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Summary. This paper describes the numerical solution of the complete Navier-Stokes equations for the 
steady flow of an incompressible viscous fluid of unlimited extent past a circular cylinder at Reynolds number 
40. A new device developed for the numerical solution is described. The results of the investigation are: 

(a) A steady-state solution does exist at Reynolds number 40 and is in good agreement with experimental 
results. 

(b) It seems that steady-state solutions are possible for somewhat higher Reynolds numbers even though 
they may not exist in nature. A solution has been obtained at Reynolds number 44 but it has not been 
carried to the same accuracy as the solution at Reynolds number 40. 

(c) The length of the stationary vortex pair attached to the downstream portion of the cylinder continues 
to increase with Reynolds number in such steady-state solutions up to a Reynolds number 44 and no 
indication has been found that this process will not continue as the Reynolds number is increased 
beyond 44. 

1. Introduction. The attention which the problem of the steady flow of a viscous fluid past a 
circular cylinder at low Reynolds numbers has received seems rather less than the theoretical 

interest of the problem would lead one to expect. This,  no doubt, is partly due to the complexity 
of the equations governing such motions. The first attempts to s tudy this problem used some- 
approximate and apparently reasonable assumptions to simplify the Navier-Stokes equations. 
Thus the Stokes approximation to these equations, which consists in the omission of the inertial 

terms as having negligible significance in flows at very low Reynolds numbers, reduces the two- 

dimensional form of the equations to 
W e  = O. O )  

The solution for the steady flow of a viscous fluid past a sphere by means of the three-dimensional 
form of Stokes's equation is wall known. However, both Stokes and Lamb 1 have pointed out that i f  
the attempt is made to find the steady motion produced by the translation of a cylinder with constant 

velocity through a liquid of infinite extent on the basis of the equation (1) it is impossible to satisfy 
all the conditions. It seems that no steady 'creeping flow' of a viscous fluidpast an infinite cylinder 
is possible. Bairstow, Cave and Lang ~ found it possible tO obtain a definite resistance for the circular 

cylinder in 'creeping flow' if it is placed in a channel having parallel walls. 
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If the equations of motion are approximated after the manner of Oseen, in which the inertia 

-terms are partially taken into account, a definite value is obtained for the resistance of the cylinder. 

in a stream of infinite extent. The solution is given by Lamb (loc. cit.). However, this solution is 

valid only for small values of the Reynolds number and in addition, as Lamb points out, with the 

Oseen equations the boundary conditions are only approximately satisfied. In a second paper 

Bairstow, Cave and Lang 8 developed the solution of Lamb and extended it to cover larger values of 

the  Reynolds number. They claim their solution extends to a Reynolds number of approximately 

25 but even at a Reynolds number of 10 the value they obtained for the coefficient of drag is 31 per 
cent higher than the value obtained experimentally. They suggested, moreover, that they had made 

the maximum possible use of the Oseen approximation to the equations for viscous flow past a 

cylinder. Tomotika and Aoi 4 have also used the Oseen approximation to calculate the flow past a 
circular cylinder for the range of Reynolds numbers 0.05 to 4. 

The first successful attempt at a solution of the complete Navier-Stokes equations for viscous 

flow past a circular cylinder was made by Thom 5. By means of a numerical process similar in essentials 
to that described below, he obtained numerical solutions at Reynolds numbers 10 and 20.' His 

calculated values for the drag of the cylinder are in good agreement with experimental results. More 

recently, Kawaguti 6 has obtained a solution at Reynolds number 40 by a numerical method based on 

that of Thom, and Allen and Southwell ~ have published relaxation solutions for Reynolds numbers 
0 (sic!), 1, 10, 100 and 1000. 

The present work is concerned with the numerical solution of the complete Navier-Stokes 

equations for steady flow past a circular cylinder at Reynolds number 40. It is worth recording here 

why it was decided to proceed with an independent solution at this Reynolds number even though 

Kawaguti had already obtained a solution. It is a fact shown by experimental results (e.g., Refs. 5 and 

8) that,, as the Reynolds number of the flow past a circular cylinder is increased the pair of stationary 
vomces attached to the rear of the cylinder increases in length in the direction of the flow until the 
steady regime breaks down and the K~rm~n vortex street develops at a Reynolds number of about 

40 (Ref. 9). Kawaguti's solution at Reynolds number 40 shows that the length of the vortex pair had 
increased over that in Thom's solution at Reynolds number 20. There seemed to be no obvious 
reason why this process of the lengthening of the standing vortices should not continue for solutions 
at Reynolds numbers greater than 40 though such steady state solutions may not exist in nature at 
these higher values of Reynolds number. However, in the solutions published by Allen and Southwell 
the length of the vortex pair at Reynolds number 100 was less than that in Kawaguti's solution at 
Reynolds number 40 and it decreased further when the Reynolds number was increased from 100 to 
1000. 

It was considered important to resolve this' apparent contradiction. The solution was undertaken 
:for a Reynolds number of 40 because of Kovasznay's hypothesis that 'the critical Reynolds number 
at  which the vortex street sets in is a well-defined value' which in his experiments was 40 (Ref. 9). 
This suggested that if the steady-state solution of the Navier-Stokes equations did in fact throw any 
light on the problem of the critical Reynolds number it would do so at or about this value. Moreover, 
experience with numerical solutions of viscous flow in a suddenly expanding channel suggested 
that the re~ion to be studied in greatest detail should be the wake for a considerable distance 
downstream of the cylinder. The transformation which Kawaguti employed for his solution, 
illustrated in Fig. 1, was such that the whole region of the wake external to a radius of five times the 



cylinder radius was covered by two intervals of the mesh and at the infinity points he had imposed 
a definite 'infinity condition'. 

It was decided, therefore, to proceed with a solution having greater detail in the wake downstream 

of the cylinder. Further, no assumption was made concerning coilditions at very great distance fi'om 

the cylinder, except that as the distance from the cylinder increased the flow would tend more and 

more to the uniform stream. To implement these decisions entailed a very great increase in the work 

required for a numerical solution, but it was considered important to obtain a solution, the validity 
of which could be accepted with as few reservations as possible. 

Initially the number of difficulties encountered seemed to preclude the feasibility of a steady-state 
solution under these conditions but eventually after a very great amount of labour the many 

difficulties were resolved and the solution presented below was obtained. In general, it agrees quite 

closely with that of Kawaguti in the region near the cylinder but there are considerable differences 
in the region of the wake at large distances from the cylinder. After the solution at Reynolds number 
40 had been completed a solution at Re3/nolds number 44 was also obtained though not to the same 

accuracy as that of the former, since it was considered of interest only in so far as it confirmed 
certain conclusions deduced from the solution at Reynolds number 40. 

As a result of this investigation it can be stated that: 

(a) A steady-state solution of the Navier-Stokes equations does exist for a Reynolds number of 
40, and it is in good agreement with experimental results. 

(b) Further, a steady-state solution does exist for Reynolds number 44 and experience with the 
two solutions gives good reason to expect that such steady-state solutions are possible at 
higher Reynolds numbers, though the labour of this form of numerical solution is likely to 
increase very much as the Reynolds number increases, because of the greater development of 
the wake. 

(c) There is no reason to expect that the tendency of the standing vortex pair to increase in 
length downstream as the Reynolds number increases will be reversed at any stage; it seems 
that the solutions of Allen and Southwell which do show this tendency to have been reversed 

may be distorted through the use of too coarse a mesh for the numerical calculations. 
After this investigation was completed, Payne TM published solutions for the starting flow of a 

viscous fluid past a circular cylinder at Reynolds numbers 40 and 100. The starting flow is, of course, 
a different problem from the final steady-state flow and direct comparison between the results of 
the present investigation and those of Payne is not possible. However, his results for the starting 
flow at Reynolds number 40 seem generally consistent with the results obtained here for the final 
steady-state and it seems that the unsteady flow pattern would approach more and more closely the 
steady-state solution if it were carried on for longer times. 

2. Equations of Motion and Boundary Conditions. Ill this investigation we consider the steady 
flow of an incompressible viscous fluid of unlimited extent past an infinitely long circular cylinder. 
The fluid is taken as flowing in the positive direction of x with a velocity in the undisturbed stream 
of U'. The radius of the cylinder is L'. 

The Navier-Stokes equations, which describe this motion, are solved in the form: 

, ( 2 )  

w e  = " ( 3 )  

,3 
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where 

V2--- ~x2+ 

and R -- 2U'L'/v' is the Reynolds number based on the diameter of the cylinder, v' is the kinematic 

viscosity of the fluid. The stream function ~b is defined by 

u =  7 ~ ,  v -  3x (4) 

and the vorticity ~ is defined by 
by bu 

- ( 5 )  

These equations have been given in their non-dimensional form. Unprimed symbols are 
dimensionless whereas primed symbols are dimensional. The dimensional and dimensionless 

quantities are related to each other as follows: 

x' = L'x, y ' =  L'y, u '= U'u, v' = U'v, 

Vl2 
x '  - L' x ,  p '  = ( { . ' v ' g p  (6) 

6' U'L'6 ~' U' = , 

q' = U'q ) ,  

where x, y, u . . . .  , etc., are dimensionless variables corresponding to x', y',  u', . . . .  etc. 
At the boundary of the cylinder the conditions to be satisfied are that no fluid may cross the solid 

boundary and that there is no 'slipping' at the surface of the cylinder. These boundary conditions 

may be expressed 

0 x - 0 -  by" ( 7 )  

As the distance from the cylinder becomes very large it is assumed that the flow will approach more 
and more to the uniform stream, i.e., 

The use of the Navier-Stokes equations in the form given above enables ~ and ~b to be calculated 
on separate but inter-related fields and each calculation is concerned with an equation of the second 
order. This approach is far simpler than attempting to calculate ~b directly by the single fourth-order 
equation obtained by combining the equations (2) and (3). Further, in the 'double-field' method the 
numerical solution has a much faster rate of convergence than does a process based on the single 

fourth-order equation. 

3. Transformation from the Physical Plane. The numerical solution of this problem is to be 
effected on a square mesh covering the field of flow and to avoid the complication of 'irregular 
stars' at the curved boundary of the cylinder use is made of a transformation from the physical 
plane as first demonstrated by Thorn% The equations of motion are solved in the transformed, 

c~fl plane 

t = + ( 8 )  
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which is connected to the physical, x y  plane, 

z = x + i y  = re i° 

by a conformal transformation 

t = f ( z ) .  

The equations of  motion are transformed to 

V%~ ~ 3/3 

where 

V2~a = ~ + 

and M is the modulus of transformation. 
The transformation employed here is 

t = k i  log z = k i  log ( re i ° ) ,  

so that 

and 

a/3 

o ~ =  - k O  

/3 = k l o g r ,  

= ~ I  +\~yl =\~rf  =~r l  " 

(9) 

(10) 

(2a) 

(3a) 

The transformation is illustrated in Fig. 2. k has been taken as 20/~r giving twenty mesh points to 
the half cylinder. Since the flow is symmetrical about the x axis only half the field of  flow need be 
considered. The lower half of the x y  plane external to the cylinder (oo > r > 1, 0 > 0 > - 7r) is 
transformed into the semi-infinite slot (0 < a < 20, 0 < /3 < co). 

This transformation, in addition to avoiding irregular stars at the surface of the cylinder, has the 
further advantage that a uniform mesh in the transformed plane represents a system of radiating 
lines and concentric circles in the physical plane, giving smaller squares near the cylinder where 
greater detail is required and increasingly larger squares further out without, however, compressing 
thedetails of the wake as does the transformation illustrated in Fig. 1. 

4. N u m e r i c a l  S o l u t i o n .  For the purpose of numerical solution the differential equations (2a), 
(3a) are approximated to by finite difference equations and values of the functions ~, ~b are computed 
at the discrete points of a rectangular mesh in the ~fi plane (Fig. 2b). The simplest finite difference 
approximations to the equations (2a), (3a) are respectively: 

~0= ~ , ~ - ' ~ [ ( a -  c ) ( B - D )  + ( b -  d ) (C-A) ]  (11) 

n2~o 
~ o = ~  2M 2, (12) 

which are the formulae used by Thom 5 in his solution at Reynolds number 20. In these equations 
~0 is the value of ~ at the centre of a square of side 2n, recalculated from the corner values, and ~m is 



the mean of these corner values. The small letters in the equation (11) represent ~ values and capital 

letters ~b values at the mesh points as shown in Fig. 3a. 
It was found that more powerful devices than the simple application of the equations (11) and (12) 

had to be developed for the solution at Reynolds number 40 and these devices are described below. 

5. Finite Difference Approximations to the Boundary Conditions. At the solid boundary of the 

cylinder $ is known and is constant. The values of ~ at the boundary must be calculated from the 

pattern of flow in the immediate vicinity of the boundary. The method of solution, essentially, is 

to calculate the values of ~, ~b in the flow for certain assumed values of ~ at the boundary. Boundary 

values of ~ are then recalculated from these new values of ~ and ~b in the flow and the sequence is 

continued until the boundary values repeat themselves to the required degree of accuracy. The 
finite difference formula used for calculation of the boundary values of ~ must incorporate the 

I 

boundary conditions given above, equation (7). That used here is due to Woods 11, 

3M02 1 M0 ~ 
~ 0 -  h a (~1-  ~o) 2M1 ~ 1 '  (13) 

where t0 is the boundary value and ~t, ~bl are values at a point in the flow distant h from the 

boundary (Fig. 3b). 
There are circumstances in which the use of the equation (13) fails to achieve convergence as 

has been pointed out in Ref. 12. In this solution the mesh size near the boundary was made very 

much smaller than the critical mesh size given in Ref. 12 to avoid any difficulties arising from 
divergence at the boundary. Further, the rate of convergence was considerably increased by the 

following simple device: the new values of ~0 at the boundary, given by the equation (13), were not 

used dlrectly for the next sequence of calculations but rather the mean of the previous and the 

newly recalculated values was used as the boundary value for the next sequence. 

6. Procedure of Solution and Special Devices. At first the method of solution was kept as routine as 

possible in an endeavour to ascertain whether the problem (or a similar one) could be solved by a 

technique suitable for programming for an electronic computer. 

The first trial values for ~, ~b were based partly on Kawaguti's solution, in the region between 

mesh lines/? = 0 and 1~ = 5, and partly on an approximate extrapolation from Thom's solution 
for Reynolds number 20, in the region fi > 5. The equations (11), (12) and (13) were employed to 
improve the assumed values of [ and ~b at each point of the mesh and on the boundary in turn. 
It soon became obvious that it was not possible to obtain a solution in this manner and divergence 
of the process began to occur in the field beyond fi = 4 (r = 1- 874). The analysis of this difficuky 
has been described in Ref. 12, and there a new device is developed whereby a definite portion only 
of the movement of ~, as determined by the local field configuration, is added at each stage of the 
calculations. This device was used in this problem and in this way the area in which the solution 
could be accomplished was considerably extended (as far as /5 = 10, r = 4.810 approximately) 

but the device was not powerful enough for the region of the wake beyond fi = 10. Eventually use 
had to be made of every device available including the one just referred to and a second new device 

described below. 



The  final technique developed is as follows: 
When divergence occurs it appears first in the calculation of ~ and so the maximum effort must  

be devoted to the calculation of this function. The  equation (3a) for ¢ is linear and gives rise to no 

speciai difficulties. 

(i) In general, the values of ~ and ~b were improved separately over the whole field or large sections 
of it since it was found that attempts at improving their values simultaneously at each point gave 

rise to violent fluctuations. 

(i i) In the inner region, 0 < /3 < 8, the values of ~ were first improved by means of the device 
developed in Ref. 12 and referred to above. This  consisted in taking the new value of ~o for use in 
the next cycle of calculations as 

~0~' + b~0~ (14) 
Co~,,, - 1 + b ' 

where ~0~ew is the improved value of ~o to be used in the next cycle, to is the previous value, and 
~0~ is the value recalculated by the equation (11) from the values of ~ at surrounding points. The  

opt imum value of b at each point can be shown to be (cf., Ref. 12), 

b : [ ( E -  G) 2 + ( F - H )  ~] 4,  

where the letters E , . . .  H represent the values of ¢ at the corresponding points in Fig. 3a. The  value 

of  b changes as the field pattern alters. However,  it was found to alter so slowly that it was necessary 

to recalculate it only infrequently. 

(iii) Later, as the solution was improved the values ~0,. in this region, 0 < /3 < 8, were recalculated 

from the formula,  due to Bickley 1~ 

~o - 4S1 + $2 6 /2V2~o  /4V4~t~o (16) 
20 20 40 ' 

where 

$ 1 =  a + b + c + d  

S 2= e + f + g  + h,  

the small letters representing the values of ~ at the corresponding points in Fig. 3a. The  formula 
(16) is more accurate than (11), the neglected terms being 0(16). In the present context the equation 
(16) becomes 

~o 4S1 + $2 61~J - ½14V~J . (16a) 
- 20 

where 

' Initially ff was approximated to by the simple finite difference formula, 

1 
j = [(a - c) (B - D) + (b - d) ( C -  A ) ] ,  (17) 

7 



which appears in the equation (11). As the solution proceeded this approximation also was improved 
by use of Bickley's '5-point' differentiation formula 1~ for the calculation of each differential in the 
expression for J,  e.g., 

0 - + + (18) 

The value of V2~pJ for use in the formula (16a) was obtained at each point by the formula 

4S~' + 82' - 20Jo 
V~o~J = 6l 2 , (19) 

where 

$1' + + Y o  + 

(Fig. 3a). 

This formula was found accurate enough for the calculation of V2~pJ for the effect of this term in 
the equation (16a), though important, was small relative to the term in J itself by a ratio which 
varied in value from one tenth to one fifth. 

(iv) For the region of the wake, fi > 8, a new device had to be developed for the improving of the 
Value of ~. The device combines features of Thom's numerical method and of the relaxation type of 
technique. It was found important in this solution to keep in view at all times the actual values of 
~, ~, and so the approach was to work with the values of ~, ¢, rather than with 'residuals'. For this 
region of the field an 'operation pattern' was prepared showing the effect on the value of ~ at 
neighbouring points of a unit change in the value of [ at each point. One 'molecule' of this 'operation 
pattern' is illustrated in Fig. 4. In general the coefficients at each point differ from each other and 
each molecule is different. Strictly, since the calculation of ~0 is based, in this region, on the 
equations (16a), (18) and (19), each molecule should show effects at the twelve surrounding points 
shown in Fig. 4, from a change in the value of ~ at the central point. However, at the points connected 
by dotted lines the coefficients are small compared to those at the inner four points and it was found 
sufficient in practice to use the simplified four-point molecule. Further, it was found that V2~J 
varied rather more slowly than did J and ~ and in the preparation of the 'operation pattern' it was 
found possible to ignore the effect of the term in V ~ J  in the equation (16a). Of course, when the 
new value of ~0 was being recalculated the full equations (16a), (18) and (19) were used taking into 
account the effect of all twelve points shown in Fig. 4. 

The sequence of operations in this region was then, starting from a distribution of ~, ~, to calculate 
the new values of ~ at each point by use of the equations (16a), (18) and (19). These, in general, 
would differ from the previous values. The 'operation pattern' would then be used to reduce 
progressively, by adjustments to the [ field, the total values of 'residuals' in the region, where by 
'residual' is meant here the difference between the recalculated value of ~ and the previous value. 
The 'operation pattern' itself changes with each alteration to the field configuration, but in practice 
its change was slow enough to enable the one pattern to be used unaltered through several sequences 
before a new pattern had to be calculated. When the total value of 'residuals' had been reduced to a 
degree, indicated as appropriate by experience with previous sequences, the new configuration of 
was calculated from the resulting new configuration of ~. ~ was then recalculated with the equations 
(16a), (18) and (19) and the whole process described above was repeated. 



In using the 'operation pattern' to reduce the total value of 'residuals' much use was made of 
block moves, the most powerful ones employed being a movement of the same sign and of 
approximately the same magnitude in the value of ~ at every point over large sections of the field; 
sometimes a similar block move but confined to only one ~ line; and sometimes a combination of 

two such 'line movements' of opposite sign. The foregoing technique was found to be very pdwerful 
in this region of the field. It should be emphasised that at no stage were the newly calculated values 

of ~ used directly for the fresh start of the next sequence but rather techniques of under-relaxation 

and over-relaxation were employed as indicated by the configuration of the field. The aim at all 

times was to reduce the sum of 'residuals"of ~ over large regions and at the same time to reduce the 

average value of 'residuals' at each point while making them all to be of approximately the same 

magnitude. At no stage was it attempted to eliminate individual residuals as this approach gave rise 

to violent fluctuations in the values at surrounding points. This is illustrated by the fact that in 
this region a unit movement at a single point can alter 'residuals' at surrounding points by ten times 

its own value and more. Adjustments to the ~ configuration in this area must be made with great 

care, but there is the compensating advantage that quite small irregularities are immediately indicated 

by violent fluctuations in the values of ~ at surroundi/ig points. 

(v) Distant points: The desire to avoid the imposition of an 'infinity' condition at points which 
are in fact at a finite distance has been mentioned above. It is obvious that the calculations cannot 
be carried to such a distance that the infinity conditions could be applied directly and the difficulty 

was overcome in the following way. 
Far down in the wake (~ > 20, r > 23-14), ~ is confined to a narrow regii~n and it was found 

possible to extrapolate the configuration of ~ beyond any given stage in the calculation quite closely. 
The technique was, at each stage, to extrapolate the value of ~ for four mesh lines beyond the limits 
of the previous cycle of calculations. The whole sequence of recalculation of ~ and adjustment of ~ as. 
described in sections (i) t o  (iv) above was then carried out for this enlarged area. The process of 
extrapolation was then used to extend the area another four mesh lines and tb.e whole s~quence was 
repeated. This technique proved quite effective. It was found unnecessary to extend the calculations 
further than/~ = 30 (r = 111.3) for, provided the field in this distant region was approximately 
correct, refinements to it did not appreciably affect the solution closer in to the cylinder. 

The extrapolation of ~ in this distant region could be achieved quite closely because if its rate of 
decrease was made too great the next cycle of calculation made values of ~ closer in to increase 

very much and vice versa as illustrated in Fig. 5. This enabled the extrapolated values of ~ to be 

fixed quite closely by preliminary calculations in the immediate locality before the full-scale 
recalculation described above was undertaken. In such preliminary calculations use was made of a 
device, illustrated in Fig. 6, which was developed independently but which had been used earlier in 

different contexts by Green 15 and by Thom 16. The recalculated value, ~ ,  was plotted against the 
previous trial value, ~-1,  for three or four cycles and the value where the curve joining these points 

intersected the line, ~ = ~-1,  was taken for the next trial value of ~. This device had to be employed 
with a degree of caution but it was found to speed the solution in this distant region of the wake. 

(vi) 4: The treatment of ~ needs no special mention except that for ~ in the region where ~ is 
zero much use was made of the graded mesh (which is not convenient'for use with ~); also of the 
'large squares' formulae and of the method of 'differences' due to Thom ~7. The important thing to 
note about ~ is that the residuals of ~ have an importance approximately inversely proportional to 



the distance from the cylinder and for ]3 < 12 an extra decimal place was preserved in the calculation 
of ¢. On the other hand the residuals of ~ are important wherever ~ exists but more especially in the 
region of the wake. 

(vii) Finally, as an overall check on the validity of the extrapolation of ~ far out and also as a check 
on the overall correctness of the field, at intervals in the solution integrals for the drag force on the 
cylinder were calculated at a number of circles, usually at those corresponding to 13 = 10 (r = 4. 810) 
and ~ = 14 (r = 9"017), and the results were compared with the drag force obtained by integration 
round the surface of the cylinder itself. This is discussed in more detail in the Appendix I dealing 
with the accuracy of the solution. 

7. Summarised Procedure of Calculation. The final technique developed for the solution of this 
problem was as summarised below: 

(1) With the field configuration of ~, ~b at any given stage as the result of a completed sequence, 
was extrapolated four mesh lines further 

(2) This extrapolation was then improved as described in Section 6 (v) 

(3) The pattern of ¢ was then recalculated over the whole field 

(4) The boundary values of ~ were adjusted as indicated by the equation (13) 

(5) The 'operation pattern' of Section 6 (iv), was adjusted if necessary and the values of ~ in 

the field were improved by the method appropriate to the region (cf., Sections 6 (ii) to 
6 (iv)) 

(6) The extrapolation of ~ was carried a stage further and the whole sequence (1) to (5) repeated. 

The sequence should not be regarded as a rigid routine because at times, depending on how the 
field was behaving, one or more steps were omitted or carried out over only a portion o f  the field. 

8. Results. The values obtained for ¢ and ~ in the region 0 ~< ]3 ~< 20 for Reynolds number 40 
are given in Appendices II and III  respectively. Even when all the devices described above are 
employed the process of solution is long and laborious and no claim is made that the numerical 
results of Appendices II and III  are absolutely final. It is considered, however, that further 
refinement would result in only slight changes in the numerical restdts presented here. The accuracy 
of the solution is discussed at greater length in a later section (Note: The numerical results given in 
the Appendices II and III  are for the lower half of the physical plane, the calculations having been 
performed for this half of the plane. However, for convenience of comp/trison with other resultsall 
the diagrams and discussions of the remainder of Section 8 relate to the flow in the upper ~aalf of 
the physical plane). 

8.1. Flow Pattern. From the numerical resttlts for ¢ given in Appendix II contours of ¢ have 
been plotted to give the pattern of streamlines near the cylinder, shown in Fig. 7. The pattern is in 
very good agreement with that shown by, photographs of flows at comparable Reynolds numbers 
(@, Refs. 5, 8, 18 and 19). In particular comparison should be made with the photographs at 
Reynolds numbers 41 and 42 given-in Ref. 19. Referring now to Fig. 7, it will be seen that the 
stationary vortex pair attached to the cylinder is very prominent and has increased considerably 
in length over that obtained by Thom 5 in his numerical solution at Reynolds number 20. It is also 

, 1 0  



somewhat longer than the vortex pair in Kawaguti's solution at the same Reynolds number, i.e., 40 
(Ref. 6). It is suggested that this difference is probably due to the transformation this latter author 
employed (Fig. 1) which greatly compresses the area of the wake and possibly caused small distortions 
in his solution in this region. It will also be remarked that even at a distance of 6.5 radii downstream 
of the cylinder (the limit of the extent of Fig. 7), the streamlines in the body of the flow have scarcely 
begun to close up again behind the cylinder, indicating the increased development of the wake. 

8.2. Vorticity. Contours of vorticity, plotted from the resuks of Appendix III  are shown in 
Fig. 8. The vorticity will be seen to persist for a very long way downstream of tile cylinder. Another 
feature of Fig. 8 is tile existence of an area in the main body of the flow where the vorticity changes 
sign. It was expected, of course, that the vorticity would change sign in the region of the vortex pair 
but in the main body of the flow a change of sign was not permitted during the earlier stages of the 
solution. However, in the region 9 f Fig. 8 where the second area of small positive vorticity occurs, 
'positive residuals of ~ recurred persistently and could be eliminated only by allowing ~ there to take 
on small positive Values. It is possible, on the other hand, that this area of small positive vorticity is 
caused by truncation errors in the numerical solution, a point which could be investigated b y  
further subdivision of the mesh on which the solution is calculated. 

The distribution of vorticity on the surface of the cylinder is shown in Fig. 9. Points scaled from 
the corresponding curve presented by Kawaguti are also shown plotted in Fig. 9 and the two resuks 
are very similar. Even though there are differences between the present solution and that of 
Kawaguti at increasing distances from the cylinder (chiefly in that in this solution the vorticity 
spreads much farther downstream in the wake), the solutions are in close agreement for the region 

near the cylinder. This constitutes further justification for the hypothesis put forward in an earlier 
Section that reasonably small inaccuracies in the solution at great distances from the cylinder do not 
appreciably affect the solution close in. 

8.3. Velocity Distribution in the Wake. Velocity profiles calculated in tile wake downstream of the 
cylinder are shown in Fig, 10. The series of profiles illustrates how the wake gradually decreases in 
intensity and spreads laterally with increasing distance from the cylinder. Experimental results 
obtain~l by Kovasznay 9 at Reynolds number 34 with hot-wire anemometer measurements are also 
plotted in Fig. 10. Near the cylinder the profiles are quite similar but there are increasing differences 
further downstream, indicating the greater development of the wake as the Reynolds number 
increases from 34 to 40. 

8.4. Pressure Distribution on the Cylinder. The Navier-Stokes equations can be integrated to 
give equations for determining the difference in pressure at points in the fluid. In the present context 
they were used in'the form 

- = q 2  - + + 2 @ (20)  

for integration between points A and B on a line ~ = const in the ~]3 plane, and 

p ~ - p ~ =  qc 2 -  q ~ - ~  ~ d a +  2 ~ da (21) 

for integration between points C and D on a line ]3 = const. 
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• The pressure on the front generator of the cylinder was obtained with the equation (20) by 
integration along the line c~ = 20. The value obtained is 1. 154. Thom 5 found experimental values at 

Reynolds numbers 36 and 45 of 1.19 and 1.16 respectively. Kawaguti'S theoretical value at Reynolds 

number 40 was 1-142. Thorn's approximate theory for determining the value of the pressure on the 
front generator at low speeds 2° gives the result at Reynolds number 40, (1 + 7 /R )  or 1. 175, which 

is still a fairly good approximation. 
The pressure at other points on the cylinder was obtained by integration along the line,/? = 0, 

by means of the equation (21). The values obtained are given in Table 1, and they have been plotted 

to give the pressure distribution shown in Fig. 11. Also plotted in Fig. 11 are Thom's experimental 

results at Reynolds numbers 36 and 45 and points from Kawaguti's calculated curve for Reynolds 
number 40. The results of the present solution lie, on the whole, between the experimental results 

for the higher and lower Reynolds number. Kawaguti's results do not differ by much from the 

present results but they tend to lie wholly above both sets of experimental results. 

TABLE 1 

0 
(deg) P o -  

P ' o - P ' ~  
½p' U'~ 

Upstream stagnation point 
180 +1"155 

162 0- 85 

144 + 0" 13 

126 -0"61 

108 - 1-005 

90 - 1" 045 

72 --0"925 

54 -0-78  

36 - O" 665 

18 -0"585 

0 -0"555 
Downstream stagnation point 

8.5. 

pressure and vorticity distributions on its surface by the equation 

~ 4 ~(,.=1) sin 0 dO, Drag per unit length = - 2 P(r=l) cos 0 dO - ~ o 
0 

where the drag is in non-dimensional form, (Force/½p' U '2) . 
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Drag on the Cylinder. The drag force on the cylinder can be obtained from the calculated: 

(22} 



The result is expressed as a coefficient 

C9 = (Drag force per unit length)/½p' U'2(2L ') 

= C2)2~ + CgI.  

The first term of the right-hand side of the equation (22) leads to C9 ~, the value obtained being 

0. 928. This is lower than Kawaguti's value of 1. 053 but is in good agreement with Thom's experi- 
mental results. For Reynolds numbers 36 and 45 he found C9~ to have the values 0.98 and 0-92 
respectively. The second term of the right-hand side of the equation (22) leads to C9~ which was 

calculated at 0. 568, which is very close to Kawaguti's figure of 0' 565. The total coefficient of drag, 
C2), thus has the value 1-496. 

In Fig. 12 this result is plotted together with some other theoretical and experimental values of 

C~ over the range 1 < R < 1000. The agreement between the value obtained here and experimental 
results is quite good even though the experimental values at Reynolds number 40 were probably 
obtained for flows of a periodic nature. 

8.6. Growth of the Stationary Vortex Pair. In Fig. 13 the length of the stationary vortex pair 
attached to the cylinder is plotted over the range 1 < R < 1000. This figure incorporates both 
theoretical results and values measured from photographs obtained in the range of steady flows by 
a number of investigators. Despite a certain amount of scattering of the points (due partly to the 
difficulty of measuring accurately the length of the vortex pair in the photographs available and 

partly to the effect of the varying proximity of the channel walls on the length of the vortex pair), 
the experimental results illustrate quite clearly the increase in length of the stationary vortex pair 
with increase in Reynolds number up to the stage when the steady regime breaks down. The length 

of the vortex pair obtained in the present investigation at Reynolds number 40, i.e., 2.13 diameters, 
is in very close agreement with Taneda's 19 experimental result of 2.1 diameters. 

In general, all the theoretical results plotted in Fig. 13 are in good agreement with the experimental 

results with two exceptions, the results of Allen and SouthwelF for Reynolds numbers of 100 and 

1000. The experience with the solution at Reynolds number 40 indicated that it was most unlikely 
that the 7cortex pair would not continue to grow in length as the Reynolds number was increased. 
To confirm this a solution has been obtained at Reynolds number 44: It has not been completed to 

the same accuracy as that of Reynolds number 40, but it has been taken to a stage where the length 
of the vortex pair has settled down and is not significantly altered by further refinements of the 
solution. The length of the vortex pair so obtained at Reynolds number 44 is 2-3, which value 
is also plotted on Fig. 13, and is in good agreement with the general trend of the other results. 
No evidence was found that the vortex pair would not continue to grow for higher Reynolds numbers 
and it is suggested, therefore, that the two anomalous results of Allen and Southwell, in which the 
vortex pair has diminished in lengtft as the Reynolds number increased from 40 to 1000 may have 
been obtained on a mesh rather too coarse, resulting in distortions of the solution. 

It seems then reasonably certain that for considerable increases in the Reynolds number beyond 44, 
theoretical solutions will show the vortex pair to continue increasing in length. However, it is 
difficult to predict what will happen to the vortex pair at very large Reynolds numbers. Imai 23 
concluded that the asymptotic flow pattern around a bluff body for viscous flow at vanishing viscosity 
is a discontinuous flow with a dead water region of the Kirchhoff type. Kawaguti, following Imai, 
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suggested that as the Reynolds number increased indefinitely the theoretical solution would become 
similar to that obtained by the discontinuous-flow theory. On the other hand, Batchelor 21 has 
suggested that the length of the vortex pair will tend eventually to a constant value as the Reynolds 

number approaches infinity. If  the length of the vortex pair is plotted against Reynolds number on a 
natural scale instead of the logarithmic scale of Fig. 13, it appears that for the higher values of 

Reynolds number the length of the vortex pair is increasing linearlywith Reynolds number, as was 

observed by Taneda 2~. However, it is not possible to extrapolate beyond the plotted data of Fig. 13 
with any degree of confidence. Calculations at Reynolds numbers higher than 44 would seem 
desirable to throw light on this problem. 

8.7. Breakdown of the Steady-Flow Pattern. The present solutions having been obtained from 
the Navier-Stokes equations for steady conditions, they cannot be expected by themselves to give 

any direct information about the formation of the Kfirm~in vortex street, which is an unsteady state. 
However, they do show that steady-state solutions are theoretically possible at Reynolds numbers 

40 and 44 and it seems that steady-state solutions are possible for even higher Reynolds numbers. 
This having been established, it is interesting to reconsider the somewhat varied results of 

experimenters who have observed the onset of the Kfirmfin vortex street in the wake of the circular 

cylinder. Thus, although Kovasznay claimed that the vortex street sets in at a definite Reynolds 
number, which in his experiments was 40, Thorn 5 found that the critical Reynolds number varied 
from approximately 30 to 62 as the ratio of channel width to "cylinder diameter was varied over the 
range 40 to 10. Taneda obtained photographs of the stationary vortex pair up to a Reynolds number 
57.7 but considered that the critical Reynolds number for the formation of the K~irm~in vortex 
street was about 45. Camichel, Dupin and Teissi6-Solier 2z observed periodic oscillations in the 
flow and alternate shedding of vortices at a Reynolds number as low as 23.3, but they found that the 
fully developed vortex street did not establish itself finally until a Reynolds number of 47. 

These disparate results can be reconciled if we postulate that the breakdown of the steady regime 
and the formation of the Kfirm~n vortex street is a phenomenon of hydrodynamic instability which 
is. affected by a number of factors including the proximity of the channel walls and the degree of 
turbulence of the main stream. This being so, it is to be expected that the onset of the Kfirm~n 
vortex street will take place over a range of Reynolds numbers, depending on such factors as 
mentioned above, and not at any particular value of the Reynolds number. 

9. Conclusion. The findings of this investigation may be summarised: 

(i) A steady state solution of the Navier-Stokes equations for the flow of a viscous fluid past a 
circular cylinder does exist for Reynolds number 40 and is in good agreement with 
experimental results. 

(ii) Further, a steady state solution exists for Reynolds number 44 and it seems that such 
solutions are possible for higher Reynolds numbers though the corresponding flow may not 
exist in nature. 

(iii) The length of the stationary vortex pair attached to the cylinder continues to increase with 
increasing Reynolds number in such theoretical solutions up to a Reynolds number of 44 
and there is no indication that this tendency will be reversed as the Reynolds number is 
increased beyond 44. 
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(iv) It is postulated that the Reynolds number at which the steady regime breaks down and the 
K~rmfin vortex streets sets in will depend on a number of factors including the proximity 
of channel walls and the degree of turbulence of the main stream; there will be a critical 
range of Reynolds number in which this phenomenon takes place, rather than a critical 

value of the Reynolds number. 

Acknowledgement. The author wishes to record his indebtedness to Prof. A. Thom, whose 
encouragement and advice was of great help throughout this investigation. 
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APPENDIX I 

Accuracy of Sob#ion 

Three methods have been employed to check the accuracy of the solution presented here: 

(i) Magnitude of 'Residuals'. The state of the residuals indicates the internal consistency of the 

solution, the accuracy with which the finite difference equations are satisfied at each point in the 
field. By residual is meant, as before, the difference between the recalculated value of ~ or ¢ at each 
point and the previous value. The aim at all times was to reduce the sum of residuals over large 

areas and at the same time to reduce the average value of each residual. In the present stage of the 
solution the maximum residual for ~ occurs at the surface of the cylinder and has a value 0. 066 
where ~ has the value 6. 238; and for the half-circumference of the cylinder-(19 points) the sum of 

the residuals of ~ is - 0. 195. Since a change of 0. 0001 in the value of ¢ at a point on the mesh line 
fi = 1, next to the boundary, will alter the calculated value of ~ at the corresponding point on the 

boundary by 0.012, the residuals of ~ on the boundary tend to oscillate strongly for very small 

changes in ¢ in the neighbouring field, and their magnitudes should not be taken directly as a 
measure of the accuracy of the values of ~ on the boundary. From the run of the previous sequences 

of calculations for boundary values of ~ it is considered that those given in Appendix III  are correct, 

on the whole, in the second decimal place. 
In the body of the flow the maximum residual of ~ is approximately 0.03 and except at isolated 

points the residuals are considerably less than 0' 01. The total value of residuals in the area I ~< ~ ~< 20 
(141 points) is + 0.042. It is considered that the present values of ~ are correct in the second 

decimal place, except perhaps at a few isolated points, and that further refinement of the solution 

will affect only the third decimal place. 
The values of ¢ were refined for the present distribution of ~ until for 0 < /g < 12 movements 

in the values of ~ affected only the fourth decimal place and for ~ > 12, the third decimal place. 

(ii) The Equation of Continuity. Across any closed contour in the fluid there must be no net 

gain or loss of fluid. This check was applied at the same time as the one of the next section. For the 

solution at the present stage, m~merical integration around the" circle corresponding to ]3 = 10 
(r = 4.810) gave a mass inflow of 6.960p' per unit thickness and a mass outflow of 6-988p', 
giving a discrepancy of 0.4 per cent of either figure. For the circle corresponding to fl = 14 

(r = 9. 017) the mass inflow was 12. 1160' and the mass outflow 12. 192p', a difference of 0.6 per 

cent. 

(iii) Integrals for Drag. As was described in the body of the paper, at intervals in the solution 

the drag force on the cylinder was obtained by integration round several circles enclosing the cylinder 

and the values obtained were compared with that found by integration round the surface of the 
cylinder. If  X be the force in the x direction applied by the fluid outside the closed contour of 

integration on the fluid inside the contour, D the drag force on the cylinder (in the x direction) and 

G; the rate of change of momentum of the fluid inside the contour in the x direction, all per unit 

thickness, then 

X -  D = G .  (23) 
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The force X is composed of pressure and friction forces and for integration round a circle of 
radius r is given by 

X =  - 2 p,.cos0 r d O -  ~ ~,.sinO rdO. (24) 
0 

G.~ is given directly by the net transfer of momentum across the contour in the x direction, since 
steady conditions are assumed. The values of X and G£ were found by numerical integration round 
the circles corresponding to fi = 10 and/3 = 14 and the drag force on the cylinder was found by the 
equation (23). 

This check is the most severe of all. To perform the integrations for G.~ and for the first term of  
the right-hand side of the equation (24) one must first obtain the values of the integrands by 
numerical differentiation. The process of numerical differentiation is notoriously sensitive to small 
irregularities in the values of the function being differentiated and, so, very small irregularities in the 
field will be greatly magnified in the integrals for X and G~.. Further, the term G~, is given by the 
difference of two integrations of opposite sign, each very much (20 to 100 times!) greater than the 
magnitude of G.~ itself. It is to be expected then, and this was found to be the case, that quite small 
changes in the values of ~ and/or $ at even a few points near the path of integration will produce 
large changes in the value of the drag obtained from the equation (23). 

For the present solution the drag, expressed as the coefficient C•, given by integratio n at the 
circle p = 10 was 1.14 and at the circle/3 = 14 it was 1.52, compared to the value 1 "496 found by 
integration at the surface of the cylinder. 

That the value obtained for CD by integration around these circles in the fluid is very sensitive 
to small changes in the configuration of the solution may be illustrated by reference to the values 
of C~ found by integration at the immediately preceding check. These were: 

]3= 10 C~ = 0.91, p =  14 Cv = 1.33. 

The values of ~ at the stage when these integrals were calculated differed from those given in 
Appendix III  by less than 0.01 everywhere and at most points the difference was less than 0. 005. 
Further, the same check applied to Kawaguti's results gave, for integration round a circle of radius 
5 • 0, a value for C~ of 0.85. This is considered to be not so much a criticism of the accuracy of his 
results as an indication of the extreme severity of this check. 

In the light of these remarks and as a result of this and of the preceding checks, it is considered 
that the I,lumerical results presented in Appendices II and III  are Of sufficient accuracy for the 
purposes of this investigation and that further refinement of the solution would result in only slight 
changes to the numerical results. 

9 



A P P E N D I X  II  

Reynolds Number 40. ~b Vahtes 
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5 0 - - 0 - 0 0 0 4  + 0 " 0 0 6 3 + 0 " 0 3 6 3  0 " 1 0 6 9  0 " 2 3 6 5  0 " 4 4 2 4  0 . 7 3 2 0  1 " 1 0 6 6  1 - 5 5 6 2 2 ' 0 7 8  2 " 6 6 4  3 . 3 4 1  4 . 1 2 3  5 - 0 3 1  6 " 0 9 1  7 ' 3 3 6  8 . 8 0 2  1 0 - 5 3 3  1 2 - 5 7 9  - -  

bO 
<:~ 6 0 + 0 - 0 0 4 1  0 - 0 2 7 5  0 ' 0 9 2 6  0 ' 2 2 0 3  0 . 4 2 5 7  0 - 7 1 6 5  1 - 0 8 9 0  1 . 5 3 5 8  2 - 0 5 0 4 2 " 6 4 0  3 ' 3 1 6  4 ' 0 9 8  5 . 0 0 5  6 - 0 6 2 7 " 3 0 0  8 . 7 5 0 1 1 0 . 4 5 3  1 2 - 4 5 8 1 1 4 - 8 2 1 1 7 " 6 0 ~  

7 O. 0 " 0 1 0 5  0 - 0 5 7 3  0 ' 1 6 6 7  0 " 3 5 6 8  0 . 6 3 1 0  0 - 9 8 4 0  1 - 4 0 8 2  1 - 8 9 9 8  2 " 4 6 4 4 3 " 1 1 2  3 ' 8 6 0  4 . 7 2 6  5 - 7 3 2  6 - 9 1 1  8 " 2 8 4  9 " 8 9 8 1 1 1 - 7 8 5  1 4 - 0 0 8  1 6 - 6 1 5  
8 0 0 " 0 1 9 1  0 - 0 9 4 6  0 . 2 5 1 8  0 . 4 9 8 0  0 . 8 2 2 5  1 - 2 1 3 6  ' 1 -6688  2 - 1 9 1 2  2 . 7 9 1 3  3 ' 4 8 3  4 . 2 8 3  5 " 2 1 0  . - -  
9 0 0 " 0 2 9 3  0 - •360  0 " 3 3 7 6  0 - 6 2 5 5  0 . 9 7 9 4  1 - 3 9 0 3  1 - 8 6 2 0  2 . 4 0 2 5  + 3 - 0 2 3 8  3 ' 7 4 3  4 . 5 7 5  . - -  

10  0 0 . 0 4 0 2  0 - 1 7 6 9  0 " 4 1 3 0  0 " 7 2 5 1  1 " 0 9 1 6  1 - 5 0 8 4  1 . 9 8 5 0  2 . 5 3 0 5  3 ' 8 8 8  - -  5 - 7 1 4  - -  

11 0 0 -051C 0 . 2 1 2 4  0 . 4 6 9 7  0 . 7 9 0 1  1 . 1 5 5 3  1 . 5 6 7 4  2 . 0 3 6 8  . . . .  
12  0 0 - 0 6 0 3  0 . 2 3 8 8  0 . 5 0 3 2  0 . 8 1 7 9  1 - 1 7 1 0  1 . 5 6 7 9  2 - 0 2 0 2  2 - 5 3 8 3  3 . 8 3 1  - -  5 - 5 7 1  . - -  
13 0 0 -067C 0 . 2 5 2 7  0 -5•09  0 . 8 0 8 5  1 - 1 4 0 0  1 . 5 1 2 1  1 . 9 3 5 6  - -  - -  - -  
1 4  0 0 - 0 6 9 6  0-25141 0 - 4 9 2 1  0 . 7 6 3 9  1 . 0 6 5 3  1 . 4 0 3 8  1 . 7 8 9 0  2 - 2 3 0 5  3 . 3 3 0  - -  4 . 8 1 3 .  - -  
15 0 0 - 0 6 7 6  0-23541 0 . 4 4 9 3  0 - 6 8 7 7  0 . 9 5 1 5  1 - 2 4 7 8  1 - 5 8 4 4  . . . .  

16  0 0 - 0 6 0 8  0 - 2 0 5 '  0 . 3 8 5 6  0 - 5 8 4 1  0 . 8 0 4 0  1 . 0 5 0 6  1 - 3 3 0 8  1 . 6 5 1 9  
17  0 0 - 0 4 9 7  0 - 1 6 4 '  0 - 3 0 4 7  0~4581 0 . 6 2 8 0  0 - 8 1 8 8  1 . 0 3 5 3  - -  
18 0 0 . 0 3 5 4  0 - 1 1 5 1  0 - 2 1 0 5  0 - 3 1 5 0  0 - 4 3 0 9  0 - 5 6 0 7  0 . 7 0 8 3 + 0 . 8 7 7 5  
19 0 + 0 . 0 1 8 4 + 0 . 0 5 9 1 + 0 . 1 0 7 4 + 0 . 1 6 0 3 + 0 . 2 1 8 8 + 0 . 2 8 4 9 + 0 . 3 5 9 5  - -  
2 0  0 0 0 0 0 0 0 0 0 

2 . 4 5 1  - -  3 . 5 2 9  - -  

1 " 2 9 8  - -  1 . 8 6 4  - -  

0 0 0 
I 

7-553  - -  1 0 . 7 5 7 .  - -  1 5 - 1 5 7  - -  

8 - 1 9 3  - -  1 1 . 5 7 8  . . . .  1 6 . 2 1 1  - -  

7 - 9 3 5  - -  11 .16C . . . .  1 5 - 5 7 1  - -  

6 . 8 2 5  - -  9 ' 5 6 7 .  - -  . 1 3 - 3 1 0  - -  

4 . 9 9 1  - -  6 ' 9 8 3  . . . .  9 - 7 0 0  - -  

2 - 6 3 3  - -  3 " 6 8 ¢  . . . .  5 " 1 0 7  - -  

0 0 0 0 0 I 0 

2 1 - 2 1 4  

22"557  

21"584  

1 8 . 4 2 2  

1 3 . 4 1 1  

7 ' 0 5 7  

0 



A P P E N D I X  I I I  

Reynolds Number 4 0 .  ~ Values 

0 
1 
2 

5 

bo 
+-,~ 6 

7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

0 
- -0 .198  
- -0 .331  
- - 0 . 3 9 2  
- - 0 . 3 6 2  
- - 0 . 2 1 7  

+ 0 ' 0 6 8  
0 .517 
1.151 
1.980 
2 .972 

4 .025 
5.019 
5.829 
6.278 
6:238 

5.706 
4.741 
3 .410 

+ 1 . 7 9 6  
0 

0 
- - 0 . 0 6 2  
- - 0 . 0 8 8  
- - 0 . 0 5 7  
+ 0 . 0 6 7  

0 .304 

0 .670 
1.180 
1.755 
2 .349 
2 .879 

3.263 
3.443 
3 .409 
3.186 
2 .809 

2 .340 
1.815 
1.219 

+ 0 . 6 1 2  
0 

0 
0.035 
0 .092 
0.201 

0 . 3 9 9  
i0 .708  

1.109 
1 .540 
1.882 
2-060 
2 .049 

1.887 
1.598 
1-250 
0-957 
0 .705:  

0-498 
0-334 
0-201 
0-094 

0 

0 
0:108 
0-233 
0 .404  
0 .658 
0 .990  

1-312 
1.495 
1 .457 
1-243 
0-946 

0-665 
i0-420 
0 .226 
0-124 
0-066 

0-026 
0"009 
0 ' 0 0 2  

0 
0 

0 
0 .169  
0.351 
0-572 
0-847 
1 .109 

1 .210 
1 .076 
0-799 
0"492 
0-278 

0"134 
0 .054  
0-017 
0"004 

0 

0 
0 .218  
0 .446  
0 .695 
0 .930  
1.023 

0 .870  
0 .569  
0 .299  
0 .125 
0 .044  

0 .015  
0 .004  
0 .002  

0 
0 

0 
0 .260  
0 .518  
0 .763 
0 .892  
0 .760  

0 .467  
0 .209  
0 .073 
0 .020  
0 .008  

0 .001 
0 
0 
0 
0 

7 

0 
0 .298 
0.571 
0 .783 
0-740 
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