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Summary.--The methods of wave-drag estimation known as the area rule and transfer rule are restricted to non- 
lifting combinations of thin wings and slender bodies. The Lomax-Heaslet multipole method is applicable to 
configurations with ' non-slender' fuselages, represented by an axial distribution of multipoles. However, it is not 
entirely satisfactory and an alternative multipole method is presented here. This is based upoI1 the assumption, 
fundamental to the area rule and the transfer rule, that the effect oil the wave drag of the interference velocity potential, 
due to the interaction between the exposed wing and the fuselage, is negligible. An investigation of the validity 
of this fundamental assumption based on existing theoretical and experimental results, is given. The application of 
the multipole method to fuselage design for low combination wave drag is discussed with special reference to an elliptic 
wing-body combination. 

1. Introduction.--Investigations of w ing -body  wave  drag,  u n d e r  non- l i f t ing condi t ions,  have  
been  m a d e  b y  a n u m b e r  of au tho r s  1 to 6 wi th in  the  res t r ic t ions  of the  l inear ised theory ,  wh ich  
assumes  smal l  p e r t u r b a t i o n  velocities.  The  specif icat ion of non- l i f t ing  condi t ions  implies  t h a t  
t he  w ing -body  combina t ion  has  two  planes  of s y m m e t r y  and  t h a t  i t  can be r ep resen ted  b y  a 
d i s t r ibu t ion  of sources over  its surface. Fo r  such  configurat ions,  l inear i sed- theory  m e t h o d s  have  
been  deve loped  for e s t ima t ing  wave  drag  and  for shap ing  t h e  fuselage or m a i n  b o d y s o  t h a t  t he  
t o t a l  combina t ion  wave  drag  is a m i n i m u m .  Three  useful  m e t h o d s  k n o w n  as the  area rule 1, 
t he  t ransfer  rule  s and  t he  m o m e n t  of area rule a have  been der ived  us ing the  a s s u m p t i o n  t h a t  t he  
effect on t he  wave  drag  of t he  in ter ference  ve loc i ty  poten t ia l ,  due  to  t he  in te rac t ion  be tween  the  
b o d y  and  t he  exposed  wing, is negligible. Since these  th ree  m e t h o d s  util ise t he  same  a s s u m p t i o n  
i t  can be  shown ~ t h a t  t h e y  are equiva lent .  

Appl ica t ions  of t he  area rule 1 and  its va r i an t s  2, a are res t r ic ted  to combina t ions  of th in  wings 
and  s lender  bodies  on ly :  t h u s  an  ex tens ion  of t he  area  rule ~ to combina t ions  inco rpora t ing  
' n o n - s l e n d e r '  fuselages w i th  m o r e  compl i ca t ed  cross-sectional  shapes  m a y  be desirable.  Such  
all ex tens ion  has  been  p re sen t ed  b y  L o m a x  and  Heas leP  who consider  fuselages t h a t  Call be 
r ep resen ted  b y  s m o o t h  axial  d i s t r ibu t ions  of mul t ipo le  singulari t ies.  However ,  this  ex tens ion  
b y  L o m a x  a nd  Heas leP  is i lot en t i re ly  sa t i s fac tory  for two reasons :  firstly, t he i r  compar i sons  
be tween  resul ts  for t he  wave  drag  of modi f ied  and  unmodi f i ed  combina t ions  are n o t  necessar i ly  
va l id  because  t he  same  a s s u m p t i o n  is n o t  m a d e  ill t he  two  cases ; secondly,  i t  m a y  be ques t ioned  
w h e t h e r  the i r  fuselage designs are o p t i m a  for the  g iven  condi t ions.  I t  is the  pu rpose  of t he  
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present paper to examine the Lomax-Heaslet multipole method 5 in more detail and to present 
an alternative method. No a t tempt  is made to apply the exact linearised-theory method of 
Nielsen 6 which is applicable to quasi-cylindrical fuselages of almost circular cross-section only 
and is very complex. 

In section 2 a brief summary of the area rule l and its variants ~,3 are given. In section 3 the 
extension of the area rule ~ to combinations with ' non-slender ' fuselages is examined, the neglect 
of the effect of the interference velocity potential being emphasised. For three particular 
configurations, the range of validity of this assumption is investigated in section 4. In section 5 
the illustrative example of an elliptic wing and body combination, considered by Lomax and 
HeasleP, is presented and some theoretical results are compared with existing experimental 
results. Finally, in section 6, the conclusions of this paper are given. 

2. Cor~figuratior~s with Slender Fuselages.--The wing-body combinations treated in this section 
are assumed to have the local surface slope, in the free-stream direction, small everywhere, so 
tha t  tile perturbation velocities are small 'and the l inearised theory is applicable. Since the 
fuselage is slender, the essential requirement at a Mach number M is tha t  R~/(M 2 -- 1)/l be 
small, where R is a fuselage radius in ally cross-section and l is the fuselage length. In addition, 
the local fuselage radius of curvature, in any meridian section, must always be large compared 
with the length 1. 

2.1. Methods of Estimating Wave Drag.--For configurations with smooth slender fuselages the 
area rule 1, transfer rule s and moment of area rule 3 methods can be used to estimate tile total  
wave drag. The area rule 1 expresses the wave drag D as a triple integral of the form 

1 f~dO F q ~r  S"x(1, o, M)S"(x2, D 

where q is the kinetic pressure ½poUo ~ , 

p0, Uo are the free-stream density and velocity respectively, 

S(x, O, M) defines an elemental area distribution, 

S"(x, O, M) denotes aSS(x' O, M) 
~ x  2 

and the double integral containing S(x, 0, M) includes all values of x for which S(x, 0, M) is 
defined. I t  is assumed tha t  S'(x, O, M) is continuous everywhere (i.e., S(x, O, M) is ' smooth ')*. 
For a thin wing lying in the plane z = 0 (see Fig. 1), an elemental wing area distribution ~ is 
defined by 

f T(x + By, cos 0 ,  yl) dyl,  . . . . . . . . . . . .  (9,) Sw(x, O, M) 
T # O  

where T(x, y) denotes the wing thickness at tile point (x, y), 

B = ~/(M ~ -- 1), M being the free-stream Mach number, 

and 0 is a cylindrical polar co-ordinate (see Fig. 1). The general expression for an elemental 
wing area distribution is similar to equation (g) and has been given elsewheret The complete 
elemental area distribution is now given to a sufficient approximation, by  S(x, O, M ) =  
S(x) + Sw (x, 0, M), where S(x) is the fuselage cross-sectional area distribution. 

* Lock's investigation 7 of-rectangular wings indicates that this. smoothness condition is not necessary for wings. 
Hence the fuselage only need be ' smooth ' ;  this less restrictive condition will not be used here. 
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If the  isolated exposed* wing wave drag is wr i t ten  in the  form 

1 ~s~ 
Dw = jo  D{Sw(x ,  o, M)} a0, 

where 

denotes the  wave drag associated wi th  the  area distr ibution Sw(x, O, M), then  equat ion (1) 
becomes the  transfer rule s and the  wave drag can be wri t ten  as 

D = Dw + D{S + A } -  D{A}, . . . . . . . . . .  (4) 

where D{A}, D(S + A} denote the  wave drags associated with the  area distr ibutions A(x), 
S(x) + A(x) respectively. A(x) is called the  transferred wing area distr ibution m and may  be 
defined by , 

1 (s~ 
A (x) = J o S (x, o, M )  d o ,  . . . . . . . . . . . . . .  (5) 

so tha t  A (x) is seen to be equal to the  mean  wing e lemental  area distr ibution I, 4. Since S~'(x, O, M) 
is assumed to be continuous everywhere it follows tha t  A '(x) is continuous everywhere.  

The transfer rule, equat ion (4), can be wri t ten  in t he  form 

D = Dw + Dw~ + De 

where Dwe is the  interference wave drag and De = D{S} is the  isolated body  wave drag. I t  
follows tha t  the interference wave drag is 

Dwe = D{S + A } -  D { S } -  D(A} . . . . . . . . . . . . .  (6a) 

This result  can be wri t ten  as 

Dwo - f f log Ix~ -- xsl dx~ dxs. 

The m o m e n t  of area rule 3,~ expresses the  wave drag in a series of ascending powers of 
B s = M 2 --  1 beginning with the  slender term which is independent  of B. Because of the  com- 
plexi ty  of the  result only the  first two terms are normal ly  considered. Thus the m o m e n t  of area 
rule is applicable to configurations which are described here as ' not -so-s lender '  For  this reason 
the  me thod  will not  be discussed further  and a t t en t ion  will be concentra ted upon methods,  such 
as the  area rule ~ and the  transfer rule s, which are applicable to any  configuration. 

2.2. Fuselage Desig~cfor Low Wave Drag.~The design of the  fuselage so tha t  the  total  combina- 
t ion wave drag is a min imum,  subject to certain conditions, requires the  use of equat ion (4). 
In  equat ion (4), tile only te rm dependent  upon the  fuselage is D(S + A} and so this t e rm is 
required to be minimised. This can be done using the  op t imum area distr ibutions presented by  
E m i n t o n  8 and  an op t imum fuselage cross-sectional area distr ibut ion S(x) obtained.  Since the  
fuselage is slender the  cross-sectional shape is arbi t rary and, therefore, an axisymmetr ic  fuselage 
shape is theoret ical ly as good as any other  shape. 

* Here a distinction is made between the expressions exposed wing and net wing. The exposed wing is that 
part of the gross wing actually outside the fuselage; the net wing is formed by placing the exposed wing panels together. 
In section 4.1 the net wing is introduced. 
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3. Configurations with Non-slender Fuselages.--Wing-body combinations with non-slender 
fuselages are examined in this section. The term ' non-slender ' is applied to fuselages which are 
such that,  at a Mach number M, Rv ' (M ~ -- 1)/1 is not small everywhere, R being a fuselage 
radius in a cross-section and l the fuselage length. Non-slender fuselages could be quasi-cylinders, 
including quasi-cylinders of almost circular cross-section, and bodies with cross-sections of 
' figure-of-8' type so that ,  in meridian sections, the profile varies from apparently slender to 
apparently quasi-cylindrical. 

In section 3.1.1 some properties of axial multipole distributions are summarised. Mso, the 
representation of fuselages by axial distributions of multipoles as well as the replacement of 
wing source sheets by equivalent multipoles are discussed. Next, the fundamental result, giving 
the wave drag of a wing and non-slender body combination, is derived. In section 3.1.2 this 
important  result is used to give a method o5 fuselage design for low combination wave drag. 
Lastly, in section 3.2, the present multipole method is compared with the Lomax-Heaslet multi- 
pole method. 

3.1. A Mult@ole Method.--3.1.1. Estimation of wave drag.--Consider an axial distribution of 
multipoles and let them be defined by the strength functions F,,(x) (n - -  0, 2, 4 , . .  i), which are 
believed to benew and are introduced in the Appendix, equation (A.5). The wave drag associated 
with these multipoles is, from equation (A.6), 

D = D{Fo} + ½ ~ D{G,~}, . . . . . . . . . . . .  (7) 

which is an infinite series in general. The wave drag D{F~} (n = 0, 2, 4, • • .) is given by equation 
(3). For a given configuration the strength functions F,(x) will vary with free-stream Mach 
number M. When M = 1 only the strength function Fo(x) is non-zero. However, at free-stream 
Mach numbers greater than unity the strengths o5 the higher order multipoles become increasingly 
important  (thus the number of terms required in equation (7) to represent adequately the wave- 
drag increase with Mach number). This means that  the complexity of any wave-drag calculations 
will increase rapidly with increasing Mach number. 

Singularity representations for the non-slender fuselages considered in this paper are assumed 
to consist of smooth axial distributions o5 mnltipole singularities. I5 the multipole strength 
functions are known equations (A.3), (A.4) in the Appendix enable the fuselage, which is a 
stream surface, to be calculatedL However, the inverse problem of determining the multipole 
strength functions associated with a given body shape is more difficult and the general case has 
not  been solved since it requires the solution o5 the integral equations (A.3), (A.4). For the 
special case o5 slender fuselages FoB(x) = S(x), the body cross-sectional area distribution, and 
F~B(x) -- 0, n > 0. Moreover, if the fuselage is axisymmetric F,,B(x) = 0, n > 0 and the 
singularity representation consists o5 only axial sources, whose strength can be found by super- 
posing a number o5 Ferrari's conical-body solutions 9, for example. For many non-slender 
fuselages it may be sufficient to use only a source, F9B(x), and quadrupole, F~B(x), representation, 
provided that  the fuselage is not a quasi-cylinder o5 almost circular cross-section; in this case 
the multipole strength functions can be found directly by using the method of Nielsen 6. 

Although the wing singularity representation may be a planar distribution of sources, the 
special representation used here is in terms o5 equivalent axial distributions of multipoles. Lomax 
and HeasletShave derived an axial distribution of multipoles which is equivalent to the sources 
in tile sense tha t  the same perturbation velocities at infinity are associated with the equivalent 
multipoles and the sources, i.e., the same wave drag is associated with the sources and the 
equivalent multipoles. These equivalent wing multipoles have strength functions F~w (x) defined 
by 

1 S swl , o, MI do t F o w ( X )  = G o 

1 F" Sw(X, O, M) cos nO dO (n > O) J ;F,, .;(x) = o 

4 

(8)  



or, alternatively, 

1__ C( Z(Xl, Yl)dXldyt 
Fow(X) 7 ~  

:~ JJ V{B~y?- ( x -  x~) ~} [ (xl- x~ }. (9) 
= ~ ~ /{B~y?  - (~ _ x~)~ } (~ > o) 

In equation (8), Sw(x, O, M) denotes an elemental wing area distribution (equation (2)). Since 
Sw(x, O, M) varies With Mach number, it follows that F,~w(X) will vary with Mach number also. 
In equation (9), T(x, y) is the wing thickness at the point (x, y) and the integration is over that 
part of the wing for which the integrand is real. 

Equations (5) and (8) show that Fow(X? = A(x), the wing transferred area. dis.tribution. The 
alternative expression, equation (9), for A(x)(= Fow(X)) is due to Ward ~ and suggested writing 
F,,w(X) directly in terms of the wing thickness T(x, y). A form equivalent to equation (9) has 
been given by Lomax and Heaslet 1°. 

The wave drag of a thin wing and non-slender body combination will be derived now by using 
the assumption that the effect on the wave drag of the interference velocity potential, between 
the exposed wing and the body, is negligible, i.e., the perturbation velocities at infinity are 
assumed to be given by the body multipoles F,,Bx) and the equivalent wing multipoles F,w(X). I t  
follows that the total effective multipole strength fanction is 

F. (x)  = F , ~ ( x ) +  F,~..(~) . . . . . . . . . . . . . .  (10) 

and that the combination wave drag, from equation (7), is 

D = D{FoB + F0w} + ½ ~ D{F~,,~ + F~,w} . . . . . . . . .  (11) 
n = l  

This is the fundamental equation of the present work. Equation (11) enables wave drag estimates 
to be.made using the double integral for D{F2,B + F2,~,v} given in equation (3), provided that 
F,~B(x) and F,w(X) are known. 

When the fuselage is slender F~B(X) --~ 0, (n > 0) and FoB (x) = S(x) so that equation (11) 
becomes 

D = D{S + Fow} + ½ ~ D{F~,w} 
n = l  

which, using Fow(X) = A (x), can be rewritten as 

D = D(S + A~ + 1 ~ D(~'~o~). 

The isolated exposed wing wave drag is 

Dw-- D{A} + ½ ~ D{F~,, w} 
n = l  

and so 

D =  Dw + D{S + A}- -  D{A}, 

which is equation (4). 

when  M tends to 1, from above the special sonic form of equation (11) is obtained. It  follows 
from the work of Lomax and Heaslet ~, for example, that the wave drag is given by 
D = D{Fo, + F0w}~=~ • This particular result is ' exact ' in the sense that it incorporates no 
assumptions other than those implied by the use of linearised theory. 
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An alternative form, which is particularly useful when the wing wave drag is known, is obtained 
by writing equation (11) in the form 

D =  Dw + Dw~ + DB 

where Dw ~-- D{Fow} + 1 i D{F~,~w) is the isolated exposed wing wave drag 

D, =- D(Fo,) + ½ ~ D)F, , , )  is the isolated body wave d r a g  

= D{Fo. + Fo }- D(Fo } 

is the interference wave drag. Using the double integral of equation (3) Dwz can be written as 

7~ d d  

2a,=i ~ 2,,, Ixl)F2nw (x2) log [xl - x~] dx~ dx~ , . . . . . .  (12b) 

which is the generalisation of the result given in equation (6b) for configurations with slender 
fuselages. I t  is recommended that  the interference wave drag Dw, be used in calculations only 
when one or two fuselage mnltipoles F , ,  (x) are present, as otherwise the calculations are too 
complicated. 

For completeness, configurations with bodies, such as engine nacelles, mounted on tile wing 
will be discussed very briefly. Provided that  these subsidiary bodies are slender, equations (2) 
and (9) enable the equivalent wing multipole distributions F,w(x) to be found by treating the 
bodies as part  of the wing thickness distribution. However, the case when the subsidiary bodies 
are not slender is much more complex and will not be considered. 

3.1.2. Fuselage Design for Low Wave Drag.--One of the most important  applications of the 
new wave-drag result, equation (11), lies in the design of fuselages so that  the total wave drag 
is a minimum under certain prescribed conditions. For example, the optimum F,~B(x) (n = O, 2, 
4 . . . .  ) may be required to give a fuselage of prescribed length and volume and, moreover, they 
must correspond to a real fuselage shape. I t  is seen from equation (11) that  a number of wave-drag 
expressions of the form D{F=,, B -}- F2, w} are required to be minimised separately with F=, w (x), 
being a wing term, fixed. Each optimisation problem is of the same type as that  discussed in 
section 2.2 for configurations with slender fuselages and therefore the optimum functions 
available 9 may be of use. 

3.2. Comparison with the Lomax-Heaslet Multipole Method.--It is difficult to give a precise 
definition in general terms of the Lomax-Heaslet multipole method 5 since it has been presented 
for application to an elliptic wing and body combination. The following comments are based on 
what is believed to be a correct interpretation of the method. For application to a general 
configuration an exact method appears to be intended. Thus, in order to determine the wave 
drag, axial multipole representations are required for the isolated fuselage and for the interference 
velocity potential. Since the determination of the latter multipole representation usually involves 
complex calculations, the Lomax-Heaslet method is not simple to apply in either estimation of 
wave drag or fuselage design for low wave drag. The present multipole method neglects tile 
effect on the wave drag of the interference velocity potential and is not exact; however, it is 
simpler than tile Lomax-Heaslet method and much more readily applicable to tile design of 
fuselages for low total  wave drag. Therefore the present method may be preferable in many 
applications even though it incorporates an assumption. 
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The Lomax-Heaslet multipole method ~, as applied to the elliptic wing and body combination, 
is not entirely satisfactory. The wave drag of a so-called unmodified combination, with an 
axisymmetric fuselage, is determined by neglecting the interference velocity potential between 
the exposed wing and the body; this is the same assumption as tha t  used throughout the present 
note. Now, however, the derivation by Lomax and Heaslet of an optimum fuselage shape f o r  
low combination wave drag requires careful examination. Lomax and Heaslet take the gross 
wing, extending through the body, as the basic wing and use the body multipoles to cancel, 
as completely as possible, the equivalent gross-wing multipoles. This procedure is not satisfactory 
unless the exposed wing is taken as the basic element. Furthermore, the optimum fuselage is 
defined as a stream surface of a singularity distribution, so that  the singularity representation 
of the modified configuration is exact. For this reason comparisons between the wave drag of 
an unmodified combination, deduced using an assumption, and the wave drag of modified 
combinations, deduced without using any assumptions, are not necessarily valid. Therefore 
the comparisons of this type that  have been given by Lomax and Heaslet 5 are inconsistent. 

4. Discussion of the Fundamental Assumption.--The assumption fundamental to the present 
method of estimating wave drag is that  the effect on the wave drag of the interference velocity 
potential, due to the interaction between the exposed wing and the body, is neglig.ible. Here 
the validity of this assumption is investigated using three known results of supersomc linearised 
theory for wing-body combinations*. 

4.1. Estimation of Wave Drag.--Following Nielsen and Pitts t2, consider a circular cylindrical 
body with a rectangular wing of double-wedge section t. Tile aspect ratio of the wing is assumed 
to be high enough for the wing-tip zone of influence not to include the wing-body junction. 
Fig. 2 shows the wave drag of such a combination as a function of the ratio BR/c, where 
B = ~/(M ~ -- 1), R is the body radius and c is the wing-root chord. 

The present method can be applied to this configuration also by using equation (11) with 
F~,~B(x) = 0 for all n and gives a wave drag the same as that  of the isolated exposed wing. The 
wave drag of the isolated exposed wing has been determined in Ref. 15, and independently by 
Lock  14, and the results are plotted in Fig. 2. I t  should be noted tha t  the fundamental  assumption 
is theoretically exact for BR/c  = 0,'oo (i.e., M = 1, oo for example). This observation can be 
shown to be true in generaP. Furthermore, the errors introduced by the assumption are nowhere 
large. The maximum error is about 7 per cent of the correct wave drag and occurs at BR/c = O. 2. 
For this particular combination Fig. 2 shows that  the wave drag of the isolated exposed wing is 
very nearly the same as that  of the isolated net wing, which is formed by placing together the 
panels of the exposed wing. 

Since the comparison of Fig. 2 is for rectangular wing-body combinations only, it gives no 
indication of the errors likely to arise in applications of the present method to general configura- 
tions. Experimental evidence or extensive theoretical evidence will be required to extend the 
comparison of Fig. 2 to a systematic series of wing-body combinations. 

Conical wing-body combinations have been investigated by Browne, Friedman and Hodes 15 
who present results which are exact within the accuracy of t h e  supersonic linearised theory. 
I t  can be shown tha t  the interference velocity potential is very small for their conical combina- 
tions, i.e., the fundamental assumption is valid approximately for such special configurations 
whose interference flow fields are, however, atypical. 

* Another result has been given by  Fraenkel TM recently. I t  has been shown that the fundamental assumption is 
valid when the body is a slender quasi-cylinder of almost circular cross-section. 

t Lockl~ has presented an improved method of calculating the wave drag of rectangular wings and quasi-cylindrical 
body' combinations. 



4.2. Design of Quasi-cylindrical Fuselages.--An important  aspect of the present method is the 
design of fuselages for low combination wave drag. This means that  estimates of the wave-drag 
changes associated with fuselage modifications are to be made. One may ask: how reliable are 
these estimates ? In the case of quasi-cylindrical fuselages they may be very good. For, it will 
be seen from Nielsen 6, for example, tha t  the interference velocity potential is invariant with 
respect to changes in the fuselage, the mean cylinder being fixed (the exposed wing varies with 
fuselage shape but this variation is unimportant  because the fuselage is quasi-cylindrical). 
Therefore, although the wave-drag estimates of the present method are in error because the 
interference velocity potential has been neglected, it follows that  the present method may predict 
the correct changes of wave drag when the quasi-cylindrical fuselage only is allowed to vary. 
I t  is suggested that  the present method can be used to estimate wave-drag changes associated 
with fuselage modifications with acceptable accuracy, whether the fuselage is a quasi-cylinder 
or not. Of course, only qualitative estimates would be expected at transonic speeds where the 
linearised theory is not valid. This important  conclusion is supported by the limited experimental 
evidence available in Ref. 11. 

5. Example--Elliptic Wing and Body Combination.--Elliptic wing and body combinations have 
been examined by Lomax and HeasletL The thickness distribution of the gross elliptic wing is 
chosen so that  all the elemental area distributions, defined by equation (2), represent Sears-Haack 
bodies (i.e., bodies of given length with minimum wave drag for a given volume). This special 
wing is discussed by Lomax and Heaslet ~, for example, and was investigated first by JoneslL It  
has a parabolic-arc section with the thickness/chord ratio proportional to local chord. 

5.1. 
it is necessary to determine the wave drag of the exposed elliptic wing. 
nsing the result 5 that  the wave drag of the exposed elliptic wing is 

D w =  Dwo(1- -  2 V~W) , .. Vwo: + D ~w . . . .  

where Dw0 

D~w 

Wave Drag of Exposed Elliptic Wings.--Before estimating the wave drag of the combination 
This may be done by 

. . . . . .  ( 1 3 )  

VW0 

The wave drag of the isolated gross elliptic wing may be Written * as 

Dwo = qto' ~ 1 + ~-~ -]/  1 + 1-6 ] ' 

is the kinetic pressure ½p0U 2 

is the centre-line thickness at the wing mid-chord 

is the wave drag of the isolated gross elliptic wing 

is the wave drag of the isolated blanketed wing, that  is, the portion of the gross 
wing blanketed by the body 

is the volume of the gross elliptic wing 

is the volume of the blanketed wing. 

where q 

to 

A0 is the aspect ratio 

B = V(M 2 -- 11. 

The volume of the wing is 

7L:2A 0 
Vwo = Co2to 32 ' 

. . . . . .  (14a) 

. . . . . .  (14b) 
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where Co is the maximum wing chord. An alternative expression for the wave drag can be obtained 
using equation (9) together with the result 

i.e., Dwo has been expressed in terms of the wave drags associated with the elliptic wing's equiva- 
lent multipole strength functions F~wo(X). The wave drags associated with the first three 
non-zero multipole strength functions Fowo(X), F2wo(X) and F4wo(X) have been calculated by 
Lomax and Heaslet ~, whose results are given in Fig. 3. I t  will be seen that  the wave drag 
associated with the higher order multipoles becomes a large proportion of Dwo only for values of 
AoB that  are not small. When AoB ---- 0 (i.e., M ---- 1), only the one multipole strength function 

1 is required. This means tha t  the wing is ' slender ', in the aerodynamic sense, Fo o(X)  
and so its wave drag depends solely noon the distribution of cross-sectional area. 

The wave drag of the isolated blanketed elliptic wing, D~w, cannot be determined simply 
without introducing a further approximation. Two such approximations are to treat the 
blanketed wing as slende# or as a rectangular wing 5. The former approximation is more useful 
near M = 1, while the latter is preferable at  higher Mach numbers. The rectangular wing 
approximation, introduced by Lomax and Heaslet 5, will be used here. This equivalent rectangular 
wing will have a chord co, thickness along mid-chord to and a span d equal to the diameter of the 
body enclosing it. With this approximation the wave drag of the blanketed wing is 17 

i 

D A  W m_ 

q(~o) to2 

B 
× I_G B(d_l 

\Co/ 

16 
3 '  

siolB( ) 
-g \Co/ 

i • • • (15a) 

The ratio (d/co) is the aspect ratio of the equivalent rectangular wing. The volume is given by  

VAw = {dcoto . . . . . . . . . . . . . . . . . . . . .  (15b) 

Equations (14b), (15b) enable the wave drag of the exposed elliptic wing, given by  equation (13), 
to be written in the approximate form 

Dw= Dwo 1--3~\b]] + D~W' 

where Dwo and D~w are given by equations (14a), (15a) respectively. 

. . . . . .  

5.2. Wave Drag of the Combination.--The wave drag of a wing-body combination, given by 
equation (11), may  be written in the form 

9 
( 7 1 6 6 5 )  A *  



For" the special case when tlie fuselSge multipdle represefitatlon is such that  "F,z(x) " 0 n 2 2  
this result becomes , ' 

D = Dw + D{Fo~, + F o w } -  D{F0~/~} + ½[D{E2B -~ F2w} " D{F2w}?. . .  (17) 

Equation (17) shows that  the minimum wave drag, obtained by using the fuselage quadrupole 
distribution F2B(x), occurs when F~B(x) = --F~w(X). This minimum may, however, not be 
realised in practice because F2B(x) must correspond to a realistic fuselage shape. 

I t  is interesting ,to compare equation (17) with equation (4) which is applicable to combinations 
incorporating slender, fuselages. Although Fo~v(x) is equal to the transferred area  distribution 
A (x), it does not follow that  F0 B(x) is equal to the fuselage cross-sectional area distribution S(x). 
Nevertheles s, a useful approximation:• for nearly-slender fuselages is to replace Fob(X) by S(x). 
The wave drag of theel l ip t ic  wing-body combination m a y  now be  written in the approximate 
form . . . . .  . . . .  : 

• . D =  Dw, + DiS + A} -- D{A} + ½[D{F,B + F2w} -- D{F2w}] . . . . . .  (18) 

where Dw, the wave drag o f t h e  exposed elliPtic wing, is given by equation (16). 

Equation (18) can be used to  estimate the minimum possible wave drag for the case when, for 
example, only the fuselage length, volume and base area are specified b u t  the wing i s  fixed. 
Assuming that  the fuselage Shape corresponding to  F=B(x) = F=w(x) is not unrealistic , the 
minimum wave drag is given by . . . .  

D ~  = Dw + D ~ { S  + A } -  D { A } -  ½D{F=w},, 

where Dm~{S + A} denotes ,the wave drag associated wit:h~a so-called optimum area distribution 
appropriate to the constraints on the fuselage cross-sectional area distribution S(x). Now, Fig. 3 
gaves the wave drags associated with the first three non-zero gross wing equivalent multipoles. 
If these°results were available for the exposed wing also then the total  wave drag could be found. 
However,: ,. . _ since, they are not available some results will be found by assuming that  

D F~w D~o:D F~wo , n = 0 , 2 , 4 , .  . ,  i 
i 

where Dw0 is the wave drag of the gross elliptic wing and F,~wo(X) (n _- o, 2, 4 , . . . )  defines the 
gross wing equivalent multipole distributions. ::It is wor thy  of note that  this approximation is 

l 0wl f compafibl e with the relation Dw = D + {- D F ~ w , .  The minimum wave drag 

becbmes" " .- " . . . . .  

(19) 
. D w o  { 1  ( t J  " " " 

Here  Dw, Dwo are given by equations (14a), (15a), (16) and D{Fowo}, D{F2wo} are to  be found 
from Fig. 3. - . . . . .  ' ..... 

The predictions of equation (19) may have only a qualit-ative significance because the additional 
approximation 

has:been made. Nevertheless, numerical resul tswith a quanti tat ive significance can.be Obtained 
provided that  this approximation is not used; then it is necessary to calculate each requirea 
multipole distribution f,~w(X) for the exposed wing before calculating Pcs associated wave drag 
(from equations ' (3) ' and (9)). ' " : .~ .. " - -  ' ' - 
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5.3. Comparison with Experiment.--It is not possible to compare with experiment the pre- 
dictions of equation (18), which gives the wave drag o~ the elliptic-wing-body combination, 
except for the special case when the fuselage is axisymmetric (i.e., F~B(x) = 0) and S(x) is a 
so-called optimum area distribution, whose associated wave drag is a minimum for given length, 
volume and base area. This case has been investigated by Lomax and I-Ieaslet 5, whose theoretical 
result for the wave drag of this elliptic-wing-unmodified-body combination is the same as tha t  
deduced from equation (18). 

Fig. 4 compares the theoretical and experimental wave drag for this configuration. The 
theoretical result can be reduced to the form Cs = Cs w + 0. 0054, the wave-drag coefficients 
being based on the gross wing area. Lomax and Heaslet 5 point out t h a t  the quanti tat ive 
agreement for the total wave drag, less the isolated fuselage wave drag, is very good for 
M > 1-15. Thus the present method, which neglects the interference velocity potential 
between the exposed wing and the fuselage, has predicted the interference wave drag w i t h  
remarkable accuracy. 

The configuration denoted as modified by Lomax and Heastet ~ has a fuselage which is not 
axisymmetric. However, the isolated fuselage multipole representation is not known because 
the fuselage has been defined as a stream surface of the singularity distribution representing the 
entire configuration. Therefore the effect of fuselage quadrupoles cannot be examined without 
further experimental data. The theoretical minimum wave drag in this case is given approxi- 
mately by equation (19) and is shown in Fig. 4, which illustrates the importance of fuselage 
quadrupoles in reducing the wave drag of a wing-body combination. The minimum wave drag 
when the fuselage is axisymmetrie is shown also. These results show that,  theoretically, the 
usefulness of the multipole method as a means of reducing the wave drag does not decrease with 
increasing Mach number. On the other hand, it appears from the calculations of Lomax and 
Heaslet 5 that  the optimum quadrupole strength defined by F2B(x) = --F~w(x) may not be 
usable at the higher Mach numbers; unrealistic fuselages with surface streamlines crossing each 
other may be obtained if F~(x) is chosen to be equal t o -  F~w(X). Finally, it must be 
emphasised tha t  the two lower curves in Fig. 4 do not represent the wave-drag variation with 
Mach number for a certain configuration but  only the minimum wave drag possible for an 
optimum design at a specific Mach number. 

6. Conclusio~.--The Lomax-Heaslet special multipole method for estimating the wave drag 
of combinations of thin wings and non-slender bodies has been examined and what is believed 
to be an improved method presented. The inconsistencies that  arose in applications of the 
Lomax-Heaslet multipole method have been eliminated by using the assumption that  the effect 
on the wave drag of the interference velocity potential, due to the interaction between the 
exposed wing and the body, is negligible. Since this assumption is fundamental to the area-rule 
method of wave-drag estimation it has provided a very satisfactory basis for an extension of 
the area rule to combinations incorporating fuselages that  are not slender. The extension 
described in this paper is applicable to problems involving both estimation of wave drag and 
design for low combination wave drag. 

The accuracy of the predictions of the present method has been examined in a number of special 
cases. Theoretically, a comparison has been made with existing results for rectangular 
wing-circular cylindrical body combinations; in addition, a brief investigation of conical con- 
figurations and combinations employing quasi-cylindrical fuselages has been made. Experi- 
mentally, a comparison has been made for the wave drag of an elliptic wing and axisymmetric 
body combination. These comparisons with theory and experiment enable two important  
conclusions to be made. Firstly, estimates of the wave-drag changes associated with changes 
in fuselage shape are likely to have a quanti tat ive significance. Secondly, estimates of total  
combination wave drag may have a quantitative or only a qualitative significance; quanti tat ive 
agreement would ~,ot be expected at transonic speeds where the supersonic linearised theory is 
not valid. 
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o 

P0 

NOTATION 

Usual nth order multipole strength function 
Gross wing aspect ratio 

Transferred area distribution of exposed wing 

Alternative nth order multipole strength function (see equation (A.1)) 
Total wing span 

V(M ~ -  1) 

Wing chord 

Gross wing-root chord 

Wave-drag coefficient, based on an appropriate area 

Diameter of body enclosing blanketed wing 

Total wave drag 

Isolated expo.sed wing wave drag 

Interference wave drag 

Isolated body wave drag 

Wave drag associated with the ' area' distribution S(x) (see equation (3)) 

Modified nth order multipole strength function (see equation (A.5)) 

Modified nth order fuselage multipole strength function 

Effective modified nth order multipole strength function of the exposed 
wing 

Fuselage length 

Free-stream Mach number 

Kinetic pressure ½poUo 2 

Cylindrical polar co-ordinate (see Fig. 1) 

Radius (of cylindrical body) 

Fuselage cross-sectional area distribution 

Elemental area distribution 

Exposed wing elemental area distribution (see equation (2)) 

Root thickness at wing mid-chord 

Wing thickness at the point (x, y, 0) 

Free-stream velocity 

Volume 

Cylindrical polar co-ordinates (see Fig. 1) 

Rectangular Cartesian co-ordinates (see Fig. 1) 

Cylindrical polar co-ordinate (see Fig. 1) 

Free-stream density 
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¢(x,r, 0) 

1, 2 

Dashes 

:v, r, 0 

B, W, WO, WN, AW 

mia 

NOTATI ON--continued 

Perturbation velocity potential (the velocity component in the fl-ee stream 

direction is defined to be U0 q O¢(X,axr, O))- 

Subscripts denoting integration variable, e.g., x~, x~ 

Denote partial differentiation with respect to x, 

e.g., S'(x, O, M) -- aS(x, O, M) 
dx 

Subscripts denoting partial differentiation, e.g., Cr = a¢/Or 

Subscripts denoting fuselage (or body), exposed wing, gross wing, net 
wing, blanketed wing respectively, e.g., Vw 0 denotes the volume of the 
gross wing 

Integer subscript for functions defining Lhe nth order multipole distri- 
bution ,,=o, 1, 2 .... 

Denotes a minimum value, e.g., Drain is the minimum wave drag 
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APPENDIX 

Properties of Axial Multipole Distributions 

Distributions of non-lifting multipole singularities along the line y = 0, z = 0, which is parallel 
to the free-stream direction (see Fig. 1), will be considered in the Appendix. Tile perturbation 
velocity potential $, due to such a distribution of multipoles, may be written in the form 

[ ( x -  xq~ ~xl 
1 ~ [,,_BrA,~(Xl) c o s h  ~ ¢ c o s h - ' \  B r  ]_] . .  (A.1) 

~(x, r, o) - = Z cos ~0 30 ' "" 
z ~  ,~=0 v ~{ ( x  - x l )  ~ - B ' r  '~} 

where (x, r; O) are cylindrical polar co-ordinates (see Fig. 1), 

A,,(x) is a multipole strength function defining the nth  order multipole 
distribution (n = 0, 1, 2 , . . . )  

and the nth order multipoles are defined for x >~ 0, so that  $(x, r, O) is identically zero for x <, Br. 
I t  is assumed tha t  A,,(x) is continuous everywhere, i.e., each multipole distribution is ' smooth '. 
The particular form of equation (A.1) is due to Cramer TM and has been given by Lomax and 
Heaslet 5. A more usual form of equation (A.1) is 

1 ~r ,~cosnO(1  a ) " f  * - B r  a'~(&)d, ~(x,r,  0 ) -  2=o=o ~ o ~ / { ( x - . 1 )  '~-B~,~}  ' 

where the strength function a,~(x) is related to A,,(x) in equation (A.1) by the result ~ 

(_ B),~ ~%(x) _ A,,(x). 
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Since an n th  order multipole can be considered to consist of 2" poles (or sources) a source is a 
z e r o t h - o r d e r  multipole, a doublet is a first-order multipole and a quadrupole is a second-order 
multipole. 

If any streamtube of a multip01e distributio~ is symmetrical about the plane y = 0 (see Fig. 1), 
then the strength functions A,~(x), a,,(x) are identically zero for odd values of n. This symmetry  
condition will be satisfied by  the configurations examined in this note ; thus only the even multi- 
poles are considered. 

From equation (A.1) i t  may be shown 5 that  the perturbation velocities associated with an 
axial multipole distribution are 

, ,, F ( ~ -  xq]  A,, (~)  cosh  n cosh  -1 dx~ 
1 ~ cos nO . . . .  (A.2) 

¢~(x, r, O) -- 2~,+=o +o V{(x - -  x~) ~ - -  B2r 2} 

[ (x- xq] 
\ B r  / J  

1 o~ I,,_B~ A,,(xl) cosh n cosh -1 dx t  
Co(X, r, O) - -  - ~ n sin nO | . . . .  (A.3) 

2~r ,,=o ~o ~¢/{(x - -  x~) 2 - -  B %  2} 

and 
l fi-B~ (x--x~)Ao'(x~)dx~ 

¢ d x ,  r, o) = ~ r ~ / { ( x  - x~) ~ - B~r ~} 

( +o+h +,)+o+hl t 
A  xl>l I B . ~  + ? ' -B~ + cosh  (n - -  1) cosh  -1 

+ COS ~0 (A.4) ~,~, ~0P ~ / ( ( x  - x l )  2 - B Y e )  ' 

where A , / ( x )  denotes 3A, , /3x  and the suffix notation for partial differentiation is used. The 
contribution of any A , ( x )  to a perturbation velocity potential is zero for x <~ B r ,  where ¢(x, r, 0) 
is identically zero. 

The wave drag associated w i t h  a smooth axial multipole distribution has been found by, 
among others, Lomax and Heaslet ~ who used a control-surface method of calculation. The 
perturbation velocities on an infinite circular cylindrical control surface were determined using 
equations (A.2), (A.3), (A.4). Let a new multipole strength function F,,(x) be defined by  

A,+(x) = U o f , ' ( x )  . . . . . . . . . . . . . . . . . . .  (A.5) 

Then the wave drag 5 may be written as 

D = D{Fo} + ½ ~ D { F , ) ,  . . . . . . . . . . . . . .  (A.6) 
~ = 1  

where D{F, ,}  is given by equation (3) and defines the wave drag associated with F , ( x ) .  I t  should 
be noted tha t  each F+'(x) is continuous everywhere because the multipole distributions are 
smooth. 
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