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Summary.-In an attempt to avoid flow separation at the leading edge of a thin delta wing with subsonic leading
edges, an attachment line is prescribed there. This is done by requiring the load, as predicted by attached-flow theory,
to vanish along the leading edge at the design lift coefficient. For sonic speed, a complete account of this flow is given
in terms of slender-wing theory and the load distributions corresponding to arbitrary conical camber are calculated.
For supersonic speeds, load distributions arising in the slender-wing theory are considered and the corresponding
conical-camber distributions are found by linearized theory. The lift-dependent drag for a given lift is then minimized
with respect to the coefficients of a linear combination of these load distributions. It is found that the lift-dependent
drag factor for these conically-cambered wings approaches the value it takes for the attached flow (in which leading­
edge suction occurs) past the uncambered wing at the same Mach number, as more terms are included in the linear
combination. However, when the leading edge is almost sonic an appreciable reduction is predicted. The corre­
sponding load distributions and wing shapes are calculated and drawn. The optimum shapes for a fixed number of
terms resemble flat plates drooped downwards near their leading edges, so that the localized leading-edge suction is
replaced by a distributed force on a forward-facing surface, producing an effect of similar magnitude.

1. Introduction.---The linearized theory of the attached flow past a flat-plate delta wing at
incidence at sonic or supersonic speeds predicts infinite values of velocity and pressure at the
leading edge where this is subsonic. This singularity results in a thrust force, localized at
the leading edge, which alleviates the drag as calculated from the pressure distribution over the
remainder of the wing. If the leading edge is highly swept, however, the flow separates there,
producing higher lift for given incidence than attached-flow theory predicts and no thrust force.
These changes affect the maximum lift/drag ratio in opposite directions, but calculations
based on Ref. 1 suggest that, for wings thin enough for their lifting effects to be given by
flat-plate theory, the maximum lift/drag ratio is reduced below that predicted by attached-flow
theory.

It seems desirable therefore to avoid leading-edge separation at the design incidence by
warping (i.e., cambering and twisting) the mean surface of the wing to avoid the leading-edge
singularity in the pressure and velocity distributions. This is equivalent to requiring that the

* Previously issued as R.A.E. Report No. Aero. 2584-A.R.C. 19,961.
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attachment line, as defined by Maskell", which occurs on the under surface of the flat plate at
not too high incidences, should be at the leading edge of the warped wing at the design incidence.
The removal of the singularity removes the localized leading-edge suction; but it-seems reason­
able to expect, on the analogy of two-dimensional aerofoil theory, that an axial force of similar
strength may be achieved from the distributed suction acting on a forward-facing wing surface.
Thus we may hope to obtain a theoretical value for the lift-dependent drag on a wing having
leading-edge attachment similar to that given by attached-flow theory for a flat plate at the
same lift. The advantage of the warped wing will then lie in that its predicted characteristics
are more likely to be realized in a real fluid, since the flow past it is more likely to stay attached.

In the present paper we restrict our consideration to conical camber, i.e., camber for which
the surface slope, and so the upwash, are constant along rays through the wing apex, and assume
the resulting velocity field is conical. We impose the condition of flow attachment along the
leading edge by requiring the load, as calculated by attached-flow theory, to vanish there;
and then seek a minimum of the drag due to lift for prescribed lift.

The same problem of warping a wing to reduce the lift-dependent drag and maintain attached
flow along the leading edge is being treated by Roper", without the restriction to conical camber.
Her method is an extension of that of Ref. 4. By combining solutions obtained previously,
she obtains certain camber surfaces with fairly simple upwash distributions, and known load
distributions which vanish along the leading edge. These are combined in such a way as to
produce low values of the lift-dependent drag, while the load at the leading edge remains zero.
The values so far obtained for the lift-dependent drag lie a little closer to those for the attached
flow past a flat plate (i.e., are a little lower) than we have been able to achieve with conical
camber.

On the other hand, the restriction to conical camber simplifies the mathematical treatment
considerably. Further, since the family of wings having the same conical distribution of surface
slope contains some members which are geometrical cones, an impression of the complete flow
field can be obtained with less effort than is required in the case of more complicated warped
wings. Conical camber may also have some advantage over more complicated shapes in
off-design conditions; since, at any supersonic speed, the load will vanish along the leading
edge of a conically-cambered wing at some incidence. Thus the attachment line is unlikely to
lie on the upper surface for part of the span and on the lower surface for the remainder, even
away from the design incidence and Mach number.

Insofar as our object is the reduction of lift-dependent drag at supersonic speeds, recent
American work on wave drag due to lift is relevant. For wings which lie near the axis of the
Mach cone, it has been shownvv" that the lengthwise distribution of cross-loading* has a
dominant influence on the lift-dependent wave drag. Thus our consideration of conical fields
(in which the distribution of cross-loading is linear) may be unfortunately restrictive and the
approach of Ref. 3 may be more fruitful. For these wings lying near the axis of the Mach cone
the wave drag due to lift is a relatively small part of the lift-dependent drag so that deviations
from the optimum are less important. For wings with leading edges closer to the Mach cone,
when the wave drag due to lift exceeds the vortex drag, the wave drag depends on the entire
load distribution.

Two approaches to the design problem of warping a delta wing to reduce the lift-dependent
drag have been followed. Either the distribution of the load or the upwash is specified over
the planform as a simple function involving a few parameters, and the other calculated. The
drag is then minimized with respect to the parameters. Specification of the upwash is not well
suited to the requirement of attachment at the leading edge, since the load, and so the singularity,
is an outcome of the calculation (but see Ref. 3). The authors (Tucker", Grant", Boyd et al'",

------ - - - - - - ------- ---- - - ----- - - -- - - -

* We use' load' for the difference of pressure between the lower and upper surfaces of the wing; and 'loading'
for a single integral of the load. The' cross-loading' is the integral of the load across the local span at a given
chordwise station.
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Tsien") who have specified the load include the uniform load distribution as an element in their
expressions. This leads to results which, strictly speaking, are inconsistent with linear theory,
since they predict infinite surface slope at the centre-line and leading edge. The former can be
removed by adding load distributions of other forms, but the latter remains, the result of trying
to maintain a finite pressure difference at a subsonic edge. In certain cases this distribution
may be useful, for instance when a thickness distribution is to be added; but in calculations of
the lift-dependent drag based on omitting any suction forces which may occur, or on prescribing
a priori that none shall occur, it may exert considerable influence. This is because the favourable
axial force in these cases is obtained by the action of suction peaks on forward-facing surfaces
and the steeper the surface, the lower the drag factor (see Fig. 5, for example). Thus the results
of these references depend to an unknown extent on this assumption that a finite pressure
difference can be maintained at a subsonic edge. In this paper we consider only load distributions
which arise in slender-wing theory from the use of analytic functions and which produce velocity
distributions finite everywhere on the wing.

In Section 2 the mathematical basis of the theory is given and then the results are described
and discussed in Section 3, which is intended to be comprehensible without the earlier section.
The theory proceeds by building up the up wash due to a conical load distribution which vanishes
at the leading edge from the upwash field of a uniformly-loaded delta wing in supersonic
linearized theory. (Thus the uniform load distribution itself is excluded.) A derivative of the
upwash so found is readily expressed in terms of the upwash due to the same loading at sonic
speed, leading to simple expressions for the up wash and its derivative at any supersonic speed
at which the leading edge is subsonic. The equation for the derivative of the upwash in terms
of the load distribution is a standard integral equation for the derivative of the load distribution,
whose inverse is known. Thus equations are available for the calculation of upwash from load
distribution and vice versa. A linear combination of load distributions is considered, with
their associated upwash distributions. The lift-dependent drag factor is then found as a
quadratic form in the coefficients of the linear combination, and this is minimized by the method
of Lagrange, using an undetermined multiplier. The results are given as graphs, discussed in
Section 3, with some conclusions drawn in Section 4.

2. The Theory oj the Conically-Cambered Lijting Surjace with Subsonic Leading Edges at Sonic
and Supersonic Speeds.-2.1. The Integral Equation jor Conical Velocity Fields.-\Ve consider
an unyawed delta wing of apex angle 2y, at a Mach number M, whose leading edges lie inside
the Mach cone from the apex (Fig. 1). We consider distributions of camber and twist such that
the surface slope in the streamwise direction is constant along rays through the apex (calling
this conical camber) and assume that the velocity field is conical, so that the load is constant
along rays through the apex. The influence of the Mach number on the flow is expressed entirely
through the parameter a = tan y jtan fl, where fl = cosec-1 "7t1 is the Mach angle and 2y is the
apex angle. We are concerned with values of a from 0 (slender-wing theory) to 1 (sonic leading
edge). Introducing tan r = K, cot fl = y(M2 -- 1) = (3, we have a = (3K.

With a system of axes, origin at the apex, Ox parallel to the undisturbed flow, Oy to starboard,
Oz upwards, we introduce the conical co-ordinate 'f) = yjs, where s = Kx is the local half-span.
Then the load distribution is a function of 'f} only. Considerations of the approach to the problem
through conformal transformation, combined with the physical requirement that the load
distribution be integrable, lead us to write it in the form

A
yO - 'f}2) + l('f})

where 1(-17) = l('f}) and 1(1) = O. The first term of this is simply the load distribution on a
flat plate at incidence, so we shall ignore it and restrict our analysis to symmetrical load distri­
butions vanishing at the leading edge. Since the theory is linear, multiples of the flat-plate
solution may always be superposed on those we obtain.

3
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(1)

in the plane z c-= O. This is derived in the same way as equation (11-4) of Ref. 12. 'Writing

dw I

(~Wn = d~' Or) , K
II

- - Krj' (0 Irl 1)

and summing over the planform, we obtain

1£'(VY) = - 4~ I: t~ ~ Y(lkfJ~~1]12) (cosh- 1 (1ly--~!2J{~~};r + cosh:' (i;~Tt~Jf~~7'~I)-

2 h:' I x II d I- R~' cos f3y \'] . ..

Substituting y = r}8 = Knx and remembering that dlJdr/ is an odd function, we have

I/V =c - 2~I~ld~' (~~i) lY(1- a
2r/ 2) (cosh-

1
: ; __~21~t + cosh:" a\rl _~2r~~tl) __

- 2 cosh" a I~ I ~ ~1],~

= -l I~l d~' (~~~) ly(l -- a21] '2) log y.(L=-:~2i-1];- Y1('~T=C7~r]:~) ­

_ log l.=+- ~\\ l~a21]2) ( ~~,' .

The derivative with respect to 1/ of the curly bracket in (3) reduces to

(2)

(3)

y(l -- a21] 2) 1]'2
1] ~2 ~_--~'2

or

and so the dependence of dwJd1] on a can be taken outside the integration sign:

(4)

(5)

Thus the derivative of the upwash at a Mach number greater than one is simply expressed in
terms of the upwash producing the same load distribution at sonic speed. The upwash itself
follows from the condition that all perturbation velocities vanish at the Mach cone, r} 1ja :

w(1J1 =.. I'l y(1 - a2r/ 2) j_d, (W(1]')) I d1]'.
KV u« d1] KV )a.O

4
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Since dlldy]' is odd, we may rewrite (4) as

1] d (W(1])) 1 II d ([(1]')) d1]'
y(1 - a21]2) d1] ,KV =;; -1 fi1]' 4K2 1] - 1]' . (7)

Note that for dWld1] to be finite at 1] = 0 we require

II ~ (l(1]')) -: = 0 (R)
-1 d1]' 4K2 1]' .

This condition is satisfied by all load distributions for which the spanwise distribution of chord
loading is smooth at the centre-line:

2.2. Inversion of the Integral Equation.--Equation (7), regarded as an integral equation for
dlldYJ', is related to Hilbert's integral equation, and has been dealt with in this form by Sohngen'".
The solution is indeterminate to the extent of terms in dlld1] , having singularities like
(1 - 1]'2)(1-2n)/2, which contribute nothing to the integral if n > 1. Since we consider only
functions l which vanish at the leading edge and since l is even, we can write the inverse of (7)
as (see Ref. 13)

d~i (~J~~) == ;\7(/ 1]'2) I~I~? C!;~21) d~ (:v) 1] ~ 1]' . (9)

By integration of (9) with respect to 1]', we find

~iL -- I II !l__ ~ (~) 10 I!- - 1]1]' + y{(l -- 1]2)(1.~ 1]~Id (10)
4K2-- n -1 y1(1 - a2172) d1] KV g 1] - 1]' YJ

where the integration constant has been determined by the condition l(I) = O. Equation (10)
apparently specifies l in terms of dWld1] only, which is absurd. In fact (10) prescribes just one
of the load distributions corresponding to the single infinity of upwash distributions having the
same derivative, namely that one which vanishes at the leading edge. Thus (10) gives the load
distribution on the cambered wing when it is at the incidence at which the attachment line of
the flow is at the leading edge. If the incidence is increased by 0:: the load distribution is
increased by 4Ko::/{E(kh/(I - r;2)}, where E is the complete elliptic integral of the second kind
of modulus h = y(I - a2

) .

2.3. Minimiom Lift-Dependent Drag for Delta Wings at Sonic Speed or Slender Delta Wings.-­
Before continuing the discussion of the conically-cambered wing on the basis of supersonic
linearized theory, we consider the special case a = 0, which may be regarded as applying to
vanishingly slender wings at any Mach number or to wings of finite aspect ratio at M = 1.
This simplification permits a more complete discussion than can be given for non-zero values of
a and forms a useful introduction to the subsequent treatment in Section 2.4.

We consider a conically-cambered slender delta wing having a load distribution {cj. (1.12) of
Appendix I}.

Of;

Of; 2 4K2 L: (2n -- 1) c,
4K2L: Cn (2n sin (2n - 1)1p + (2n -- 1) co~ 111p) = - 1. + l(1]) (11)

1 ~1p ~1p

where 'If) = cos " 'YJ, C" is constant independent of x, and

l(1]) =-= 4K2i c, (2n sin (2n - I)1p - (2n ---, 1) 1 - ~os 2n 1p) (12)
1 sin 1p

is a symmetrical load distribution vanishing at the leading edge. The first term on the right-hand
side of (11) is a flat-plate loading corresponding to the upwash

00

- KV L: (2n - I)c".
1

5
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(14)

The second term l(y;) corresponds to an upwash which we find by the method of Section 2.1.
Let a tend to zero in (~3), assuming (8) holds, giving

~l)- = ~r 1 ;:' C~J22) log YJ~~I~I~12J ~i;

1 fl l*(y;') dYj'
=;; ~ 1 -4k2 ' ~=--,7'

where

and we have carried out an integration by parts and used the anti-symmetry of 1*. 'When 1 is
given by (12), equation (8) does hold and we have

l:}~) ~" ~ (2n -_ 1) c; c()s(~n_sl~_~;~'-=C()s 1j/ (16)

as may be verified by differentiation. Thus from (14) and (16), using Glauert's formula, we
obtain an upwash

KV In co cos (2n - 1) 1jJ' - cos 1jJ' ,w(Yj) c= .--. 2: (2n --. 1) cn -- - -········- - --- · · - -- , - - d1jJ
n 0 1 COS 1jJ - COS 1j)

co (sin (2n _. 1) 1jJ)
= KV 2: (2n -- 1) c, 1 - ----;----- .

1 SIll 1j)

Combining (13) and (17) to find the upwash produced by (11), we have

co sin (2n - 1) 1jJ
- KV 2: (2n -·1) cn - - -- ; · - - · •

1 SIll 1p

(17)

(18)

(19)

Provided the series converge, (11) and (18) are the load and upwash on a conically-cambered
delta wing. The lift coefficient is given by

}fl. 4K2 i en (2n sin (2n - 1) 1jJ! (2n - 1) c072n1j~) d'l '''= 2nc]K2
•

-1 1 SIn 1/)

The coefficient of drag due to the pressure integral, neglecting any singularity at the leading
edge, is

C /) l' } fl 4K3 ±c, (' 2n sin (2n ~- 1) 1j) +- (2n ,-- 1) c()7 2n1jJ) i.. ·. (2m - 1) c.; sin (211t,.~= 1)1jJ dy;
] 11 1 . SIn 1j) , m ] SIn 1/)

= 2n II i n (2n - 1) cn
2 +- i i (2n - 1)(2m - 1) c, c,J K3 .

n- 1 n 11'/1, ] )

(20)

This is alleviated by the coefficient of suction force due to the singularity at the leading edge.
This is due to the first term on the right-hand side of (11) and, by flat-plate theory, has the
value:

(

co ' 2

C" = nK3 2: (2n -- 1) cn )
.a -: 1 I

Thus the coefficient of lift-dependent drag is given by :
x.

en I c--, C/)1' - C' s nK3 2: (2n --- 1) C,,2 .
n- 1

6
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Now consider the quantity

x = nA~Di = 4nK~Di = 1 +- ~ (2n _ 1) ("S)2 (23)
CL CL n~2 C1

The flat plate is given by c, = 0, n ~ 2 {see equation (I8)} and thus x attains its minimum for
the flat plate. In this case the suction force is equal to the lift-dependent drag {equations (21)
and (22)}. We are concerned with achieving a low value of x without relying on any suction
force whatever and so deal with the case C, = 0, i.e., the attachment line is at the leading edge.
\Ve consider the case Cn = °for n > N, so as to obtain a finite number of parameters. Then
we require "

x = 1 +- '~2 (2n - 1) G:r
to be a minimum, subject to the condition that Cs vanishes, i.e.,

N C
g = 2 L (2n - 1) --.!! = °.

n=1 C1

This is given by the solution of the N equations

~- (x +- Ag) = 2(2n - 1) c,~ -l- 2A(2n - 1) l = °
2cn C1 C1

N C
g = 2 L (2n -- 1) ~ +- 2 = °.

n=2 C1

The solution is

C
n

= -It = - N 2 1 1 for 2 ~ n ~ N ,
c1 1 -

and we took

for N < 11 •

Substituting these values in (23) we obtain the least value of % that can be obtained using N
terms and satisfying C, = 0, viz.,

1
N 2 --=1 . (24)

The corresponding values of the up wash and load distribution are given by (18) and (11) as

~ __ 1 +- ~ 2n -- 1 sin (2n - I)VJ
c1K V -- '(;:2 N2 - 1 sin 1jJ

__ 1 _ 1 (2N +- 1) sin (2N -- 1) VJ - (2N Il sin (2N __IL:t~ (25)
- N 2

- 1 +- 4 (N 2
- 1) sin3 VJ

IN 1 ~ 1 (2 . (2 1) (2 1)coS2n1jJ)
4K2 = -.- - L. N2 1 ,n sm n - VJ +- n - .

C1 SInVJ n=2 - SIn VJ

___1__ N sin 2VJ sin 2NVJ +- cos 2VJ cos 2N1jJ - 1 (26)
sin VJ 2(N2

- 1) sin31jJ

These functions are plotted in Figs. 3 and 4 for N = 2, 3, 4 and 5. From (24) we see that ';1,N

tends to one, the flat-plate value, as N tends to infinity, so that values of x as close to the
minimum as we please may be obtained with attachment at the leading edge. The convergence
of the series (25) and (26) is not uniform and the limits of WN and IN are discontinuous.

7



For 0 < 1J! < n we have, as N -+ 00,

WN~-+ _ 1
c1KV '

which are the flat-plate values.

IN I
---+--
4K2c

1 sin 1J!

However, for 1J! = 0 or n,we have

(27)

(29)

(28)

(30)

W N N (4N + 1) ~v_ = 0
c1KV 3(N + IT ' 4K2c1 .

We obtain the wing surface from the relation

fx oz(x', Y) r
z(x, Y) - ZI(Y) = -~-i---- dx

Xl(Y) ox

where the integration is for constant y, Z is the ordinate of the wing surface at (x, y), z, is the
ordinate of the leading edge at {xl(y), y} (with Xl = Iy 11K). Since y = Kx cos lp and
oziox c= wlV we find, for the starboard half-wing:

Z - Zit!') =--::: cos 1J! f'" ~(1J sin 1J!' dv/ .
s 0 KV COS

21J! '

Using (25), we find after some manipulation:

ZN - ZN~ = _ N(l - 1
11,Jll_~212Ll- N:f i (_)m+lI(1 _ \11 1 2m- I) 2n_=-~ X _

CIS N + (-1) N - 1 m=[ 110 -"' + [ 2m - 1

{(2n - 1)2 - P}{(2n - 1)2 - 32} ... {(2n - 1)2 - (2m - 1)2}
X ~~---- ------- ---

(2m)!

The function ZN 1 (y) is arbitrary and may be chosen so as to fit, say, the leading or trailing edge
to a prescribed curve. However, a conical wing is the simplest choice and for this zls is a
function of 11 only. Hence we are led to write zz/s =--= m 111 I. The parameter m may be adjusted,
say to remove the kink in the wing cross-section at the centre-line, but we prefer to put m =cc= -C 1

and so fix the leading edge to coincide with that of a flat plate producing the same lift. The
function zNlc1s is plotted in Fig. 5 for N _-'-c 2, 3, 4 and 5. In Appendix II this simpler expression
for zNlc1s on the starboard half-wing is obtained:

z 1 N
_ly' = - 1 ~- -2--- L (-)" (2n - 1) -
CIS N - 1 IIc2

_ \;os 1J!_1,[ (_ )N-" [!V -('1! + 1J {2N -+ (_l)N-n} 1 - co_s_12~=1)_1~
1\ - 1 n e [ 2 2n - 1

where the square brackets signify the integral part of the enclosed expression. From this we
see in Appendix II that zNlc1s -+ - 1 at N --»- co , the flat plate producing the same lift, as we
should expect.

The chord loading is obtained as

L(y) = fX 1dx == s cos 1J! IV) ~Lll) sin 1J!' dIp'
- Xl 0 K cos" 1J!'

and so

t~J!} == 4 sin 1J! (1 - Sil1(1\T_t~~)1J! ir~~~J~:~=_lJ~) (31)

as may be verified by differentiation. This function is plotted in Fig. 6. The explicit expressions
for the upwash, surface shape, load distribution and chord loading in terms of '} cos "If' are
given in Appendix III for N = 2, 3, 4 and 5.
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An independent treatment of the conically-cambered slender delta wing by complex function
theory is given in Appendix 1.

2.4. Minimum Lift-Dependent Drag for Delta Wings at Supersonic Speeds with Attachment
at the Subsonic Leading Edges.-Having completed our investigation of the conically-cambered
slender delta wing (a == 0) in the previous section, we now turn to the case of supersonic flow
with subsonic or sonic leading edges (0 < a ~ 1). We use the relations of Section 2.1 connecting
conical load and upwash distributions when the leading edge is an attachment line to find camber
surfaces of low lift-dependent drag subject to this condition.

We have at once that, in the absence of a leading-edge singularity,

(32)

Referring to equation (3), we see that, for the load distributions behaving like (1 - 1]2)112 at the
leading edge found in Section 2.3, the up wash is given by an elliptic integral. Thus the
complete analysis possible in the case a = 0 is unlikely to be achieved and has not been attempted.
We consider a finite set of load distributions l(n) (2 :'( n «; N), vanishing at the leading edge,
and the corresponding downwash distributions w(nl, given by (3).

Then, if
N

1 = '" A l(n)L n ,
2

we have
N

W =, LAn w(n)
2

and

(33)

while

CL = 1~2 A" f: l(n)(rl) d1] .

Thus we can consider x = nACD;/C/.
2 as a function of A2 , ••• AN and minimize it with respect

to them for constant C/..

The first approach was to use a modification of (3) viz.,

(34)

derived by the use of (8). This enables w(YJ)/KV to be calculated by numerical integration for
o ~ 1] < 1, for a given function 1(1]) for which the upwash at a = 0 is known. A further
numerical integration produces the coefficient of Am An in (33). Unfortunately, it is necessary
to know these coefficients accurately for the minimization of x and this makes the labour of the
numerical integrations required prohibitive.

It was therefore decided to work from equation (6). This gives the upwash corresponding
to a load distribution 1 in terms of the upwash corresponding to the same load distribution
at a = O. Since, for the load distributions behaving like (1 - 1]2)112 at the leading edge, the

9



upwash at a 0 only involves a square-root singularity off the wing (1 :(: 1) l/a); equation (6)
shows that the upwash becomes the sum of a complete elliptic integral and an algebraic function
of fl. This algebraic function is simply the product of a polynomial and v(1 ~~- a2r12), so that
the coefficient of AnA»> in (33) can be obtained explicitly in terms of the complete elliptic integrals
of the first and second kinds. For actual calculation recurrence formulae were used in preference
to the complicated polynomials. The details of the method and the expressions found are
given in Appendix IV. Unfortunately the numerical procedure breaks down for small values
of a, owing to the occurrence of high powers of a as denominators in the expressions.

For small values of a we expand equation (6) after integrating it by parts. This enables us
to carry out an analysis like that of Section 2.3 with a term in a2 included. Details of the method
are given in Appendix VI. This approach covers the gap left between a = 0 and the lower
limit of the numerical procedure described above, so that a minimum value of the lift-dependent
drag, using a finite number of terms, can be found throughout the range 0 a 1.

Calculations of the lift-dependent drag factor x were carried out for a sin 15, 30, 45, 60,
75, 90 deg for optimum load and upwash distributions for N 2, ~~ and 4. The results are
shown in Fig. 7, with the flat-plate values (assuming attached flow) for comparison.

The optimum load distributions forN= ~3 for a=~~ sin 30, 60, 90 deg are compared in Fig. 8,
the curve for a 0 being indistinguishable from that for a sin 30 deg on this scale. For
N 2 there is no variation with a of the optimum load distribution and it is given in Fig. 4.
The corresponding upwash distributions are shown in Fig. 9.

2.5. The Delta Wing with Hinged Flaps at the Subsonic Leading Edges.---The solution for the
flat plate at incidence with leading-edge flaps hinged along lines through the apex, deflected
symmetrically or anti-symmetrically, has been given by Shaw". We shall use his results for
symmetrical deflection downwards in the subsonic leading-edge case as an example of conical
camber. The condition that the leading edge should be an attachment line imposes a single
condition connecting incidence, flap deflection and hinge position. Thus, for each value of
a IJK and the lift coefficient, we obtain a family of wings as the hinge line varies. The
singularity in the load distribution which occurs along the hinge line introduces the possibility
of a flow separation along it on the upper surface. This singularity is, however, logarithmic,
in contrast to the square-root singularity at the leading edge of the flat plate which is associated
with the primary separation. Thus we shall suppose, in the absence of experimental evidence,
that the flow remains attached at the hinge line. A small modification of the shape near the
hinge line would in any case produce a non-singular load distribution and little change in the
characteristics of the wing.

For a flat plate at zero incidence, with subsonic leading edge, having flaps hinged along the
lines 11 ci'j and deflected to an incidence ~ to the free stream, the pressure distribution is
(see Section 5.22 of Ref. 14) :

p

where E-~ E(k), k2 1 - a", is the complete elliptic integral of the second kind and

is a complete elliptic integral of the third kind. For the flat plate at incidence IX the pressure
distribution is :

p -~ PV 2 V(l!an?TE .
10
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For no singularity at the leading edge, 'Y/ = 1, we must combine (35) and (36), i.e., incidence and
deflection, so that

_ ~ 2 ijy(1 - ij2)
IX -- - - 2a JI y (1 2 2) .n - a'Y/

The non-dimensional load distribution is then

1 = _ 2p = 4~ij tan y 10 Iy(1 - ij2) - y(1 - 1]2) I.
ipV 2 ny(1 - a2ij2) g y(1 - ij2) + y(1 - 'Y/2)

(37)

(38)

Now

I
I
y(1 - ij2) - y(1 - 'Y/2) I _ I y(1 - ij2) - y(1 -- 1]2) I -2 . -1

log i y(1 _ 'Y/2) + y(1 _ 'Y/2) d1} - 'Y/ log y(1 _ ij)2 y(1 _ 1}2) - 2y(1 - 'Y/ ) SIll 11 +
+ f log Iijy(l - 'Y/2) + 1]y(1 ij2) I (39)

l ijy(1 - 'Y/2) - 'Y/v/(1 _ ij2)

as may be verified by differentiation. vVe have, in general,

CL = I>('Y/) d'Y/

and

II (lz
CD P = - 0 l (1]) (lx d1] .

Here, CD P = CD i , by (37), and

- :; = {:
Thus, by (38), (39) and (40)

and

for 11] 1 < ij

~ for ij < 11] 1 < 1 .
(40)

(41)

_ 8eij tan y \a2JIij(1 - ij2) -2-1 __ _I
CD i - ny(l. _ a21]2) (\1(1 _ a2'Y/2) - y(1 - 'Y/ ) cos 1] - YJ log YJ \ (42)

where (37) has been used for IX. Thus we find

u = ~~~21) i = 2a2JI - 2 Ji1I-=:~~f) IcO~-1_1 + \//~g ij~2) i . (43)

This has been calculated for sin:' a =, 0, 15, 30, 45, 60, 75, 85, 90 deg for a range of hinge-line
positions, 1}. The results are shown in Figs. 10 and 11. The upwash on the wing with a flap is
a step function; the load distribution has a logarithmic singularity at the hinge-line. In
Figs. 12 and 13 the upwash and load distribution on the wing with flap at a =-= 0, ij = 0·966
are compared with those derived for slender wings using five terms of the Fourier series (w5

and 15 of Appendix III) in Section 2.3. These cases were chosen since they produce similar
values of x.

3. Restilts.-3.1. The Lift-Dependent Drag Factor u.-The lift-dependent drag factor:

nAC1) i

X = C
L

2

is plotted in Fig. 7 against the parameter a = tan yltan!J.. (apex angle 2y, Mach angle It)
for 0 ~ a ~ 1 for three types of cambered wing and the flat plate. Each cambered wing has
leading-edge attachment, i.e., no infinity of the loading at the leading edge and so no localized
leading-edge suction. The curves labelled N = 2,3, 4 in Fig. 7 give the minimum values
of x obtainable using that number of terms of a trigonometrical series for the load distribution
and maintaining leading-edge attachment.
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It is seen that conically-cambered wings with leading-edge attachment exist for ° a 1
having values of K close to that of the flat plate at design incidence and Mach number. We
know from Section 2.3 equation (24) that, for a = 0, a family of wings can be found for
which K is as near the flat-plate value (i.e., 1) as we please. The analysis of Appendix VI,
in particular equation (VI.12) suggests that the same is true for small values of a. For values
of a which are just below one, the theory predicts an appreciable reduction of x below the
flat-plate value; but linearized theory is not likely to be reliable in this range since the bow
shock is close to the leading edge. For a = 0, the flat-plate value cannot be improved upon in
attached flow past a substantially plane* wing, so that for slender wings the penalty in the
lift-dependent drag due to achieving lending-edge attachment by conical camber can be made
as small as we please at design incidence. (This is under the assumption that the theory is
applicable, a point discussed in Section 3.2.) For other values of a the restriction to conical
camber as a means of securing leading-edge attachment probably does involve a penalty in the
lift-dependent drag, but at least the flat-plate value can be approached.

In the special case of conical camber represented by a delta wing with a hinged leading-edge
flap, the condition of leading-edge attachment determines the flap deflection once the hinge-line
is fixed. In Fig. 10 the values of x for various hinge-line positions (Yj) are shown for ° a 1.
As the hinge-line approaches the leading edge the flat-plate value is approached and the latter
is only improved upon with hinge-lines near the leading edge when this is nearly sonic and the
theory is then inadequate. The curves are not taken beyond the values for )( obtained by
omitting the suction force in the flat-plate solution. Fig. 11 is a cross-plot of the curves in Fig. 10
and shows for several values of a the dependence of K on hinge-line position.

:3.2. The Optimised Load and Upwash Distributions.-Figs. 3 and 4, for the case a - 0,
illustrate the trend of the optimised upwash and load distributions as more terms are included
in the trigonometrical series for the load distribution, at least for values of a not too near 1.
Apart from the introduction of more' waviness 't into the functions, the tendency is for the
down wash to approach the constant flat-plate value, except at the leading edge where there is
an increasing upwash, and for the load to approach the flat-plate distribution, except at the
leading edge where it is zero. The large upwash near the leading edge means a high surface
slope, so that linear theory ceases to be applicable when N becomes too large. (The significance
of ' too' depends on the design lift coefficient and the sweep, so no attempt at precision is made.)
The high suction peak and the adverse pressure gradient inboard of it may lead to the occurrence
of shock waves and to boundary-layer separation, so that again linear theory will not apply
when N is too large.

The cross-sections of particular conical wings having the upwash distributions shown in
Fig. 3 are given in Fig. 5. They have been chosen to have the same leading edge for all N,
and can be seen to approach the flat plate as N -)-X). The increasing surface slope near the
leading edge as N increases is evident. The chord loading of the same wings is compared with
the elliptic loading in Fig: 6. The differences from the elliptic loading are associated with the
increases in vortex drag above the minimum.

The effect of increasing Mach number on the optimised load and upwash distributions can be
seen in Figs, 8 and 9. There is little change in the load distributions, particularly for small
values of a, so that the optimum distribution at a == 0·50 for N ==c= 3 is indistinguishable from
that at a -- 0 on the scale used. The tendency is for the load to be spread rather more evenly
across the span as a increase from 0 to 1. Similarly, the difference in the upwash distribution

* A substant.ially plane wing here means a wing close enough to a plane for the boundary condition satisfied on the
wing to be applied on the plane. Thus wings with end-plates, ring wings, etc., are excluded .

.l This waviness, due to the representation of the load distribution by Fourier terms, is incidental, as is brought out
by some work of Brebner-". He calculates the load distributions and lift-dependent drag factors of slender wings
having leading-edge attachment and downwash distributions without points of inflexion. His results are of a similar
nature to those given here.
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between a = 0 and 0·50 is almost a constant, corresponding to a change in incidence only
(Fig. 9). However, for larger values of a the change in upwash is greater near the leading edge
than at the centre-line. When the leading edge is sonic the upwash vanishes at the leading edge,
as we should expect since we have required the load to vanish there and the solution should
be continuous with that for a supersonic leading edge.

Figs. 12 and 13 show the continuity of the results for the hinged flap with those for the
smoothly cambered wing at a = O. The cases N = 5 and ij = 0·966 were chosen for comparison
since they yield substantially the same value of x . It can be seen that the step function of
Fig. 13 approximates fairly closely to the smooth curve; and that the singular load distribution
in Fig. 12 is similar to the continuous one if we bear in mind that the singularity is logarithmic
and so has little effect on the overall distribution.

An impression of the streamlines in the cross-flow (i.e., the lines 'P = const., at equal intervals
of l[I where l[I is the imaginary part of the complex potential W of Appendix I) for the case a = 0,
N = 2 is given in Fig. 14b. The corresponding picture for the attached flow past the flat wing
is Fig. 14a. The streamlines are drawn relative to the undisturbed stream, so that the velocity
field dies out at large distances and a normal velocity is found at the (instantaneous) position
of the wing. Only the intersections of the lines with the horizontal axis have been calculated,
the remainder of the pictures being illustrative. There is a marked resemblance between the
flow field for the cambered wing and for a flat wing of smaller span, the difference being that
the streamlines are less closely crowded for the cambered wing. This comparison provides
another way of envisaging the higher lift-dependent drag factor of the cambered wing on
attached-flow theory, together with the greater likelihood of achieving attached flow on it in a
real fluid.

4. Conclusions.-At sonic speed, the lift-dependent drag on a conically-cambered wing, with
flow attachment at the leading edge (i.e., vanishing load at the leading edge) at design incidence,
can be reduced as near as we please to that of a flat plate producing the same lift, if the flow
past the latter were not to separate.

The same appears to be true at supersonic speeds for wings having subsonic leading edges
(calculations so far produce values within 5 per cent of the flat-plate value) unless the leading
edge is almost sonic. For leading edges only just within the Mach cone from the apex,
reductions of up to 7 per cent below the flat-plate value are found, but linear theory is unlikely
to be reliable in this region.

These values are obtained for wings having upwash distributions which are finite everywhere
on the wing and load distributions which vanish at the leading edge. The lower values of the
lift-dependent drag factor are obtained with high values of the upwash on the wing near the
leading edge and.a high suction peak just inboard of it on the upper surface. However, these
are proportional to the design lift coefficient, so that for a low lift coefficient it is probably per­
missible to apply linear theory to the wings calculated by this method which have lift-dependent
drag factors very near the flat-plate value, since their steep surfaces slopes and the risk of
shock waves and boundary-layer separation are reduced.

The load distributions obtained by minimizing the lift-dependent drag factor vary little
with a = tan y jtan fL The associated upwash increases with a; the increment is nearly
constant across the span except when the leading edge is almost sonic. This is paralleled by
the decrease in lift-curve slope of a flat delta wing as a increases.

13



LIST OF SYMBOLS

a fJK = tan r /tan fh

A Aspect ratio

en Fourier coefficient {equation (II)}

C1, Lift coefficient

Cn i Induced drag coefficient

CJ! l' Induced pressure-drag coefficient (suction neglected)

C, Suction-force coefficient

E(l?) Complete elliptic integral of the second kind, modulus l?

1? yI(I - a2
)

K A/4 = tany

K(1?) Complete elliptic integral of the first kind, modulus 1?

l Non-dimensional load distribution

L(y) Chord loading

M Mach number

N Number of Fourier terms considered

p Pressure

s

v

v
w

w
x,y, z

z
IX

Kx, local semi-span

Sidewash velocity

Undisturbed velocity

Upwash velocity

Complex potential

Right-handed rectangular co-ordinates, x parallel to the undisturbed
velocity, y to starboard, z vertically upwards

y + iz

Incidence

fJ yI(M2
- 1)

2y Apex angle

1] y/s

fJ Hinge-line position

C Z + yI (Z2 - 8 2
)

x ::rAC) ;/CL
2 lift-dependent drag factor

Ii. Lagrangian multiplier

/1 cot -] fJ, Mach angle

~ Relative incidence of deflected flap

Il Complete elliptic integral of third kind

p Density
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LIST OF SYMBOLS-continued

([J Velocity potential

1> cosh -1 1] (1] ;?: 1)

'IjJ COS-
11]

(1] ~ 1)

P Im{W}
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APPENDIX I

The Conically-Cambered Slender Delta Wing

We introduce the complex quantity Z = Y + iz in the cross-flow plane, in which the wing is
represented by a distribution of normal velocity along the slit Iy! s, z =~ O. Then the pertur­
bation potential is the real part of a complex analytic function W of Z, containing x as a parameter.
This potential vanishes at infinity, its conjugate function vanishes on the imaginary axis, the
normal velocity is continuous across the slit and the velocity field has at most a square-root
singularity at z =c -l-.s. We introduce a transformed plane C, defined by

C -r-r: Z Z· - 1 (,~ L 2/ r)~ --2 c, --I - S c, • (1.1 )

The Z plane cut along the wing slit becomes the region of the C plane outside It! eccc s. Since
in this region the transformation is analytic and one valued, and since a singularity in W on

I cis would correspond to one on the wing slit, W is a one-valued analytic function outside
and on ICI - s, and we can write

W co 's)n
---- ..... =-= 2.: an (,;- for IcI
KVs n I c,

s. ., (1.2)

In this expression an is dimensionless and, by the assumption of a conical velocity field, indepen­
dent of x. For 'II to vanish on the imaginary axis (Z imaginary corresponds to ::. imaginary),

a 2H == b.; ,
Now

On the wing, where C = se'":

Thus for w to be the same at ±1p we require b; ecc, O.

_tV _ cL • ' .. (s')2n--1- ---- 2.: l C -
KVs n~1 n C_

Hence

(1.3)

v - iw 2its co (5)2n-1
-RV-- = - (2=,-,52 2.: (2n -- 1) c, Z;

. nl -

and, in particular, on the wing

eJ> W •

KV
- == 2.: c, SIll (2n - 1)1p

5. I

V 1 co
-.....-.- ,= - .--- 2.: (2n - 1) Cn cos (2n - 1hJ
KV SIll '1/) n-~I

W 1 00 •

}"'" v --~.-- 2.: (2n - 1) c; SIll (2n - 1)1p .
l.~ sln1pnl

The lift is most readily found from the momentum integral in a plane behind the wing.
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(1.5)

(1.6)

(1.7)

In fact

(1.8)



(1.9)

The lift-dependent drag, which for slender wing theory (i.e., a = 0) is entirely vortex drag,
is obtained from the energy integral in a plane behind the wing. We have

CD i II L1<P W °d ~ (2 1) 2K3 = KV KV 'YJ = :n; L.. n - C" 0 0 0

-1 S ,,=1

Thus we have:

x = nACC: i = 4:n;~?Di = 1 + ~ (2n _ 1) (c,,)2 .. (1.10)
L L ,,=2 Cl

The condition for attachment to occur at the leading edge is that the velocity is finite there, i.e.,
00

L (2n - 1) c, = O. o.
,,=1

., (1.11)

To find the load distribution on the wing, we note that v2 and w 2 are continuous across the wing,
and so the non-dimensional load distribution is

l 4o<p he wi
= V ax ' on t e wmg.

Hence

(85562)

l ~ 1 . cos 2n1jJ 1
4K2 = L..C" 2nsm (2n - 1)1jJ + (2n - 1). .

1 sm e
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APPENDIX II

The Optimum Slender-Wing Shape, Using N Terms of the Fourier Series

We evaluate the wing shape z(x, y) from equations (28) and (25). First we find

J = IV' sin 2m1[J' d '
m 0 cos 1[J' 1[J.

Since
sin 2m1[J -+ sin(2m - 2)1[J = 2 sin(2m - 1)1[J cos 1[J

J = 2 1 - cos(2m - 1)1[J - J
m 2m _ 1 m-l

and so

Now we find

Since
sin (2n - 1)1[J -+ sin (2n - 3)1[J = 2 sin 2(n - 1)1[J cos 1[J

I" = 2J"-1 - 1"_1
and so

,,-I

I" = (-)"-111 -+ 2 2: (_),,-m-l Jm
m~1

= (_)"-1 Isec 1[J _ 1 -+ 4 "i.I ~ (_)V 1 - cos (2v - 1)1£1.
I me I V I 2v - 1 \

Now, by (28), for the starboard half-wing:

Z."l -- ~J.:Yl =- cos 1[J I'P w(1]~t _~in21[J', d1[J'
CIS 0 c1K V cos 1[J

J
" p ( sin 1[J' N 2n - 1 sin (2n - 1)1[J' ,

--= cos 1[J 0 - cos-2--;pt -+ f 1\12=-1 ----c-osT-Vl--) d1[J by (25)

= cos 1[J (1 - sec 1[J -+ N).---T*(2n - 1) I,,) ,
which becomes

ZN_~(l') = --- (1 - cos V)) (-I -l- -;-r)-·····- I.. (-)" (2n - 1)) -+
CIS Pv - 1 ,,2

-+ 4~os 1[J N:f (_)N-"+I [N - in -+ IJ (2N -+ (_ 1)N-,,) 1- ~()~(~n - 1)1[J
N - 1 ,,"d 2 2n - 1

where [mJ denotes the integral part of m. For the fiat plate at the same lift, Z= -CIS, so that
if we choose ZI(Y) =c -c1ly I the leading edges of the fiat plate and cambered wing coincide.
With this choice

z 1 N

~ -+ 1 = - 2 2: (-)" (2n - 1) -
CIS N - 1 ,,~2

_4~os1j! '11

(_y __" [N - n -+ IJ (2N -+ (_ I)N-,,) 1 - cos (~~_=-}}I! .
N - 1 ,,~1 2 2n - 1

As N tends to infinity, the right-hand side tends to zero and so

ZN~ -CIS as N ~ 00 •
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(85562)

APPENDIX III

The Uptoash, Surface Shape, Load Distribution and Chord Loading
for Optimum Slender Delta Wings

~ = 2(2 2 - 1)
clKV 'YJ

~ = - 4'YJ2 + 5/ 'YJ I - 2
CIS

~- = ~ (1 - 'YJ2)1/2 (2'YJ2 + 1)
4K2c

i 3

~ = ±(1 _ 2)312
4Kc Is 3 'YJ

-~!!_-- = 1O'YJ4 - 6'YJ2 - ~
clKV 4

~ = _ 10 'YJ4 + 6'YJ2 _ 35 I'YJ / - ~
CIS 3 12 4

4~CI = (1 - 'YJ2)112 (8'YJ4 + 1)

~ = (1 - 'YJ2)3/2 (2'YJ2 + 1)
4KcIs

~ = 448 6 _ 32 4 + 8 2 _ ~
clKV 15 'YJ 'YJ 'YJ 3

~~. = _ 448 'YJ6 + 32 'YJ4 _ 8'YJ2 + 273 117 1 4
CiS 75 3 75 - 3

_14_ = 16 (1 _ 'YJ2)1/2 (24'YJ6 - 12/}4 + 2'YJ2 + 1)
4K2c

i 15

4;;-;;' =~ i~ (1 - 'YJ2)312 (4'YJ4 + 1)

__w 5 = 96'YJ8 _ ~48 'YJ6 + 70'YJ4 _ 1O'YJ2 _ ~
clKV 3 6

~ = _ 9~ 'YJ8 + 448 1/ __ 70 'YJ4 + 1O'YJ2 _ 209 I'YJ I
CIS 7 3 3 70

_15 _ = (1 _ 2)112 (256 8 _ 256 6 + 24 4 + 1)
4K2c

I
'YJ 3 'YJ 3 'YJ 'YJ

.Ls: = (1 - 'YJ2)3/2 (32 'YJ6 _ 16 'YJ4 + 2'YJ2 + 1)
4Kc Is 3 3
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APPENDIX IV

Numerical Calculation of the Lift-Dependent Drag of the Conically-Cambered
Delta Wing for 0 < a :s;: 1

We consider this set of upwash distributions on the wing which lead to wings with leading-edge
attachment at a c= 0 :

given by c2 = _! cn c= 0 n =!= 2, 11
C1 3' C1 '

given byCS = _! s == 0 n =!= 3 1 l (IV.l)
CIS' C1 ' ,(

1) given by~. c=c= _! c, c= 0 n =!= 4, 1 jl
C1 7'c1 '

The corresponding upwash distributions in the plane of the wing, but off it, are: {see equation
(1.4) with i;js == r; + v(r;2 - I)}

The corresponding load distributions are: {see equation (I.12)}

l(2) 4 1
4K2C~ = 3 v(1 - r;2) (2r;2 + 1)

lIS) 4
4K2c

1

= 5 v/(1 - r;2) (16r;4 - 2r;2 + 1)

l(4) 8
4K2c

1
= '7 v(1 - rJ2) (48r;6 - 32r;4 + 4r;2 + 1)

.. (IV.2)

.. (IV.3)

Then the upwash distributions at non-zero a which correspond to these load distributions
are given by equation (6). The expression for w(n)jc1KV on the wing must be used in the range
of integration n :s;: r;' :s;: 1 and that for W(11)jc 1KV off the wing in the range 1 :s;: r/ Ija. From
the former range we obtain an algebraic function of r; and from the latter a complete elliptic
integral. Thus, on the wing, with k2 ,= 1 -- a",



We now require the quantities

4 J1 lim) win)
~(m,n) - - - -- --d1]

- n 0 4K2c1 c1K V

for 2 :::;; m, n :::;; 4. We find, in terms of

In = J: (1 - a21]2)3!2 (1 - 1}2)1/2 1]2" d1]

the following expressions :

~(2,2) = 91282(211 + 10) _ 38 2{(2 - a2) E(l?) - a2K (k)}
sea a

~(2,3) = 4~:~4 {48a2I2+ (32 - 6a2)I
1 + (16 - lSa2)I

o} -

- 1:a4{(32 - 22a2 - 3a4) E(k) - a2(16 - 9a2) K(k)}

~(3,2) = 1~:~2 (1612 - 211 + 10 ) - 3~2 {(2 - a2) E(k) - a2K(k)}

~(3,3) = S128 4{384a2I3+ (256 - 288a2)I
2 - (32 -- 54a2)I

1 + (16 -- 15a2)I
o} ­

7 na

- 1:a4{(32 - 22a2
- 3a4) E(k) - a2(16 - 9a2) K(k)}

~(2,4) = 3J:;a6{720a4J 3 - (480a4 - 576a2)I 2 - (21Oa4+ 272a2 - 384)11 +
+ (105a4 - 280a2+ 192)Io} -

- 1~~a6 {(384 - 464a2+ 124a4- 15a6
) E(k) - a2(192 - 208a2+ 45a4) K(k)}

~(4,2) = 2~~~2 (4813 - 321 2+ 411 + 1 0) - 3~2{(2 - a2)E (k) - a2K (k)}

~(3,4) = 5;;:a6{S760a4I4 - a2(7440a2 - 4608)1 3 + (2880a4 - 5056a2+ 3072)12 ­

- (630a4 - 848a2+ 384)11 + (105a4 - 280a2+ 192)Io} -

- 1~:a6 {(384 - 464a2+ 124a4- lSa6)E (k) - a2(192 - 208a2+ 4Sa4)K (k)}

~(4,3) = 1~:;a4 {1152a2I4+ (768 - 1488a2)I3+ (576a2 - 512)12+ (64 - 36a2)I
1 +

+ (16 - lSa2)I
o} -

- r:a4 {(32 - 22a2 - 3a4)E (k) - a2(16 - 9a2)K (k)}

~(4,4) = 7;i;a6{17280I 5 - a2(31680a2- 13824)14+ (19920a4- 22656a2+ 9216)13 ­

- (4680a4 - 10112a2+ 6144)12- (832a2
- 768)11 + (lOSa4 - 280a2+

+ 192)Io} -

- 1~~a6 {(384 - 464a2+ 124a4- 15a6)E (k) - a 2(192 - 208a2 + 45a4)K (k)}.
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The calculation of In as a function of a is described in Appendix V.

If now

(IV.6)

then

.. (IV.7)

and

;>e = 1l~~2[)i = A 2;>e(2,2) + A,u(;>e(2,3) + ;>e(3,2)) + ,u2;>e(3,3) +
+ d(;>e(2,4) + ;>e(4,2») + ,uV(;>e(3,4) + ",(4,3») + V 2",(4,4). •• (IV.S)

l(2\ l(3) and l(4) have the same integral from 0 to 1, so we require a minimum of '" subject to
A + ,u + v = 1. This leads to three simultaneous linear equations for A, ,u and v which are
solved for each value of a considered. With these values of A, ,u, v , equations (IV.6) and (IV.7)
give the optimum load distribution and upwash distribution for the value of a considered,
using four terms only. The corresponding value of '" is given by (IV.S). This calculation
has been taken as far as obtaining the value of x , but the load and up wash distributions have
not been calculated. The same procedure has been followed using l(2) and l(3) only {i.e., v = 0
in (IV.6) to (IV.S)}. This is considerably simpler and the optimum load and up wash distributions
for a sin 30, 60 and 90 deg have been calculated and plotted in Figs. Sand 9, using 3 terms only.
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APPENDIX V

The Evaluation oj Certain Complete Elliptic Integrals

Consider

J"12 sin'" x
In = 0 (1 _ a2sin2 X)1/2 dx .

Let sin x = sn (a, u), then

I
sn - 11

In= 0 sn2nudtt.

Now

f 2n d - cn udn u sn2n
-

3 u + (2n - 2)(1 + a2) I 2(n-1) d
sn u u - (2n _ 1)a2 (2n _ l)a 2 sn u u-

2n - 3 I- sn2(n - 2) tt du
(2n - 1)a2

as may be derived by differentiation. Hence

In = {(2n -. 2)(1 + a2)Jn_1 - (2n - 3)Jn_2}/(2n - l)a2

I, = K(a)

I
sn

-
11 1 Isn

-
11 1J1 = sn" u du = "2 (1 - dn 2u)du = "2 {K(a) - E(a)} .

o a 0 a

.. (VI)

From these three equations In may be calculated as a function of a, but the accuracy diminishes
as n increases, rapidly if a is smalL

Now consider

In = I: (1 - a21]2)3/2 (1 - 1]2)1/21]2n d1] .

Let 1] = sn (a, u). Then

In = I:n

-

1
sn2nucn2u dn 4u du = In - (2a2+ I)Jn+1 + a2(2 + a2)J"+ 2 - a4JnH

_ 2n + 9 - (2n + l)a2 (2n + 2)a4
- (2n + 7)a2- 3

- (2n + 3)(2n + 5) In + (2n + 3)(2n + 5) In+1''' (V.2)

From this equation I,., may be calculated as a function of a from the values of In obtained.
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APPENDIX VI

The Conically-Cambered Delta Wing for Small Values of a =C.: tan yjtan fl

Equation (B) gives, on integration by parts,

(VI. 1)

.. (VI. 2)

where cosh (> == Ija and uniform convergence is assumed. We have

If the load distribution is given by (11) or (1.12) as

l 1 00 c, ( . cos 2n'P)
"-~2'- = -.- + L- 2n sm(2n ~ 1)'P + (2n ~ 1) -----;-.---'-
4K C1 sm 'P 2 C1 sm 'P

the corresponding upwash at a :== 0 in the plane z == 0 is

W . ~ _.. 1 ~ ~ c__n (2n~_ 1) sin(2n -- 1)'P (VI.3)
~~ ~ L.., (1] = cos 'P, on the wing) ..
c1KV 2 c1 sin 'P

and
W 00 Cn (2n ~ 1) e-(2n~1)~ .--- ~ L--. (17-"= cosh ep, off the wmg) (VIA)

c1KV I C1 smh ep

by equation (1.4). The range of integration in (VI.l) extends from the Mach cone to the point
of the wing and so both (VI.3) and (VIA) are needed.

Consider first

Now consider

Jl _.~1]-"-'-1 w(1]/) ( / ~ JO 00 Cn (2n ~ l)e~(2n-l).p .

/(1 ~ 2 /2). KVI d1] ~ _ cosh ¢ L . h ep smh ¢ dep +
lla\ arn C 1 Ja~~O .p IC1 SIn

00 ( 1) r JO 00 C+ r~1 ~2 (- a2
) J; cosh2

r+1ep n~1 C: (2n ~ l)e-(2n-l).p d¢

.. (VI. B)

fo 1 + 0(a2
) - 2

cosh2r+l..l.e-(2n~I).pd..l. =.-= -- . + 0(1) since e.p = - {I -j- 0(a2) }
4> 'i' 'i' 22 11 (r ~ n -t- l)a2(r --n 1- 1) , a

and

° {He-2
4> ~ 1 ~ 2{»fJ; cosh epe-(2n-l).p dep = ! (~-=2~~1)J; ~ 1 + e-2n~ -:-.J.)'

n -- 1 n

24

if n = 1

if n > 1 .



Thus (VI.6) becomes

I
1

V(I:' 2 f2)lwK(r/v)! d1]f=-tI2log~+1+2log2+iC"(2n-l)( 11+ !)+
11a a 1] C1 \ a=O a 2 C1 n n

+ O(a2log a) • •• (VI.7)

Lastly consider, for 11]1 < 1 ,

V(I- a2n2) \ w(1]) / = -1 1 __ a
2

COS21jJ + O(a4)/ II + i C" (2110 - 1) s.in (2110 - 1)1jJ!
Ic1KVla=o 2 II 2 C1 sm 1jJ \

= __ 1 __ ~ C" (2110 - 1) s.in (2110 - 1)1jJ +
2 C1 sin 1jJ

+ a
2

\1 + cos2'1jJ + 2~C" (2110 -- 1) s.in (2110 -- 1)1jJ +
4 I 2 C1 sm '/p

co C l+ :L -.!!. (2110 -- 1) (cos 21101jJ - cos (2110 -- 2)'/1') + O(a4) ... (VI.8)
2 C1

Then, by using (VI.5), (VI.7) and (VI.8) in (VI.l), we have

w(1]) = _ 1 _ i C" (2110 _ 1) sin (2~ - 1)1jJ +
c1KV 2 C1 sin 1jJ

- ~--. cos (2110 - 2)'/p 1 + O(a4log a) .
110-1 \

The corresponding load distribution is (VI.2). Hence to calculate

we require these simple integrals for positive (non-zero) integers m and 110 ,

(VI.9)

J"'12 {
o sin(2m - 1)'/p sin(211o - 1)1jJ d1jJ =

o
n/4 m=11o

{

0
",/2J0 sin(2m - 1)1jJ cos 21101jJ sin 1jJ d1jJ = n/8

- n/8

m =j= 110,110 + 1

m=11o+1

m=11o

f"'/2 cos 2m1jJ si~(211o - 1)1jJ d1jJ
={

0 m):;11o

o sm 1jJ n/2 m<11o

f"'/2 0 m=j=11o
o cos 2m1jJ cos 21101jJ d'/p -- {--

n/4 m=:11o.
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Making use of these and remembering

.. (VI. 10)

since the load vanishes at 'If! ~c= 0, we find, neglecting O(a4 log a),

(VI. 11)

We now seek to minimize x , subject to (VI.lO), considering first the case cI1jc 1 = °for n > N.
Since Y. is given by (VI.11) only to the first order in a", we write

Cn n ~N,

since this tends to the slender-wing optimum as a ----+ 0. Substituting this in (VI. 11) and (VI. 10),
neglecting terms in x independent of E'l> we find that the problem is to minimize

F.. . N Z\T

Z/\T + f (2n ---- 1) E,,2 subject to f (2n - 1) En = 0.

The usual procedure of the undetermined multiplier leads to

1
e, = 4N(N2-- 1) 2 ~ n < N

N-2

and so to

and

BN = - 4(N2 - 1)(2N - 1)

c" 1 (1 a
2

) 2 N
C

1
= - N 2 - 1 - 4N ~ n <

CN 1 ( (N - 2)a2
)

C
1

=-, - N 2- 1 1 + 4(2N - 1) .

The corresponding value of x becomes, after reduction,

1 2 4 (2N - 1) a2

XN = 1 + N2 _ 1 + a log a+ N(N2 __ 1) 4' .. (VI. 12)

As a----+O, Y.N-~ 1 + 1j(N2
- 1), the slender-wing value.

As N ----+ CIJ, X N ----+ 1 + a2log (4(a) , the first terms of the value for the flat plate tn.z.,
u = 2E(k) - k, k2 = 1 - a',
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(a) FLAT PLATE

..~------_._------

(b) CAMBERED PLATE.

FIG. 14:1 and b. Approximate streamline
pattern of cross-flow for slender wings

(relative to stream).
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