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Summary.—The methods of wave-drag estimation known as the area rule and transfer rule are restricted to non-
lifting combinations of thin wings and slender bodies. The Lomax-Heaslet multipole method is applicable to
configurations with ‘ non-slender ” fuselages, represented by an axial distribution of multipoles. However, it is not
entirely satisfactory and an alternative multipole method is presented here. This is based upon the assumption,
fundamental to the area rule and the transfer rule, that the effect on the wave drag of the interference velocity potential,
due to the interaction between the exposed wing and the fuselage, is negligible. An investigation of the validity
of this fundamental assumption based on existing theoretical and experimental results, is given. The application of
the multipole method to fuselage design for low combination wave drag is discussed with special reference to an elliptic

wing-body combination.

1. Introduction.—Investigations of wing-body wave drag, under non-lifting conditions, have
been made by a number of authors’*® within the restrictions of the linearised theory, which
assumes small perturbation velocities. The specification of non-lifting conditions implies that
the wing-body combination has two planes of symmetry and that it can be represented by a
distribution of sources over its surface. For such configurations, linearised-theory methods have
been developed for estimating wave drag and for shaping the fuselage or main body .so that the
total combination wave drag is a minimum. Three useful methods known as the area rule!,
the transfer rule? and the moment of area rule® have been derived using the assumption that the
effect on the wave drag of the interference velocity potential, due to the interaction between the
body and the exposed wing, is negligible. Since these three methods utilise the same assumption
it can be shown* that they are equivalent.

Applications of the area rule' and its variants®? are restricted to combinations of thin wings
and slender bodies only: thus an extension of the area rule' to combinations incorporating
‘non-slender ’ fuselages with more complicated cross-sectional shapes may be desirable. Such
an extension has been presented by Lomax and Heaslet® who consider fuselages that can be
represented by smooth axial distributions of multipole singularities. However, this extension
by Lomax and Heaslet® is not entirely satisfactory for two reasons: firstly, their comparisons
between results for the wave drag of modified and unmodified combinations are not necessarily
valid because the same assumption is not made in the two cases; secondly, it may be questioned
whether their fuselage designs are optima for the given conditions. It is the purpose of the

* Attached scientist from the Weapons Research Establishment, Salisbury, South Australia.
t R.A.E. Tech. Note Aero. 2496, received 5th June, 1957,



present paper to examine the Lomax-Heaslet multipole method® in more detail and to present
an alternative method. No attempt is made to apply the exact linearised-theory method of

Nielsen® which is applicable to quasi-cylindrical fuselages of almost circular cross-section only
and is very complex. ‘ : :

In section 2 a brief summary of the area rule' and its variants®® are given. In section 3 the
extension of the area rule' to combinations with ¢ non-slender ’ fuselages is examined, the neglect
of the effect of the interference velocity potential being emphasised. For three particular
configurations, the range of validity of this assumption is investigated in section 4. In section 5
the illustrative example of an elliptic wing and body combination, considered by Lomax and
Heaslet®, is presented and some theoretical results are compared with existing experimental
results. Finally, in section 6, the conclusions of this paper are given.

2. Configurations with Slender Fuselages.—The wing-body combinations treated in this section
are assumed to have the local surface slope, in the free-stream direction, small everywhere, so
that the perturbation velocities are small ‘and the linearised theory is applicable. Since the
fuselage is slender, the essential requirement at a Mach number M is that Ra/(M*? — 1)/l be
small, where R is a fuselage radius in any cross-section and / is the fuselage length. In addition,

the local fuselage radius of curvature, in any meridian section, must always be large compared
with the length /.

2.1. Methods of Estimating Wave Drag—TFor configurations with smooth slender. fuselages the
area rule', transfer rule* and moment of area rule® methods can be used to estimate the total
wave drag. The area rule' expresses the wave drag D as a triple integral of the form

1 2 n ”n
D= %f d6 [_ 2%“5 (%, 0, M)S" (0, 0, M) log | % — | d, azxz] , (1)

0

where g 1is the kinetic pressure 1p,U,?,

po, Uo  are the free-stream density and velocity respectively,
S(x, 0, M) defines an elemental area distribution,

. 2
S"(x, 8, M) denotes a—w

and the double integral containing S(x, 6, M) includes all values of x for which S (x,0, M) is
defined. It is assumed that S'(x, 6, M) is continuous everywhere (ie., S(x, 0, M) is - smooth *)*.

For a thin wing lying in the plane 2z = 0 (see Fig. 1), an elemental wing area distribution? is
defined by ~

SW(x,B,M)=fT(x—|—Bylcos(),y1)dy1, e .. .. .. .. (2)

T#0

where T'(x, y) denotes the wing thickness at the point (x, y),
B = 4/(M* — 1), M being the free-stream Mach number,

and 6 is a cylindrical polar co-ordinate (see Fig. 1). The general expression for an elemental
wing area distribution 1s similar to equation (2) and has been given elsewhere*. The complete
elemental area distribution is now given to a sufficient approximation. by S(x,6, M) =
S(x) + Sw (%, 8, M), where S(x) is the fuselage cross-sectional area distribution.

* Lock’s investigation” of rectangular wings indicates that this smoothness condition is not necessary for wings.
Hence the fuselage only need be ‘ smooth ’; this less restrictive condition will not be used here.
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If the isolated exposed* wing wave drag is written in the form
1 2n
Dy = 5| D{Sule, 6, M)} b,
where

D{Sulx, 0, M)} = — L f f Sy (%0, 0, M)Sy"(hn, 6, M) log |50 — %] dwide .. .. (3)

denotes the wave drag associated with the area distribution Sy(x, 6, M), then equation (1)
becomes the transfer rule? and the wave drag can be written as

D = Dy + D{S + A} — Did}, N )

where D{4}, D{S + A} denote the wave drags associated with the area distributions A(x),

S(x) 4 A(x) respectively. A(x) is called the transferred wing area distribution** and may be
defined by -

2m
_A(x):Z—nfo Sww, 6, MYdo, .. .. .. .. .. .. ..
so that A (x) is seen to be equal to the mean wing elemental area distribution®*. Since Sy '(x, 6, M)
is assumed to be continuous everywhere it follows that A ’(x) is continuous everywhere.

The transfer rule, equation (4), can be written in the form
D = Dy + Dys + Ds

where Dy is the interference wave drag and Dy = D{S} is the isolated body wave drag. It
follows that the interference wave drag is

Dyy = D{S + A} — D{S} — D{4}. .. .. .. .. .. (6a)
This result can be written as

Dyy = — —ff S"(x,) A" (%) log | %y — %a| dxy dxz . .. .. .. (6b)

The moment of area rule®* expresses the wave drag in a series of ascending powers of
B? = M?* — 1 beginning with the slender term which is independent of B. Because of the com-
plexity of the result only the first two terms are normally considered. Thus the moment of area
rule is applicable to configurations which are described here as ¢ not-so-slender . TFor this reason
the method will not be discussed further and attention will be concentrated upon methods, such
as the area rule' and the transfer rule?, which are applicable to any configuration.

2.2. Fuselage Design for Low Wave Drag.—The design of the fuselage so that the total combina-
tion wave drag is a minimum, subject to certain conditions, requires the use of equation (4).
In equation (4), the only term dependent upon the fuselage is D{S + A} and so this term is
required to be minimised. This can be done using the optimum area distributions presented by
Eminton® and an optimum fuselage cross-sectional area distribution S(x) obtained. Since the
fuselage is slender the cross-sectional shape is arbitrary and, therefore, an axisymmetric fuselage
shape is theoretically as good as any other shape.

* Here a distinction is made between the expressions exposed wing and net wing. The exposed wing is that
part of the gross wing actually outside the fuselage ; the net wing is formed by placing the exposed wing panels together.
In section 4.1 the net wing is introduced..
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3. Configurations with Nown-slender Fuselages.—Wing-body combinations with non-slender
fuselages are examined in this section. The term ¢ non-slender ’ is applied to fuselages which are
such that, at a Mach number M, R+/(M* — 1)/l is not small everywhere, R being a fuselage
radius in a cross-section and / the fuselage length. Non-slender fuselages could be quasi-cylinders,
including quasi-cylinders of almost circular cross-section, and bodies with cross-sections of
‘ figure-of-8 * type so that, in meridian sections, the profile varies from apparently slender to
apparently quasi-cylindrical.

In section 3.1.1 some properties of axial multipole distributions are summarised. Also, the
representation of fuselages by axial distributions of multipoles as well as the replacement of
wing source sheets by equivalent multipoles are discussed. Next, the fundamental result, giving
the wave drag of a wing and non-slender body combination, is derived. In section 3.1.2 this
important result is used to give a method of fuselage design for low combination wave drag.
Lastly, in section 3.2, the present multipole method is compared with the Lomax-Heaslet multi-
pole method. '

3.1. A Multipole Method—3.1.1. Estimation of wave drag.—Consider an axial distribution of
multipoles and let them be defined by the strength functions F,(x) (» == 0, 2, 4, . . .), which are
believed to be new and are introduced in the Appendix, equation (A.5). The wave drag associated
with these multipoles is, from equation (A.6), '

D:D{FO}—I—%ED{F%}, O )

which is an infinite series in general. The wave drag D{F,} (» = 0, 2, 4, . . .) is given by equation
(3). For a given configuration the strength functions F,(x) will vary with free-stream Mach
number M. When M = 1 only the strength function F,(x) is non-zero. However, at free-stream
Mach numbers greater than unity the strengths of the higher order multipoles become increasingly
important (thus the number of terms required in equation (7) to represent adequately the wave-
drag increase with Mach number). This means that the complexity of any wave-drag calculations
will increase rapidly with increasing Mach number.

Singularity representations for the non-slender fuselages considered in this paper are assumed
to consist of smooth axial distributions of multipole singularities. If the multipole strength
functions are known equations (A.3), (A.4) in the Appendix enable the fuselage, which is a
stream surface, to be calculated®. However, the inverse problem of determining the multipole
strength functions associated with a given body shape is more difficult and the general case has
not been solved since it requires the solution of the integral equations (A.3), (A.4). TFor the
special case of slender fuselages Fyz(x) = S(x), the body cross-sectional area distribution, and
F,p(x) ~0, n>0. Moreover, if the fuselage is axisymmetric F,z(x¥) =0, #» > 0 and the
singularity representation consists of only axial sources, whose strength can be found by super-
posing a number of Ferrari’s conical-body solutions’, for example. For many non-slender
fuselages it may be sufficient to use only a source, Fyz(x), and quadrupole, F,5(x), representation,
provided that the fuselage is not a quasi-cylinder of almost circular cross-section; in this case
the multipole strength functions can be found directly by using the method of Nielsen®.

Although the wing singularity representation may be a planar distribution of sources, the
special representation used here is in terms of equivalent axial distributions of multipoles. Lomax
and Heaslet® have derived an axial distribution of multipoles which is equivalent to the sources
in the sense that the same perturbation velocities at infinity are associated with the equivalent
multipoles and the sources, i.e., the same wave drag is associated with the sources and the
equivalent multipoles. These equivalent wing multipoles have strength functions F, (x) defined
by

1 27
Fon(s) =5 f Sw(x, 8, M) do
. A 0
B ®)
o) = f Swix, 6, M) cosub 0 (n > 0) -
0
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or, alternatively,

1 T (%1, 1) dxidy,
Fop(x) = ;ff VB — (x _yxl)-z}

— ' . ©

T (%,, ¥1) cOS [n cos™! (xl x)] dx, dy, )

Pty =2 B, > 0)
" m VB — (& — )%

In equation (8), Sy(x, 6, M) denotes an elemental wing area distribution (equation (2)). Since
Sw(x, 8, M) varies with Mach number, it follows that F,(») will vary with Mach number also.
In equation (9), T(x, y) is the wing thickness at the point (x, y) and the integration is over that
part of the wing for which the integrand is real.

Equations (5) and (8) show that F,,(x) = A(x), the wing transferred area. distribution. The
alternative expression, equation (9), for A(x)(= Fou(x)) is due to Ward® and suggested writing
F,w(x) directly in terms of the wing thickness 7'(x,y). A form equivalent to equation (9) has
been given by Lomax and Heaslet™.

The wave drag of a thin wing and non-slender body combination will be derived now by using
the assumption that the effect on the wave drag of the interference velocity potential, between
the exposed wing and the body, is negligible, 7.c., the perturbation velocities at infinity are
assumed to be given by the body multipoles F, 5x) and the equivalent wing multipoles Ff 2wix). It
follows that the total effective multipole strength fanction is

Fulx) = Fop(d) & Fawl®) oo oo e e e (10)
and that the combination wave drag, from equation (7), is
D:D{FOB—I—FOPV}_I—%ED{szB—[—anPV}‘ .o . .« . (11)
n=1

This is the fundamental equation of the present work. Equation (11) enables wave drag estimates
to be.made using the double integral for D{F,,z + F., w} given in equation (3), provided that
F, B_(x) and F,(x) are known.

When the fuselage is slender F,z(x) ~ 0, (# > 0) and Fyz (x) = S(x) so that equation (11)
becomes

D= D{S ‘I‘ Fuw} —|“ %‘ z D{F2nW}
n=1
which, using For (%) = A(x), can be rewritten as
D=D{S+ A} + % ZD{anW} .
The isolated exposed wing wave drag is
DW == D{A} -+ ’% 2:1 D{an W}
and so
| D = Dy + D{S + 4} — D{4},
which is equation (4).

When M tends to 1, from above the special sonic form of equation (11) is obtained. It follows
from the work of Lomax and Heaslet’, for example, that the wave drag is given by
D = D{F,; + Fyu}y-1. This particular result is ¢ exact ’ in the sense that it incorporates no
assumptions other than those implied by the use of linearised theory.

5



An alternative form, which is particularly useful when the wing wave drag is known, is obtained
by writing equation (11) in the form

D:DW_I_DWB_I_DB

where Dy = D{F,,} + % i D{F,,} is the isolated exposed wing wave drag
=1

Dy = D{F,y} - 2 D)F,, ») is the isolated body wave drag

DWB = D{FDB + FOW} —_ D{(]B} - D{FOW}

+ %Z [D{FZnB + FZHW} - D{FZ;LB} — D{F2nl/l’}:| . .. .. (128“)
n=1
is the interference wave drag. Using the double integral of equation (3) Dy can be written as

Dy = — %ff Fo 5" (50) Fow(s) log |2, — %] dx, dx,

2n ff Fo, 5" (%) Fopw” (%) log | %, — %3] d2y dxz, .. .. .. (12b)
=1

which is the generalisation of the result given in equation (6b) for configurations with slender
fuselages. It is recommended that the interference wave drag Dy be used in calculations only

when one or two fuselage multipoles F,, (x) are present, as otherwise the calculations are too
complicated.

For completeness, configurations with bodies, such as engine nacelles, mounted on the wing
will be discussed very briefly. Provided that these subsidiary bodies are slender, equations (2)
and (9) enable the equivalent wing multipole distributions F,(x) to be found by treating the
bodies as part of the wing thickness distribution. However, the case when the subsidiary bodies
are not slender is much more complex and will not be considered.

3.1.2. Fuselage Design foaf Low Wave Drag.—One of the most important applications of the
new wave-drag result, equation (11), lies in the design of fuselages so that the total wave drag
is a minimum under certain prescribed conditions. For example, the optimum F, z(x) (n = 0, 2,
4. .. .) may be required to give a fuselage of prescribed length and volume and, moreover, they
must correspond to a real fuselage shape. It isseen from equation (11) that a number of wave-drag
expressions of the form D{F,,; + F,,,} are required to be minimised separately with F,, (%),
being a wing term, fixed. Each optimisation problem is of the same type as that discussed in
section 2.2 for configurations with slender fuselages and therefore the optimum functions
available’ may be of use.

3.2. Comparison with the Lomax-Heaslet Multipole Method.—It is difficult to give a precise
definition in general terms of the Lomax-Heaslet multipole method® since it has been presented
for application to an elliptic wing and body combination. The following comments are based on
what is believed to be a correct interpretation of the method. For application to a general
configuration an exact method appears to be intended. Thus, in order to determine the wave
drag, axial multipole representations are required for the isolated fuselage and for the interference
velocity potential. Since the determination of the latter multipole representation usually involves
complex calculations, the Lomax-Heaslet method is not simple to apply in either estimation of
wave drag or fuselage design for low wave drag. The present multipole method neglects the
effect on the wave drag of the interference velocity potential and is not exact; however, it is
simpler than the Lomax-Heaslet method and much more readily applicable to the design of
fuselages for low total wave drag. Therefore the present method may be preferable in many
applications even though it incorporates an assumption.
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The Lomax-Heaslet multipole method?®, as applied to the elliptic wing and body combination,
is not entirely satisfactory. The wave drag of a so-called unmodified combination, with an
axisymmetric fuselage, is determined by neglecting the interference velocity potential between
the exposed wing and the body ; this is the same assumption as that used throughout the present
note. Now, however, the derivation by Lomax and Heaslet of an optimum fuselage shape for
low combination wave drag requires careful examination. Lomax and Heaslet take the gross
wing, extending through the body, as the basic wing and use the body multipoles to cancel,
as completely as possible, the equivalent gross-wing multipoles. This procedure is not satisfactory
unless the exposed wing is taken as the basic element. Furthermore, the optimum fuselage 1s
defined as a stream surface of a singularity distribution, so that the singularity representation
of the modified configuration is exact. For this reason comparisons between the wave drag of
an unmodified combination, deduced using an assumption, and the wave drag of modified
combinations, deduced without using any assumptions, are not necessarily valid. Therefore
the comparisons of this type that have been given by Lomax and Heaslet® are inconsistent.

4. Discussion of the Fundamental Assumption—The assumption fundamental to the present
method of estimating wave drag is that the effect on the wave drag of the interference velocity
potential, due to the interaction between the exposed wing and the body, is negligible. Here
the validity of this assumption is investigated using three known results of supersonic linearised
theory for wing-body combinations*.

4.1. Estimation of Wave Drag—Following Nielsen and Pitts'?, consider a circular cylindrical
body with a rectangular wing of double-wedge sectiont. The aspect ratio of the wing is assumed
to be high enough for the wing-tip zone of influence not to include the wing-body junction.
Fig. 2 shows the wave drag of such a combination as a function of the ratio BR/c, where
B = +/(M* — 1), R is the body radius and c¢ is the wing-root chord.

The present method can be applied to this configuration also by using equation (11) with
F,, 5(x) = 0 for all » and gives a wave drag the same as that of the isolated exposed wing. The
wave drag of the isolated exposed wing has been determined in Ref. 15, and independently by
Lock, and the results are plotted in Fig. 2. It should be noted that the fundamental assumption
is theoretically exact for BR/c = 0, (i.e., M = 1, o for example). This observation can be
shown to be true in general®. Furthermore, the errors introduced by the assumption are nowhere
large. The maximum error is about 7 per cent of the correct wave drag and occurs at BR/c = 0-2.
For this particular combination Fig. 2 shows that the wave drag of the isolated exposed wing is
very nearly the same as that of the isolated net wing, which is formed by placing together the
panels of the exposed wing.

Since the comparison of Fig. 2 is for rectangular wing-body combinations only, it gives no
indication of the errors likely to arise in applications of the present method to general configura-
tions. Experimental evidence or extensive theoretical evidence will be required to extend the
comparison of Fig. 2 to a systematic series of wing-body combinations.

Conical wing-body combinations have been investigated by Browne, Friedman and Hodes®
who present results which are exact within the accuracy of the supersonic linearised theory.
It can be shown that the interference velocity potential is very small for their conical combina-
tions, 4.e., the fundamental assumption is valid approximately for such special configurations
whose interference flow fields are, however, atypical.

* Another resuit has been given by Fraenkel'? recently. It has been shown that the fundamental assumption is
valid when the body is a slender quasi-cylinder of almost circular cross-section.

t Lock™ has presented an improved method of calculating the wave drag of rectangular wings and quasi-cylindrical
body combinations. ‘
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4.2. Design of Quasi-cylindrical Fuselages—An important aspect of the present method is the
design of fuselages for low combination wave drag. This means that estimates of the wave-drag
changes associated with fuselage modifications are to be made. One may ask: how reliable are
these estimates ? In the case of quasi-cylindrical fuselages they may be very good. For, it will
be seen from Nielsen®, for example, that the interference velocity potential is invariant with
respect to changes in the fuselage, the mean cylinder being fixed (the exposed wing varies with
fuselage shape but this variation is unimportant because the tuselage is quasi-cylindrical).
Therefore, although the wave-drag estimates of the present method are in error because the
interference velocity potential has been neglected, it follows that the present method may predict
the correct changes of wave drag when the quasi-cylindrical fuselage only is allowed to vary.
It is suggested that the present method can be used to estimate wave-drag changes associated
with fuselage modifications with acceptable accuracy, whether the fuselage is a quasi-cylinder
or not. Of course, only qualitative estimates would be expected at transonic speeds where the

linearised theory is not valid. This important conclusion is supported by the limited experimental
evidence available in Ref. 11.

5. Example—Elliptic Wing and Body Combination.—Elliptic wing and body combinations have
been examined by Lomax and Heaslet®. The thickness distribution of the gross elliptic wing is
chosen so that all the elemental area distributions, defined by equation (2), represent Sears-Haack
bodies (z.e., bodies of given length with minimum wave drag for a given volume). This special
wing is discussed by Lomax and Heaslet?, for example, and was investigated first by Jones'. It
has a parabolic-arc section with the thickness/chord ratio proportional to local chord.

5.1. Wave Drag of Exposed Elliptic Wings.—Before estimating the wave drag of the combination
it is necessary to determine the wave drag of the exposed elliptic wing. This may be done by
using the result’ that the wave drag of the exposed elliptic wing is

DWZDWO<1—2V"‘V)+DAW, e )

where Dy, is the wave drag of the isolated gross elliptic wing

D,w is the wave drag of the isolated blanketed wing, that is, the portion of the gross
wing blanketed by the body

Vo is the volume of the gross elliptic wing
Vaw is the volume of the blanketed wing.

The wave drag of the isolated gross elliptic wing may be written* as

. . JT3A02 ( n2A02B2 /( WZAOZBZ 3/2
I 1+T) 14T ) , L (149)
where g 1is the kinetic pressure 1p,U?

f, 1s the centre-line thickness at the wing mid-chord
A, is the aspect ratio
B = +/(M*—1).

The volume of the wing is

w2 A

Vio = ety Z?, L (14b)



where ¢, is the maximum wing chord. An alternative expression for the wave drag can be obtained
using equation (9) together with the result

+33 D {Fum

i.e., Dy, has been expressed in terms of the wave drags associated with the elliptic wing’s equiva-
lent multipole strength functions F,yo(x). The wave drags associated with the first three
non-zero multipole strength functions Fyue(%), Famol%) and F, (%) have been calculated by
Lomax and Heaslet’, whose results are given in Fig. 3. It will be seen that the wave drag
associated with the higher order multipoles becomes a large proportion of Dy, only for values of
A,B that are not small. When 4,B = 0 (i.e., M = 1), only the one multipole strength function

[FO W(,(ac)lh1 is required. This means that the wing is ‘slender’, in the Vaerodynamic sense,

and so its wave drag depends solely upon the distribution of cross-sectional area.

FOWO )

DW():D

The wave drag of the isolated blanketed elliptic wing, Dy, cannot be determined simply
without introducing a further approximation. Two such approximations are to treat the
blanketed wing as slender? or as a rectangular wing®. The former approximation is more useful
near M — 1, while the latter is preferable at higher Mach numbers. The rectangular wing
approximation, introduced by Lomax and Heaslet®, will be used here. This equivalent rectangular
wing will have a chord ¢,, thickness along mid-chord #, and a span d equal to the diameter of the
body enclosing it. With this approximation the wave drag of the blanketed wing is"

sin™* B 2
0 Co 1 NUAY
g | !
. __q<c_o)t° o |16y B(;) 0 d
w=p = 5(a) N B(g) <1
4 2(5) (152)
—’— 1 — 60 COSh_:l(——EZ—
5(3)
16 d
3 Bg)=1
The ratio (d/c,) is the aspect ratio of the equivalent rectangular wing. The volume is given by
Vaw = &dcod, . .. e .. .. . .. . e .. (15b)

Equations (14b), (15b) enable the wave drag of the exposed elliptic wing, given by equation (18),
to be written in the approximate form

DW:DWO(I—;—::(%))JFDAW, P 0 15

where Dy, and D,y are given by equations (14a), (15a) respectively.

5.2. Wave Drag of the Combination.—The wave drag of a wing-body combination, given by
equation (11), may be written in the form

Fop -+ F0W§ —D 2F0W +13[p 31:2,13 + sz —D sz,,WH .
9
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For' the special case when the fuselage multipdle representation is such that 7, sx) =0,n>2
this result becomes . o S

D = Dy + D{Fos + Fow} — DiFou} + HD(Fus + Fan} = D{Fus)]. L)

Equation (17) shows that the minimum wave drag, obtained by using the fuselage quadrupole
distribution F,p(x), occurs when F,4(%) = — Fyp(x). This minimum may, however, not be
realised in practice because F, 5(¥) must correspond to a realistic fuselage shape. '

C Ttis interesting to compare equation (17) with equaﬁon (4) which is applicable to combinations
incorporating slender fuselages. Although F,,(x) is equal to the transferred ‘area distribution
A(x), it does not follow that F, 4(x) is equal to the fuselage cross-sectional area distribution S (%).
Nevertheless, a useful approximation. for nearly-slender fuselages is to replace Fou(x) by S(x).
The wave drag of the elliptic wing-body combination may now be written in the approximate
form S o : : T

D= Dy + DIS + A} — D{A} + §[D{Fs + Fuy} — DiFu}l, e ()
Wheré Dy, the wave drag of the exposed elliptic wing, is given by equation (16).

Equation (18) can be used to estimate the minimum possible wave drag for the case when, for
example, only the fuselage length, volume and base area are specified but the wing is fixed.
Assuming that the fuselage shape corresponding to F,p(x) = — F,,(x) is not unrealistic, the
minimum wave drag is'given by o . : o : '

where Dy;,{S + A} denotes the wave drag associated witha so-called optimum area distribution
appropriate to the constraints on the fuselage cross-sectional area distribution S(x). Now, Fig. 3
gives the wave drags associated with the first three non-zero gross wing equivalent multipoles.
If these results were available for the exposed wing also then the total wave drag could be found.
However, since they are not available some results will be found by assuming that

DanW . n=0,24 ...,

- DW -
e m D g'FnWD

where Dy, is the wavé drag of the gross elliptic wing and E, () (n =0,2,4,...) defines the
gross wing equivalent multipole distributions. -It is worthy of note that this approximation is

compatible with the relation Dy = DiF,w;+ % i D\ngnW« .
. . . o o o on=l

The minimum wave drag

becomes’ ' - | o

Dmin - DW + Dmin{s + A} - DW |:D gFowo
. . wo

+30{Fml]. L a9

Here Dy, Dy, are given by equations (14a), (15), (16) and D{Foye, D{Fne) are to be found
from Fig. 3. . ERG - A L

The predictions of equation (19) may have only a qualitative significance because the additional
approximation '
_Di i
= D D {Farm

DgF,LW

has been made. Nevertheless, numerical results with a quantitative significance can bé obtained
provided that this approximation is not used; then it is necessary to calculate each required
multipole distribution F,,(x) for the exposed wing before calculating its associated wave drag
(from equations (3) and (9)).” ) ‘ , SR ! )
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5.3. Comparison with Experiment.—It is not possible to compare with experiment the pre-
dictions of equation (18), which gives the wave drag of the elliptic-wing-body combination,
except for the special case when the fuselage is axisymmetric (i.e., Fy5(x) = 0) and S(x) is a
so-called optimum area distribution, whose associated wave drag is a minimum for given length,
volume and base area. This case has been investigated by Lomax and Heaslet®, whose theoretical

result for the wave drag of this elliptic-wing—unmodified-body combination is the same as that
deduced from equation (18). '

Fig. 4 compares the theoretical and experimental wave drag for this configuration. The
theoretical result can be reduced to the form C, = C,4 + 0-0054, the wave-drag coefficients
being based on the gross wing area. Lomax and Heaslet® point out.that the quantitative
agreement for the total wave drag, less the isolated fuselage wave drag, is very good for
M > 1-15. Thus the present method, which neglects the interference velocity potential

between the exposed wing and the fuselage, has predicted the interference wave drag with
remarkable accuracy.

The configuration denoted as modified by Lomax and Heaslet® has a fuselage which is not
axisymmetric. However, the isolated fuselage multipole representation is not known because
the fuselage has been defined as a stream surface of the singularity distribution representing the
entire configuration. Therefore the effect of fuselage quadrupoles cannot be examined without
further experimental data. The theoretical minimum wave drag in this case is given approxi-
mately by equation (19) and is shown in Fig. 4, which illustrates the importance of fuselage
quadrupoles in reducing the wave drag of a wing-body combination. The minimum wave drag
when the fuselage is axisymmetric is shown also. These results show that, theoretically, the
usefulness of the multipole method as a means of reducing the wave drag does not decrease with
increasing Mach number. On the other hand, it-appears from the calculations of L.omax and
Heaslet® that the optimum quadrupole strength defined by F,z(%) = — F,;(x) may not be
usable at the higher Mach numbers; unrealistic fuselages with surface streamlines crossing each
other may be obtained if F,y(x) is chosen to be equal to — F,,(x). Finally, it must be
emphasised that the two lower curves in Fig. 4 do not represent the wave-drag variation with
Mach number for a certain configuration but only the minimum wave drag possible for an
optimum design at a specific Mach number.

6. Conclusion.—The Lomax-Heaslet special multipole method for estimating the wave drag
of combinations of thin wings and non-slender bodies has been examined and what is believed
to be an improved method presented. The inconsistencies that arose in applications of the
Lomax-Heaslet multipole method have been eliminated by using the assumption that the effect
on the wave drag of the interference velocity potential, due to the interaction between the -
exposed wing and the body, is negligible. Since this assumiption is fundamental to the area-rule
method of wave-drag estimation it has provided a very satisfactory basis for an extension of
the area rule to combinations incorporating fuselages that are not slender. The extension

described in this paper is applicable to problems involving both estimation of wave drag and
design for low combination wave drag.

The accuracy of the predictions of the present method has been examined in a number of special
cases. Theoretically, a comparison has been made with existing results for rectangular
wing-circular cylindrical body combinations; in addition, a brief investigation of conical con-
figurations and combinations employing quasi-cylindrical fuselages has been made. Experi-
mentally, a comparison has been made for the wave drag of an elliptic wing and axisymmetric
body combination. These comparisons with theory and experiment enable two important
conclusions to be made. Firstly, estimates of the wave-drag changes associated with changes
in fuselage shape are likely to have a quantitative significance. Secondly, estimates of total
combination wave drag may have a quantitative or only a qualitative significance ; quantitative

agreement would vot be expected at transonic speeds where the supersonic linearised theory is
not valid.

11
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NOTATION

Usual #th order multipole strength function

Gross wing aspect ratio ,

Transferred area distribution of exposed wing

Alternative nth order multipole strength function (see equation (A.1))
Total wing span

V(M —1)

Wing chord

Gross wing-root chord

Wave-drag coefficient, based on an appropriate area

Diameter of body enclosing blanketed wing

Total wave drag

Isolated exposed wing wave drag

Interference wave drag

Isolated body wave drag

Wave drag associated with the ‘ area ’ distribution S(x) (see equation (3))
Modified nth order multipole strength function (see equation (A.5))
Modified #th order fuselage multipole strength function

Effective modified #th order multipole strength function of the exposed
wing

Fuselage length -
Free-stream Mach number
Kinetic pressure 1p,U,?
Cylindrical polar co-ordinate (see Fig. 1)
Radius (of cylindrical body)
Fuselage cross-sectional area distribution
Elemental area distribution
Exposed wing elemental area distribution (see equation (2))
Root thickness at wing mid-chord
Wing thickness at the point (x, ¥, 0)
Free-stream velocity
Volume ._
Cylindrical polar co-ordinates (see Fig. 1)
Rectangular Cartesian co-ordinates (see Fig. 1)
Cylindrical polar co-ordinate (see Fig. 1)
Free-stream density

12



No.

NOTATION—continued

$(x, 7, 0) Perturbation velocity potential (the velocity component in the free stream
direction is defined to be U, 4 qu(xT,xr,_B_))
e Subscripts denoting integration variable, e.g., %1, %,
Dashes Denote partial differentiation with respect to x,
, _35(x, 0, M)
e.g., S'(x, 0, M) =
w70 Subscripts denoting partial differentiation, e.g., ¢, = 04/07
B, W, W0, WN, 4W Subscripts denoting fuselage (or body), exposed wing, gross wing, net
wing, blanketed wing respectively, e.g., V', denotes the volume of the
gross wing

Integer subscript for functions defining the nth order multipole distri-
butlon n=0,1,2...

Denotes a minimum value, e.g., Dy, is the minimum wave drag
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APPENDIX

Properties of Axial Multipole Distributions

Distributions of non-lifting multipole singularities along the line vy = 0, z = 0, which is parallel
to the free-stream direction (see Fig. 1), will be considered in the Appendix. The perturbation
velocity potential ¢, due to such a distribution of multipoles, may be written in the form

o A () cosh | cosh (T2 | dx,
b(x, 7, 9)2——2—1—2cosm9f [ i ( ZB:’ )} , .. .o (AT
e =0 0 AVA{lx — %) — B%%

«w

where (x, 7, 8) are cylindrical polar co-ordinates (see Fig. 1),

A,(x) is a multipole strength function defining the nth order multipole
distribution (» = 0,1, 2, .. )

and the nth order multlpoles are defined for x > 0, so that ¢(x, 7, 8) is identically zero for x << Br.
It is assumed that 4,(x) is continuous everywhere i.e., each multlpole distribution is * Smooth ’
The particular form of equation (A.1) is due to Cramer™ and has been given by Lomax and
Heaslet®. A more usual form of equation (A.1) is

1 ., 1 ? n px—DBr an(xl) dl
I - L.
where the strength function 4,(x) is related to 4,(x) in equation (A.1) by the result’®
0"a,,(x
(— B 22— 4.
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Since an #th order multipole can be considered to consist of 2" poles (or sources) a source is a
zeroth-order multipole, a doublet is a first-order multipole and a quadrupole is a second-order

multipole.

If any streamtube of a multipole distribution is symmetrical about the plane y = 0 (see Fig. 1),
then the strength functions 4,(x), a,(x) are identically zero for odd values of #». This symmetry
condition will be satisfied by the configurations examined in this note ; thus only the even multi-

poles are considered.
From equation (A.1) it may be shown® that the perturbation velocities associated with an
- axial multipole distribution are

x—Br 'A'nl(xl) COSh |:7’l/ COSh_l (%):} dxl

1 0
$.(%,7,0) = — Z?,Zo cos nf fﬂ Vi = 5 = B (A.2)
® 5, A.(%,) cosh [n cosh™ (x;xl” ax,
1 1 . B
| ;(]S@(x,w, 0) = 775’20% sin #6 fo . Vi = Bzrz} (A.3)
and 4
B (= w) A (%) dx
b (%7, 0) = sz o 7V/IE — 1) — B
( cosh [(% + 1) cosh™? (%):I
A, (%) ax,
. . -+ cosh [(n — 1) cosh™* (2’_3?7_961)] ad

B
+ 1 2 cos 7 J‘o ‘ Vil — %) — B

where A4,'(x) denotes 04,/9x and the suffix notation for partial differentiation is used. The
~ contribution of any 4,(x) to a perturbation velocity potential is zero for x < Br, where ¢(x, 7, 0)
is identically zero.

The wave drag associated with a smooth axial multipole distribution has been found by,
among others, Lomax and Heaslet® who used a control-surface method of calculation. The
perturbation velocities on an infinite circular cylindrical control surface were determined using
equations (A.2), (A.3), (A.4). Let a new multipole strength function F,(x) be defined by

A, (x) = UFE, (%) . .. .. . .. e . . .. (A.5)
Then the wave drag® may be written as
D = D{F}} + > D{F,}, .. .. . . . .. .. (A.8)

n=1

where D{F,} is given by equation (3) and defines the wave drag associated with F,(x). It should
be noted that each F,’(x) is continuous everywhere because the multipole distributions are

sr_nooth.
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