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Summary.-In the present approximate method the use of a doubly-infinite family of boundary-layer velocity profiles
enables the momentum and energy integral equations of the boundary layer to be satisfied exactly, together with the
first compatibility condition at the surface. The principal characteristics of the velocity profiles used have been
calculated, and are presented graphically in a series of charts which enable calculations to be carried out with a
minimum of labour.

Several examples of boundary-layer flow have been worked out in detail by the use of the method, and agreement
with known exact solutions is in most cases extremely satisfactory. No important restrictions on the application
of the method have so far appeared; in particular it has been found possible to deal successfully with certain types of
flow giving rise to similar profiles and with distributed suction starting either at the leading edge or at some point
downstream.

1. Introduction.-The present method of calculating the laminar boundary layer was developed
in 1952 in connexion with proposed flight experiments on distributed suction'. A method was
required which would be suitable for use with suction and which would give velocity profiles with
sufficient accuracy to enable reliable estimates to be made of the stability of the boundary layer.

It appeared that methods based on the use of a singly-infinite family of velocity profiles would
be unlikely to give the desired accuracy, not only because of difficulties arising in the prediction
of separation with suction, but also because such a range of profiles could not be expected to
approximate closely those which might be obtained where either suction or pressure gradient
vary rapidly along the surface; in this case, whereas the general shape of the profile at any point
will be largely dictated by conditions upstream, the shape in the immediate neighbourhood of
the surface must conform to local boundary conditions which may be very different. As a specific
example we may consider the flat plate with uniform suction following a solid-entry length; at a
sufficiently short distance downstream of the discontinuity the overall profile shape will still be
substantially that of the Blasius profile upstream, but in the neighbourhood of the surface the
profile must be sufficiently modified to satisfy the new boundary condition. In this particular
example it is obvious that any singly-infinite family of profiles intended for general use can give
only a poor representation of the profiles obtained in practice, since it will be impossible in general
to fit both the overall profile shape and the slope and curvature of the profile at the surface.

* Formerly at the Royal Aircraft Establishment, Farnborough, where the work leading to this paper was done.



where

In this case, as well as in less extreme examples, it may be expected that the use of a doubly­
infinite family of profiles will give an appreciable gain in accuracy, and the examples treated in
this report show this to be the case.

In the present method, which is essentially a development of an earlier method given by
Wieghardt" for solid boundaries, the use of a doubly-infinite family of profiles enables both the
energy and momentum integral equations of the boundary layer to be satisfied exactly, along
with the first compatibility condition at the surface. By the use of the energy equation, the
total dependence of the profile shape on local conditions (inherent in methods of the Polhausen
type)" 4, 5 is avoided, and the influence of conditions upstream is adequately taken into account.
Moreover, by continuing to satisfy the first compatibility condition at the surface, a condition
which has been dropped by Walz", and by Wieghardt" in a more recent method, the necessary
rapidity of response of the boundary-layer skin friction to changing conditions of pressure gradient
and suction is retained, and difficulties which would otherwise arise in the accurate prediction of
separation have been avoided.

The principal modifications to the original method of Wieghardt" consist in the use of an
improved and greatly extended range of profiles and the adaptation of the method to deal with
suction. The principal boundary-layer characteristics have been plotted and are presented in
the form of graphs or charts; this graphical method of presentation has been adopted mainly for
convenience, but in the case of He (the ratio of energy to momentum thickness), it is essential
for the step-by-step solution of the equations when suction is present.

The report is divided into two parts: in Part I the method is described and results obtained by
its use are compared with the corresponding exact solutions; in Part II the construction of the
doubly-infinite family of velocity profiles used in the method is given in some detail, along with
a practical example of distributed suction applied to the upper surface of an aerofoil.

PART I

Description of the Method and Comparison with Exact Solutions

2. Description of the Method.-The momentum and energy integral equations of the incom­
pressible laminar boundary layer in two dimensions may be written respectively

de jJ (au) e dU u,
dx = U2 ay 0 - (H + 2) U dx - U

and

V s is the suction velocity,

e , the energy thickness, = J: ~ 11 _ (~)2! dy,

and the other symbols have their usual meanings*.

* A complete list of symbols is given at the end of Part II.
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In the present method the momentum equation is used with only slight rearrangement, but,
following Wieghardt", the energy equation is substantially modified by substitution from the
momentum equation so that the rate of change of the form-parameter H.( = e/()) is given explicitly.
With the introduction of a convenient dimensionless notation the momentum and energy equations
then become finally

and

where

t*' = iJ? ~ A(H + 2) - A} , ..

He' = dt* [2D* - H.{l - A(H - 1) - A} - Ie] ,

(1)

(2)

- UU=­
Uo

l=~(OU)
U oy 0

A = ()2 dU= t*U'
v dx

10

H. = 0

c being some representative length and U; the free­
stream velocity,

and the primes denote differentiation with respect to x (= x/c).

The derivation of equations (1) and (2) is given in detail in the Appendix, where it is also
shown that in the presence of suction the boundary-layer equation reduces at the surface to

m = - (A + lie),
where

= ()2 (02U)
m U oy2 0

This represents the first compatibility condition at the surface.

Equations (1), (2) and (3) form the basis of the present method.

(3)

It will be seen that A and A are parameters which depend only on () and on known values of
the local suction velocity and the velocity gradient outside the boundary layer; on the other
hand D*, H, H., land m are characteristics of the distribution of velocity within the boundary
layer. For any assumed family of profiles D*, H, H., land m may be calculated, but if the
family is only singly-infinite then a unique relationship will exist between 1and m, the slope and

3
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curvature respectively of the profile at the surface, so that it is not, in general, possible to satisfy
equations (1), (2) and (3); indeed it may not always be possible even to satisfy equations (1) and
(3). A doubly-infinite family of profiles is therefore required, and if land m are taken as
independent variables D*, H and He may be conveniently plotted as functions of these quantities.

The construction of a doubly-infinite family of velocity profiles which covers an extremely
wide range is described in detail in Part II. The characteristic quantities D*, H and He of this
family have been plotted in Figs. 1 to 3 as functions of land m. To calculate the development
of the boundary layer, these three charts are used in conjunction with equations (1), (2) and (3)
in the following way:

We shall first assume that starting values of t*, land m are given; then, by using the charts
for D*, Hand H" t*' and He' can readily be calculated from (1) and (2), and hence an
approximation obtained to values of t* and He at a second station. From the new value of t* and
the known distributions of suction velocity and of velocity outside the boundary layer, new values
of A and A can be obtained; these will then correspond, according to equation (3), with a straight
line which may be drawn on the chart for He. The point of intersection of this straight line
with the appropriate value of He will give the new values of land m. The foregoing may be
expressed alternatively as follows:

The momentum and energy equations are used to find the increments in momentum thickness
and He respectively. From the new value of the momentum thickness, new values of A and A
are calculated. When these values are substituted in the boundary-layer equation at the surface,
a linear relationship between land m is obtained. The particular values of land m which satisfy
this relation and at the same time give the appropriate value of He can be found by drawing the
straight line representing equation (3) on the chart of He. The new values of land m so determined
allow the calculation to proceed through a further step.

Once land m are known, the corresponding velocity profile is simply obtained from the charts
shown in Figs. 4 to 13.*

2.1. Initial Values .-Where the boundary layer starts from the leading edge in the absence of
a stagnation point, as in the case of a flat plate with sharp leading edge, the momentum thickness
will initially be zero and the appropriate initial values of land m will be the Blasius values
(l = 0·221, m = 0), so long as the pressure gradient and suction velocity at the leading edge
are finite. This conclusion is reached by considering that when the boundary layer is vanishingly
thin the effect of pressure gradient and suction will be negligible as compared with the effects of
viscosity; the exact calculations referred to in Sections 3.2, 3.3 and 3.5 (i) below support this view.

When the boundary layer starts from a stagnation point in the absence of distributed suction,
land m will take certain fixed values (l = O·360, m = - O: 085). The corresponding value of t*
is then simply found from the known velocity distribution and equation (3), which in this case
reduces to m = - A = - i-t»,

When the boundary layer starts from a stagnation point where distributed suction is applied,
use may be made of the exact calculations of Schlichting and Bussmann'". In Fig. 14, land m
are plotted as functions of Co, the curves being derived from the results of these exact calculations.
In the notation of the present method Co = vs*lvlU', so that the appropriate initial values of
land m can be obtained from the given values of suction velocity and pressure gradient at the
stagnation point. It can further be simply shown that Co = I.IA 1/2, so that for this case equation
(3) can be written m = - lCoA

1
/

2
- A.

From the known values of m, l, and Co, A and hence t, can be calculated.

Alternatively, if near the stagnation point arbitrary initial values of l, m, and t* are assumed,
then it may be expected (see Section 3.1) that these values will rapidly approach the correct ones
as the calculation proceeds through a number of short steps.
-----~.._---------------_._-----------------
* For reproduction in this report the charts were reduced in size. All, including Figs. 1, 2 and 3 which are

full size, were originally drawn on graph-paper of 1 mm. squares.
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The values of land m given above have been obtained from exact solutions of the boundary­
layer equations. Slightly different values would in fact correspond to the flat-plate profile and to
stagnation-point profiles as determined by the present method. Differences between the exact
and approximate values where these have been determined are, however, less than 2 per cent,
so that the calculations should be virtually unaffected by the choice of either exact or approximate
starting values of land m.

2.2. Simplifications Resulting from the Absence of Suction.-It will be noted that in the absence
of distributed suction equation (3) reduces to m = - A, so that once increments in t* and H.
have been calculated the appropriate values of land m follow more readily than in the general
case.

A more important simplification is indeed possible, since equations (1) and (2) may be written
for this case

t*' = : Fl(l, A)
U

H.' = _1 F2(l, A) .
Ut*

(4)

(5)

For any given family of velocity profiles F, and F 2 may be calculated once for all and presented
in the form of tables or graphs. Wieghardt" has in fact provided such tables derived from a
doubly-infinite family of profiles discussed in Part II.

It will be seen that when distributed suction is present, functions corresponding to Fl and F2

will contain three variables, so that they cannot be readily tabulated or graphed. For this
reason it has been necessary in developing the general method to take the indirect course of
plotting the relevant boundary-layer characteristics as functions of land m, these being deter­
mined jointly as we have seen, by H., A and A.

2.3. Difficulties Arising in the Use of the Method.-In general it is not known initially how to
extrapolate H.' and t*' to the middle of the first step; one trial is, however, normally sufficient
to establish the appropriate extrapolated values. A more serious difficulty arises when the
boundary layer is thin, i.e., for small values of t*. In this case it may be found that successive
values of H.' tend to oscillate wildly and considerable difficulty may be experienced in maintaining
a smooth curve of H.' plotted against x. In this case it will be necessary to reduce the increments
in x and to use considerable care in reading values from the charts.* In fact, it has so far been
found that such divergencies as occur with careful working do not seriously affect the accuracy
of the result, and it is only rarely that extrapolated values of H.' have been revised to obtain a
smoother curve.

2.4. Example.-In Section 10 the case is considered of suction applied in an adverse pressure
gradient. Figs. 15 and 16 show the results of the calculations for a particular distribution of
suction velocity. It will be seen from Fig. 15 that there is a considerable scatter in the values
of H.', though H. and t* lie on relatively smooth curves. The example is referred to here to
show the order of accuracy with which the examples that follow have in general been treated.
In carrying out the calculations it has been found that if both suction and pressure gradient are
present, then each step requires 7 to 15 minutes to complete. If, on the other hand, either
suction or pressure gradient alone is present, then this time is approximately halved.

3. Comparison of Results Obtained by the Present Method with Known Exact Solutions.­
3.1. Schubauer's Ellipse.-The experimental pressure distribution and point of separation
observed on an ellipse" have been used as a test of approximate methods of calculating the
laminar boundary layer. Both Howarth" and Hartree", the latter using a differential analyser,
have obtained solutions which do not give separation near that observed experimentally.

* See footnote on previous page.
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However, by very slightly modifying the observed pressure distribution, solutions are obtained
which give good agreement with experiment. The sensitiveness of the position of separation to
the exact value of the pressure gradient in this region, which may not have been determined
experimentally with a sufficiently high degree of precision, limits the usefulness of this method
of testing the accuracy of the approximate solutions. However, the solution obtained by Hartree",
which should be very nearly exact for the pressure distribution which he assumed, may be used
for comparison. The present method has been applied using the modified pressure distribution
given by Hartree.

At a distance around the surface from the stagnation point equal to 0·001 (in terms of the
semi-minor axis of the ellipse) the following starting values, known to be very different from those
appropriate to stagnation, were assumed:

1 = 0'221}
Blasius values

m=O

v

After 15 steps, starting with intervals of x = O·00002, the following values, which changed only
slowly with x, were obtained near x = 0·0017:

1 = 0·365

m = - 0·085

(J2
- = 0·0097.
v

The profile corresponding to these values is compared in Fig. 17 with the stagnation-point profile
given by Howarth", It will be seen that the agreement is excellent. It therefore appears that,
at least in the region of the stagnation point, the method is self-correcting to a remarkable degree.

The remainder of the solution is compared in Figs. 18 to 20 with that obtained by Hartree.
Velocity profiles at separation are not compared, since profiles are not given by Hartree for the
pressure distribution modified beyond x = 1·8. It will be seen that the general agreement is
extremely satisfactory; however, the present method gives a slight delay in separation and
values of skin friction for x < 0·2 which are in general greater than those given by Hartree.

3.2. Howarth Flow (U = bo - b1x).- Howarth8 has given an exact solution of the laminar
boundary-layer equations for the case where the stream velocity decreases linearly with the
distance along the surface. Here, since there was no stagnation point, the Blasius values of land
m were used to start the calculation by the present method. After eleven steps a separation
profile was obtained. In Figs. 21 to 24 the results of the calculations are compared with those of
Howarth, the notation used being that of the original author. The general agreement will again
be seen to be extremely satisfactory.

3.3. Circular Cylinder.-In 1911 Hiemenz" gave the results of an experiment in which the
point of laminar separation on a circular cylinder was observed and compared with the position
calculated using a Blasius series. The observed velocity distribution outside the boundary layer
was approximated for the calculation by a fifth-degree polynomial in x, the distance around the
surface from the stagnation point. Gortler discusses the calculations of Hiemenz in Refs. 16 and
17, and concludes that the results may be regarded as a good approximation up to x = 4,5, at
which point Gortler commences his calculations by his own method of differences using the same
approximation for the distribution of external velocity as had been used by Hiemenz. This
distribution has also been used for calculations by the present method, the results of which are
compared with those of Gortler in Figs. 26 and 27. Two sets of calculations were in fact performed
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From Ref. 2

Calculated by present author

by the present method, one starting at the stagnation point and the other at x = 4·5, using one
of the initial profiles given by Gortler. Both sets of calculations gave separation at x = 6·825.
The following lists the positions of separation as calculated by various methods:

Pohlhausen 6·94

Blasius and Hiemenz 6·98

Wieghardt (from x = 5·5) 6·77

{

Schroder 6·87

Di:~~~s Gortler (1939) 6·77

Gortler (1944) 6· 80

Thwaites" 6·63

Present method 6·825 .

From these results and those shown in Figs. 26 and 27 it may be concluded that the present
method is comparable in accuracy with those based on the step-by-step solution of the boundary­
layer equation.

3.4. Flat Plate with Uniform Suction.-For this case equations (1), (2) and (3) are most
conveniently put in the form

A2 1 = 2(1 - A) ,

He' = ;2 {2D* - He(l - A) - A} ,

(6)

(7)

where the primes denote differentiation with respect to ;( = (v s/U)2Rx )' and m = - lAo

The results obtained by the present method are compared in Figs. 28 to 30 with the exact
solution given by Iglisch". The discrepancies between the exact and approximate values of
vs8/v and vJ5*/v, though probably of no great practical importance, are somewhat surprising in
view of the fact that the asymptotic profile was one of the four known profiles used to build up
the doubly-infinite family which forms the basis of the method. There are probably two com­
plementary reasons for the discrepancy; one is the only moderate degree of accuracy with which
the characteristics D* and He have been determined from the profiles, and the other is the
sensitiveness of the solution to the exact course of the I, m path traversed. The momentum
equation may, for this problem, be put in the form

The small difference between the exact and the approximate l, m paths, which arises from the
inaccuracies in D* and He mentioned above, is then responsible for the relatively larger
discrepancies in vs8/v and in vso*/v. The exact and approximate l, m paths are shown in Fig. 31.

The asymptotic behaviour of the solution is particularly satisfactory, values of I and m being
approached at which A2 1 and He' simultaneously vanish. These asymptotic values of I and mare
somewhat different from the exact values (I = O·512, m = 0·263 instead of 0·50 and 0·25
respectively), due again to small inaccuracies in the values of D* and He.

3.5. Flat Plate with Uniform Suction following a Solid-Entry Length.-Exact solutions to this
problem have been found by Watson" for different lengths of solid entry, though these solutions
have not been carried far downstream. The approximate results obtained by the present method
are compared with Watson's results in Figs. 32 to 34. The approximate calculations were started
at the commencement of suction, up to which point the normal Blasius solution was used.
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If the results are compared with those which have been, or which might be, obtained by
approximate methods based on the use of the momentum equation alone it will be seen that very
considerable advantages arise in this case from the joint use of the momentum and energy
equations. As an extension of their methods applied to the flat plate with uniform suction, both
Schlichting" and Preston" have presented approximate solutions for the flat plate with solid
entry. While Preston's solution is extremely satisfactory for the flat plate with uniform suction
the results obtained with a solid entry can be considered approximately correct only at a con­
siderable distance downstream; at the commencement of suction there is a large discontinuity in
0* and the general behaviour in this region does not compare with the exact solution. The method
of Thwaites may be expected to give results very close to those obtained by Preston, since again
the value of A at any point alone determines the boundary-layer characteristics and the subsequent
development of the boundary layer. Thus, to take a particular example, if, by adjusting the
length of solid entry, or the rate of suction, so that A has the same value at the commencement
of suction as is asymptotically approached far downstream, then at the beginning of suction the
boundary layer will immediately take the asymptotic form. This represents a very considerable
discontinuity in profile shape and displacement thickness.

In the present method the values of both momentum and energy thicknesses are preserved
constant at the discontinuity. Thus, for the flat plate with solid entry, the starting point of any
calculation in the suction region lies on the line of constant He which has the Blasius value and
is fixed by the value of A at the beginning of suction. Fig. 55 shows the l, m paths traced out
in the course of the calculations and Fig. 36 a comparison between the Blasius profile and the
profiles at the commencement of suction. It will be seen that the discrepancies are small.

3.6. Similar Profiles.-In certain types of flow, boundary-layer velocity profiles are obtained
which, expressed in the appropriate non-dimensional terms, are identical at all points along the
surface. A particular example of this type is the Blasius solution for the flat plate, which as
shown by Preston" and by Schlichting and Bussrnann'", applies also when distributed suction is
applied in such a manner that v, = KX- 1

/
2

; only the boundary condition at the surface is then
altered, the Blasius equation itself remaining unchanged. More generally, for solid boundaries,
the pressure distributions represented by U = Cx n give rise to similar profiles and in this case
also, as pointed out by Preston", a distribution of suction can be found for any value of n which
will give an ordinary differential equation of the same form as for zero suction. As mentioned
previously, Schlichting and Bussmann 10 give results for the case where n = 1 (stagnation-point
flow) and solutions for the general case are given by Mangler in Ref. 23, which contains a very
full and detailed discussion on the subject of similar profiles. Thwaites" gives a large number of
solutions obtained by relaxation methods and uses these as the basis of an approximate method
of calculating the laminar boundary layer with suction.

In this Section the present approximate method is used to investigate the families of similar
profiles obtained:

(a) in the absence of a pressure gradient
(b) in the absence of distributed suction
(c) with both suction and pressure gradient.

(a) Similar profiles in the absence of a pressure gradient.-For each member of a family of similar
profiles land m must take values which are independent of x. This immediately implies He' = O.
In the absence of a pressure gradient this condition becomes (see equation (2)):

o = 2D* - He(l - A) - A . (9)

For given values of land m, D* and He may be obtained from the appropriate charts and A
determined from equation (3) which in this case reduces to:

m
A= -­

l

8
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Thus for a series of values of l we can plot the right-hand side of (9) against m, and hence for
each value of l find the corresponding value of m which satisfies the equation. The values of m
so obtained are found when plotted against l to lie on a smooth curve which defines the family
of similar profiles. This curve is shown in Fig. 37.

We may now use the momentum equation and equation (to) to find the distribution of suction
velocity which gives rise to similar profiles and to find the rate of suction corresponding to any
given profile in the singly-infinite series.

The momentum equation may be written for this case

tx C72
1/U) = 2(l - A) ,

and for any given profile in the family of similar profiles, land m, and hence l and A, are constant,
so that .

()2U
- = 2(l- A)X,

1/

or

Also, by definition, A = ()vs/v.

Hence we obtain

~ = y!{2(l - A)}Rx - 1 / 2 .

X
(11)

u, _ A R -1/2 (12)
U - y!{2(l - A)} x

In the absence of a pressure gradient, similar profiles are therefore obtained when the suction
velocity varies as X- 1

/
2

, the boundary-layer thickness then being proportional to X+ 1
/

2
• This

result is, or course, the same as that given by exact theory.

For any given profile in the family of similar profiles defined by the l, m curve obtained above
we can calculate from (to) and (12) the rate of suction (defined by vs/Uy! Rx ) which gives rise to
it. By plotting land m as functions of vs/Uy!Rx we may then conversely find the values of land m
corresponding to a given rate of suction. Once land m are known, the values of ()y!(U/1/x), H
and o*y!(U/1/x) readily follow.

In Figs. 38 and 39 results obtained by the present method are compared with differential­
analyser solutions given by Thwaites". It will be seen that the agreement is excellent throughout.

As an alternative method of attack the distribution of suction velocity given by vs/Uy! R, = 1
was taken, and initial values of l, m and t* chosen which were very different from those corre­
sponding to the final profile. After approximately 20 steps the appropriate stationary values
of l, m and t* were achieved.

(b) Similar profiles in the absence of suction.-Falkner and Skari" show that for the flow
represented by U = ex" the boundary-layer equation is reduced to an ordinary differential
equation. Hartree" has given numerical solutions of this equation for various values of
(3 (= 2n/(n + 1)). Each value of (3 corresponds to a boundary-layer velocity profile which,
expressed in the appropriate non-dimensional terms, is identical at all points along the surface.

The problem of similar profiles obtained without suction by a suitable distribution of external
velocity will be examined by the present approximate method.

For any profile in the family of similar profiles land m must be constant, so that He' = O.
Thus, for this case,

o= 2D* - H.(l - (H - l)A) .

As before, we find the l, m curve representing the family of velocity profiles by finding for a
series of values of I the corresponding values of m for which this equation is satisfied. The l, m
curve obtained in this way extends from l = 0 to l = 0·6, the limit of the charts, and is shown
in Fig. 40 along with other curves discussed later.

9



From the momentum equation and the boundary-layer equation at the surface we can once
again deduce the necessary condition for similar profiles, and at the same time find the flow
which gives rise to any particular profile in the series defined by the l, m curve.

The momentum equation may be written for this case

d(e 2
) 2dx -:;; = u{l- A(H + 2)}.

Now, since m(= - A) is constant,

e2

v
so that

m
- dUjdx'

d ( m) 2- dx dUjdx = U{l- A(H + 2)},
or

(13)

where

k = - ~ {l - A(H + 2)} . (14)

A solution to equation (13) is U = c«; where n = Ij(k + 1) and C is a constant.

Thus, as is otherwise known from exact solution of the boundary-layer equations, the flow
U = Cxn gives rise to similar profiles.

At any point along the l, m curve provisionally defining the family of profiles, the value of k
can be simply found from (14) by the use of the appropriate charts, the value of A being for this
case - m.

From the values of k the corresponding values of nand fJ readily follow. In Fig. 40, m, k, n, and
fJ are plotted as functions of l. This Figure is of some interest and will be further discussed later.

Hartree presents his results in the form of velocity profiles expressed in terms of variables
which we shall call Y and ujU in order to avoid confusion with the notation so far used.

From the transformations used by Hartree it follows that

Y = ~ (~xr/2 {i(n + lW/ 2

To compare results obtained by the present method with those given by Hartree, values of l
and m corresponding to Hartrees values of fJ were determined from Fig. 40 and hence from the
appropriate charts velocity profiles in terms of yje. Values of yje were then transformed to
values of Y in the following way:

S· f hi e2
dUmce, or t IS case, m = - A = - --d

v x

e = ( - d~;dXr/2

= (- n~;_lr/2

= (-: ~r/2
or

(15)
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Thus Y = ~ ~ (UX)1 /
2 {i(n + 1))1/2

()X V

Y [m J1 /2
= e - 2n (n + 1)

For the given values of f3, m and n were determined and hence velocity profiles found which are
compared with those given by Hartree in Fig. 41.

In Ref. 25 Mangler tabulates the relevant characteristics H, land m of the Hartree profiles as
functions of f3. He also gives the values of momentum and displacement thickness expressed in
the same units of length as Y. Thus we define

e = ~ (~Xr/2 {i(n + 1))1/2
and

From (15) we see that

[
m J1 /2

e = - 2n (n + 1) ,

so that for any given value of f3, knowing nand m, we can simply find e; the corresponding
value of Ll * then follows from the value of H, which can be determined from the known values
of land m. Results obtained by the present method are compared with those given by Mangler
in Fig. 42.

Reverting now to Fig. 40, we notice that f3 is a smooth function of 1but that there is an infinite
discontinuity in k at 1= 0·224 and in n at 1 = O·398. The discontinuity in k with change of
sign corresponds simply to n passing through zero from small negative to small positive values.
This change in sign of n is accompanied by a corresponding change in the sign of m, as might be
expected since

()2 dU ()2
m = - A = - --d = - - (nCx"-l) .

v x v

Thus, no anomaly results from the discontinuity in k, At 1 = O·398, however, n passes from a
large positive to a large negative value without any corresponding change in the sign of m, and
the negative values of n obtained for 1> O·398 are clearly incompatible with the negative values
of m for which k (and hence nand (3) were calculated in this region. This anomalous result leads
to the conclusion that for values of 1 greater than O·398 (f3 > 2), real solutions for the flow
U = Cx" do not exist*. It will be noted that the profile represented by 1 = O'398, m = - 0·109
((3 = 2) is now the limiting profile, which is asymptotically approached as n is increased without
limit. The profile at m = - 0·085 (n = 1, f3 = 1) is the stagnation-point profile in the absence
of suction (cf. Section 3.1) and the profile at 1 = 0,224, m = °(n = 0, (3 = 0) corresponds to
the Blasius solution for the flat plate. The values of land m given are, of course, approximate
and represent the results obtained by the application of the present method.

(c) Similar profiles with suction and pressure gradient.-Using the present method it is easy to
find the 'similar' profile which corresponds to given values of A and A. The values of A and A
will define a line on the l, 1!J chart according to equation (3). If, for various points along this
line, the expression for H'Ut* is calculated, the various points of land m for which H' = °can
be simply found by plotting. These values will define the 'similar' profile corresponding to the
given values of A and A.

* Since the above was written it has been pointed out to the author that the profiles beyond I = 0·398 represent
solutions for the flow U = C(x - xo)", where % - %0 < 0, as given by Mangler (Zeitschrift fur angewandte Mathematik
und Mechanik, VoL 23, pp. 241 to 245. 1943).
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By following the above procedure for a series of values of Ii and A given by Thwaites, it was
possible to find the corresponding family of similar profiles. In Figs. 43 and 44 these are compared
with the profiles given by Thwaites". It will be seen that the agreement is excellent.

3.7. Comments.-In all the foregoing examples the general behaviour of the boundary layer as
calculated by the present approximate method is in excellent agreement with that calculated
exactly; quantitatively also the results are of acceptable accuracy. Such discrepancies as exist
are almost certainly due in the main to the limited accuracy with which the boundary-layer
characteristics have been determined, and by slight modification the charts could be made to
give results which agree even more closely with the exact solutions. Once a start had been made
in using the method, however, it was considered advisable to keep the charts unaltered, and to
present these with the examples for which they had been used.

PART II

Construction of Charts and Calculations Applied to an Aerofoil with Suction

4. Construction of a Doubly-infinite Family of Velocity Profiles.-4.1. Wieghardt's Projiles.-In
Wieghardt's method", the following polynomial is used to represent the distribution of velocity
in the boundary layer:

Here n = yjo.

It will be seen that the first seven derivatives of u with respect to 'fJ vanish at the edge of the
boundary layer, where ujU = 1.

AI> A 2, and As are determined to satisfy three boundary conditions at the surface, and the
expression for ujU reduces to

u
U = I, + ai2 + bis ,

where I, and I, are functions of 'fJ for which f2" (0) = is' (0) = 0 and a and b are form parameters
which are simply related to the slope and curvature respectively of the profile at the surface.

The functions off1,f2' and j, which follow from the polynomial chosen by Wieghardt are shown
in the accompanying sketch.

u
U

It will be seen that 11 may be regarded as a basic profile to which varying amounts of the
functions 12 and I, may be added independently to modify the slope and curvature respectively
of the profile at the surface. The range of profiles which may be built up in this way is consider­
able, but unfortunately does not extend to the more stable convex profiles which may be obtained

12



with suction or in a favourable pressure gradient. Moreover, the fit with known profiles for
given values of land m is by no means perfect. This latter shortcoming may not be considered
serious, nor is the limited range of profiles of great importance in solid-boundary problems, since
one-parameter methods can be conveniently used in this case for calculations in regions of falling
pressure. Such methods cannot, however, be used with the same confidence to calculate the
convex profiles which may be obtained with distributed suction even in regions of rising pressure.

4.2. Present Method of Constructing Profiles.-For the reasons given at the end of the previous
Section it appeared that if Wieghardt's method was to be extended to enable calculations to be
carried out on the laminar boundary layer with suction, a considerably extended range of profiles
would be required. To obtain such an extended range of profiles the principle of adopting a basic
profile and of modifying this by adding varying amounts of functions I, and fa was retained, but
the representation of profiles in analytic terms was abandoned andf1,J2 and r, defined numerically.
In addition, I. was taken as the Blasius profile and f2 and fa determined in such a way that
approximate profiles were obtained which fitted exactly two known profiles other than the
Blasius. The method by which f2 and fa were found to satisfy these known profiles is outlined
in the following section.

4.3. Determination of Functions f2 and fa.-We assume that a doubly infinite family of velocity
profiles is represented by

where n = y!o, f1('Yj) is the Blasius profile (//(0) = 0), f2"(0) = f/(O) = 0, and c and dare
constants which determine the shape of the profile. The functions f2 and fa are as yet unknown
but may be expected to appear somewhat as shown in the accompanying sketch.

'la'

Our object is to determine I, and fa in such a way that two approximate profiles given by

(1)

and

(2)

can be fitted exactly (when c and dare given the appropriate values) to two given profiles
represented by

and

u
U = F(n)

~ = G('Yj) respectively.

13
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We start by assigning arbitrary values to /2'(0) and /a"(O). Then from the following equations
Cl> db c2and d2 are so determined that the approximate profiles fit the given profiles at the origin.

F'(O) = //(0) + Cd2'(0)

F"(O) = dd3"(0)

G'(YJ) = //(0) + cd/(YJ)

Gil (0) = dda"(0) .

These equations follow readily from (1), (2), (3), and (4), and the fact that

//'(0) = /2"(0) = /3'(0).= 0 .

For any given value of YJ (say YJ1), we can find values of/2and r, which will make the approximate
profiles fit the given profiles at this value of YJ. It will be seen that the equations to be satisfied
are

F(YJ1) = /1(YJ1) + Cd2(YJ1) + dda(YJ1)

G(YJ1) = /1(YJ1) + ed2(YJ1) + dda(YJ1) .

All quantities in these equations are known, other than/2(YJ1) and/a(YJ2), so that numerical values
of these latter quantities readily follow.

By repeating the procedure of the last paragraph for a sufficient number of values of YJ we
can determine the complete profiles of /2 and fa.

Functions r, and z, have now been determined in such a way that by giving appropriate values
to c and d, approximate profiles are obtained which fit exactly the given profiles. It may be
expected further that by the use of these functions a close approximation may be obtained to
any profile which is generally similar to the given profiles. This is in fact found to be the case.

It will be remembered that in the first instance /2'(0) and //(0) were given arbitrary values
from which c and d followed; equally it is possible to assign arbitrary values to e and d which
will determine corresponding values of/2'(0) and//(O).

It is found in practice that j', and/a, as determined from two profiles at or near separation, are
different from those determined from two profiles with high skin friction. This difference is
exemplified in Figs. 45 and 46, where it will be seen that for the same values of /2'(0) and /a"(O)
values of /2 and I, are smaller in general in the second case. This implies that given changes in
llU (ouloYJ)o or in llU (o2uloYJ2)O result in greater overall changes in profile when the skin friction
is small.

4.4. Detailed Procedure Adopted.-The functions /2 arid I, were found from two separation
profiles given by Thwaites", and from the asymptotic suction profile and a hypothetical profile
having the same value of llU (ouloYJ)o but with llU (o2uloYJ2)O = O. We shall use the subscript 1to
refer to /2 and r, as determined from the separation profiles and the subscript 2for those functions
determined from the profiles with high skin friction.

e and d were arbitrarily given the value unity for the asymptotic suction profile; the values of
e and d corresponding to the separation profiles were then determined to make

and
[/2'(0)J1 = [//(0)J2

[/3"(0)J1 = [/a"(0)J2

Thus for the two profiles with high skin friction c = 1, and for the two separation profiles it was
found that c = - 0·493.

14



Having determined the functions f2 and j; (see Figs. 45 and 46), appropriate to profiles on the
one hand with high skin friction, and on the other with zero skin friction, it was assumed that
approximations to f2 and f3 for intermediate profiles might be obtained by interpolating linearly
with c. That is to say, for a particular value of c (say c1), it was assumed that values oi f; and j',
for 'YJ = 'YJ1 could be found with sufficient accuracy from the following expressions.

0·493 + C1I, = [f2(171)J1 - {[f2('YJ1)J1 - [f2(?7I)J2} 1.493

0·493 + C1I, = [f3('YJ1)J1 - {[f3('YJ1)J1 - [f3('YJ1)]2} ------r:4~ .

The process of interpolation was carried out graphically, as shown in the diagram, for values
of 'YJ1 = 0·1,0,2,0,3 ... 0'9.

-0,493 o c_

A family of approximate profiles was then built up by giving c a series of values, for each of
which z, and j', were determined as described above, and d given various values, from which the
profiles followed.

As might be expected, for a given value of c only a limited range of d gave profiles which
appeared physically acceptable. As well as the limitation that ulU must not exceed unity, it
was further assumed that for llU (o2ulo'YJ2)O > 0, llU o2ulo'YJ2 must be positive for all values of 'YJ*.

4.5. Calculation of Characteristic Quantities.-For the family of velocity profiles built up by
the method of the previous sections it was first necessary to determine the quantities e, b*, e

J1 1 (OU)2
and 0 U2 o'YJ o'YJ.

The first three presented little difficulty, but for the last it was necessary to know IIU oulo'YJ
through the boundary layer. Since

1 au f' j' .r ! u:U a'YJ = = 1 + CJ2 + './3 '.

[f2J1, [f2J2, [f3J1 and [f3J2 were differentiated graphically so that by linear interpolation the values of
f2' andfa' corresponding to any given value of c could be found. Sincer," was known from an exact
solution, values off' readily followed. The functionsf/,f/ andf3' are shown in Figs. 47 and 48.

Simpson '8 Rule was used to integrate 1 - tc[U, ulU(1 - uIU), ulU[1 - (UIU)2J and
[IIU aula'YJJ2 through the boundary layer. When these quantities had been determined, e was
taken as the characteristic length and values of H., H, l, m and D* calculated. H., Hand D*
were then plotted as functions of land m. Further, values of yle for given values of ulU could
be plotted in -the same way, thus enabling the velocity profiles corresponding to given values
of land m to be quickly obtained. A large number of comparisons between known profiles and
points obtained from these curves have been made and in all cases the agreement is extremely
satisfactory; for lack of space the comparisons are not given here.

* This latter assumption was probably over-restrictive. When suction is applied to a layer which has advanced a
considerable distance towards separation, it seems likely that the skin friction will increase while the inflexion point
in the profile will persist for some distance downstream.
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4.6. Further Extension of Range of Profiles.-With one exception all types of profiles known
to the author lie within the range of profiles built up by the method described; the important
exception is a small set of similar profiles with suction given by Thwaites". These profiles have
a very high skin friction and a large curvature at the surface. Unfortunately, they could not be
used to obtain values of f2 and I. which would have extended the range of profiles beyond the
asymptotic suction profile, because of the uncertainty of the value of y at ujU = 0·995. How­
ever, it seemed that these profiles were in no way anomalous and that it should be possible to
extend the I, m charts to take in the region in which they lay. These profiles indicated further
that, with suction, profiles may be obtained which lie far outside the range of profiles covered
by solid-boundary problems; the examples treated in Section 10 show that this is in fact the
case. To extend the charts, values of yjO for given values of ujU were first considerably extra­
polated. These extrapolations were then used to plot profiles in the extrapolated region and
where necessary the values were slightly altered so that smooth profiles were obtained. The
values of 0 were then calculated for these profiles and where these differed by more than 2 per cent
from unity the extrapolated values were again adjusted. The further boundary-layer character­
istics H, He and D* were then calculated for these profiles and plotted on the appropriate charts.

By the above procedure the range of profiles covered by the charts was greatly extended.
Figs. 49 to 51 show the full range of profiles for m :( O.

5.6. Stability of the Laminar Boundary Layer.-According to the stability theory of Tollmien
and Schlichting there exists for any given boundary-layer velocity profile a boundary-layer
Reynolds number below which infinitesimal disturbances of all frequencies are damped and
above which amplification or disturbances of particular frequencies may take place.

Lin26 gives a particularly simple formula by which the critical boundary-layer Reynolds number
may be calculated, when the velocity profile and its first and second derivatives with respect
to yare known. Since velocity profiles are given for the range covered in the charts it should
be possible to construct a similar chart on which critical boundary-layer Reynolds number is
plotted as a function of I and m. The first derivatives of the profiles had been determined in
fmding D*, the dissipation function, so that it was in fact possible to obtain the second derivative
by differentiating graphically a second time. The first and second derivatives for profiles with
m :s; 0 are shown in Figs. 52 and 53.

Lin's formula may be written
251

ROeTil = ii4 '
c

where u , is the velocity for which the following equation is satisfied:

I [21~ - 3J U(02u joy 2) = 0·185 . (5)
u (oujoy)3

To avoid introducing further notation y is here used for yjO and u for ujU.

For some twenty profiles the left-hand side of the second expression was calculated and plotted
for a series of values of y using Figs. 53 and 54. To achieve the necessary accuracy and consistency
of results, values of u close to the surface were obtained by integrating the values of oujcy in
Fig. 52. It was found that there were in general two values of u which satisfied equation (5).
Comparison with known values of Ra cr il for the asymptotic suction profile and the Blasius profile
indicated that the smaller values of u and y were in fact appropriate. Fig. 54 shows the graphical
solution of equation (5) for one value ot I and three values of m.

The values of R, (Til found as above were reasonably consistent and in good agreement with
accepted values where these were known. Curves of constant Raeril plotted as a function of I and
m are shown in Fig. 55. Within the region to the right of the dotted line it is believed that the ­
values given will be accurate to within the limits imposed by the approximate nature of Lin's
formula.
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It has been suggested by Chiarulli and Freeman" that Recrit may be taken as a unique function
of H. For the most commonly occurring profiles this is probably not an unreasonable approxi­
mation, since such profiles tend, in the region of negative m, to form a one-parameter family.
From the present results, however, it appears that, for the full range of profiles which may be
obtained with suitable combinations of suction and pressure gradient, H cannot be considered
a suitable criterion of stability. From Fig. 55 it appears that for values of 1 greater than, say,
O·35, the ratio mil might be accepted as a more satisfactory criterion.

6. Distributed Suction Applied to an Aerofoil.-The case is considered of suction applied to the
upper surface of an aerofoil at a positive incidence. The velocity distribution chosen presents a
simple example since the pressure is uniform from the leading edge to 40 per cent of the chord.
Figs. 56 and 57 show the chordwise distribution of external velocity and velocity gradient, and
the four different distributions of suction velocity for which calculations were carried out. Since
the suction and external velocities were uniform up to 40 per cent. of the chord, the Iglisch
solution for the flat plate could be used to obtain starting values of l, m, and t* at this point.
The results of the calculations are shown in Figs. 58 and 59. It will be seen that a very wide
range of velocity profiles is covered; it was not in fact found possible to complete the calculations
for the highest rate of suction. With reference to Fig. 59, the critical boundary-layer Reynolds
numbers quoted have been obtained from Fig. 56. It is interesting to note that a 30 per cent
increase in mean suction velocity at a given chord Reynolds number results in an increase in the
critical Reynolds number of the boundary layer at the trailing edge to between twenty and
thirty times the initial value. This is of assistance in interpreting previous experimental results.
It has always appeared somewhat anomalous that, although it is known that the critical boundary­
layer Reynolds number may be very greatly exceeded before transition takes place, yet the suction
quantities so far found necessary to preserve laminar flow are not greatly different from those
calculated by approximate methods as being necessary to preserve formal stability of the boundary
layer. In the light of the present example this is no longer surprising, since small changes in
suction velocity evidently result in quite disproportionate changes in boundary-layer stability.

7. Concluding Remarks.-The examples treated in Part I show close agreement between results
obtained using the present method and the corresponding exact, or nearly exact, solutions. In
developing the present method, the only appeal to exact solutions has been in the choice of four
known velocity profiles, so that the accuracy with which the standard cases have been treated
may be taken as a fair indication of the accuracy which will be achieved in the general case.
The method is applicable equally to solid-boundary problems and to problems involving suction,
and will be preferred to existing approximate methods wherever additional accuracy is required
at the expense of some increase in computing time.

8. Acknowledgements.-The author wishes to acknowledge gratefully the assistance of Miss
Jean Wilson, who carried out a large part of the computation necessary for the development of
the method, and to record his appreciation of helpful correspondence with Mr. E. J. Watson of
Liverpool University.
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NOTATION

The notation is as far as possible conventional and follows, in the main, that used by Thwaites.

General

x Distance along surface

y Distance normal to surface

Uo Free-stream velocity

U Velocity at edge of boundary layer

U Velocity in boundary layer in x direction

U c Value of u at critical value of y

v Velocity in boundary layer in y direction

V s Velocity at surface in direction of y negative

fJ Boundary-layer thickness

fJ* Displacement thickness

J: (1 - ~) dy

e Momentum thickness

- f:~(1 - ~) dy

e Energy thickness

f:~ II - (~rl dy

c Chord, or representative length

p Density

It Viscosity

'jJ Kinematic viscosity

R c Chord Reynolds number

R" Reynolds number based on x

Ro Reynolds number based on momentum thickness

R; crit Critical value of R,

x - xlc

o U/Uo

D* Dissipation integral

- J:10 (~r(~;r d (~)
H fJ* /e
H. s/e

A - v.e /Y
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NOTATION-continued

A

() (OU)
l - U oy 0

m = ()2 (02U)
U oy2 o

Subscript 0 refers to values at surface

t*

v*s

; - (dJ2 Rx

'YJ - y/~

Constants used by Wieghardt" in polynomial representation' of velocity
profiles

Functions of 'YJ defined in Sections 4.1 and 4.2

Constants used by Wieghardt" to define approximate profiles in terms
of f1' f2 and fa

c, d Corresponding constants used in present method.

The following additional notation is used in comparing results obtained by the present method
.with certain exact solutions. The notation is in most cases that of the original authors but
certain symbols have been changed to avoid confusion.

HowarthS

i; b1 Constants (U = b, - b1x )

b 1/2

X - _1_()
'/11/2 _

~1 Displacement thickness

~ * b//2

1 '/11/2 ~l

x*
b//2

- 172 x
'/I

'/11/2 CU)
,

(OUr
oy 0

- bob1
1/2 oy 0

t; y X- (j 2X*1/2

Thwaites"

h JUo
- Y '/IX

(11 Constant (v s = (11X1/2)
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NOTATION-continued

Schlichting and Bussmannl O

Constant (U = u1x)

Falkner and Skanll
, and Hartree12

C,n Constants (U = CX")

f3
2n

n+1

k
1-n

n

y y (UXf/2 [1 r/2
- - -(n + 1)x 1/ 2

e e(uxf/2[ r/2
- - l(n + 1)x 1/ 2

Ll* 0* (UXf/2 [ r/2
- ~- - l(n + 1)x 1/ 2
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APPENDIX

(2)

(B)

(1)

This may be written

Introducing the notation

Derivation of Equations used in Present Method
(i) Momentum Equation.

For two-dimensional incompressible flow the boundary-layer equation may be written
OU OU dU 02U

U oX + v oy = U dx + V oy2'

and the equation of continuity

OU + ov = O.
ox oy

Multiplying the left-hand side of (2) by u and adding to the left-hand side of (1) we have
OU 0 dU 02U

2u ox + oy (uv) = U dx + V oy2'

Integrating over y from y = 0 to Y = h, where h is a distance greater than the boundary
layer thickness and independent of x, we find

I: 2u ~~ dy + [uv]olt = I: U ~~ dy + v [~~J:,

or I: 2u ~~ dy + U [I: ~~ dy - VsJ = I: U ~~ dy + v [~~J:,
where v" the suction velocity, = - vo.

Hence :x I: (U2- u2) dy - U :x I: (U - u) dy + vsu = v (~~t .
In the usual notation this becomes

:x [U2(0 + o*)J - U :x (UO) + vsU = v G~t, .
which upon further simplification reduces to

dO = ~ (OU) .; (H + 2)~ dU _ vs.
dx U2 0YoU dx U

t* = (~)2 Rc c ,

- U
U= u,:

l = ~ (OU)
U oy 0'

02 dU
..1---

- v dx '
and

it = OVs

v '
equation (3) becomes

t*' = : {l - A(H + 2) - it} ,
U

where the prime denotes differentiation with respect to x(= x/c).

23



(ii) Energy Equation.

As before,

(1)

(2)

and

OU OU dU 02U
u---+v---= U--+ v---ox oy dx oy2

o~+ ~= 0
ox oy

If we add u/2 (ou/ox + ov/oy) to the left-hand side of (I), multiply through by u, and
integrate from y == 0 to Y = h, we have ~

J"3 2 au du --- y
02 ax

i.e.,

JhUV ~~ dy + Jh ! u2 ~ v dy - U Jh U ~.'2 dy
o cy 0 2 oy 0 dx

J
h 02U

= v u~dy,
o uy

d Ih

(1 3 1 U2) d 1Ih

U2 OU d 1 [ 2 ] "dx 0 2 u - 2 u y + 2 0 ax y + 2 u v 0

or

= [vu OU]" _ V I" (OU)2 dy ,
oy 0 0 oy

_4_ Ih

} u(U2 _ u2) dy +1 U2I" o. Udy + ~ U2[I"~ dy - vs]dx 02 2 0 ox ...... 0 oy

Hence

or

where E, the energy thickness,

(4)

This is the energy equation in its usual form.

Now

so that

d (E) 1 dE E de
dx fj =0 dx - (iii dx '

4~ = e 4H--. + H de
dx dx e dx' (5)

where

Also

which from (5) becomes

E
He = »:

~ (U3E) = 3U2E dU + U3dE
dx dx dx'

!i (U3E) = 3U2E dU + tre dH, + U3H de .
dx ' dx dx B dx
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Substituting for d/dx(U38 ) in (4) we have

3U2
8 ~~ + U3f) ~~e + U3He~~ + «i» = 2v J: G~) 2 dy .

SUbstituting for df) [dx from (3) and re-arranging, we find

Uf)2 dHe = 2 _~ Jh (OU)2 dy _ He [~(OU) _ (H _ 1) ~~ dU _ Vsf)--I_ ~~ ,
V dx U2 0 oy U dy 0 V dx V _ V

which may be re-written

H ' = -J- [2D* - H {l - A(H - 1) - A} - AJ
e Ut* s ,

where

and the other symbols are as defined above, the prime denoting as before differentiation with
respect to x (= x/c).

(iii) Boundary-Layer Equation at the Surface.

At the surface, v = - v" u = 0 and au/ox = O. Hence the boundary-layer equation for
two-dimensional incompressible flow becomes

___ v (OU) = U dU + V (02U)
s oy 0 dx oy2 0 '

where the subscript 0 refers, as elsewhere, to conditions at the surface. Multiplying through
by f)2/U)) this becomes

_ vsf) ! (.~~) = 8
2
dU f)2 (02U)

V U 0y 0 v dx + U 0y2 0 '

which may be written

or

where

-Al=A+m,

m = - (A + l?c) ,

_ ~ (02U )
m - U oy2 o'
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FIG. 6. Variation of y/O (u/U = 0·3) with land m.

FIG. 7. Variation of y/O (u/U = 0·5) with land m.
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FIG. 50. Profiles m ~ 0 (ii).
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FIG. 56. Distributions of velocity and
velocity gradient.
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FIGS. 56 and 57. Upper surface of
10 per cent thick aerofoil.

FIGS. 58 and 59. Calculations for upper surface of 10 per cent
thick aerofoil.
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