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Summary. The author's method for compressible laminar boundary layers, in which a linear viscosity­
temperature relationship and a Prandtl number of unity are assumed, is used to investigate some cases in
which the wall temperature is not uniform. It is shown that the effect of wall-temperature distribution does
not make any essential difference to the method. For example, according to the basic method separation
occurs when the pressure-gradient parameter reaches a certain value. The values of this parameter for a
wall-temperature distribution Tw(x) are derived from the values for uniform temperature Tw(O) by direct
multiplication by Tw(x)jTw(O).

An alternative and longer, but theoretically more acceptable, expression is derived for the boundary-layer
momentum thickness. This expression is obtained by using a kinetic-energy integral equation, in which the
momentum equation is multiplied by the local velocity before being integrated across the boundary layer.
Accordingly the assumed approximate temperature profile, which isleast accurate near to the wall, affects the
solution of the momentum equation only through integrals in which small contributions come from near
to the wall.

The method is used to examine the problem of heat transfer through a laminar boundary layer with zero
pressure gradient, when the wall temperature is a polynomial in x. The predicted heat transfer agrees well
with the known exact value when the wall temperature does not vary too rapidly in space. In particular, for
wall temperatures like x", it is about 40 per cent too high when n = t, 20 per cent too high when n = 1,
almost exact when n = 2, 20 per cent too low when n = 4 and 40 per cent too low when n = 10.

The method is then used to consider a problem of cooling by radiation at high Mach number when a
uniform stream is assumed and the wall temperature determined by the balance between heat transfer to
the wall and radiation from it. Whereas an accurate earlier solution for 'the wall temperature had required
the solution of a non-linear integral equation, the present method yields a simple algebraic equation.
Nevertheless, the error in the predicted wall temperature varies from zero at the leading edge to only
18 per cent infinitely far downstream.

Some consideration is then given to the effects of non-uniform wall temperature on boundary-layer
separation. Some examples are worked out, illustrating the delay in separation when the wall temperature
decreases from the leading edge, as is the case in problems of cooling by radiation. Further, estimates are
made of the cooling required to completely suppress separation. These results have been calculated by both
the basic and lengthier methods, and indicate that the simpler basic method will be adequate in many practical
cases.

Finally, since the assumed approximate temperature profile is obtained by downstream integration from
the pressure minimum, and is severely in error near to a forward stagnation point, it is indicated that a
method due to Cohen and Reshotko should give accurate results for flow upstream of the pressure minimum.
It is shown in this paper that even in the case of variable wall temperature, the differential equation arising
in their method may be integrated by two simple quadratures in regions of favourable pressure gradient.
Accordingly their method is recommended for use upstream of the pressure minimum, where a convenient
join can be made with the present method, which should give the more accurate results downstream.

* Published with the permission of the Director, National Physical Laboratory.
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1. Introduction. Comparatively little theoretical work has been done on heat transfer from bodies
whose temperature is non-uniform. Mathematically the problem is the extremely complex one of
simultaneously integrating two non-linear partial differential equations, the momentum and energy
equations. In incompressible flow the velocity profile is unaffected by small temperature differences,
so that the two equations become effectively independent. In such a case the momentum equation
is a non-linear partial differential equation for the velocity; when this is solved there remains the
energy equation, a linear partial differential equation for the temperature.

Fage and Falkner- (1931) have integrated the energy equation for incompressible flow in the
cases when the velocity U 1 outside the boundary layer is proportional to some power of the distance x

from the leading edge, that is,

(1.1)

and the temperature of the wall Tw(x) differs from its value at the leading edge by another arbitrary

power of x, that is,
(1.2)

Fage and Falkner assumed that in the energy equation the velocity field (u, v) could be replaced

by its asymptotic form near the wall y = O.
Subsequently Chapman and Rubesin- (1949) considered the problem of compressible flow

with a uniform main stream velocity, when the wall temperature is expressible as a polynomial

in x. They assumed a linear relationship between viscosity J.L and absolute temperature T, and

integrated the energy equation numerically for a Prandtlnumber a = 0·72. Their results constitute
an exact solution of the energy equation.

Lighthil13 (1950) used an alternative approximation for the velocity, which also is asymptotically
exact as the surface is approached. He thus obtained an otherwise analytical solution which

generalizes the results of the preceding papers. He obtained a formula for the heat-transfer rate
which is valid at low Mach number for arbitrary wall temperature and pressure gradient, and is
also valid at high Mach number for arbitrary wall temperature but zero pressure gradient. After
establishing the good agreement between his solution and the earlier exact solutions of Ref. 2,
I jghthill goes on to determine the temperature distribution along a surface at which heat transfer
to the surface is entirely balanced by radiation from it, as will be approximately true in many
practical cases at high Mach numbers. This calculation involves the solution of a non-linear integral
equation, and indicates temperatures higher near the nose, and lower downstream, than are found
by assuming uniform wall temperature and averaging the heat-transfer balance.

In the present paper use is made of an earlier idea of the author! (1958), in which the total
temperature

(1.3)

is approximated as a quadratic function of the velocity u, which satisfies the temperature boundary
conditions and has the correct shape in the outer part of the boundary layer. The resulting tempera­
ture profile is an exact integral of the energy equation when a = 1 provided (i) there is zero heat
transfer (arbitrary pressure gradient being permitted), or (ii) the pressure gradient is zero and the
wall takes any uniform temperature. The differential equation from which the shape of the outer

part of the temperature profile is determined is shown to be independent of the wall-temperature

distribution. Its solution is therefore exactly as in the case of uniform wall temperature. The
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resulting approximation to the temperature profile is thus determined once and for all in terms of
the local velocity profile and the local values of the temperature at the wall and at the edge of the
boundary layer.

Subject to this temperature profile, the momentum integral equation is used to derive a general
approximate solution of the laminar boundary-layer equations. The solution is formally the same
as for the case of uniform temperature, so that the momentum thickness is derived by means of
two quadratures, after which the displacement thickness and skin-friction follow as multiples of
prescribed universal functions. It is found that for flow past a wall with a sharp leading edge the
wall-temperature distribution does not affect the momentum thickness except through its value
at the leading edge.

An alternative integral formula for the momentum thickness is then derived by using the
'kinetic-energy' integral equation, obtained by multiplying the momentum equation by the local
velocity before integrating across the boundary layer. The result is very similar to that obtained
by the momentum integral method, but the integrand of the first quadrature is a little lengthier.
The result, however, is theoretically more acceptable, as the approximate temperature profile
enters the analysis through integrals in which only small contributions arise from the region near
the wall where the approximation is least valid.

The heat transfer implied by the assumed temperature profile is examined for the case when the
pressure gradient is zero and the wall temperature is expressed as a polynomial. The agreement
with exact theory is within 26 per cent for wall temperatures varying like x5 or less rapidly. The
paper then deals with a flow with zero pressure gradient, in which the wall temperature is to be
determined by the balance between heat transfer to the wall and radiation from it. The solution
of this problem yields a very simple algebraic equation. The error in the predicted wall temperature
is always less than 18 per cent, this maximum error being attained asymptotically far from the
leading edge.

Some consideration is then given to the effects of variable wall temperature on the separation
of a compressible laminar boundary layer. Further, an estimate is made of the cooling required to
prevent separation of a given boundary layer. These calculations have been carried out both by the
simpler and by the lengthier method, and indicate that for many practical purposes the simpler
method will be adequate.

Finally, it is pointed out that the approximate temperature profile was derived on the basis
of an integration downstream from the pressure minimum, regardless of conditions at the forward
stagnation point. Accordingly, it cannot possibly be expected that the method will in general
give good results near the forward stagnation point. It follows that the solution upstream of the
pressure minimum must be obtained by some other method, and an accurate procedure for this
region is outlined. It is also shown how a convenient join with the present method may be made
at the pressure minimum.

2. Integration of Momentum and Thermal-Energy Equations. In an earlier paper (Curle" (1958))
the author developed an approximate method for integrating the compressible laminar boundary­
layer equations when p- IX T and a = 1. The transformed co-ordinate, Y, normal to the wall,
was introduced with

(80317)

J
y (vs)1I2 (P )1/2 "JY TY = - dy = - -- dy ,
o V P« 0 T,
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where s refers to a standard reference condition, and the stream function if; was written as

(
p )1/2

if;(x, y) = is X(x, Y). (2.2)

Then it was shown, following Howarth" (1948), that the momentum equation of the boundary
layer reduced to

where
T y a2x

. G = T
1

- 2a12 X ap'

By assuming that the temperature distribution could be approximated as

TJ{ = Tw + (T; - Tw) !!.- + KT1( !!.- - U

2

2) ,
U1 U1 U1

where

(2.3)

(2.4)

(2.5)

(2.8)

t; = TIll + y~ 1 M12! (2.6)

is the wall temperature appropriate to zero heat transfer, and K is to be determined, it was shown

that the solution of (2.3) could be reduced approximately to the following:

G1(x) = exp l2J:(~: + 2+ K - ~M12) ;: dxl, (2.7)

" 2 _ O.45vlfxG1 d
°2 - G x,

I 0 u1

(au) = ~(022)-1/2 ['(m')
ay w Vw

l l2
VI '

(2.9)

(2.10)

(2.13)

01 = 021~: H'(m') + K + y~ 1 M12(. (2.11)

The temperature profile (2.5) satisfies the temperature boundary conditions, and KT1 may be
chosen so that the temperature profile is correct in the outer part of the boundary layer. To deter­
mine KT1 we therefore write

P1 = la(:~1)~1' (2.12)

where the ordinary differential equation which PI satisfies has been derived by Gadd" (1952).
Since he made no use of the boundary conditions at the wall it follows that this equation must
hold equally in the case of non-uniform wall temperature, considered here. The integration
therefore proceeds exactly as in Ref. 4, so that

y-1
Q1 - 2T

z
1 + 2 Mo2g

Q1 = A 1 - g



where

U 2
<:=1_-1
S U 2'o

(2.14)

(2.15)

suffix zero denotes main-stream values at the pressure minimum or at the leading edge (if sharp),
and A is an arbitrary constant of integration.

The constant A will be chosen so that the correct temperature profile results at a sharp leading
edge, where g = O. The condition at such a leading edge is

Q1(0) = T; - Tw(O) , (2.16)

since the temperature profile must be that appropriate to zero pressure gradient. Thus (2.13)
becomes

which may alternatively be written as

Q1 = {Tz - Tw(O)}(l - g)

1 + M1 TT~O) - 1 + y; 1 Mo21
Now by (2.5) and (2.14) the approximate value Q1 is

Q1 = T; - Tw - KT1,

and upon equating (2.18) and (2.19) we find that

T
w

+ KT
1

= T _ {Tz - Tw(O)}(l - g)

z 1 + M1TT~0) _1 + Y;l Mo21

T (0) {Tz - Tw(O)}g
w + 1 + ()o(g - 1)'

where

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
() _ Tw(O)/To - 1 + t(y-1) M 02

o - Tw(O)/To + 1 + t(y-1) M 02 •

It follows from (2.7) that the function G1 does not depend upon the wall temperature Tw(x), but
only upon its value Tw(O) at the leading edge. Hence if the solution of a particular boundary-layer
problem with uniform wall temperature Tw(O) has been computed, the solution of the corres­
ponding problem with arbitrary wall temperature Tw(x) can be obtained with very little extra
effort. In particular, it follows from (2.7) that the momentum thickness 82 is independent of wall
temperature, save for the dependence' upon the value at the sharp leading edge.

3. The Kinetic-Energy Integral Equation. Equation (2.8), a simple integral expression for the
boundary-layer momentum thickness, is a generalization of Thwaites's result (Ref. 7 (1949»
for incompressible flow

(3.1)
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and assumes that a certain function L(m) is a linear function of m approximately. A more
convincing indication of the general validity of (3.1) was given by Truckenbrodt" (1952), who
made use of the so-called energy integral equation, due to Leibenson" (1935). This equation,
obtained by multiplying the momentum equation by the local velocity U and then integrating

across the boundary layer, will in this paper be called the kinetic-energy integral equation, to
distinguish it from the thermal-energy integral equation. It can be shown for incompressible

flow that

(3.2)

where

and

foo U ( U
2)

-- 1 - -2 dy
o UI Ut ,

-rooU-(-- U) ,- 1 - - dy
• 0 UI U I

(3.3)

(3.5)

(3.6)

(3.7)

h 2 = ~l\f~ (~~r dy . (3.4)

Truckenbrodt suggested that hI and h 2 might be treated as constants. This is a reasonable
approximation, since ~ equals 1· 62 at a stagnation point, 1·57 for a Blasius layer and 1·52 for a
typical separation profile, the corresponding values of h 2 being respectively O·204, 0 ·173 and 0·157.
The reason for the approximate constancy of these values of hI is that the main changes in a deve­
loping boundary-layer profile occur near the wall, whereas the two integrals in (1.6) are not
vitally affected by the shape near the wall. Similarly there is a tendency for decreases in

foo (~lt)2 dy, as separation is approached, to be partially balanced by the increase in 82, so that h2
o . Y

does not vary very much. It is clear, then, that the approximate constancy of hI and h 2 is a consequence
of the general shape of boundary-layer profiles, and so one could reasonably expect it to hold for
any boundary layer. With ~ and h 2 constant, (3.2) becomes

'" 2 4h2vf X 5 d
°2 = ~h6 UI X.

lUI 0

On the grounds that the major part of the integral In (3.2) would anse near to where ul IS a
maximum, we choose hI and h 2 to be close to the values for a Blasius layer. Thus, hI = 1· 58 and
h 2 = 0·179 leads to Thwaites's result (3.1).

To develop a compressible flow result, analogous to (3.2), we multiply (2.3) by

aX
U = ay'

and integrate from Y = 0 to Y = CD. Then some algebra, similar to that for the incompressible
case, leads to the result

1{UI
3 83' } = 2v,J~ (~~r dY - 2UIUIJ~ (G - l)u dY,

where

83 ' = Joo !!-( 1 - U

2

2)
dY

o UI UI

is a kind of 'energy thickness', measured in the transformed normal co-ordinate.

6
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We define

fOO (aU)2
D' = 0 fL. ay dY,

so that (3.7) becomes

d 2D' foo-d(ul
a 8a') = -- - 2UlUl ' (G - l)u dY ,

X Ps 0

which may be compared with the incompressible form (Leibenson'' (1935))

d 2D
-d(~a8a) = - .

x P

Now from (2.4), by making use of the approximate temperature profile (2.5), we find

G - 1 = (Tw _ 1) (1 _ !!..) + (K + y-l M2) (!!.. _ U
2)

- L X i1~~r, U1 2 1 Ul U12 2a12 aY2'

so that

(3.9)

(3.10)

(3.11)

(3.12)

f~ (G - l)udY = Ul(~: - 1)82' +~(K + y;l M12) (8 a' - 82') - 4~12f~ Xdl(;~rl,

and after some algebra this yields

f~ (G - l)u dY = u18a'!K+ y~2M12l- u182'!K+ Tz
;1 Twl·

We now substitute from (3.13) into (3.10), put

(3.13)

(3.14)

and multiply by 2~ula82" whence, after some manipulation, it follows that

~{h12U1682'2} = 4~h2v,U15 - 4hlU15Ul'82'2lhJ(K + y~2M12) - (K + Tz ;1 Tw
) l'

which may alternatively be written

~{h28 '2} = 4~h2v. _ 4~282'2Ul~IK + y-2 M 2 + ~ _ !(K + Tz - Tw)1
dx "1. 2 Ul Ul I 4 1 2 ~ r, I '

4~h2VS t. 2'<'2 ( )= -- - "1. 02 g X ,
Ul

where

g(x) = 4~lJK + y-2 M
1

2 + ~ _ ~(K + Tz - Tw)l.
Ul I 4 2 hI t; \

This equation has an integrating factor

G2(x) = exp !f: g(x) dxl'
and the solution may be written

8
2

' 2 = ~V8 fX hlh 2G2 dx .
hI G2 0 u1
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(3.18)



Now no approximations have been made in deriving this result, except in using the temperature

profile (2.5) to evaluate J~ (~ - l)U dY. This temperature profile is correct at the wall and in

the outer part of the boundary layer. Only in the inner part of the boundary layer should it be in
error. We note that because of the factor U in the integrand the contribution from this region will be
fairly small, and the results accordingly more reliable than those obtained by the procedure of

Ref. 4, where integrals of the form J~ (~~ - 1) dY arose. We now make the further approxima­

tion that hI and h 2 may be taken as constants. The validity of this approximation, as was discussed
earlier, rests upon the general shape of boundary-layer velocity profiles, and holds for a very wide
range of shapes. As for the incompressible case, with

hI = 1·58, h2 = 0·179, (3.19)

which are very close to the values for a Blasius layer, (3.18) becomes

°'2 _ 0'45~fx G2 dx
2 - G2 0 U1 '

and hence (Ref. 4)

(3.20)

022 = ~±5vlfx G2 dx . (3.21)
G2 0 Ul

The result (3.21) differs from that of Ref. 4 only in that G2(x) replaces the function G1(x),
defined by (2.7). It is easy to see that GI and G2 would be identical if ~ were equal to 2.
Accordingly, we write

1 1
11=2+ 6 ,

I

where, with the value hI = 1· 58 adopted above,
6 = 0·133,

and (3.16) becomes

(3.22)

(3.23)

(3.24)g(x) = 2Ul~l (!UJ + 2 + K - _! MI2)
U1 TI 2

where the first terms are those appearing in GI •

It may be noted that the additional terms are zero when there is zero heat transfer, since it can
be seen from (2.5) that K is then zero. When there is not very much heat transfer, G 2 will not
differ greatly from GI , especially since the extra terms have a relatively small multiplying factor.
It would then seem possible, since G2 appears in the numerator of the integrand of (3.21), and in
the denominator outside the integral, that the predicted values of 02' using GI or G 2, would vary
even less. It is only when there is considerable heat transfer that the results should differ significantly,
and the slightly lengthier procedure using G2 would be preferable. In such circumstances the
momentum thickness 02 will depend upon the wall-temperature distribution. It will be found

later, however (Section 6), that for many practical purposes the simpler form should be adequate.

4. Results for Polynomial Temperature Distribution. Chapman and Rubesin'' (1949) considered

the case of a uniform main stream, that is

u1(x) = uo, (4.1)

and a temperature distribution at the wall

Tw(x) = r, + L:anxn, (4.2)
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where, however, n does not necessarily take only integral values. The series :s anx" is the difference
between the actual wall temperature and that appropriate to zero heat transfer. Their solution
indicates that the temperature gradient at the wall is

(~~L ( f/2- O·296 ~ L: a b x"vwx "n'
where

bo = 1·00

bi 1·65

b2 2·02

bs 2·29

b4 2·52

bs = 2·70

bl O = 3·40

(4.3)

(4.4)

These results were calculated for a Prandtl number of a = 0,72, but the work of LighthilP (1950)
indicates that the effects of Prandtl number may be largely accounted for by replacing the multiple
0·296 by 0'332a1 /S, the bn being essentially independent of a.

For the case of a uniform mainstream it is known that the skin-friction is formally equal to its
value in incompressible flow,

(au) (Ut )112- = O'332Ut - .
ay w vwx

(4.5)

(4.6)

This corresponds to the fact that the solution of the momentum equation, (2.7) to (2.11), is simply
m' = O. For the mainstream velocity (4.1), g, defined by (2.15), is zero. Hence the approximate
temperature profile, given by (2.5) and (2.20), becomes'

u (U U2)
TH = Tw + (Tz - Tw) - + {Tw(O) - Tw} - - 2 ,

u1 Ut UI

from which we deduce that the temperature gradient at the wall is

If we put Tw(x) equal to the value (4.2) assumed by Chapman and Rubesin, this yields

(~;L = - 0.332(v;xf
/21

2L: anxn - a o!.

(4.7)

(4.8)

We compare this expression with the exact value (4.3), remembering that when a = 1, as is so in
the present work, the factor of 0·296 must be changed to 0·332. The approximate solution is
equivalent to putting bo equal to unity, and all succeeding bn equal to two.
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In view of the remarkable simplicity of the present method this is quite a good approximation
to (3.4) for not too rapidly varying wall temperatures. If the wall temperature is proportional to
»", which varies very rapidly near x = 0 when N is small, the predicted heat transfer tends to
twice the exact value in the limit as N -+0. At the other extreme for large values of N, when the
wall temperature varies very rapidly with x for large x, the predicted heat transfer is about 40 per

cent small when N = 10. For cases between these two extremes the agreement is much better,
as the following Table shows:

"~-_._~.. - ----.-.. _.- -_..._--- ----

N l 1 2 3 4 5

(~;L 40% high 21% high 1% low 13% low 21% low 26% low

-_._--, ---_... _..

It should be noted, however, that these figures are only asymptotic, in the sense described below.

The true position is less pessimistic. Consider a case where the wall temperature is uniform
for x :::;; c,

Tw 1 = (3,T
z

-

and increases for x ~ c with a square-root singularity, so that

T ()1/2
w _ 1 = (3 + 8 ~ - 1

T; c

(4.9)

(4.10)

(5.1)

Then the error in the predicted heat transfer is zero when x = c, has increased to 17 per cent
where {(TwiTz ) - 1} has increased to 1· 5(3, then to 24 per cent where {(TwiTJ - 1} equals 2(3,
and asymptotically to 40 per cent far downstream.

5. Cooling by Radiation at High Mach Number. LighthilJ3 (1950) points out that for a projectile
with an attached front shock it is probably reasonable to assume a uniform main stream (3.1)
over the short front portion of the surface where the boundary layer is laminar. He goes on to
examine the temperature distribution in this region by equating heat transfer to the body with
radiation from it, which is probably a good physical approximation when the temperatures are
high. An approximation to his accurate results can very rapidly be obtained by the method of the

present paper.
Since gis again zero, the heat transfer to the wall per unit area is given by (4.7) and is thus

(aT) (U )1/2Q(x) = k ',.,- = 0·332k _I, {Tz + Tw(O) - 2Tw(x)}.oy w Vwx

This must be balanced by radiation from the wall, which is

Q(x) = ex{Tw(x)}4, (5.2)

where ex is the Stefan-Boltzmann constant multiplied by the emissivity of the wall. From (5.1)
and (5.2) we deduce that

T 4 = 0'332~(._~_)1/2 {T + T (0) - 2T }w ex vwx z w w

= 0.490(ir
2

T*3{Tz + Tw(O) - 2Tw}. (5.3)
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(5.6)

Here l is a representative length, and T* is a temperature defined by Lighthill as

T*3 = O·678al/3~(~)1/2 , (5.4)
ex vwl

a being unity in the present application. It follows from (5.3), by letting x -7- 0, that

Tw(O) = Tz , (5.5)

for it could have no other finite value. Physically this is so because the boundary layer near x = 0
is extremely thin, so that heat transfer is extremely effective, and the wall therefore takes up its
equilibrium temperature (Lighthill" (1950». Using (5.5) it follows that (5.3) becomes

(l)1
/2

Tw4 = 0·980 x' T*3(Tz - Tw)·

This equation is made non-dimensional by writing

Tw/Tz = F(z) ,
where

_ ( Tz )3(:)112

z - T* l '

whence it becomes
ZF4 = 0'980(1 - F).

(5.7)

(5.8)

(5.9)

(6.1)

This simple algebraic equation can easily be solved to yield F(z). The results are tabulated in
Table 1, along with Lighthill's solution. We note that the present method yields results agreeing
with Lighthill's at z = 0 (since the initial condition, F(O) = 1, is satisfied by both solutions),
and that the percentage error increases as z increases. In the limit as z -7- CX) the function zl/4 F(z)
tends to 0·995 as compared with Lighthill's value of 0·841. The error is thus always less than
18 per cent, a most satisfactory result when one considers the ease with which the results presented
here are obtained.

As in Lighthill's predictions, the wall temperature will fall from a maximum at the nose, so
that at suitable Mach numbers melting may occur near the nose. The extent of the region in which
melting is possible will be overestimated by the present method.

6. Non- Uniform Wall Temperature and Boundary-Layer Separation. It is now well established
that, relative to incompressible flow with the same 'shape' of mainstream velocity, flow in a
compressible boundary layer separates more readily when there is zero heat transfer and less
readily when the wall is sufficiently cooled. Separation is predicted by the present method to occur
when m' = O·090, but it is suggested in Ref. 4 that improved results may be obtained by allowing
m' at separation to be a function of Mach number, which equals 0·061 when the Mach number
is 4. For a linearly retarded mainstream

~ = uo(1 - x/c) ,

this yields the results that separation occurs
(i) at x = 0 ·123c for incompressible flow

(ii) at x = O'041c when the wall temperature is Tw = T; at M o = 4
(iii) at x = 0·248c when the wall temperature is Tw = To at Mo = 4.

In a physically more realistic case the wall temperature might well be a function of x, particularly
at high Mach number. For example, in Section 5 we considered Lighthill's problem, where the
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wall temperature is determined by the balance between heat transfer to the wall and radiation
from it. The wall temperature in this problem is given, for small x, by an expansion

(6.2)

for some value of a. Near the leading edge, therefore, Tw ,....., Tz' and there is a tendency towards
earlier separation than in incompressible flow. As x increases, however, the wall becomes cooler,
and, if separation has not already occurred, the cooled wall conditions wiII tend to delay it further.
It is interesting to consider whether separation may be greatly influenced by the latter effect.

In order to provide a partial answer to this question we consider a flow in which the main-stream
velocity is (6.1), the Mach number is 4, and the wall temperature is given by the first two terms
of the series (6.2). The solution by the simpler procedure, using (2.8) and (2.9), can easily be
obtained, since G1(x) is influenced by wall-temperature distribution only through the value Tw(O)
at the leading edge. Accordingly, G1(x) is the same function as in the case a = 0, and by (2.8)
and (2.9) it follows that

'( ) '( ) Tw(x)
m x = mo x Tw(O)

= mo'(x){1 - a(xjc)1/2} , (6.3)

where mo'(x) is the value of m'(x) appropriate to the case Tw = Tw(O), i.e., Tw = Tz' which
function was computed in Ref. 4. So the function m'(x) is easily obtained for any prescribed value

of a. The results have been tabulated in Table 2 for the cases a = l, 1 and ~. When a = 0,

that is for the case of zero heat transfer, separation occurs when x = O·0413c. For the case a = -~,

separation is predicted at x = O·0477c, an increase of 15 per cent. The wall temperature falls

from T, at the leading edge to 0·891Tz at separation. For the case a = 1, separation is predicted

at x = O' 0583c, an increase (over the zero heat-transfer case) of 41 per cent. The wall temperature
varies between T', and 0·759Tz• For the case a =;t, separation is predicted at x = 0·0848c, an

increase of 105 per cent, whilst the wall temperature is 0·563 Tz at separation.
These results give some indication of the effects of this type of wall-temperature distribution.

By comparing the results for these cases we note that when the rate at which the temperature falls
is made greater, the increase in the distance to separation increases more and more rapidly. This
is just as one would expect, for the greater the distance to separation, the easier it is to delay separa­
tion even further by a reduction in wall temperature.

Results have also been obtained by the slightly longer but theoretically more acceptable procedure,
using (3.21) and (2.9), for the case a = 1, to test the adequacy of the simpler method. It is found
that separation is predicted at x = 0.060 2 , We note that the distance to separation agrees with the
earlier estimate to within 3 per cent. What is perhaps more important, and is certainly a more severe

test, is a comparison of the amounts which the two methods predict separation will be delayed by
the cooling of the wall. According to the simpler method, separation is delayed from x = O·0413c

to X = O' 0583c, that is 0·017oc, whereas the lengthier method predicts O·0189c. As these differ
by only 10 per cent: 'one would conclude that for this flow, in which the wall temperature at
separation is 0·759 Tz' the simpler method yields acceptable results.

Consider now a problem in which the external flow conditions are as given for the above example,
namely the linearly retarded velocity (6.1) at a Mach number of 4. When there is zero heat transfer,
separation is predicted at x = O·041c. If, however, the wall is cooled beyond this point, separation

can be avoided. What wall-temperature distribution would just avoid separation? Equally well we
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might ask what step in wall temperature would be sufficient to provoke immediate separation at a
point upstream of x = 0'041c? Now by (6.3) we see that, according to the simpler method, the
flow will be on the point of separation where

mo'(x) ~:~~j = m'(x) = 0·061. (6.4)

In the case of separation provoked upstream of O·041c, since the wall temperature upstream of
separation is everywhere Tw = Tz, the lengthier method also yields (6.4). However, for the case
when separation is avoided by cooling the wall downstream of x = O·041c, the two methods would
yield slightly differing results.

From (6.4) the wall temperature Tw(x) which will just avoid (or provoke) separation is

0·061
Tw(x) = ---,-----() Tz ' (6.5)mo x

where mo'(x) is given in Table 2. The solution of this equation is given in Table 3. For x ~ 0'041c
the temperature Tw(x) is that which would just cause the flow to separate if the wall temperature
were discontinuously increased from T; to Tw at that point. For x ~ 0·041c the temperature
distribution is that which, according to the simpler method, would just prevent the flow from
separating. We notice that a considerable cooling of the wall is required if the position of separation
is to be delayed.

We note from Table 3 that separation is predicted at x = O'030c if the wall temperature is
increased to Tw = 1· 300Tz at that position. It is a criticism of the simpler method that, provided
the wall temperature equalled Tz at the leading edge and 1· 3Tz at x = 0·03 oc, separation would
be predicted at this position whatever the distribution of Tw(x). The solution by the lengthier
method, however, would depend upon the detailed distribution of wall temperature. Suppose,
for example, that

Tw(x) = Tz(1 + 10 x/c) , (6.6)

so that the wall temperature increases linearly from Tz at x]« = 0 to 1·3Tz at x = 0·03c.

Calculations by the lengthier method predict separation at x = O'0305c, as compared with x = O·03c
by the shorter method. Thus the predicted distances to separation differ by less than 2 per cent,
and the predicted upstream movements of separation due to the increasing wall temperature differ
by less than 5 per cent.

Calculations have also been carried out for the case of the velocity distribution (6.1) at a Mach
number of 4 and a severely cooled wall, with Tw = To = irTz. According to the simpler method
separation occurs at x = O·248c, whereas the longer method yields x = O'256c. Thus, even for
this case of severe cooling the predicted distances to separation differ by only 3 per cent, the
differences in the boundary-layer characteristics being smaller than this amount at positions
upstream.

One would conclude from the results of this Section that in many practical cases it will be
sufficient to use the simpler method.

7. Allowancefor an Initial Favourable Pressure Gradient. It must be noted that the approximate
temperature profile (2.5) was derived by integrating downstream from a sharp leading edge or
from the pressure minimum. The method cannot be used upstream of the pressure minimum,
save for the case of zero heat transfer, when the temperature profile is exact. Thus, for example,
the predicted heat transfer is severely in error near a forward stagnation point. Accordingly some
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(7.1 )

other method must be applied from the forward stagnation point to the pressure minimum, and the
present method used to continue the solution downstream. The method of Cohen and Reshotko'"
(1956) is ideally suited to this purpose. Their method is based on similarity solutions, so that one
would expect them to be accurate in regions of favourable pressure gradient, but somewhat

uncertain as separation is approached, judging from experience in incompressible flow. Indeed,
Luxton and Young'! (1958) have given some computed results, which indicate that, even without

the empirical improvement mentioned in Section 6, the author's method yields a result of comparable

accuracy to that of Cohen and Reshotko for the case of a linearly increasing pressure at a Mach

number of 2, and a cooled wall, and that the author's method yields considerably better results
for the case of a linearly retarded velocity at a Mach number of 4, with a cooled wall. Accordingly

the use of the present method in the region downstream of the pressure minimum is to be preferred.

Upstream of the pressure minimum, Cohen and Reshotko's method should be very accurate,

and is exact near to a forward stagnation point. The main result of their paper is that

Av (T. )(3Y-l)/2(Y-l) JX (T.... )-(3Y- 1) j2(Y- 1)8 2 = _1 . Z M I-B z M B-1 dx
2 III T 1 loTI l'

where B is a function of Tw/Tz, assumed constant, and A = O· 44. If we change A to 0·45, then
(7.1) is identical with (2.8) for the case of zero heat transfer provided B is then equal to 6. Values
of B which satisfy this condition, and at the same time agree with Cohen and Reshotko's values
for cooled or heated walls in a favourable pressure gradient, are given by

(7.2)

(7.3)

(7.4)

(7.6)

When the wall temperature is not uniform, however, (7.1) is not valid, since it is the integral of
equation (28) of Cohen and Reshotko's paper only when B is a constant. It is quite easy, however,
to integrate their equation (28) in the case when B is a function of x, and this yields

8
2

2 = 1J:l(~) (2y-l)j(y-l)J: (~) -(2y-l)j(y-1) ~13 dx ,

where

G
3

= exp \ fX dM1 !!_dx l ,
I Xo dx M1 \

with x = X o representing the position of the pressure minimum, and T z/T1 being given in terms

of the local main-stream Mach number M 1 by (2.6).
It is suggested that from the pressure minimum onwards, the present method should be used,

so that from (3.15) and (3.17) we have

~lq-;~2-2l = ~~:~ G 2 • (7.5)

Upon integrating (7.5) from x = xo, we have

G 2 fX G2 G2( X O) 2-- 822 = 0·45 -- dx + ----- 82 (Xo) ,
vI Xo III Po

where 82
2( X O) is given by (7.3). The remaining boundary-layer characteristics then follow from

(2.9) to (2.11), when x ;:, X O, and from Cohen and Reshotko's method when x ~ X O'
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TABLE 2
The Function m'(x) for the case

U1 = uo(l - x/c), Mo = 4, Tw = Tz(l - a(x/c)i)
---_..-

m'(x) a = 1
»[c mo'(x)

a=t a = 1 a=:l Lengthier method2

0·00 0 0 0 0 0
0·01 0·0176 0·0167 0·0158 0·0149 0·0158
0·02 0·0330 0·0307 0·0283 0·0260 0·0282
0·03 0·0468 0·0428 0·0387 0·0347 0·0384
0·04 0·0595 0·0535 0-0476 0-0416 0·0470
0·05 0·0712 0-0633 0-0553 0-0473 0-0544
0·06 0·0824 0·0723 0-0622 0·0521 0-0609
0·07 0·0930 0·0807 0·0684 0·0561 -
0·08 0·1035 0·0888 0·0742 0-0595 -
0·09 0·1137 0·0967 0·0796 0·0626 -
0·10 0-1239 0·1043 0·0847 0-0650 -

-----_.- -- _._--

TABLE 3
Wall Temperature Tw(x) appropriate to Zero

Skin Friction Ut = uo(l - x/c), Mo = 4

0·00 00

0·01 3-47
0·02 1·85
0-03 1·30
0-04 1·03
0-05 0·856
0·06 0·741
0-07 0·656
0-08 0-590
0-09 0·536
0·10 0·492
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