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SUMMARY

In the design of small models of aircraft or missiles for testing
in supersonic tunnels, it may be desiared to represent jet engine nacelles
by means of simple hollow pipes., The note sets out the principal
characteristics of compressible flow in such pipes at zero yaw and gives a
theory for calculating the effect of the boundsry layer. This is checked
against the results of %ests with a series of pipes of varying size, at
Mach nurbers from 1,34 to 2.41.

Curves are presented for determining the maxlmun length/radius
ratio of a parallel pipe which will permit supersonic internal flow, in
terms of the Mach number of the stream and Reynolds number of the pipe:
the curves are given for both laminar and turbulent intermal boundary

layers,

The effect of inclination of the pipe to the s¥ream is discussed
briefly, on the basis of results at one Mach number (1.86).
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1 Introduction

In the design of small scale models of aircraft or missiles for
testing in supersonic tunnels, 1t 1s sometimes desired to represent jet
engine nacelles by means of simple hollow pipes allowing a free flow
through the inside. Such a flow may be either subsonic or supersonic,
depending on the Mach and Reynolds numbers and the internal taper of the
pipe. It is desarable to be able to predict which type of flow will be
obtained, primarily in order to determine whether or mot the front external
shock wave will be attached to the lip of the pipe. The nature and position
of this shock will, in general, have some effect on the pressure distribu-
tion of the wing or other surfaces in proximity to the nacelle.

The principal characteristics of compressible flow through a short
straight pipe ilmaersed in a stream at zero angle of yaw are set cut in the
rresent note. The effect of an internal boundary layer is calculated on the
assumption that the radius of the pipe at any point 1s reduced by an
amount equal to the displacement thickness. With this assumption a
relationship is deraved giving the free stream mach number at which the flow
in  the pipe just becomes supersonic, 1n terms of the Reynolds number
and dimensions of the pipe. The relationship is given for both laminar and
turbulent internal layers. The theory is supported by the results of a
series of simple tests on parallel pipes of wvariocus diameters and length/
radius ratios, at Mach numbers from 1.34 to 2.47.

The effect of inclinstion of the pipe to the stream direction is
discussed briefly, on the basis of results of a few tests at one Mach

nuber (1.86).

2 Theory

Some characteristics of the flow of a non—-viscous, compressible fluid
through a straight tapered pipe at zero yaw are set out in Appendix 1.
This shows the variation of mass flow coefficient with Mach nurber and
the relationship between free stream tube area of the through~flow, Ay,
and the entry and exit areas of the pipe, A, and Az respectively. The
Mech nurber ranges in which the mntermal f’low is respectaively subsonic and
supersonic are defined,

It 1s shown that, in the case of a contracting pipe (4z < 4,), the
minimum value of area retic v( = A;/ As), which will allow supersonic flow
to he established through the pipe, is given in terms of the free stream
Mach number M;{(> 1) by the relationship:-

1/ (=
‘T [Yj " ) sz l: (Y+1) ’VIZ:[ o @

The relationship is determined by the condition that when a normal
shock stands across the entry to the pape, the flow at exit is just soniec.
For all exit areas greater than the limiting value so defined, the normal
shock is capable of passing through the pipe if' a slightly greater
pressure drop is applied, as for exemple by a small increase in free
stream Mach number. The internal flow is then superscnic throughout. It
is important to note that the condition necessary for the establishment of
supersonic internal flow actually relates to the state of subsonic internal
flow behind a normal shock.




Bauation (1) was given previously by Lukasiewics! (in slgebraicslly
different form) in a discussion of the flow in supersonic diffusers. The
relationship 1s plotted in Fig.l.

The effect of viscosity is to increase the apparent contraction of the
pipe - l.e. to decrease the effective exit area - because of a deficiency of
mass flow in the boundary layer. It is assumed that the radius of the pipe i1a
effectively reduced by an amount equal to the boundary layer displacement
thicimess, Thus if r: is the geametric exit radius and & the displacement
thickness at exit, thé effective exit area is

(4,) s oa(1-2Y (2)
3, T 73 r3
The effective area ratio is
A A 2
¥ 2(__2)_622:.:_2(1_&’3‘.) (3)
eff, A2 Az J:'3

It is further assumed that axial pressure gradients resulting from the
rotational symmetry snd effective taper of the pipe have a negligible effect
on the boundary layer characteristics; so that 5*/1'3 may be evaeluated as for
wniform flow over a flat plate.

We now consider the cases of laminar and turbulent boundary layers in
turn.

2.1 Lamnar layer

For a laminar layer, the velocity profile in incompressible flow is
assumed to take the formi-

% = s:r.nétg‘f- (&)

i

The thickness ratio (Goldstein, ref.2) is then

Gi 1

- = LBE? (5)
and the displacement thickness ratio is

o%
E‘:".L" = 0.363 (6)

l_l

For the variation of displacement thickness with Mach number, we use Howarth's
result? , which is

o

1 4 0,227 ¥° (7)

.
1

o
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[This results fram an inerease in thickness by a factor 1 4+ 0,08 M2 coupled
with a change in profile in the sense of becoming more nearly linear as
the Mach number is :anreased] Writing

Y
o _ 8. L L8 (8)
r3 53 & & s

equation (3) becomes, for the laminar layer,

A 1 2
Voor. :Kzi [1 “1uTh (14 0,227 W) B2, ;‘”’-3-:] (2)

where ¢ is the length of the pipe.

To determine the critical area ratio given by equation (1), it is
necessary to insert into equation (9) values of M and R appropriate to
the state of subsonic internal flow at the critical point. A close
approximation is dbtained by using mean values of M and R between those
at the entry, where the condations are those behind a normal shock at
free stream Mach number, and those at the exit, where the Mach muiber is
unity. The relatlonshlps between these mean values M anrd R and the free
stream values are shown plotted in Fag.2, We write

(—1-?1-)” = £,01) (10)

This function has been calculated for a stagnation temperature of 20% y
and is strictly unique only on the assumption that viscosity is directly
proportional to temperature., This assumption has already been invoked in
using equation (7) above and 1n the present context is certainly adequate
in view of the use of mean Reynolds numbers in a fleld of varying velocity.

The effective area ratio of the pipe may now be written in the form

2
.74 =2\ o~k &
l} ﬁfgﬁ)' (1 + 0,227 ¥%) 7 . rﬁ} (11)

The eritical free stream Mach nuiber, or minimum Mach number for

gupersonic internal flow, is obtained by equating the right~hand sides of
equations (1) and (11). It is seen thait the critical Mach number is a
function of the geometric area ratic of the pipe, the length/radius ratio
and the Reynolds number based on pipe length and free stream velocity.
Otherwise put, with a completely laminar internal boundary layer, the
condition for supersonic internal flow isi-

g 0575 1 ( e
= 85 ?%i_); E_ (% [%*%;' («r+1) s ] [G%Y (Y’“ }T-_W ]

(12)
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2.2 Turbulent layer

Por the case in which the internal lgyer is fully turbulent, a1t 1s assumed
that the veloecity profile in incompressible flow takes the form

T = (?3’”)1/7 (13)

i

and that in the range 0 < M < 1.0 there is no change of thickness or of profile
with Mach number. The displacement thickness variation is then as given by
Cope and may be approximated by the formula:-

-gf'_- = 0,128 (1 + 0,219 ) (12)

i

Using for the thickness ratio in incompressible flow the formula

b 1
< = 037 R /5 (15)

equation (3) becomes, in this case,

T 2
1 - 0,057 (1 + 0,219 M?’) g2 -f’—-] (16)

Ve, = 22
ef'f, Az r3

The mean internal Mach number and Reynolds number are the same as for the
laminar case. Writing

(—5—1-)1/5 = £,0,) (17)

(this function is plotted in Fig.2), we have

A 2
lifeff. = . l:1 T (i, (1 + 0,219 M9) . R, . r (18)

The condition for supersonic internal flow is therefore

5, g A1 f00) Ao {I-1§ 2 = 2y (x=1) _2_(*:7)-
R e S ol Ll v X ek oy
TR (029 i) <“ {““ " let) M?} [(Y“) (y+1) J ]

(19)




The relationships {12) and (19) may be used to determine the maximum
length/radius ratio for supersonic anternal flow in terms of the free
stream AMach and Reynolds nurbers. Results of such calculations for the
particular case of a parallel pipe (A3 = A,) are given in Fig.16 (see
Appendix II).

) Comparison with experiment

3e 1 Detalls of tests

In connection with a proposal to represent engine nacelles on a
gmall scale model of a supersonic aarcraft by means of straight parallel
pipes, a brief series of tests was made to explore the lower limits of
size which would allow supersonic internsl flow at various free stream
Mach numhers. The results are compared with the theory of the preceding
section.

Straight parallel pipes (AE/AZ = 1.0) of various sizes were mounted
in succession on a strut in & small supersonic tunnel (57.12—“ % 5;1.5”) and the
nature of the internal flow (i.e. subsonic or supersonic) was deteriined
both by schlieren chservation of the external shock patternm and also - a
more conclusive check - by measurement of the internal static pressure at
& single point halfway along the length of the tube.

The pipes were made of thin-walled, drawn, brass or steel tubing.
The leading edge of each pipe was sharpened on the outside to a 39 wedge,
The anside surface was cylindrical throughout and was given a reasonebly
smooth finish by polishing.

Fourteen pipes were tested in all. The lengths ranged from C.41 in.
t0 3.75 in. and the internal radii from 0.043 i1n. %0 0.375 in. The
dimensions are tabulated in Fig.3, which shows the relative placing of the
pipes on scales of the appropriate parameters for laminar and turbulent

flow,

The values of Reynolds number, based on pipe length, were in most
cases below one million., Thus it was reasonable to expect, with the aucoth
Pipes, a completely laminar internal boundary layer, except for the longest
pipes at the lowest Mach numbers. Por some of the tests, a turbulent
layer was obtained by applying a narrow transition strip of thin tape
round the inside circumference a short distance in from the entry. It was
possible to use this technique only with the pipes of larger diameter but
the number of tests made in this way was sufficient to give additicnal
support to the theory (see Section 3.2).

The tests were made at Mach numbers 1,34, 1.53, 1.86 and 2,41, In
addition, a few tests were made at M = 1,86 with the pipes anclined at
various sngles to the flow (Section 4).

3.2 Results at zero yaw

Results for the smooth pipes at zero yaw are plotted in Figs.4,5.
In the upper half of Fig,4, the internal pressure ratio P,/pyq 18 plotted
agzinst the parameter R:]"i x ¥/r for each of the test Mach numbers. Xach

curve shows a Jjump where the intermal flow changes from supersonic to
subsonic (R7Z x &/r increasing). The lower half of the diagram shows the
correspord internal Mach numbers. These are calculated on the assumption
that before the jump occurs the total pressure in the tube (outside the
boundary layer) is equal to that in ths free stream, while after the jump
the total pressure is that behind a normal shock at the free stream Mach
number.,
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i
Fig. b shows for each test Mach number the range of values of qu x 4/

covered by the pipes tested. The nature of the symbol indicates whether the
internal flow was subsonic or supersonic (as deduced from the pressure measure-
ments), The curve from equation {12), defining the theoretical boundary for
wholly laminar flow is plotted and, on the whole the experimental results conform
well Lo this boundary. At thge two lowest Mach numbers, some cases of subsonic
flow occurred at values of R}'E x &/r below the theoretical critical value. These

results were ob%aineﬂ. with some of the largest pipes, having a Reynolds number
greater tnan 107, and the probable explanation is that in these cases the
boundary layer became turbulent before the exit.

It is concluded that the results support the theory of section 2.

As a further point of interest, 1t may be shown from equation (11) that
after the normal shock is swallowed, changing the internel flow from subsonic
to supersonic, the laminar boundary layer actually thickens because the effect
of increase of Mach nunber outweighs that of the Reynolds number chenge. The
supersonic flow therefore sustains a degrec of contraction greater than that
which just allows the normel shock to pass. This 18 confirmed by the pressure
readings, from which it can be shown that even halfway along the tube the
Mech number (Fig.4) in supersonic flow nesr the critical point is lower than that
corresponding to the critical area ratio,

Figs, 6, 7 show the results obtained with transition strips inside the
tubes. The basis of plotting is the parameter for wholly turbulent flow,

R'TI'V 5 x &/r, The number of experimental points 1s small owing to the difficulty
of applying the turbulence strip technique to the tubes of smaller diameter but
on the whole the results give further support to the theory. There is a
suggestion that the experimental boundary is displaced from the theoretical one
in o direction restricting the development of supersconic flow. This may be
either because the transition strips gave the effect of turbulent layers of
length scmewhat greater than the actual pipe lengths or because theory under-
estimates the increase of displacement thickness with Mach nunber in the case
of the turbuient layer. The former explanation seems the more likely.

In one case at My = 1,34, both the supersonic and subsonic internal flow
states were observed at different times dwring the run. It is seen that this
cose lies close to the theoretical boundary line. Care is clearly necessary in
using the theoretical curve outside the range in which 1t 1s supported by the
practical results, i.e, beyond M = 2.

In Figs. 8-11 schlieren pictures are presented showing the two types of
Tlow, with laminar boundary layer, at M = 1.3, 1.53 and 1.86 respectively, and
also two cases where the addition of a transition strip caused a change from
superscnic to subsonic flow.

The difference in external shock pattern, according as the internal flow
is supersonic or subsonic, becomes less obvious as the free stream Mach mumber
is increased.

L Flow in inclined pipes

At one Mach mumber (My = 1.86), a few tests wers made to determine the
effect of anclining the pipe at an angle to the strecm. In Pigs.12(a) and (b)
the internal Mach nunber, calculated as before from the single static pressure
measurement midway along the pipe, is plotted as a function of angle of
inclinaticn, or yaw, B. Fig.12(a5 applies to pipes in which the boundary
layer at zero yaw is laminar, Fig.12(b) to those in wnich 1t is turbulent.

Two features of the curves are to be ncted:-

-9 -



(1) In each set of tests the order in which the jumps occur with
increase of B corres;mn?s to the order of placing on a scale of the turbu-
lent flow parameter R;Jf 5 x &/r, as shown in Fig.3, From this it is
inferred that when, at zero yaw, the internal boundary layer is laminar
and the internal flow supersonic, the effect of the first few degrees of
yew 1s to bring transition forward up the pipe, as a result of distur-
bances just inside the entry. Thereafter the yaw effect is qualitatively
similar to that for a pipe starting with a turbulent layer at zero yaw.

(2) The velocity at the specified point inside the pipe is not
necessarily subsonic after the jump, but becomes increasingly supersonic
with increase of B, It is presumed that the flow separates from the sharp
leading edge of the inclined pipe, forming a throat further downstream
inside the pipe. The velocity at this throat becomes sonic and the throat
is then followed by a supersonic expansion extending some further distance
down the pipe. Hence the measured internal pressure may correspond to a
supersonic velocity even though a detached shock is present at the entry.
Further increase of the angle of inclination would cause the s onic throat
to contract progressively until, at or near 90 degrees yaw, the mass flow
in the pipe became zero.

Two comparisons of external flow patterns on opposite sides of the
gump are shown in Faig.11. 1In the first comparison, paipe No. 4 is shown
at 09 and 123° yaw, The difference in extemal shock formation at the two
angles can be detected but is fairly small. It should be noted that the
plane of yaw is at right angles to the plane of the photograph; bigger
differences than those shown may exist in the gplane of yaw. The plane of
the photograph is however the mere appropriate for indicating the degree
of interference of, say, a nacelle at pitohing ineidence on a wing.

The second comparizon shows two shock formations obtained under
nomwinally identical conditions witn pape No. 7. At the critical angle
of 6% it was cbserved that over a period of the order of a minute the flow
starting from the supersome cenfiguration, grew slowly more subsonic
{1internal pressure rising, external bow wave widening) and then, having
reached a limit went quickly supersonic again. It appears, therefore,
that periodic fluctuations are liable to cecur near the changeover cendition.

From inspection of the results, 1t 1s deduced that for pipes starting
with a completely lominar layer, about 7° of yaw is required to make the
layer fully turbulent. If the valus of 3;1/5 . &/r 1s greater than the
critical,the entry flow will by this time have become subsonic. If the
value of Ry 1/5 . &/r 15 less than the critical, the changs of flow will
occur at scme higher angle, determined by the value of this turbylent flow
parameter rather than that of the parameter for laminar flow, R.lf’: . &/r.
Thus, as a first approxaimation, a single plotting of all the results in
terms of the turbulent flow parameter 1s possible. This i1s shown 1n Fag.
13. Por each test made, the value of R;1?5 . &/r of the pipe is plotted
against (B - Bt), where By is defined as the angle for which the internal
boundary layer first beccmes completely turbulent. B4 is zero for the
pipes with tramsition strip and is taken to be 7° for the smeoth pipes.
A single boundary can be defined between the cases giving supersonic
internal flow and {those for which the flow at entry is subsonic,

As a suggestion for the form of the boundary curve, if it is assumed
that the curve is symmetricel about the axis (B - By) = O, ard that when
&/r is zero (i.e. when the pipe becomes a thin raing) the critical angle
1s ®/2*, then an appropriate formal relationship is:-

* Strictly, when By = 7°, the critical angle for 4/r = 0 is P~ By = 1/2 70
but this correcticn is uminportent in relation to the moderate angles of

yaw under censideration.
- 10 -
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-~ t -
7 om on ok an (B-By) (20)

where % is written for the parameter R'{V 5. &r and Z_,. is the critical
value for turbulent flow at B = O and the particular Mach number, given by
eqation (19). A curve with k = 7 provides a good fit to the few results
cbtained.

5 Conclusions

3traight open pipes may be used to provide simple representation of jet
engine nacelles on supersonic wind turmel models. The conditions that the flow
through should be unchoked have been determined theoretically and checked
experimentally, with good general agreement.

The effect of yaw has been considered briefly.

Tist of symbols

o] static pressure

T temperature

M Mach number

M mean Mach number of subsonic anternal flow
a sonic wvelocity

A cross—~sectional area

m rate of mass flow

4 length of pipe

R Reynolds number based on £

R mesn Reynolds number of subsonic internal flow
r radius of pipe

¥y normal distance from surface

b thickness of boundary layer

o* displacement thickmess of boundary layer
u docal veleclity in boundary layer

U local velocity just outside boundary layer
L pipe area ratio, exit area ~ entry area

t T/To

v ratio of specific heats

e () (% /R,

e ) (E/z)"/
-1 =



List of symbols (cont'd.)

B angle of inclination {incidence or yaw) of pipe

8 + minimum value of £ for which internsl boundary layer is fully
turbuient

Z critical value of 371/5 . &r

2 . CTitical value of R‘;V 5. &r at zero yaw

k emplrical constant in yaw relationship - equation (20)

A critical value of {/r

Suffixes {except in £, and.fz) e

e} stagnation condition

1 in free stream

2 at pipe entry (internal)

3 at pipe exit (internal)

£ pertaining to lamnar flow

t pertaining to turbulent flaow

1 pertaining to incompressible flow {Secticn 2) or te condations

at the representative point inside the paipe (Secticns 3,4)
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APTENDIX I

Hote on the characteristics of non-viscous, coupressible flow
in straight pires of monotonic taper

1 Notation
P = pressure
T = temperature
M = Mach number
a = sonic velocity
A = c¢ross-sectional area
m = rate of mass flow
Y = ratio of specific heats
t = T/T

o}

R /%

( ) refers to stagnation conditions

o
( )1 " " conditions in the free stream

( )2 o " at the pipe entry

() 3 e " oo n exit

() "o " behind a normal shock

2 Parallel pipe

In a straight parallel pipe, with sharp leading edge, the intermal
Mach nunmber is always equal to the free stream Mach number®. The mass
flow enclosed by the pipe is given by the equation:-

ma
v 54rr/2(v-1) (21)
A, D, 11
This is plotted for air (y = 1.4) in Fig.14 (curve (1)), The mass flow is
a maximum at I.\J'[“1 = 1.0, when
oA (r+1)/2(y1)
[¢] 2 At
= —— = 0, &
Az Po Y Y+ 810 (é 7

* Clearly, if the wall is infinitely thin, the presence of a parailel
pipe creates no disturbance in the flow, either internally or externslly.
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The free stream tube area, 31, is equel to the entry area, Az, at all
Mach numbers. At supersonic speeds, the condition A1 = by is usually termed
"full mass flow",

3 Expanding pipe

Corresponding characteristics of the flow through an expanding pipe are
shown by curve (2) of Fig.14. A4t low subsonic speeds the flow is governed by
the condition that the internal static pressure attains the free stream value
at the exit. Hence the exit Mach number is equal to M‘l’ the free stream tube
area is equal to A,, and the mass flow coefficient is greater than that for the
parallel pipe in the ratio 33/1»‘: +« The value of mass flow coefficient given by
equation (22) gbove is consequently reached at some value of M, below unity.
Here the entry chokes (Mp = 1,0) end between this Mach nunber ard unity the
mass flow remains constant while the free streem tube area decreases from the
value A3 to the value A,.

Above the choking Mach number, a normel shock travels along the pipe as
M4 is increased, and at some higher value, which may be either subsonic or super-
sonic, the shock reaches the exit., From this point onwards the i1nternal flow
is completely supersonic and the pressure difference at exit 1s resolved through
a train of shock waves and expansions, beginning with shocks.

These points are illustrated further in Pig,15, where theoretical curves
are shown for the choking boundery and the Mach number at which the internal
flow becomes completely supersonic.

Ibove My = 1.0 the entry is at "full mass flow" (&4 = A) end this mass
flow 1s the same as for a parallel pipe having the same entry area.

4 Contracting pipe

Curve (3) of Fig.44 illustrates the flow through a contracting pipe. A4t
subsonic speeds, the condition that the static pressure at exit has the free
stream velue implies that the exit Mach number 1s equal te My, the free stream
tube area is equal to Az and therefore the mass flow coefficilent is lower than
that for the parallel pipe in the ratio Az/Ay. Consequently an this case the
value of mass flow given by eguation (22); corresponding to choking of the
entry is never attained. At My = 1.0 however, the exit chokes (M3 = 1.0).

This condition then extends into the superscnic range. Since the exit
in choked, the flow remains subsonic throughout the pape: hence a normal shock
ig formed in the free stream ahead of the entry. The mass flow is determined
by the conditions at the exit, namely, that Mz = 1.0 and the total pressure is
that behind a normel shock at the free stream Mach number, We may therefore
formulate an expression for mass flow similar to that of equation (22) for the
entry choke. We have, then

ma o \(r+1)/2(y-1)
A5 B, = (?-;T (23)

In terms of the entry area and free gtream total pressure, this becomes

ma P,/ o \(r)/ (y=1)
B p, ~ v ii . (ﬁ) (24

- A -



where | = AE/AZ and pé/Po 1s the total pressure ratio across a normal
shock at Mach nmurber My, given by

0! y . Y [, P
% 1:$+1+(Y+1)Tﬁ:l x[;—%ﬁ-%] (22)

This mass flow coeffaclient is plotted in Fig.14 for the Mach number range
corresponding to exit choke. In the seme range the free stream tube arec,
which at ¥y = 1.0 is equal to Ay, 1ncreases with increase of M, towards

the value A,. The normal shock moves downstream towards the entry.

A value of My is reached at which the mass flow coefficient given by
equation (24) is equal to that of curve (1) for supersonic internsl flow.
At this point, the free stream tube area is equal to A, and the normal
shock lies across the plane of the entry. Above this point, the condition
of choked exit and subscnic internal flow would give a greater mass flow
than is obtained with supersonic internal flow, The former condition
would require the free stream tube arca to be greater than As, with a
detached normal shock followed by subsonic acceleratzon intc the entry.
This is not 2 stoble solution, Instead, at the critical Mach number, the
shock 1s swallowed and the condition of supersonic internal flow 1s
obtained as with the parallel and expanding pipes. The entry is at "full
moss flow" (&4 = A?{), the mass flow 1s given by equation (21), and &
residual pressure difference at exit is resolved by means of a shock-
expansicn train beginning with expansions.

The critical Mach number, corresponding to swallowing of the shock,
15 obtained in terms of the area ratio of the pipe by equating the two

expressions for mass flow given by equations (21} and (24}, This leazds to
the relationship:-

v [?:jl + (v+12) Mz‘f ['\rz;r“l - (y::; i :| /e

which is equation (1) of the present report.
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APPENDIX IT

Critical length/radius ratio for parallel pipes
in viscous flow

Equations (12) and (19) define the relationships between the Mach
nugber at which the internal flow becomes supersonic and the parameters
Ry . ¥r end Vs, &/r for laminar and turbulent boundery layers
respectively. Por & parsllel pipe (A3 = Ay), the relationships become:-

0.575 £, (i, )
R, . Yr = L (1 - V) (122)
(1 + 0.227 M °)

for a laminar layer, and

21.1 £ {M
2 (1 - V%) (192)

R;Jj/s - 6/1‘ = -0
(1 + 0.219 ¥

for a turbulent layer, where ¥ is defined by equation (1).

From these equations, the eritical length/radius ratio of a parallel
pipe has been calculated for various Mach nunbers from 1.0 to 3.0 and various
Reynolds nurbers between 10% and 107. The results are plotted in Figs.16(a)
and (b) - for laminar and turbulent layers respectively - in the form of
curves of ¥/r against log R,y at constant M1.

At R, = 10% the critical ratio is somowhat greater for a turbulent
layer than for a laminar layer. At Ry = 102 the values are much the same
1w the two cases. At Ry = 10° the values for the laminar layer are sbout
BEs greater than those for the furbuilent layer.

We note that since M < 1.0, the denominators of the right hand sides
of equations (122} and (19a) are the same to wathin 1%. Equating these
expressions leads to the following approximate result for the ratic of
critical values. Writing A for the cratical velue of £/r, with appropriate
suffix for laminar or turbulent flow, we have

|

A C.575 f1(M1).R

i 1
t 24,4 fz(M1) R,

== N

)
0. ®)? .

= 212 (R,)i/ = 0,02725 (R)O'3 (26)
5 21,1 R)Y5

[
i

ot
~

when R = 106 this has the value 1,72. In general therefore, the ratio is

2 . oqqp [10lt8 E - Qj”
M

- 16 -



0.3 .

or, since 10 2.0,

f 2(log R - 6)

= 2 1,72 x (27)
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