-|Y|+ (— —;) Y, for |Y]| between Y, and YV, », (17)
T g
1 1
X=XT(Y)=B——|Y{ for 0 < |Y| < ¥y
(o8
where ' - J
B = cotu = v/(M2-1)
o#ﬁtanh =
T = Btany - (18)
Yy = spfey
Yy = sp/cy
and <
! Y. +7Y ! Yr-Y _1 19
;( r+ T)+;( T L)_B' (19)

Then case (i) is defined by 7 < — 1 and Y = s/c,; case (iii) by 7 = 0 and ¥V, = Y, = s/c,;
case (iv) by 0 < 7 < 1 and Y, = s/¢,. Typical planforms and Mach lines for cases (i) and (iv)
are shown in Figs. 4a and 4b respectively. A limitation on Mach number is imposed in cases (iii)
and (iv) by the.condition that the Mach lines from the tips (¥ /o, + ¥) do not intersect the opposite

side edges, so that
B(Yr+Yp)(o+1) > 0.

In terms of the parameters Yy = s/cy, A and ¢ which define the planform in cases (iil) and (iv),
this condition becomes

(M2—1)k > (1-2Y,cotX)/(2Y,—tany), (20)

which gives M > 1-208 for the wing (s/co, A, ) = (0-625, 75°, 15°) and less restrictive limits for
the other planforms.
In the non-dimensional co-ordinates the velocity potential in eqn. (15) becomes

U..cof 1 vy nr 1L .
HX, Y) = _T”An - [1 + g {2 — (148 )X}} dx'ay’, (21)
R = [(X- XV~ (Y= V)%

and A, is now the transformed area of integration when (X, Y) is in the transformed region
Sy(n = 0, 1, 3) of the half-wing. When the leading edge is supersonic (¢ > 1) and has a kink at

6
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the origin, the limits of integration in eqn. (21) will vary within each region S,. In case (i) where
only S, occurs, the half-wing subdivides into regions A and B in the (X, Y) plane as can be seen
from Fig. 4a for the wing (s/c,, A, ) = (1:37, 75°, —45°) at M = 1-6. In cases (iii) and (iv) all
the regions S, S,, S; may occur; in the most complicated example to be considered when
(s/ees A, ) = (0-625, 75°, 15°) at M = 4/2, Fig. 4b shows seven distinct regions as follows:

S, subdivides to give A + B
S, subdivides to give C+ D + F } ; . (22)
'S subdivides to give E + G

of the corresponding areas of integration in the (X, Y) plane, A, and Ay are the same as in Fig. 4a
and A; for J = C, D, E, F, G, are defined in Fig. 5. At lower Mach numbers consistent with
eqn. (20), it is possible to have a further subdivision of Sg, namely ] = H, which extends downstream
of region G to the kink at the trailing edge. For (X, Y) in region H, the correct application of the
equivalent area concept (Section 2.4) gives the area of integration shown in Fig. 5 where the forward
part of Ay, which is shaded black, must be taken as a negative area of integration.

In terms of the general function

Fo(X, V) = -2 f f L xymaxay, 23)
=), |
where Aj is the area of integratidn corresponding to any region J = A, B ... H, eqn. (21) may be
written as
’ ; 2 2
$X, V) = — Udcoby H1 - Z_”"(I%X Fy; + i, 31 +BZB iFl } (24)

It should be noted that the velocity potential ¢ = U ¢, F,,; corresponds to the upwash distribution
w = U_X™in steady motion. Analytical expressions for F,,; are derived in Appendix A. Formulae for
F,{J =A B...Hand m =0, 1) are given in Appendix B in terms of the non-dimensional
co-ordinates (X, Y) and the planform parameters ¢ > 1, ¥ and 7. The velocity potential distribu-
tion ¢(X, Y) can be determined for any case (i), (iii) and (iv), by eqn. (24) and the appropriate
functions F,, ;.

On a planform with sonic leading edge [0 = 1] and subsonic leading side edges which do not
interact [28(Y+ Yy) = 1], the regions J = A, C, D, E and G do not occur and the distinct regions
which can arise are

S=B, S, =F, §,=H.

The planform (s/cg, A, ) = (1-37, 75°, 0) at M = 1-035 is shown in Fig. 4c as an example of
case (iii) when regions B, F, H occur. When ¢ = 1, the velocity potential distribution is given by
equation (24) and the limiting form of the functions F,,;. The functions F,,(J = B, F, H and
m = 0, 1, 2) can be derived from the formulae in Appendix B by suitably expanding all the cos™
terms as power series in (02— 1) and taking the limit of F,,; as ¢ — 1. However, Appendix C

mJ?
the co-ordinates (X, Y) and the planform parameters Y, and r.
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3.2. Pitching Derivatives in Terms of F,,;

The lift and pitching moment can now be obtained for low frequency v, — 0 and supersonic
free-stream Mach numbers consistent with eqn. (20). The total forces are

L- f f K, y)dsdy
s , (25)
M = — ff xl(x, y)dxdy
8
where [(x, y) is given by eqn. (7). If the lift distribution I = I(X, V)e over any region ] of the
half-wing, then it follows from eqns. (7), (16) and (24) that to first order in v,

v,

7 {(L+280F" s — (14 B XTF' oy — Fo; } ; (26)

where F', ; = dF, ;/0X. Thus eqn. (25) can be written as

1
Iy = —2p,,U.%, [BF'0J+

L = 28ce s, f f 1,dXdY |
OO (27)

M o= — 22l S J-f X1, dXdY
T T
where the summations extend over all regions ] = A, B . .. H which occur within the half-wing.
The aerodynamic derivatives, based on root chord ¢,, are now defined by
L = p U_280,[l, + ivyls]et*
P oo ( 9] | (28)
M = p U 2Seyfo[my + ivgmyletet '

where S = area of the planform. Therefore by eqns. (26) and (27) the aerodynamic derivatives
for the pitching axis %, = 0 in cases (i), (iii) and (iv) are given by

I, = 460 o s, f f Py, dXdY
4c
h=-"2x f f 5 L+ 2By — (L4 )Xy — Fygfaxay

(29)
m, 460 > f f BXF',,dXdY

m= w5 [ X128, - (X~ Fgyaxay

4. Pitching Solutions for Cases (i) and (v).
4.1. Statement of the Reverse-Flow Theorem.

Consider any wing describing simple harmonic oscillations of frequency w in a uniform
supersonic free stream. The reverse-flow theorem is derived by Flax? in the form

f f A& )€, m)dédy = ffs L& n, yw(¢, n)dEdy, | (30)

where the integrations over the complete wing area S are referred to co-ordinates (¢, 1) fixed in
the wing. Here / and we®’ are the lift and upwash distributions over the wing which correspond to
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a given motion in a direct flow of velocity U, ; [, and @™ are the lift and upwash distributions
over the same wing when the motion is arbitrary and the direction of flow is reversed to give a
free-stream velocity — U_,. Eqn. (30) is valid within the limitations imposed by linearized theory and
holds for any planform provided that the Kutta condition is satisfied at the trailing edge of the
wing for both the direct and the reverse flow. .

It is convenient to use the co-ordinates (¢, %) for the wing describing pitching oscillations in
direct flow U, in place of the co-ordinates (x, ¥) as defined in Fig. 1. Thus for pitching about the
axis £ = 0, the upwash distribution is

w(é, 1) = — Un[1+inélclby. - (31)

For this motion the total lift and pitching moment about ¢ = 0

L= [ uen nasan

(32)
M= — f f EL(E, , dE dn
s
are required to first order in the frequency parameter vy, = wcy/U,,. Now if
By(&: 1) =Wy = Us, (33)
it follows from eqns. (30) and (32) that the lift can be expressed as
L= ” I& 1) “"5_ " gt an
8 @
where ], corresponds to #,. Then by (31)
L= =6 [ [ b n 00 +imgleldean. e
8
Similarly by taking
B¢, ) = By = Uy€co, (35)
the pitching moment can be expressed as
= ey [ [ 16 m, 1L + inglesla (36)
s

where I, corresponds to @,. Hence to determine L and .# for slow pitching oscillations, the lift
distributions J, and [, over the wing in reverse flow are required to first order in v,

4.2. Application of Reverse-Flow Theorem.

As explained in Sections 2.3 and 2.5, when the side edge acts as a subsonic trailing edge in case (ii)
or as a supersonic or sonic leading edge in case (v), no attempt is made to obtain the distribution of
lift. The total lift and pitching moment are determined from eqns. (34) and (36) where the solutions
I(& m), L(& n) correspond to the respective upwash distributions @y(é, 1), @,(&, 1) defined by
eqns. (33) and (35).



In order to obtain the solutions for reverse flow by use of Section 2.4, it is necessary to transform
to an equivalent problem of the reversed wing in direct flow, whose co-ordinates are

x:co—f} .
. ‘ 37
y=—-7

The reverse-flow solutions required in cases (ii) and (v) are thus transformed to direct-flow
solutions for cases (iv) and (i) respectively. The latter correspond to the upwash distributions

wo(fi 77) = wﬂ(‘x» J’) = U, }

Wy (&, m) = wiw, y) = Uyleo—x)co

(38)

Solutions for the corresponding velocity potentials ¢,(x, y), (7 = 0, 1), are derived to first order in
frequency by using eqn. (13). The required lift distributions in the (x, y) co-ordinates,

Zq(f’ n, 1) = Zq(x: Y, 1) (39

can then be determined from eqn. (7).
The derivation of ¢,(x, y) to first order in v, is similar to the analysis for cases (iv) and (i) in
Section 3.1. In the non-dimensional co-ordinates of eqn. (16), ¢.(x, ¥) can be expressed as

P(X, ¥) = —

w

Uwto f f %(1—;5’){’)‘1 [1 —%(Hﬂz)(x—x')} dxdy’.  (40)
An
In terms of the general function F,, ;(X, Y) defined in (23), eqn. (40) becomes

_ (148X 1+ 2
g 5y | @)

(X, Y) = ¢y — Uyeol{B — ivy(1 +:8?)X}F1J + tvg(1 + B%) Fyg]

where (X, Y)isin any region J = A, B. . . H on the half-planform of the reversed wing. Formulae
for F,,;(X, Y) when o > 1 are given in Appendix B for m = 0, 1 and 2: the parameters o, Y,
and = in these formulae now correspond to the semi-apex angle, semi-span of the leading edge,
and side-edge angle of the reversed wing. For the particular case ¢ = 1, expressions for F,, (X, V)
are given in Appendix C. Thus ¢, and ¢, can be determined over any reversed planform which
classifies as case (iv) or (i) by using eqns. (41) and the appropriate functions F,, ;.

$u(X, V) = U, D 1 Fyy + iv,

4.3. Pitching Derivatives in Terms of F,,;

The lift and pitching moment for low frequency v, — 0 can now be obtained in cases (ii) and (v)
in terms of the lift distributions /, and / on the reversed planform. By eqns. (34), (36), (37) and (39)

L=-46, ff L(x, v, ) [1 + tvo(1 —x/cy)|dx dy
’ ; 42
A =ty [ [ 1w 3, 011+ in(1—slldndy
8
where the integration is over the planform S.
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If I(%, v, £) = I;(X, Y)e™ over any region J of the reversed half-planform, then it follows from
eqns. (7), (16) and (41) that to first order in »,

1 ! Z ! ’
s = 20,02 [ Pl + G {0+BIFs = (1 OXT oy = o}
» (43)
' ZV ’ 4
hy = ly = 2pUy? [F 1t BO {1+ — (L +F)XF'y5 — 11}}
where F',,; = 0F,,;/0X. Thus eqn. (42) can be written as
= — 2Bcy20,e™ 3, ff L[l + tvy(1—-BX)]dX dY
Jo4d , (44)

M = e S, f f I[1 + iny(1—BX))dX dY
J J

where the summations extend over all regions ] = A, B ... H which occur within the reversed
half-planform, and any terms 0(vy?) are to be neglected.

Then by eqns. (28), (43) and (44), the aecrodynamic derivatives for the pitching axis , = 0 in
cases (ii) and (v) are given by

= -t z” P, dXdY

b=t 205 [ S - (420X — Fijaxay
_ , (45)
my = — 1, _460 > f f BF' ,dXdY

4¢,?

my = (m— k1) — 0 3, f f (1 + By — (14 2B)XF"s; — Fy)dX dY

where the non-dimensional co-ordinates (X, Y) and the functions F,, ; refer to the reversed planform.

5. Evaluation of Derivatives.

The derivatives for low-frequency pitching oscillations about the axis ¥ = %y, = 0 have been
calculated for eleven wings of the family defined in Figs. 1 and 2. The six Mach numbers M = /2,
16 (0-2) 2-4 were included for all these planforms, and extra solutions for M = 2/4/3 = 1-155
were obtained for the two wings of greatest span with i = 0 and 45°. Further solutions for the
wing (s/c, = 1:37, ¢ = 0) were evaluated for M = 1-102, 1-065 and 1-035; these correspond
respectively to the following cases:

(2) Mach lines from both tips intersecting the trailing edge on the root chord [Bs = ¢, — scot 2],
(6) Mach lines from apex reflected in side edges and intersecting the trailing edge on the root
chord [Bs = ¢],
(¢) Sonic leading and trailing edges [BtanX = o = 1].
By the classification defined in Section 2.3 the calculations for each of the wings and Mach numbers
-are grouped into cases (i) to (v) ,as shown in Table 1.

The derivatives I,, {;, m,, m; defined in eqn. (28) are evaluated from eqns. (29) in cases (i), (iii)
and (iv), and from eqns. (45) in cases (ii) and (v); analytical expressions for the functions F,,; are
given in Appendix B for ¢ > 1 and in Appendix C for ¢ = 1. Since the sweep of the leading and
trailing edges remain the same when the planform is reversed, the limits of integration in eqns. (45)
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are precisely those for which eqns. (29) are to be evaluated. Moreover, as the integrands have
several terms in common, the calculation of the derivatives in case (ii) or (v) is relatively simple
‘once that for the corresponding case (iv) or (i) has been completed. The complexity of the integration
depends on the number of regions J which occur on the half planform. In cases (i) and (v) there are
only the two regions A and B; the derivatives were evaluated analytically by means of standard
integrals and numerical values were then obtained for each particular planform and Mach number
by inserting the appropriate limits. If ¢ > 1, then in cases (ii), (iii) and (iv) the regions A, B and C
always occur, and, as listed in Table 1, one or more of the regions D, E, F and G arise as the aspect
ratio and the Mach number decrease. From Appendix Bitcan beseenthat F,, yinregions] = C... H
are complicated expressions depending on the side-edge pararﬁeter T = Btany. Although the
chordwise integration of these formulae was carried out analytically, it was more convenient to
evaluate the spanwise integrals numerically for each particular planform and Mach number.

The values of the derivatives [, l;, my, m; for all combinations of planform and Mach number are
presented in Tables 2 to 4 for pitching about the axis x = 0. The derivatives for any axis position
% = hycy can then be obtained from the well-known formulae

lo(ho) = 15(0) — ol (0)

Ii(ho) = 1(0) — hol,(0)
my(ho) = my(0) + hollp(0) — m(0)] — £o*L(0)
miho) = my(0) + Ao [1(0) — mA0)] — hy*(0)

For low-frequency oscillations v, — 0, the plunging derivatives are

L(0) = m0) = 0

1(0) = (0) ;

m,(0) = my(0)

and the derivatives in eqn. (46) for a general pitching axis can therefore be evaluated from their
tabulated values for %, = 0.

Since the root chord ¢, is constant for the family of planforms in Fig. 2, the definition of derivatives
in eqn. (28) has been used throughout. However, the derivatives are often referred to chord lengths
other than ¢,: in such cases eqn. (28) would be replaced by

L = p U_286y[l, + ivl;]ett
M = p, U 28d8,[my + ivmgle |’
where v = wd/U,, and dis an arbitrary length. It follows that the derivatives ly, j, m,, m; in eqns. (29)

and (45) have to be multiplied by the factors 1, cy/d, co/d, (¢co/d)? respectively. The geometric (first)
mean chord

(46)

(47)

¢ = f :c(y)dy/s = 82, ' (48)

and the aerodynamic (second) mean chord

2= [ iy [ oy - (49)

are frequently chosen as the representative length d. For ease of transformation the values of the
factors ¢,/c, (¢o/2)%, co[E, (co/)? are given in Table 8 for each of the planforms under consideration.
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6. Discussion of Results.

The stability derivatives for the family of wings in Fig. 2 are presented in Figs. 6 to 16 for various
positions of the pitching axis ¥ = %,c, and Mach numbers in the range /2 < M < 2-4; results for
lower M are plotted for two wings of largest span. Section 6.1 considers the values of the lift and
pitching-moment derivatives obtained by linearized theory and plotted in Figs. 6 to 10 for a selection
of the planforms. The theoretical effect of profile shape is discussed in Section 6.2. These results
are compared with measured values of the pitching-moment derivatives in Figs. 11 to 16, which are
analysed in Section 6.3.

6.1. Linearized Theory.

In Fig. 6, values of I, are plotted against [M + s/c, + 0-01|¢|] to show the variation with Mach
number, wing span and side-edge rake. Since », — 0, [ is independent of &, and by the reverse-flow
theorem is shown to be independent of the sign of . Additional values of this derivative were
computed for |)| = 15° and || = cosec™M to facilitate the drawing of Fig. 6. The curves show
that the variation in the planform parameter s/c, produces a large change in /, when M = 4/2 and
progressively smaller changes as M increases up to 2-4. For constant M and s/c,, the curves of
show marked discontinuities in slope when the side edges become sonic (|| = cosec™M). The
derivative decreases slightly as || increases above or decreases below this value; the latter effect
becomes more pronounced as the wing span becomes smaller.

For the planform (s/cy, %) = (1-37, 0) in Fig. 7, the lift and moment derivatives for hy=10
show large rates of change with M at the lower values of M. The stiffness derivative — m, appears
to have a maximum value near M =1:064 and to decrease sharply as M decreases to 1-035; the
damping derivative — #; becomes negative for M < 1-3. The graphs of Fig. 7 for M > 1-155 are
typical of all planforms having s/c, = 1-37, as it can be seen from the values in Table 2 that the effect
of ¢ is very small. Fig. 8 shows the effect of wing span on the derivatives f;, — my, — m for the mid-
chord pitching axis. The lift derivatives /, in Fig. 6 and J; in Fig. 8a show the least variation with
Mach number (M > 4/2) for the wings of smallest span. There are marked differences in the
pitching-moment derivatives for the three spans; unlike that for the lift derivatives, the variation
with Mach number in Fig. 8b is most pronounced for the wings of smallest span. The left and right
diagrams of Figs. 8a and 8b confirm that the effect of raked trailing edges is small and only becomes
important as s/c, decreases.

The variation of the damping derivative — m,; with pitching axis is illustrated in Figs. 9 and 10.
On the planforms with streamwise tips at M = 4/2, there is considerable variation with %, and with
wing span; negative damping is indicated in Fig. 9a on planforms s/c, > 1 at axis positions in the
neighbourhood of 4, = 0-35. When M = 2, the effect of aspect ratio is small and there is less variation
with %, in Fig. 9b. For axis positions forward of mid-chord the increase in M gives greater damping
for the two larger planforms with streamwise tips, but a loss in damping for s/¢, = 0-625. Similar
effects on a streamwise tip planform and two raked planforms are illustrated in Figs. 10a to 10c
by curves for vatious fixed Mach numbers. The wings of largest span exhibit large negative damping
when M < 1-155 for pitching axes forward of the mid-chord; for the wing (s/cy, 3) = (1-37, 0) in
Fig. 10a, the axis position for zero damping moves from %, = 0-54 to 0-41 as M decreases from
1-102 to 1-035. The close similarity between the curves for M = 2-4in Figs. 10b and 10c, illustrates
the decreasing influence of aspect ratio and side-edge rake at the higher supersonic Mach numbers.
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6.2. Thickness Corrections.

To extend the usefulness of the comparison of theory and experiment, some allowance is made
for the finite thickness of the wings. The half-wing models with streamwise tips had symmetrical
double-wedge sections with constant thickness/chord ratio of 0-05. Each model was cropped at the
angle ¢ to give a blunt raked side edge. In the particular case (s/cy, ) = (1, + 30°), the model was
later chamfered to give a sharp side edge and a 5%, double-wedge streamwise section across the
whole span.

Van Dyke’s theory® for a two-dimensional oscillating aerofoil of small finite thickness is applied
to the three-dimensional wings by using simple strip theory. Van Dyke’s theory assumes that the
aerofoil has a sharp leading edge with attached shock wave. It can therefore be applied to the
wings with blunt or sharp trailing side edges and to the wings with streamwise tips. Application to
the wings with leading side edges is rather dubious, but it has been used for the chamfered model.

On this approximate basis, the thickness corrections to lift and moment for slow pitching oscilla-
tions are formulated in Appendix D. For the particular wings having a 5%, thick double-wedge
section the incremental corrections to the derivatives are given by eqn. (D.7) with § = 0-05. It
can be seen that Al; = 0 and that for wings with raked side edges Al; and Am, are independent of
the sign of 4.

Values of the thickness corrections Aly, Al;, Amy, Am; are given in Tables 5 to 7 for the eleven
wings at the six Mach numbers M = 4/2, 1-6 (0-2) 2-4; the values are for wings with either blunt
trailing side edges ( < 0), streamwise tips () = 0) or sharp leading side edges ( > 0) and are
referred to the pitching axis 4, = 0. The thickness corrections decrease as the Mach number
increases and are small compared with the values of the derivatives given in Tables 2 to 4 for wings
of zero thickness. Apart from Al for blunt trailing side edges, the thickness corrections are practically
independent of side-edge angle; similarly Al;, Amy and Amy are hardly affected by chamfering to give
a sharp trailing side edge. When the wing is pitching about an arbitrary axis & = A, the thickness
corrections can be obtained from the transformation formulae in eqn. (46). For all planforms,
— Amy; is negative for &, = 0, but for axis positions %, > ¥ the thickness correction to the damping
is always positive.

It should be borne in mind that, since the flow over the wings is nowhere two-dimensional, the
use of strip theory will lead to error; this applies especially to the region influenced by the wing
tips. However, Tables 5 to 7 may be expected to give the sign and order of magnitude of the small
corrections for thickness. ‘

6.3. Comparison with Experiment.

Pitching-moment derivatives were measured on half-wing models in the N.P.L. 11 in. Supersonic
Wind Tunnel for 1-38 < M < 2-47 by the free-oscillation technique described in Ref. 6. The
oscillations corresponded to low values of the frequency parameter vy, = wce/U,, < 0-03 and mean
amplitude of 8§, = 0-017 radians. For some of the tests the value of — m; varied with amplitude;
the result quoted is the mean value for the whole amplitude range (0-006 < 6, < 0-03). Planforms
having a raked trailing edge () < 0) were tested for the two pitching axes %, = 0-4 and %, = 0-5.
By inverting the models, results for raked leading edges (y > 0) were obtained for 4, = 0-5
and &, = 0-6. The planforms with streamwise tips were oscillated about all three axis positions.
A limited comparison of the calculated and measured values of — m, and — m, for the eleven wings
is made in Figs. 11 to 16. ‘
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The variation of the derivatives with Mach number is shown for three wings in Figs. 11 to 13.
Each wing has a different span, type of side edge and thickness distribution across the span: the
side edges of the two raked wings are supersonic for M >'2 and subsonic for M < 2. It can be
seen from Figs. 11 to 13 that — m, from linearized theory exceeds the measured values for all three
wings and each axis position; however, the rates of change of — m, with M are very similar. By
allowing for thickness, the agreement between the theoretical and experimental values of — m, is
considerably improved. The calculated values of — m; for the three wings agree quite well with the
measured values when M > 1-8. At these Mach numbers, the effect of thickness is almost negligible
when Ay = 0-5, and gives only a slight loss or gain in damping as the pitcching axis moves to s, = 0-4
or y, = 0-6 respectively. When M < 1-8, the thickness correction to — m; is very small for
hy = 0-4 but increases as the axis moves downstream; the agreement between theory and experiment
is significantly improved by allowing for thickness, even though the discrepancies become larger
as M decreases to 4/2. It can be seen from Figs. 11 to 13 that the comparison is fairly consistent for
all three wings.

The effect of varying the pitching axis x = %y, of the wing (s/c, ) = (1, 0) is shown in Figs. 14a
and b for Mach numbers M = 4/2 and M = 2. Comparison with measured values indicates that
the thickness correction improves the calculated values of both — m, and — my; the variation with
axis position is similar to that measured. For %, < 0-37 it is noted that the thickness correction
reduces the calculated value of — m; for both M = /2 and M = 2, and gives some negative damping
at the lower Mach number.

In Figs. 15 and 16, the moment derivatives for the mid-chord pitching axis are presented for all
the eleven wings to'show the effect of raking the side edges when M = +/2 and M = 2 respectively.
The thickness corrections given here correspond to a 59, double-wedge section; for ¢ < 0 these
corrections differ only slightly from the values for blunt trailing side edges (see Section 6.2). Even
at M = 4/2, chamfering the half-wing models had but small effect on the measured pitching
moments for the two wings (s/c,, ¥) = (1, +30°). Both the calculated and measured values of
~ m, and — m; show that side-edge rake has an important effect as the wing span becomes smaller
and as the Mach number decreases. The thickness corrections improve the agreement with
experiment in all cases except (s/cg, ) = (0-625, +15°). For these low aspect ratio wings, the
tip effects become more important and thickness corrections based on two-dimensional strip
theory are likely to be unreliable especially at low Mach numbers.

7. Conclusions.

1. Exact linearized solutions for low-frequency pitching derivatives have been obtained for the
combinations of wing planform and Mach number defined in Section 2.3. The methods of solution
can be extended to other modes of oscillation and to more general hexagonal planforms. The
functions F,,; given in Appendix B can be utilised for any wing having superéonic leading and
trailing edges and non-interacting side edges.

2. For the Mach number range /2 < M < 2-4, exact linearized theory gives values of the
pitching-moment derivatives in qualitative agreement with experiments on eleven planforms; the
calculated and measured values indicate the same trends with Mach number and axis position.

3. As described in Appendix D, the effect of small finite thickness on three-dimensional wings
can readily be estimated on the basis of two-dimensional strip theory. For the 5%, thick double-wedge
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section, the thickness corrections are not large but they improve significantly the comparison between
theory and experiment. At the lower Mach numbers such thickness corrections should be used with
caution when the aspect ratio is small..
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NOTATION

a Speed of sound at infinity
c(¥); € Local wing chord; root chord
;¢ Geometric mean chord [= S/2s]; aerodynamic mean chord [eqn. (49)]
F, (X, Y) Function defined by eqn. (23)
F.; = 0F, ;60X
hy Values of x/c, along pitching axis (Fig. 1)
J Typical region of planform in (X, Y) plane; J = A, B ... H (Figs. 4 and 5)
K Kernel function in integral for ¢(x, y) [eqn. (10)]
i(x, v, ) Lift distribution on the planform
I(¢ 7, 1) Lift distribution on a wing in reverse flow [Section 4.1]
L%, v, ) Lift distribution on the reversed planform when = = w,(x, y)
lg, &5 Lift derivatives for pitching oscillations [eqns. (28) and (46)]
L Lift
Mg, M Direct pitching derivatives [eqns. (28) and (46)]
M Mach number [= U /a]
M Pitching moment about axis , = 0
P © Pressure
ro= ) — By—y T
R = [(X—X)—(Y-Y)I*
s Semi-span of wing
Sy Sp Semi-span of the leading and trailing edges
S Area of wing planform
S, Region of the planform in Fig. 3 ( = 0, 1, 2,.3)
t Time
U, Free-stream velocity
w(x, y) Complex upwash [= (9¢/9z),_]
BLE M) - Complex upwash on a wing in reverse flow, g = 0 and 1 [Section 4.1]
w,(%, ¥) Complex upwash on the reversed planform, defined by eqn. (38) forg = Oand 1
~x%,9,2  Co-ordinates defined in Fig. 1
2o(%, ¥) Mode of oscillation [eqn. (3)]
X, Y Non-dimensional co-ordinates [=x/Bcy, ¥/cq]
X, Xg Xp Functions of Y in eqns. (17)
Yi; Yo = sg/eo; splco ‘
B = [M—1T% = cotp |
17
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NOTATION—continued

A Area of integration in eqn. (8)

Ay A for (X, Y) in region J (Figs. 4 and 5)

LA, -~ Afor (», y) in region S, (Fig. 3)

g; 0, Angular displacement of wing for pitching oscillations; complex amplitude of §

A Semi-apex angle of wing planform (Fig. 1)
® Mach angle [= cosec™ M|

. vy, - Frequency parameter [= wey/U ]

) Co-ordinates replacing (x, ¥) in Section 4.1

P Free-stream density
o Blan A
T Btam

H(x, ¥) Complex amplitude of ®, on upper surface z = + 0 of wing
by, ) Distribution of ¢ over the reversed planform when w = w,
(bs)n $(x, y) over region S,
D(x, v, 2, 1) Perturbation-velocity potential
W Angle of rake of the side edges (of the same sigﬁ as sp — §z)
w 2 x (frequency of oscillation)
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APPENDIX A
Evaluation of F, (X, Y)

The function F,,; defined by eqn. (23) is required for (X, Y) in each region ] = A, B... H of
a planform with supersonic leading edge (¢ > 1) which classifies as case (i), (iii) or (iv). The areas of
integration A are defined in Figs. 4a and 5, and these can be expressed most simply in co-ordinates
(u, v) and (u,, v,) such that

/2 =X =Y, vy2=X+7 (A1)
and

/2 =X -Y, on/2=X+Y. (A.2)
By equations (17) and (18), the leading and side edges of the planform are respectively

#y = yv, when v, > u, (positive Y)
. (A.3)
vy = vty when vy < #, (negative Y)
and
Uy = Uy = 0vy — €Y, when v, > u
0 0 0 L 0 0 (A4)
Ty = Ty = Oty — €Y, when vy < #,
where
v = (I=0)/(1+0)
8 =(1-7n/(1+7) | (A.5)
(0-7)v/2
€= i
o(l+7)
Thus the area of integration Ay for any point (u,, v,) is defined in the following table:
Region . .
T Area Ay is bounded by # = #,, v = v, and the lines
A u=yv
B U =1y0, U= U
C © =y, u© = U,
D U=yv, ©=1yU U=1u
E U=y, V=l U=1U), V=7,
F U= yu, U=t
G 0=y, %=1y U=07
H U=yu, U=y, u=1y, U=T7
By eqns. (23), (A.1) and (A.2) the integral for F,, ; becomes
FmJ(uO’ ‘00) = ff fm(u’ v)du dv, (A6)
45
where
1 ju+o\™
Ialir®) = = =5 (7)1 (wp—o) e (A7)
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This is evaluated by considering the following double integrals

“

. ' vl
Zm(ul! 7]1) = f

v=0 U=

Jinlut, v)dudo
0

. 1 1
iy vy) = f j Fonltty dudo |, (A.8)
v=ugly v u=yv ) :

Uy vy
km(ul’ 7)1) = J‘ Jv fm(ll, v)dv du
u=v1/y v=pu

where u; < u, and v, < v, are arbitrary limits. By consideration of eqns. (A.4) to (A.8) and the
definitions of A in the above table it follows that

Fopp = Jm(tte %)

Fp = in(tiy, Vo) + Jn0, o) + Ry(tty; 0)
Frg = Fina(tto, o) = Jm{To> ¥)

Fpnp = Frun(itg; %) = fn(Tos 20) }
P = Frup(ttor ¥5) — Ryn(tte, o) '
Fon = kg, ) — R (T, vp)
Fre = Frup(tte, 0o) — k(1o Do)

Fog = Foplttoy 00) — Foup(tter 06) + jun(tos Do) — fun(tes Ty)

(A.9)

The integrals of eqns. (A.7) and (A.8) were evaluated in terms of (u,, v,) by standard integration.
Each of the functions F,, ;(u,, v,) for J = A, B.. . H was then derived from eqn. (A.9) by inserting
the appropriate values of #, and v,; formulae were obtained for # = 0, 1 and 2. By use of
eqns. (A.2), (A.4) and (A.5), the formulae for F,, ; were expressed in terms of the non-dimensional
co-ordinates (X, Y) and the planform parameters o, Y, and 7 defined in eqns. (18).

APPENDIX B
Formulae for 5 ] =A,B...H,m=0,1,2

The formulae presented here apply to planforms with a supersonic leading edge (0 < 1/o < 1)
and side edges which act as subsonic leading edges (0 < = < 1) or as streamwise tips (v = 0),
providing that any region J on the planform is independent of the flow in the wake. The method of

evaluation is described in Appendix A: { = of(e?—1)"
20



Region A
FOA = - Al
Fiy = XFy, + 34, ) '
Fyy = 2XFy, — X%Fy, — 1202+ 1)]o34,

where
1_7»
A, = pot [X— - Y} .
g

Region B

FOB = - Bl |

Fip = XFop + }By — ({*[0)XH, ,

Fyp = 2XF,y — X?Fop — ${(20*+1)/0% B3 + Qg
where :

{ert 1 \? L (X—0o¥ I A2 {X+0Y
B, = - \:(X—;Y) cos aX—Y+(X+;Y) cos oX-i—Y}
H, = 1 [X2 — V2]
aa

and

Qp = ({4/30% [(4e®+2)X2H,; — 3H;] . -
Regions C and D

For (X, Y) in region C, F,o = Fyuu(X, Y) — Py,
For (X, Y) in region D, F,,p = Fpp(X, ¥) — P,

where '

Py= -G

Py, = XP, + }Cy + {(0—2)30} I,

P, = 2XP, — X?°Py — ${(20*+ 1)/0%} C5 + Qq.
The functions C, and I, are conveniently expressed in terms of (X;, V) where X; = (X — l YL) ,

G
Y, = (Y—Yy); then '
1 e

C, =02 [X1 - Y1:| C,
2o —T)(X1+ Y))
(7+1)(eX;— Y1)

1
C, = g (X1 — = Yl) cos™t

WV

1—

1

_ 2 [(0—2 Sl;)r Yl)] oi2 [(a+ 13((774)_(1)— Yl)} s

4 6 7 2 12 5 1
0= [2-2+ 5| -5 | [xg ]

I,

o

and



Region F
FOF = - D1
Fip = XFop + 3Dy — {(0+2)/30} J;
Fop = 2XFyp — XPFop — ${(202+1)/0% Dy — Qp

It is convenient to express the functions D,, and J,, in terms of the co-ordinates (X5, Y,) such that

X, = X420 (""7) Y, V,=Y_ ("‘7) Y,

cgl\o+ T o+T
then
1 T P—1
D, = {2 [Xz - YzJ D,
_ 4 1 o _2(0+7)(X2+ Y,)
Duc (e o) [ ot 1 EEERE A s
207 Mo+ 1)(Xp+ Yo)]P2 [(0— 1) (7X, — V)

J o=

o [ o(r+1) ] [ o(r+1) }
and

4 6 7 {2 12 5 1
Qfﬁ[“ﬁﬂfs‘ﬂ“?*?} [X”EYJA

Regions E and G

For (X, Y)in region E, F,5 = F, (X, Y)- 0,
For (X, Y) in region G, F,q = F,u(X, V)= 0, )’

Q)= — E;

O1 = XOQ + 4B, + {(0-2)[30} K,

0s = 2X0; - X20, — }{(26*+1)[o%} By + Q.
It can be shown that

E, = CyX, Y,)

where

It

D
Kp = Ip(X{b Y3)
Qp = Qo( X, Y;)
where
1
X = (x-2 Vi), Yi= - (¥+7).
Region H

For (X, Y) in region H, it can be shown that
Fog = Fpp(X, Y) + Fpp(X = Y) — Fp(X, 7).
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APPENDIX C
Functions F, j(X, Y) for Sonic Leading Edge

The function F,,;(X, Y) defined by equation (23) is required for (X, Y) in each region

= B, F, H of a planform with sonic leading edge (¢ = 1) and side edges which act as subsonic
leading edges (0 < = < 1) or streamwise tips (v = 0).

For the particular case o = 1, equations (A.1) to (A.7) of Appendix A apply with y = 0. The area
of integration A; for a point (u,, v,) in region J is defined in the following table.

Reg?on Area Agis bounded by # = u,, v = v, and the lines
B U = O) = 0
F U = 0, U = —1—{0
H = Z[O, D = 7_)0

The integral for F,, 5 is given in (u,, v,) co-ordinates by equation (A.6); by considering the double
integral 7,,(1;, v;) of equation (A.8) and the above definitions for Ay, the functions F,,; can be

expressed as
= 2,,,(tt0, o)
FmF =FmB(uO7 7}0) - 7"m(ﬁo’ Z)0)

» FmH = mF(um 7]0) - Z~m(uo’ "T)O)
where

7y = (09— /2Y7),
T = Suy—/2Y2),
§ = (1—7)(1+7).

Expressions for F,,(J = B, F, Hand m = 0, 1, 2) have been obtained by inserting into the standard
integrals 7,,(u;, v;) the values (u,, v,) appropriate to each- region J. The resulting formulae for
F,;(X, Y) can be expressed concisely in terms of the following functions WV, (P, Q):

¥, = — 2 /(PQ)

W, - X¥, = o [P+ 0] V(PO) 3

: 171 1 1
¥, - 20+ X0 = =[5 P g PO + 15 0] viPO)

" where the definition of the parameters (P, Q) in terms of the non-dimensional co-ordinates (X, Y)
is dependent on the region J.
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Region B
Fpp(X; Y) = ¥ (P, ),

where
P=X-Y
0=X+Y)
Region F
Frow(X, YV) = ¥ (P, Q),
where
p_2 (’TXZ - Y,
T+ 1
O=X+17,
and
Xo=X+38Y,, Y,=Y—-38Y,.
Region H

FmH(Xl Y) = FmF(X’ Y) + FmF(X’ - Y) - FmB(X’ Y) .

APPENDIX D
Estimation of Thickness Corrections by Strip Theory

In the main body of this report, the lift and pitching-moment derivatives have been evaluated on
the assumption that the wings are of zero thickness. The models used in the N.P.L. experiments
had finite thickness as defined in Section 6.2, and it is desirable to estimate its effect on the
derivatives.

Van Dyke® has derived a solution for the loading on two-dimensional aerofoils of small finite
thickness oscillating in supersonic flow. For slow oscillations of a symmetrical profile, the
contribution made by the thickness to the lift distribution over the aerofoil surface is

2N . 9 _
Ah=%mUﬁ%W‘Qig—ﬁzunﬁiﬁ%iﬁ_yz+

5 Us B
2—-M*»(MAN-1) _, (M2N-2 ,
+ ( ;34 xd' + (—ﬁz——-—) th:l ) (D.1)
where g = + Z(x), (0 € x < ¢), is the equation of the symmetrical aerofoil,

ke is the distance of the pitching axis downstream of the leading edge
N = (y+1)M?/28? = 1-2M?|B* for air,
and Z' = dZ])dx.

Eqn. (D.1) applies to aerofoils having an attached shock wave at the nose; the leading edge must
therefore be sharp, though the trailing edge may be blunt.

To estimate the effect of thickness on the three-dimensional wings, the above equation was
applied on the basis of simple strip theory. If the pitching axis is at a distance %, downstream of
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the wing apex (Fig. 1) and the equation of the leading edge of the wing is ¥ = x(y), the local pitching
axis is defined by

W) (y) = hoco — %(3). (D-2)
Then the thickness correction to the total lift on the wing is
xl(y>+0(y)
AL = f f y, (D.3)
y=—sJ z=az{y) :

and the increment to the total pitching moment about the axis x = Ay, is

ml(y)+6(y)
At = f f (w—hoc)M dudy, (D.4)
y=—s

z=a;{y)
where Al(x, y, 7) is given by eqn. (D.1) with x and /¢ replaced by {x — x(y)} and {hyc, — x,(y)}
respectively, since these are now the distances of the point (x, ) and the local pitching axis from
the leading edge.

When the streamwise aerofoil section is a symmetrical double-wedge with thickness/chord ratio
equal to 8, the integration of eqns. (D.3) and (D.4) in the chordwise direction is particularly simple.
With Z = 48{c — |¢ — 2(x— )|}, (%, < x < %, + ¢),
it follows that

AN — 32
A (Local lift per unit span) = — £p U 20,e™c [;}OC (M N ﬁiM * Z)J ) (D.5)
and ?
A (Local pitching moment per unit span about axis %,c,)
i M2N — 2 twe [ (M2N — 2 MA(N—-1)
— 1o U260, (__Bz_) g [(T) (-2 - =5 h} ; : (D.6)

where % is defined by (D.2). Hence for a three-dimensional wing having a double-wedge section of
constant ratio 8 across the whole span, the total forces of eqns. (D.3) and (D.4) can easily be obtained
by integrating (D.5) and (D.6) across the span. Then, the increments to the lift and pitching-moment
derivatives as defined in eqn. (28) are found to be

Al, =0

= ofy) () LG e

~

s = () (U2 (o CY
s R T2 ne 0]
WwWIhere .
and r- Z(Mléj_Z) " = (2{;— :
N = 1-2082)g2.

The wings with blunt trailing side edges do not have a double-wedge section across the whole
span (Section 6.2). To calculate the thickness corrections for these wings, the modified profile
Z{(x) at the streamwise sections sy < |y| < s was used in eqns. (D.1) to (D.4).
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TABLE 1

Regions of Integration for the Various Planforms and Mach Numbers

Planform

S

Case*

Regions J

s = 1-370¢,

= — 45°

NN =N
O o

(i)
(1)
(1)
(1)
(¥)
Q)

B P
oW W

s = 1-370¢,

b= — 30°

<

D BN/ =N
SO o0

(i)
(ir)
(i)
(i)
(1)
)

=
Q=
[eme)

R

-370¢,

s = 1-370¢,

b=0

B B DD et k= DN b e

AN Sma

-035
-065
-102

(iif)
(il
(iif)
(i)
(it
(i)
(it
(iif)
(it
(iii)

FEEHE | Bww
oo

PP RED

s = 1-370¢,

= 30°

2

NI ST N Rl NV
O O

(iv)
(iv)
(iv)
(v)
(v)
(v)

e Womm e

=

e @
=
S

OO0 Qo000
o

1-370¢,

|
L
<
o

s = 1-370¢,

= 45°

NN = DN
S NN O o

-155

(iv)
(v)
(v)
(v)
(v)
(v)
()

g

®
—_

IFh

A, B, C D E

-370¢,

— 45°

* Cases (i) to (v) are defined in Section 2.3.



TABLE 1—continued

Planform M Case* Regions J
2 (if) as for
_ 1-6 (i) s = 1-000¢,
s = 1-000¢, 1-8 (if) = 30°
e 20 Q) A, B
p=-30 22 Q) A, B
24 ) A, B
V2 (i) | A B C D
~ 1-6 @) | A B C D
s = 1000, 1-8 (i) | A B C
e 2.0 @) | A B, C
¥ = 22 (i) | A B, C
24 (i) | A B, C
V2 @) | A B C D E
L 1-6 vy | A B CD
s = 1-000c 1-8 @) | ABCD
_ape 2-0 ) as for
P =130 2.2 ) s = 1-000¢,
2.4 ) b= — 30°
V2 (if)
s = 0-625¢, ig 83 as for
. 2.0 (ii) s = O'?ZSCO
b= — 15 o & b =15
24 (i)
V2 Gi) | A B, C, D, E,
o 1-6 (i) | A B, C, D,E,
§ = 0-625¢ 1-8 Gi) | A B CD
e 2.0 (i) | A B, C D
P = 22 (i) | A B, C. D
2.4 @) | A B C D
V2 ) | A B, C D,E
N 1-6 (v | A B C D E
s = 0-625¢, 1-8 (iv) A B CDE
s 2.0 vy | A B CDE
= 2.2 v | A BCDE
24 vy | A B CD

* Cases (i) to (v) are defined in Section 2.3.
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TABLE 2

Stability Derivatives for Wings s = 1-37¢, with Pitching Axis hy = 0

S

i lp ) — My —
—45° A2 1-9349 0-3458 0-9432 0-1921
1-6 1-5658 0-4555 0-7670 0-2615
1-8 1-3148 0-4636 0-6459 0-2689
2-0 1-1404 0-4432 0-5613 0-2583
2-2 1-0105 0-4163 0-4980 0-2433
2-4 0-9093 0-3893 0-4485 0-2279
—30° 22 1-9109 0-3483 09349 0-1940
1-6 1-5567 0-4582 0-7663 0-2634
1-8 1-3124 0-4668 0-6484 0-2711
2-0 1-1412 0-4468 0-5651 0-2607
2:2 1-0111 0-4194 0-5012 0-2454
2:4 0-9097 0-3920 0-4513 0-2298
0 1-035 4-1077 —9-2227 1-5419 —3-8874
1-064 - 3-8766 —5-5442 1-6754 —2-9333
1-102 3-5173 —3-0357 1-6295 —1-7608
1-155 3-0271 —1-2496 1-4441 —0-7551
2 1-8928 +0-3518 0-9290 +0-1961
1-6 1-5396 +0-4590 0-7599 +0-2639
1-8 1-2967 +0-4662 0-6421 +0-2706
2-0 1-1270 +0-4455 0-5592 +0-2598
2-2 1-0001 +0-4184 0-4969 +0-2447
2-4 0-9008 +0-3912 0-44381 +0-2292
30° 22 1-9109 03549 0-9415 0-2004
1-6 1-5567 0-4634 0-7715 02636
1-8 1-3124 0-4711 06526 0-2753
2-0 1-1412 0-4504 0-5687 0-2643
2-2 1-0111 0-4227 0-5045 0-2487
2-4 0-9097 0-3950 0-4544 0-2327
45° 1-155 3-0452 —1-1841 1-4591 ~0-6920
42 1-9349 +0-3611 0-9585 +0-2071
1-6 1-5658 +0-4687 0-7801 +0-2743
1-8 1-3148 +0-4749 0-6572 +0-2799
20 1-1404 +0-4532 0-5712 +0-2680
2-2 1-0105 +0-4252 0-5069 +0-2520
2-4 0-9093 +0-3973 0-4565 +0-2358
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TABLE 3

Stability Derivatives for Wings s = 1-00¢, with Pitching Axis hy = 0

P M I I — — g
~=30° 2 1-7922 0-3426 0-8364 0-2025
1-6 1-5041 0-4352 0-7158 0-2564
1-8 1-2898 0-4457 0-6203 0-2635
.2-0 1-1335 0-4297 0-5484 0-2547
2-2 -1-0057 0-4051 0-4874 0-2406
2:4 0-9057 0-3797 0-4395 0-2258
0 /2 1-7380 0-3451 0-8311 0-2047
1-6 1-4475 0-4418 0-7024 0-2625
1-8 1-2357 0-4509 0-6043 0-2689
2-0 1-0829 0-4332 0-5321 0-2588
2-2 0-9665 0-4085 0-4763 0-2445
2-4 0-8742 0-3832 0-4318 0-2296
300 2. 1-7922 0-3879 0-8817 0-2453
1-6 1-5041 0-4707 0-7514 0-2906
1-8 1-2898 0-4750 0-6495 0-2921
2-0 1-1335 0-4547 0-5735 0-2794
S22 1-0057 0-4277 0-5100 0-2629
2-4 0-9057 0-4003 0-4601 0-2461




TABLE 4

Stability Derivatives for Wings s = 0+625¢, with Pitching Axis by = 0

S

Y A I —m, —my
—15° /2 1-3830 0-5026 0-5495 0-3401
1-6 1-2471 0-4842 0-5339 0-3076
1-8 1-1187 0-4561 0-4986 0-2832
2-0 1-0112 0-4265 0-4609 0-2626
2-2 0-9218 0-3979 0-4262 02441
2-4 0-8468 0-3717 0-3954 0-2275
0 4/2 1-3483 0-5142 0-5688 0-3498
1-6 1-2065 0-4965 0-5409 0-3194
1-8 1-0762 0-4678 0-4985 0-2947
2-0 0-9677 0-4376 0-4562 0-2736
2:2 0-8787 0-4082 0-4187 0-2544
24 0-8047 0-3811 0-3864 0-2371
15° 4/2 1-3830 0-5835 0-6303 0-4038
16 1-2471 0-5447 0:5944 0-3619
1-8 1-1187 0-5047 0-5472 0-3292
20 1-0112 0-4679 0-5022 0-3025
2-2 0:-9218 0-4342 ~ 0-4625 0-2794
2-4 0-8468 0-4040 0-4278 0-2593




TABLE 5

Thickness Corrections for Wings s = 1-37¢, with Pitching Axis hy = 0

Section o M Aly Al — Amy — Aang
a —45° 22 0-010 —0-098 —0-045 —0-055
1-6 0-007 —0-051 —0-032 —0-036

1-8 0-006 —0-035 —0-026 —0-029

2:0 0-005 —0-029 —0-024 —0-026

2:2 0-005 —0-026 —0-022 —0-024

2:4 0-005 —0-024 —0-022 —0-023

a —30° V2 0-005 —0-098 —0-048 —0-055
1-6 0-003 . | —0-052 —0-033 —0-036

1-8 0-003 —0-036 —0-028 ~0-029

2:0 0-002 —0-030 —0-025 —0-026

2-2 0-002 —-0-027 —0-024 —0-025

2-4 0-002 —0-025 —0-023 —0-024

b 0 V2 0 —0-099 —0-049 —0-055
1-6 0 —0-052 —0-034 —0-036

1-8 0 —0-037 —0-028 —0-029

2-0 0 —0-031 —0-026 —0-026

2-2 0 —0-027 —0-024 —0-025

2-4 0 —0-026 —0-024 —0-024

c 30° V2 0 —0-100 —0-050 —0-056
1-6 0 —0-053 —0-035 —0-037

1-8 0 —0-037 —0-029 —0-030

20 0 —0-031 —0-026 —0-027

22 0 —0-028 —0-025 —0-025

2-4 0 —0-026 —0-024 —0-024

c 45° V2 0 —0-100 —0-050 —0-056
1-6 0 —0-053 —0-035 —0-037

1-8 0 —0-038 —0-029 —0-030

2:0 0 —0-031 —0-026 —0-027

22 0 —0-028 —0-025 ~0-025

24 0 —0-026 —0-024 —0-024

a Blunt trailing side-edges (see Section 6.2).
b 59 double-wedge section.

c Sharp leading side-edges (5%, double-wedge section).
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TABLE 6

Thickness Corrections for Wings s = 1-00¢, with Pifching Axis by = 0

Section P M Al Al — Ay — A
a —30° /2 0-018 ~0-108 —0-046 —0-058
1-6 0-013 -0-055 —0-032 —0-038

1-8 0-010 —0-037 —0-027 —0-030

2-0 0-009 —0-030 —0-024 —0-027

2-2 0-009 —0-027 —0-023 —0-025

2-4 0-009 —0-025 —0-022 —0-024

b 0 V2 0 —0-107 —0-054 —0-059
16 0 —0-057 —0-037 —0-039

1-8 0 —0-040 —0-031 —0-032

2-0 0 —0-033 —0-028 —0-029

2-2 0 —0-030 —0-026 - —0-027

2-4 0 —0-028 —0-026 —0-026

c 30° V2 0 —0-108 —0-054 —0-060
1-6 0 —0-057 —0-037 —0-040

1-8 0 —0-040 —-0-031 —0-032

2-0 0 —0-033 —0-028 —0-029

2:2 0 —-0-030 —0-027 —0-027

24 0 —0-028 —0-026 |. —-0-026

a Blunt trailing side-edges (see Section 6.2).

b 5% double-wedge section.

¢ Sharp leading side-edges (5% double-wedge section).
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Thickness Corrections for Wiﬁgs s = 0-625¢, with Pitching Axis by = 0

TABLE 7

Section z/r M Al Al — Amy — Amy
a —15° 2 0-021 —0-120 —0-050 —0-062
1-6 0-015 —0-060 —0-035 —0-040
1-8 0-012 —0-041 —0-029 —0-032
2.0 0-011 —0-033 —0-026 —0-029
2-2 0-010 —0-029 —0-025 —0-027
24 0-010 —0-027 —0-024 —0-026
b. 0 £/2 0 —0-118 —0-059 —0-063
1-6 0 —0-063 —0-041 —0-043
1-8 0 —0-044 —0-034 —0-035
2-0 0 —0-037 —0-031 —0-031
! 2-2 0 —0-033 —0-029 -0-029
2-4 0 —0-031 —0-028 —0-028
c 15° V2 0 —0-116 —0-058 —0-063
1-6 0 —0-061 —0-040 —0-043
1-8 0 —0-043 —0-033 —0-035
2-0 0 —0-036 —0-030 —0-031
2-2 0 —0-032 —0-029 —0-029
2-4 0 —0-030 —0-028 —0-028-
a Blunt trailing side-edges (see Section 6.2).
b 5% double-wedge section.
¢ Sharp leading side-edges (5% double-wedge section).
TABLE 8
Conversion Factors for Derivatives [see Eqns. (48) and (49)]
sleq |34 Aspect ratio N (cofEP? cofe (cof0)?
1-370 45° 4-5844 1-67313 2-79936 1-39503 1-94610
30° 4-4531 1-62523 2-64139 1-40444 1-97245
0 4-3292 1-58000 2-49641 1-42070 2-01837
1-000 30° 3-0372 1-51862 2-30620 1-30141 1-69368
0 2-7321 1-36603 1-86603 1-30763 1-70989
0-625 15° 1-7114 1-36914 1-87455 1-20750 1-45806
0 1-5014 1-20116 1-44277 1-18517 1-40463

(86178)
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F16. 3. Regions of planform and areas of integration in equation (13).
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F16. 13. Calculated and measured — m, and — m; against M for wing with streamwise tips.
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Fres. 14a and b. Calculated and measured — ) and — my against A, for wing with streamwise tips.
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(o) Stiffness dzrivotive—mg tor pitching axis ho=o~5
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(b) Damping_derivative -m s for pitching axis hg=0:5
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Fi16s. 15a and b. Calculated and measured effect of side-edge rake for different spans of wing at

M = /2.
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M= 2.
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