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Summary.-The purpose of this paper is :
(a) to summarise the basic principles of the matrix force method of structural analysis given in Ref. 1 and to

present also some new applications of the general theory;

(b) to establish and illustrate on simple examples the special method of cut-outs developed in Ref. 1. In this
procedure the stresses in a structure with cut-outs are derived from the simpler analysis of the corresponding
structure without cut-outs under the same loads and/or temperature distribution;

(c) to present a method for the determination of the stresses in a structure, some of whose components have been
modified subsequent to an initial stress analysis. This procedure, not included in Ref. 1, is, in fact, a
generalisation of the cut-out method (b) and gives the stresses in the modified system solely in terms of the
stresses of the original system subject to the same loads and temperature distribution.

The theory is illustrated on some simple examples which show clearly the extreme simplicity of the powerful
techniques (b) and (c). We emphasise that the application of these methods requires only one stress analysis: that
of the continuous structure under the same external loads, as the modified structure. No additional stress analysis
due to other, e.g., perturbation. loads is involved.

I ntroduction.-It is being increasingly recognised that none of the standard methods of
structural analysis is really suitable for the determination of the stress distribution and flexibility
of modern aircraft structures. This realisation is brought about by many concurring reasons.
Thus, it is accepted that a more reliable analysis of the stresses is necessary now since many of
the designs introduced at present are too complex and unusual to be analysed by the often so
crude approximation of the past. It must not be forgotten, moreover, that the ever-present
danger of a major catastrophy due to fatigue failure compels us to seek a more careful estimate
of the stresses. But even if an accurate analysis of some of the more modern structural designs
could be accomplished by any of the standard methods it would take such a long time as to be
useless except as a rather belated check on the final design. In fact; quite apart from technical
reasons, purely economic considerations require the completion of an accurate stress analysis at
an early stage to ensure efficient design and to check it prior to production and the planning of
the necessary full-scale tests.

Faced with this situation we require a radical change in our approach to the problem. This is
being offered by the combination of matrix methods of structural analysis and the electronic
digital computer with its enormous potentialities. However, let us stress ab initio that in speaking
of matrix methods of analysis we do not mean, and in fact exclude, any attempt to obtain the
equations in the unknowns by the usual longhand method and then solve them only by the
inversion of the matrix of coefficients of the unknowns. It is in our opinion futile to seek any
progress along these lines. What is required and is in fact essential is a formulation of structural
analysis completely in matrix algebra, starting with the compilation of the basic data.



In Ref. 1 such a general matrix method of structural analysis has been developed with both
forces and displacements as unknowns. These two methods are completely dual in character;
as demonstrated there. In fact, knowing the equations in either of the two procedures we can
write down by a simple' translation' process the equations in the other procedure. We do not
intend to enter here into any lengthy arguments on which of the two methods is preferable but
refer to some relevant considerations in section 1. The important fact is that in either of the two
methods we require initially only three simple matrices which, in many cases, can be written
down by inspection or by very simple calculations. Naturally, matrix methods of structural
analysis have been given before but it is believed that none was as general and comprehensive and
yet as simple as that of Ref. 1; see also Ref. 7.

In the present paper we establish first in Part 1, sections 1 to 8, the main results of structural
analysis by the matrix force method. This procedure may be used to programme for one continuous
operation on the digital computer the complete stress analysis for any system of loads or thermal
strains, including the derivation of the flexibility matrix of the given structure. In fact, the
actual programming for a particular digital computer, the medium-sized Ferranti Pegasus, has
been completed and is being published (see Hunt'"). It is of interest that this method is already
being applied both in this country and abroad. However, the purpose of this paper is not only
to derive some of the main results of Ref. 1 but to present also some new developments of practical
importance. We refer here only to the surprisingly simple formula in section 8 giving the thermal
distortion of an arbitrary structure.

One of the most important applications of the general theory of Ref. 1 is that of the stress
analysis of structures with cut-outs under any given set of loads or thermal strains. This particular
method is reviewed here in Part II, section 9, and we show, once more, that it is possible to find
the stress distribution in a structure with cut-outs, under any load, solely in terms of the stress
distribution under the same loading in a corresponding continuous structure where the cut-outs
have been filled in. We emphasise that no additional stress analysis of the continuous structure,
under other (perturbation) loads, is required as in techniques developed for circular fuselages by
Cicala" and others. In these, the openings were likewise filled in, but special perturbation stress
systems were used to nullify the stresses in the cut-out elements. The practical application of
the present method is so simple and foolproof that there is little doubt that it is the ideal procedure,
not only for finding the stresses in the structure due to the introduction of cut-outs subsequent to
the analysis, which often materialise at a late stage of design, but also for the stress analysis of the
structure when the cut-outs are known initially. The physical justification of the method derives
from the idea that we can impose such initial strains on the filled-in elements of the continuous
structure that their total stresses due to applied loads and initial strains are zero, i.e., that they
are effectively non-existent. It is now very simple to express the necessary initial strains in
terms of the given set of loads and hence, derive the stress distribution in the cut-out structure
from the initial stress analysis of the continuous system under the original loads only. Interestingly
enough the same method was proposed later by Goodey" who also filled in the missing elements.
He, however, used a purely mathematical idea to obtain the final formulae. Thus, Goodey
considers in the continuous fictitious structure the variational problem of the minimum of strain
energy with the additional condition of zero stress in the fictitious members. Naturally the final
result is essentially identical to that of Ref. 1. For this reason we need not consider it here any
more, except to point out that Goodey informs us that he has used it successfully in fuselages
with large cut-outs, including the part-removal of frames, etc. The authors' attention has been
drawn by Morley to a report" published in 1949, discussing the case of a cut-out in a circular
fuselage. This report uses a method akin to that of Goodey' and may be considered to contain
a germ of the idea developed in Ref. 1.

A generalisation of the above method on cut-outs to deal with structural modifications of
components suggests itself naturally. This problem is solved in section 12 and the final formulae
are, of course, similar to those in the cut-out case with only one additional term; a matrix
expressing the difference of the flexibilities of the modified and original elements. Here again we
find the stress distribution in the modified structure solely in terms of the stresses in the original
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structure under the same loads or temperature distribution, without any additional stress analysis
of perturbation systems. The practical importance of the method in view of its simplicity need
hardly be emphasised. In the last paragraph of Part II we derive also a formula for the
flexibility matrix of the modified structure in terms of the original flexibility.

The theory reviewed in this report is illustrated on a series of examples. Their purpose is
mainly to draw attention to the potentialities of the method on cut-outs and modifications.
Admittedly the cases treated are simple but basically the same operations are involved in any
complex structure. This is shown by the general computer programme developed by Hunt!".
As an example we mention that once the three basic matrices are given, the structural calculations
for a wing with a hundred redundancies, under loads and thermal strains, does not take longer
on the Ferranti-Pegasus than approximately a week. This, moreover, includes the alternative
stress distribution when up to 30 subsequent cut-outs or structural modifications are introduced.

In conclusion we emphasize once more that the progress of structural analysis achieved by these
methods is only possible by developing the analysis ab initio in matrix form. With standard
longhand notation it would be difficult, if not impossible, to detect many of the important new
theorems. But this is not the only aspect where we must change our approach. The basic
simplicity of the theory can only be immediately apparent if we free our minds from the confining
strain energy considerations that obscure and complicate the mathematical derivations. By
using the unit load and the unit displacement method respectively as given in Ref. 1 all the
results flow out naturally from the initial idea in an immediately obvious form.

PRINCIPAL NOTATION

oxx' etc., oxy' etc. Direct and shear stresses
8 xx , etc., 8 xy , etc. Direct and shear strains

q Shear flow in sheet
[(jJ Column matrix of direct and shear stresses
[8] Column matrix of direct and shear strains
R Column matrix of applied (generalised) forces
r Column matrix of (generalised) displacements

X Column matrix of redundant (generalised) forces
5 Column matrix of (generalised) stresses on structural elements
v Column matrix of (generalised) strains of structural elements
H Column matrix of (generalised) initial strains on structural elements
b Rectangular transformation matrix for stresses
f Flexibility matrix of unassembled structural elements
F Flexibility matrix
e Temperature

1 j ... m Directions of external forces and displacements
1 i . .. n Directions of redundant forces

Suffix h denotes elements to be eliminated or modified
Suffices", , c denote structure with modifications and cut-outs respectively incorporated

I Unit matrix
0,0 Zero matrix

A', A-I Transposed and reciprocal matrix respectively of A
{ .... } Column matrix

3
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PART I

The Basic Principles of the Matrix Force Method of Structural Analysis

1. The Problem.-Two basic methods exist for the analysis of arbitrary structures and are
developed in matrix form in Ref. 1:

(a) the force method in which forces or stress resultants (or generalised forces) are taken as
unknowns

(b) the displacement method in which deflections or slopes (or generalised displacements) are
taken as unknowns.

The two methods are completely dual in character as demonstrated in Ref. 1, where Table 2 of
the March, 1955, issue of Aircraft Engineering gives the basic theorems. For a number of reasons
the force method is, in general, superior for the analysis of continuous systems like stressed skin
structures. Firstly, in the force analysis of such systems there are fewer unknowns than in the
displacement analysis and the equations are usually better conditioned. Furthermore, method
(a) yields directly the flexibility matrix, which we require for aero-elastic investigations, whilst
method (b) gives correspondingly the stiffness matrix from which the flexibility can only be
obtained by inversion. Finally, the stress determination by the force analysis is always more
accurate (and considerably so), since in the displacement analysis the stresses are found by what
is essentially a differentiation process. On the other hand the compilation of the basic matrices
may be simpler by the displacement method when the structure is irregular.

We consider here only the matrix formulation of the force method of analysis of which we give
a general presentation including some important new theorems developed subsequently to Ref. 1.
However, following the procedure of Table 2 of Ref. 1, all equations given may be immediately
, translated' into the dual relations of the displacement method; see also Ref. 7.

Assume a linearly elastic structure subjected to a system of m loads or generalised forces
R 1 , R 2 , •••• , R j , •••• , R; which we denote by the column matrix:

R = {R 1 R 2 •••• R, ... .R".} .

Let the structure have n redundancies Xi which we form in a column matrix:

(1)

(2)

The particular system arising from the imposition of X = 0 on our structure is called the
basic system and is here statically determinate.

We seek to determine:
(a) the k stresses or stress resultants Sf denoted by the column matrix:

" .

(b) the flexibility matrix F for the points and directions of the applied forces R;

By definition:

r = FR

where

(3)

(4)

r = {r1 r2 •••• rf .... rm} (5)

is the column matrix of the (generalised) deformations (deflections) in the directions
of the forces Rand F is a symmetric square matrix.
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I t is obvious that we can always write:

(6)

where the matrices b, and b, are of dimensions k X m and k X n respectively and are determined.
solely by statics. Thus, the elements of the fth row of b, are the (generalised) stresses at f due
to each of the unit loads R, = 1 applied to the basic system. Note that the stresses:

So = boR

are statically equivalent to the applied loads R.

Once X has been determined in terms of R, equation (6) can be written in the form:

S = IbIlL

(7)

(8)

The above considerations may be applied immediately to the more general case when the
basic system is itself redundant (see Ref. 1).

Parallel to the applied loads R, the system may also be subjected to initial strains H, (e.g.,
thermal strains) which we arrange again in a column matrix:

(9)

Due to the redundancy of the system the initial strains cannot, in general, develop freely and
stresses are set up. These may be calculated from:

SH = 1b1XH

where X H are the redundant stresses or forces due to H.

2. A Simple Example for the b, and b1 Matrices.

FIG. 1. Redundant pin-jointed framework to illustrate bo and b, matrices.

(to)

The b, and 1b1 matrices are most easily illustrated on a conventional framework. Consider, for
example, the five times redundant structure of Fig. 1, assumed symmetrical. Due to symmetry
of loading and structure the system is effectively only three times redundant. As basic system
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we select the statically determinate structure of Fig. Ib obtained by cutting bars 5, 6 and 12.
The load and redundancy matrices are:

(la) ; (2a)

The b, and bl matrices for half the structure, including the central vertical member (11), are
found easily and are given in Table 1. The numbers over the columns refer to the external
loads R I , R2 and the redundancies Xl' X 2 , X 3 respectively and the numbers opposite the rows
to the numbered bars of Fig. lb.

TABLE 1

Basic Matrices for Framework of Fig. 1

1

o
- ajh

ajh
ajh
o
o

bo = - djh
o
o
1
o
o

2

o 1
- aj2h 2

aj2h 3
ajh 4
o 5
o 6

- dj2h 7
- dj2h 8

o 9
Ij2 10
1 11
o 12

1
-- ajd

o
- ajd

o
1
o

bl = 1
o

- hjd
- hjd

o
o

.. (11)

2 3
o 0

- a[d 0
o 1

- ajd 1
o 0
1 0
o 0
1 0
o 0

- hjd 0
- 2hjd 0

o 1

1
2
3
4
5
6
7
8
9

10
11
12

.. (12)

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
f=

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

a
2

A4E

o

o

o

o

o

o

o

o

o
d

2A E
5

o

o

o

o

o

o

o

o

o
d

2A E
6

o

o

o

o

o

o

o

o

o

o

o

o

o 0

o 0

o 0

o 0

d
2A E 0

8
ho 2

A 9E

o 0

o 0

o 0

o

o

o

o

o

o

o

o

o

o

o

o

o
h

AllE

o

o

o

o

o

o

o

o

(33a)

3. The Idealised Structure.-The problem of determining the stress distribution in a shell type
of structure characteristic of major aircraft components is strictly infinitely redundant. Hence,
it is necessary to introduce, for practical calculations, considerable simplifications or idealisations.
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These are discussed at some length in Ref. 1. It is sufficient for the purpose of the present paper
to mention the standard simplification by which a wing structure with spars and ribs (if such
are used), approximately orthogonal to each other, is represented by a three-dimensional grid of
flanges carrying only direct loads and walls carrying only shear flows. The cross-section of the
wing may be arbitrary and the spars may taper differently in plan view and elevation but the
angle of taper 20 is assumed to be so small that cos e === 1 and sin e === e. The same restriction
applies to the taper of ribs in plan view. Note that delta wings are included in these specifications
as long as spars and ribs conform to the stipulated geometry.

In each flange of the idealised structure the direct load is assumed to vary linearly between
adjacent nodal points of the grid. Furthermore, the shear flow in each field bounded by two
intersecting pairs of adjacent flanges is taken as constant. The method of extracting this simplified
system or idealised model from the actual structure will be found in Ref. 1, (March, 1955, p. 87)
where also a more refined procedure is given for increasing the accuracy of the stress analysis.

For fuselages the method of idealisation is very similar to that in wings and need not be
discussed here. Detailed procedures for more complex wing and aircraft structures will be given
in subsequent publications.

The idealised structure possesses now a finite degree of redundancy, the determination of
which requires more subtle considerations, especially in the presence of cut-outs, than are
necessary in frameworks. This aspect is also discussed in Ref. 1. In what follows we assume that
the process of idealisation has already been performed and that the degree of redundancy of the
idealised structure is known. For brevity we shall use the terms' structure' or ' system' for
idealised structure.

4. The Selection of the Basic System and the Redundant Forces.-For a major aircraft component
like a wing the selection of the basic system and the redundancies deserves careful attention
since a skilful choice can simplify the calculations considerably. Our ideas, however, of what
constitutes an appropriate choice must now be drastically revised due to the development of
structural analysis in matrix form and the introduction of the electronic digital computer with
its enormous potentialities. Thus, in the pre-electronic era of computations it was, in general,
accepted that the choice of the basic system (which in itself might be statically indeterminate)
was the more successful the less the chosen statically equivalent system,

differed from the actual stress matrix

S = IbR.

(7)

(8)

This argument was then correct since the calculation of a highly redundant system like a wing
could not hut take considerable time (if ever it was undertaken) and the complete design of the
aeroplane could obviously not wait for its completion. Hence a reliable first estimate of the
stresses in the structure, based solely on the statically equivalent system, was naturally indicated.
However, the advent of the digital computer requires a radical change in our approach to
structural analysis. To realise this inevitable development we need only consider that it is
possible to programme on the digital computer, in one continuous operation, the complete
structural analysis of a wing and fuselage for any loads and temperature distribution including
the derivation of the' exact' flexibility matrix. Moreover, the time taken by the machine in
performing all these calculations is strikingly small. For example, for the analysis of a typical
wing structure with a hundred redundancies, a medium sized computer like the Ferranti-Pegasus
will take approximately a week and give also the flexibility matrix for, say, 50 points, once all
initial data of the structure like the 1>0 and b1 matrices are known and stored in the machine.
In fact, the compilation and checking of these latter matrices and, in particular, b1 , will, in general,
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take considerably longer than the actual machine operations. Actually the time for the prepara­
tion of the initial matrices will be further increased if we select the basic system on the same
considerations as in the standard longhand method. Now it is obvious that the latter considera­
tions lose their validity once we use a digital computer since the' exact' stress distribution can
be obtained so quickly as to be available for immediate application in the design office. In place
of our old ideas a new criterion of the suitability of a basic system emerges: the best choice of a
basic system is that in which b, may be written down either by inspection or at most by the
very simplest static calculations. This not only reduces drastically the time necessary for its
determination but allows also easy checking of the data. The latter point is, in fact, most
important and cannot be emphasised sufficiently.

Basic system formed by
independant 5,pars

FIG. 2. Delta wing structure, illustrating selection of basic system.

To fix ideas, consider the multispar structure, in the form of a delta wing, of Fig. 2. It is
obvious that by far the simplest basic system is that of the independent spars, for which b, may
be written down with great ease. Naturally, such a b, bears no similarity to the final b but as
stated above this is of no consequence once we accept the digital computer as the standard tool
of structural analysis.

Associated with the choice of b, matrix is the selection of the redundancies X which determine
the b, matrix. Here, too, for ease of compilation and checking of this basic matrix the Xi systems
are preferably chosen as simple as possible; in particular, each system should affect as few elements
of the structure as possible. Moreover, such a choice usually satisfies the essential requirement
of well conditioned equations in the unknown redundancies. A point particularly emphasised
in Ref. 1 is that we must not take the customary narrow view and consider redundancies as

9



single forces or moments applied at actual physical cuts of the structure. A more satisfactory
approach is to select as redundancies self-equilibrating systems of forces or stresses (i.e.,
generalised forces). Besides giving a far greater flexibility in the choice of redundancies this
procedure yields more symmetrical and immediately obvious expressions for the elements of the
matrix. Three standard types of system for wing analysis were proposed in Ref. 1 (March, 1955).
These are the X, Y and Z systems reproduced in Figs. 3, 4 and 5 of the present paper, where

Multi-web wing

Sill' - equUlbratlng slres;s system X=1

d, + d. h,p,-_.-
a,a. h

Longitudinal lIange loads Transverse flange loads

FIG. 3. Unit, self-equilibrating stress system of type X = 1.
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full details are given of the flange loads and shear flows due to unit value of each of them. The
Y-system (Fig. 4), which acts ever two bays in the spanwise direction, is seen to be closely related
to the boom load function P introduced by Argyris and Dunne in 1947*. The Z-system (Fig. 5)
is similar to the Y-system but is applied in the chordwise direction. Finally, the X-systems
(Fig. 3) are essentially diffusion systems applied over four panels in the upper or lower covers.
Ref. 1 discusses in detail the selection of the best combination of X, Y, Z systems in various wing
structures. In the present notation the column matrix X is taken to include all these systems.

Multi-web wing

Self - equilibrating stress system Y =1

Longitudinal flange loads

FIG. 4. Unit, self-equilibrating stress system of type Y = 1.
(Longitudinal four-boom tube.)

*See J. H. Argyris and P. C. Dunne, 'The General Theory, etc.' f R, Ae. Soc. Vol. LI. February, September,
November, 1947.
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Multi-web wing

q =+1/2Q ..

Self - equilibrating stress system Z =1

Transverse flange loads

FIG. 5. Unit, self-equilibrating stress system of type Z = 1. (Transverse four-boom tube.)

5. The Unit Load Method and Some Applications.-The analysis of structures by the force
method is most conveniently based on the formulation of the unit-load method given in Ref. 1.
This approach has, moreover, the great advantage that the effect of thermal or other initial
strains can be included immediately without any further development of the theory. The
unit-load method indicates also the procedure to be followed when the basic system is not statically
determinate as in the standard analyses but is itself redundant. Finally we may apply this basic
theorem to structures with non-linear elasticity.

We introduce the following definitions:
(1) Let B;w B"y, etc., be the true direct and shear strains in a structure due to a given set of

loads, prescribed displacements, thermal strains or any other initial strains, e.g., those
arising due to inaccurate manufacture. Also let r j be the deformation (deflection,
rotation or generalised displacement) at the point and directionj due to the same causes.
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(2) Let iixxj, iixyj, etc., be the direct and shear stresses statically equivaent to a unit load
(force, moment or generalised force) applied at the point and direction j. Note that
iixxj, iixyj, etc., need satisfy merely the external and internal equilibrium conditions of
the structure but not necessarily the compatibility conditions. In general, there is an
infinite number of such systems of which one is the true stress system due to the unit
load and consequently satisfies both equilibrium and compatibility conditions.

The unit-load theorem may now be written in the form:

1. f j = JY:J/[8] dV

where [8], [ii]j are the column matrices:

(13)

(14)

(15)

and the integration extends over the volume V of the structure. An elementary illustration of
this theorem is shown in Fig. 6. It is assumed that the true strains in the wing due to any external
loading or initial (thermal) strains are known. To find then the deflection f j in any given direction
j we need only determine the simplest possible statically equivalent stress system [iiJj corresponding
to a unit load at j and apply equation (13). The most suitable choice is obviously the E.T.B.
stress system in the independent spar under the unit load. Note that the structure need not be
linearly elastic but may obey any non-linear stress strain relation.

Aclual slruclur.. wilh arbilrary loading and
I..mperalure dislribution

Sialfcally equivalent system for defleclion 'j

FIG. 6. Example of a statically equivalent system for deflection by the unit-load method.
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An alternative form of theorem (13) is occasionally useful but is only applicable to linearly
elastic structures. Thus, in such systems (13) may also be written:

(13a)

where

(15a)

is the true stress matrix corresponding to the unit load at j and

(14a)

is the strain matrix arising from the imposition of the given loads and initial strains on a system
merely statically equivalent to the given structure. Thus [e] may be found in any suitable
statically determinate basic system.

The introduction of statically equivalent stress or strain systems can obviously simplify the
calculations considerably.

We present now some very simple applications of theorem (13) which are helpful to subsequent
developments.

(a) Field with constant shear.

FIG. 7. Generalised strain v of a rectangular field under constant shear flow.

Consider a rectangular field under a constant shear flow (see Fig. 7). The true strain system
is qlGt and the selected unit-load system is the unit shear flow. Application of (13) yields:

(16)

where v is a generalised displacement corresponding to the generalised force of the unit shear
flow. (fJ = ab is the area of the shear field. Result (16) is, of course, trivial and follows
immediately from the value qlGt of the shear strain.

We call

the (shear) flexibility of the field. Thus:

v =fq ..

14
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(b) Flange under a linearly varying end load.

SI:l_l~ ___

FIG. 8. Derivation of generalised strain v for a flange with linearly varying end load.

Consider a flange of constant area A, Young's modulus E and length l, subjected to an end
load varying linearly from S, to S2 (see Fig. 8). Overall equilibrium is achieved by uniform
tangential shear flows applied to the flange. The direct load S at any station x may be written:

If we consider the matrix

= [(1 -;) (17)

(18)

as defining the external load system on the flange, then equation (17) is merely a particular
example of equation (8) :

S = bR

with

(8)

b= [(1 -I)

The true strains in the flange are defined by the end strains

We are interested in determining the generalised displacements:
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corresponding to the load system S. To. find them we select as unit-load systems the alternative
systems shown in Fig. 8. Application of (13) yields:

Hence:

where

v = [l/3EA

l/6EA

f = [l/3EA

l/6EA

l/6EA] [51] = fS

l/3EA 52

l/6EA]

l/3EA

(21)

(22)

is called the flexibility of the uniform flange corresponding to the loading of Fig. 8. Note that
VI and V 2 are generalised displacements and not the displacements at the ends of the flange.
Similar expressions to (22) may be obtained for flanges with varying area and different end-load
variation. Furthermore, the same presentation may also be applied to beams under transverse
loads (see Ref. 1. February, 1955. Equation (136), p. 47).

In the simple case of a uniform flange under constant end load 5, relation (21) reduces to the
trivial form:

V =f5 .. (21a)

where

l (22a)f= Elf ..

and V is now the elongation Lll of the flange. Form (22a) of the flexibility applies, for example,
to the bars in a pin-jointed framework (see Fig. 1).

(c)* Flange under linearly varying initial strain.-Consider a flange (1, 2) of length l subjected
to an initial strain 1] varying linearly from til at nodal point 1 to 1]2 at nodal point 2. 1] may,
for example, be a thermal strain rxe imposed on the flange.

We seek now the generalised strains:

arising from 1] and corresponding to the unit-load systems of Fig. 8. We have:

=[(1-;)
where

* May be omitted at first reading.
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Application of (13) yields:

v = ["'1 = rT(l :- r)l[(l_n
v2J JJ 1 J

where

(24)

1 = [113
1/6

116] .
113

(25)

If the initial strain is uniform along the length of the element and the unit load is taken as
constant, as would be the case in the bars of a pin-jointed framework under thermal strain,
formula (25) reduces to the obvious:

or

v = lrx.e for thermal extension.

(25)

(25)

v is now merely the elongation of the flange or bar.

In what follows the (generalised) strains v arising from initial strains are denoted by H. We
shall also use the abbreviated terms 'stress' and 'strain' to denote the matrices S and v
respectively.

6. The Formulation of the Unit-Load Method by Matrix Assembly.~Vvenow turn our attention
to a structure consisting of an assembly of elements denoted by a, b, C, ..•• , g. . . . . s. In
their simplest form these elements may be shear panels, flanges between nodal points, beams under
transverse loads, ribs, etc. We emphasise, however, that the elements need not be the simplest
constituent parts of the structure. We may select as elements suitable part assemblies of the
latter components which may, in fact, form redundant sub-systems. Thus, in a fuselage we can
choose as an element a complete ring and this applies even if the ring is not of uniform circular
shape but is itself a complex component, say of arbitrary varying cross-section and doubly
connected form. However, whatever these elements may be, we assume for the moment that
their strains v, are known. They may arise from external loads and/or initial strains (sa, for
example, equations (16a). (21), (24)). The strains of all elements can be expressed as a column
matrix:

v = {v, Vb ...• v~ .... "5} .

Similarly the stresses S on the elements can be written as a matrix:

S = {Sa S, .... Sg .... S5}' ..

(26)

(27)

where equation (27) is merely a re-arranged form of equation (3).

We consider now a stress system S statically equivalent to the m unit loads R, = 1 applied to
our structure. Vve may write the stresses S as:

S=b{lI .... 1 .... 1}, (28)

where the matrix notation b expresses the condition that the stresses S need only be statically
equivalent to the applied unit forces. Thus, a particular case of b would be bo, where b, may be
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found in the simplest and most convenient basic system of our structure. On the other hand,
we can always substitute b (the true stress matrix corresponding to unit loads), for b hut the
application of a suitable I) can often simplify the computations considerably.

We define next the displacement column matrix:

r = {r1 r2 • • • • r, . . . . r",}, (29)

where r, are the actual deformations or generalised displacements in the In directions fixed in
t he previous paragraph due to the strains v of equation (26). Applying now equation (13) [or
each of the deflections r we find :

(~30)

This is the matrix formulation of the unit-load theorem and is of fundamental importance to our
theory. It must be emphasised that in equation (30) the exact cause of the strains v is
immaterial; they may be due to loads and/or initial strains.

An alternative form of equation (~30) follows immediately from equation (1~)a). Thus the
column matrix r may also be found from:

r =~ b/v , (~,()a)

where b is now the tru« stress matrix corresponding to the In unit loads R} =: 1 and v is a strain
matrix due to the applied loads or initial strains which need be found only in a system statically
equivalent to the given structure. An interesting application of equation (30a) arises when
the stress distrihution b due to a set of unit loads is known and we want to find the deflection
in their directions due to another system of loads applied in different directions or due to any
initial strains. Then equation (:·ma) shows that it is not necessary to solve the redundant problem
for the second set of loads or the initial strains since we can determine v in the statically
determinate basic system. .

If the strains v arise only from a load system,

(1)

acting on a linearly clastic structure, then v can always be written in the form:

(21)

where fg is the flexibility of the gth clement.

Hence:

v = fS ..

where S, the stress matrix equation (27), is

S = bR ..
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and f, the flexibility of the -unassembled elements of the structure, is:

fa 0 .... 0 0
o fb •••• O 0

f= 0 (33)
'''''''''

-,
~-,

~...
00 .... 0 .... 1«.:

Nate that the diagonal elements of f are scalar numbers for shear fields but 2 X 2 matrices for
flanges under a varying end load. For a pin-jointed framework, fg is simply given by equation
(22a) and a corresponding typical flexibility matrix f is shown in equation (33a) , Table 1, for
the system of Fig. 1; the factor 2 in all flexibilities, but for bar (11), arises from the use of
symmetry of the structure in writing b, and b, for only half the system including bar (11). For
other types of elements fg may be determined from equation (13).

Substituting equations (32) and (8) into equation (30) we find the deflections r j due to the
m loads, as

r = b'fbR = b'fbR.

But a similar argument starting from equation (20a) shows also that

r = b'fbR .

Therefore, the flexibility F of the structure in the given m directions is:

F = b'fb = b'fb = b'fb.

(34)

.. (31a)

(35)

The last relation follows, of course, also from the reciprocal theorem of Maxwell-Betti (symmetry
of the flexibility matrix). Note finally the interesting dual relationships:

and

S = bR, s = iiR .. (8)

r = ii'v = b'v = b'v. .. (30b)

7. The Calculation of the Redundancies X and the True Stress Matrix S.-We consider now
once more an n times redundant structure under a system of m loads R; We select the basic
system, in which the redundancies X = 0, and apply to it the loads R. The conditions of
compatibility in the original structure demand that the generalised relative displacements V X i

at the n ' cut' redundancies are zero if we impose also the correct magnitudes of the redundancies
X on the basic system. Thus, in matrix form:

Applying now the unit-load method in the form (30) and noting that in the present case

r == vx and b == b,

we find immediately, using equation (33) :

Vx = bt'v = bt'fbR = bt'fboR + bt'fblX = 0 ...
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Thus:

where
x = - D-IDoR,

D = b/ fb, and Do = Ib/fbo.

(39)

(40)

The solution of the n equations (38) in the unknowns X is here obtained formally by inversion
of the matrix of the coefficients of the unknowns. Naturally, we may apply other methods of
solution. In practice, the most appropriate technique will depend on the number of unknowns
and the capacity of the store of the digital computer (see Refs. 1, 2 and 3). Thus, the Mercury
computer of Ferranti with a store of 16,000 numbers or orders can solve directly say 110 linear
equations by inversion of the matrix of the coefficients. With a medium-sized computer like the
Pegasus of Ferranti we can invert directly matrices of order say 32 X 32; for larger matrices we
should have to use on this computer the method of partitioning or other suitable techniques.

Substituting now equation (39) into equation (6) we find the true stresses

(41)
Hence:

(42)

which solves the problem of the stress distribution completely.

To derive the flexibility matrix for the loads R we use equation (35) and note that here we can
put b = boo Thus, IF = Ibo'fb, which, using equation (42), becomes:

(43)
where

(44)

is the flexibility of the basic system for the directions of the loads IR.

Equations (41) to (44) show that for the complete structural analysis of any redundant structure
under a given set of loads R we need only three basic matrices: b., b l and f. All three can be
compiled very easily once we follow the procedure suggested in sections 4 and 5.

The flexibility IF of the actual system may also be considered as the condensed matrix of the
flexibility of the basic system for the directions of both R. and X. Thus, the deflections in the
actual structure can be written :

from which we deduce immediately equation (43). This derivation of the flexibility matrix (43)
may be used to solve a slightly more general problem. Assume that we know the flexibility IF
of a structure for m of its points and require the flexibility IFI for k points (k < m) only when
the remaining l = m - k points are fixed in space. Again we write IF in the obvious partitioned
form:

and find easily:

(43a)
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As an example of the application of equation (43a) consider a wing of which some of the spars
transfer only shear at the root, their flanges being unattached. The flexibility of this wing is
known for a set m = k + l points and directions including those of the unattached flanges at
the root. If a number l of the latter flanges is now fixed at the root we can derive the new
flexibility FI immediately from equation (43a).

The analysis of this paragraph may easily be generalised for a statically indeterminate basic
system (see Ref. 1).

8. The Redundancies and Stress Distribution for Thermal or Other Initial Strains H.-Assume
that an n times redundant structure is subjected to initial (e.g., thermal) strains 1']. In the basic
(statically determinate) structure these can develop freely and their magnitude is defined
conveniently by the (generalised) strain matrix:

H = {H,. H, .. . H, .... H s} , (45)

where H g is the generalised initial strain of element g and may be determined easily from equation
(13). We have found, for example, on page 14, the matrix H for a flange subject to a linearly
varying initial direct strain. For a shear field g under an initial shear strain 1']g we confirm
immediately the trivial result H, = Wg1'] g.

Denoting the unknown redundancies due to H by X H the true strains v of the system are
obviously:

(46)

-Hence the compatibility equation (38) becomes here:

(47)
or

(48)

Using equation (48) in equation (10) we obtain the stresses SH due to the initial strain matrix H:

(49)

The thermal distortion (deflection) r H of the structure in the directions of the m loads R, of
section 6 are found from equation (30) as:

rH = ii'v = b'[fbIXH + H]

= b'[1 - fb D-Ib '] Hs I I , (50)

(51)

where Is is the unit matrix of order s. We derive an interesting and surprising result by substituting
b, for 6 in the last equation. In fact,

rH = [bo' - bo'fbID-lbl'] H

= [b;' - Do'D-lbl'] H

= [b, - bID-IDo]' H = b'H ,

which is, of course, a direct consequence of equation (30a). Thus, to determine the thermal
distortion of a structure at a given set of points and directions due to imposed initial strains
(e.g., thermal strains) we need not solve the redundant problem for these strains if we know the
true stress matrix b corresponding to unit loads in the prescribed directions.
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Redundant framework True stress matrix [b] for loads [R]

True thermal distortion [rHJ

•

Free thermal strains [H] in statically determinate system

Free thermal strains [H] In alternalive statically determinate system

FIG. 9. Thermal distortion of a redundant, pin-jointed framework.

To illustrate the application of equation (51), consider the pin-jointed framework of Fig. 9
whose upper flange is subjected to a uniform temperature rise e. It is required to find the thermal
deflections r Il j at points 1 to 5. Assume that we know from previous calculations the true stress
matrix b corresponding to loads R 1 to R o• Then, noting that the initial strain matrix in the present
case is simply given by (see equation (25b)):

H ={ llrxe, llrxe, llrxe, l2rxe, l2rxe, l2rxe, l2rx e} ,

the deflection matrix rH follows as:

where b, IS the submatrix of b corresponding to the upper flange only.
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PART II

The Structure with Cut-Outs or Modified Elements

9. The New Approach to the Problem of Cut-Outs.-The force method developed above is
naturally valid for structures with any kind of cut-outs stiffened or unstiffened by closed frames
as long as the overall geometry and idealisation conforms with the initial assumptions. Never­
theless it must be admitted that cut-outs require special attention in this approach, both as far
as the b, and 1>1 matrices are concerned. In fact, in the selection of the basic system the existence
of a cut-out will, in general, enforce a more complicated choice than in the corresponding
continuous structure without cut-outs. Moreover, in the region of a cut-out we shall have to use
special non-standard redundant force systems. A further drawback arising from cut-outs is
that the checking of the b, and b, matrices is in such cases not so straightforward since the
uniformity of the patterns of their elements, characteristic of these matrices in continuous
structures, is lost. All these points are considered in some detail in Ref. 1, where the appropriate
procedure is described for each type of wing cut-out.

To avoid these complications in the presence of cut-outs it is worthwhile to apply an artifice
first developed in Ref. 1, which avoids all the above-mentioned special considerations. Moreover,
it gives us the ideal method of finding the redistribution of stresses due to the subsequent intro­
duction of cut-outs in our system without having to repeat all the computations ab initio.

The method is as follows. To preserve the pattern of the matrices and equations disturbed by
missing shear panels or flanges we fill in the cut-outs by introducing fictitious shear panels or
flanges with arbitrary thicknesses or cross-sectional areas. Naturally, it is usually preferable
for computational reasons to select for these dimensions those of the surrounding structure.
To obtain, nevertheless, the same flange loads and shear flows in our continuous structure as in
the original system, initial strains are imposed on the additional elements of such magnitude
that their total stresses due to both loads and initial strains become zero. The effect of the
fictitious elements is thus nullified whilst the uniform pattern of our equations is retained.

Let the column matrix of the unknown (generalised) initial strains, imposed on the additional
elements only, be H.

In the new continuous structure we determine the flexibility matrix f and the matrices b, and
b1 . For the subsequent developments we require b, also in the partitioned form:

(52)

where the suffixes g and II refer to the stresses or forces in the elements of the original structure
and the. fictitious new elements respectively.

Denoting the column matrix of the redundancies of the continuous structure by X and writing
the initial strain matrix imposed on this system in the partitioned form

we can find the unknown X from equations (38) and (47) which become here:

b(fb,X + b(fb.R + b([:J ~ o.
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Hence, using equation (52) :

(55)

where D and Do are given by equation (40) and are found, of course, in the continuous structure.

The stress matrix S follows as:

(56)

The expression in the square bracket is the matrix b of equation (42) which we write in the
partitioned form:

b ~ [::] , (57)

where the suffices «and h have the same meaning as before.

To find now the column matrix H we put the stresses in the additional elements to zero.
Thus, the matrix S must become:

where 56 are the true stresses (forces) in the original structure with cut-outs.

Applying equations (52), (57), (58) in equation (56) we find:

Hence:

or

H = [blhD-lbll,'J-lbhR .

The true stresses in our actual cut structure are then:

(59)

(60)

which solves our problem. The important and unique characteristic of the present method is
that it yields the stresses in the cut structure solely in terms of the stresses already calculated
in the fictitious continuous structure. It should be noted that the order of the square matrix
to be inverted*

[b lhD-
1b

lh 'J-l

is equal to the number of linearly independent stresses or stress resultants to be nullified]. Thus,
if we remove one shear panel the order is one and the matrix is a mere scalar number. If we
eliminate one flange between two adjoining nodal points the order is two, etc. The amount of
work in any practical calculation is surprisingly small as is illustrated in the examples of Part III.

* The inversion of D will have been performed previously in finding b.
t Sec example in authors' parer: "Structural analysis by the matrix force method with applications to aircraft

wings ", Wissenschaftliche GesellschaJtjar LuJifahrt, Jahrbuch 1956.
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The operations leading to equation (60) are easily programmed on the digital computer (see
Hunt"), To check the computations it is useful to include in the final stress matrix the condition
of zero stress in the fictitious elements. This is achieved by writing equation (60) in the form:

(61)

where

(62)

The suffix c indicates the stresses in the cut structure.

As mentioned already the method is ideally suited for finding the alteration to the stresses in a
structure through a subsequent introduction of cut-outs such as access doors, which usually seem
to materialise at a late stage of design. But even if all cut-outs are known initially, the new
approach will easily be seen to be preferable to the standard method when analysing wings and
fuselages. Thus, in fuselage stressing, bomb bays, doors and window openings should present no
difficulties when formula (62) is used. Naturally the degree of redundancy is increased by the
, filling in ' of the cut-outs but this is of no importance for the automatic computations envisaged
here.

10. Illustration of the Validity of Equation (62).-Consider a structure with n redundancies under
any system of loads. Analysing this system by the method of Part I we obtain the complete
b matrix. Assume now that we eliminate all redundancies of the original structure by the
technique of the previous paragraph. In this case equation (62) should reduce to:

i.e., to the stress distribution in the basic system since the latter is by assumption identical to
the cut system.

The proof is straightforward. A simple consideration shows that the matrix blh reduces now,
for a certain sequence of the redundancies, to the unit matrix I" of the nth order; see, for example,
the framework of Fig. 1 where blh = 13 can be checked directly on equation (12). Equation (62)
reduces hence to :

be = b - blD-ll '[I D-ll']-lbh

be = b - blbh •

Also

However, in the present case bhR = X, and thus using also equation (6) :

(68577)

S, = bR - s.x ~ [~] R .
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11. The Flexibility of the Cut Structure.-Following equation (35) the flexibility of the cut
structure is :

(63)

If the cuts do not affect the basic system chosen for the calculation of the continuous structure
then, but only then, may we write in place of equation (63)

(64)

Note that f includes the finite flexibilities of the fictitious elements but the result is still correct
since the corresponding rows in b, are zero. If b, were defined only for the elements of the original
cut structure? (i.e., we exclude the zero rows), then the flexibility could be expressed as:

(63a)

(64)

(65)

where ( is the flexibility matrix of the unassembled elements of the true cut structure. However,
the form (63) appears preferable since the matrix f would anyhow have to be stored in the
computer for the calculation of the D and Do matrices.

An alternative approach to the flexibility lFe is of particular interest since it relates it to the
flexibility IF of the continuous structure. Following equations (4) and (51) the deflections of the
cut structure may be written in the two alternative forms:

r, ~ F,R ~ FR + b'[:J
or using equations (57) and (59) :

Fe = IF + b,.'[lblhD-lblh'J-lbh .

Note the symmetry and simplicity of the formula.

12. A Generalisation of the Previous Method. The Structure with Modified Elements.-The
previous developments on the method of cut-outs suggest that it should be possible to devise a
similar procedure when elements of the structure are modified subsequent to the completion of
the structural analysis. Thus, we seek now a device to find the stress distribution in the altered
system solely in terms of the stress distribution in the original system. Naturally, we can always
find the stress distribution of the modified structure by an ab initio analysis, but this will involve,
in general, considerably more lengthy calculations.

The method is as follows:

Assume that the b matrix for the original structure has been determined. As in section 9,
equations (57) and (52), we partition band Ib i in the form:

[
b
g
] [bIg]b = and b, = ,

bh b.,

where the suffices ~ and" refer now to elements to remain unaltered and to be modified respectively.
We denote, furthermore, the flexibilities of the unassembled elements in the original and modified
state by the respective symbols f" and f""I' We impose now on the h elements of the original
structure such initial strains IH (again a column matrix) that their total strains are identical to
those in the modified elements of the new structure. The stresses in the original system are
then also those of our altered system subject to the same loads but no initial strains and this
solves our problem completely.

* b, is then identical to by of equation (57).
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The stress matrix in both systems is given by:

bR - b1D-1bli,' H ,

see also equation (56). Hence the strains in the h elements are, in the original structure:

and in the new structure:

fkm[bkR - blkD-1bli,' H] .

Equality of the two expressions yields:

H = [blkD-lblk' + [fkm - fk]-l]-lbk .

Hence the stresses Sm in the modified system are given by:

where

and

(66)

(67)

(68)

(69)

Note that the inversion of the matrix in the square bracket is only of the order of fk as was also
the case of the cut-out. The modification of the elements may, naturally, involve either a
reinforcement or lightening; in the first case LI fk < 0 and in the second LI fk > O. Formula
(68) may, of course, also be applied when the stresses arise from initial strains H instead of
loads R. In fact, in such a case we have only to substitute:

b1XH = SH for bR and b1kXH = SHh for bkR

to find the stress SHIn in the modified structure as :

(68a)

Limiting cases.
(a) Elimination of the h elements. Then fkm-+ 00, and Ibm reduces to the expression of equation

(62)
bm= be = b - blD-lblk'[blkD-llblk']-lbk .

(b)* Rigidification of the h elements. Then fk",-+ 0, and Ibm reduces to:

(62)

(70)

fk -
1 is, of course, kiD the original stiffness of the unassembled h elements.

A further special modification of the h elements deserves mention. In many instances the
alteration of each of the h elements will be geometrically similar to the original elements. Then:

fkm = [iJ fk ,

* The dual theorem in the displacement method solves the cut-out problem, see Ref. 7.
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where [1/PJ is a mere diagonal matrix. Equation (68) becomes now:

s, = b- blD~llblh'[ b1hD~llb1h' - L~~-~l] kit] ~lblt . (71)

13. The Flexibility of the Modified Structure.-The flexibility IF", of the modified structure is:

(72)

where f,n is the flexibility of the unassembled elements in the modified structure:

(73)

We may also write for IFm:

(74)

but this form is inapplicable in the limiting case of modifications consisting of cut-outs affecting
the basic system b, (see also section 10).

As in section 10 it is important from the practical point of view to relate IF", to the flexibility IF
of the original structure. Following the same argument as in the case of cut-outs, we have for
the deflections rill of the modified system:

r; ~ F.,R ~ FR + b'[:] (69a)

or using equation (66) :

f", = IF + 1b/[b1hD~lbll,' + zl fit-lJ~llblt . (75)

PART III

Simple Applications of the Theory

14. The Four-Flange Tube under Transverse Loads.-We illustrate now the theory developed
in Parts I and II on a simple example. To this effect we consider the singly-symmetrical four­
flange tube shown in Fig. 10 under the set of transverse loads:

(1)

'~2 "20 ,
3><20~ 1 %,

4~20" <, 2
5 ':;x20" ~ 3

6'::'><-20" ~ 4
7"-y20" ~ 5

;O~

<.
l".~~

FIG. 10. Four-flange tube.
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At first we assume that the structure is continuous, i.e., we exclude any kind of cut-outs. The
selected elements of the system and their numbering are depicted in Fig. 11, and the dimensions
and elastic properties are given in Table 2. Only the outline of the calculations is presented here
since this case is investigated in greater detail in Ref. 1. The complete programming of the
problem has been developed by Hunt".

As basic system we select the two spars acting independently as beams and it is obvious that
top and bottom covers and ribs are unloaded in such a system. For the redundancies we choose
the six V-systems of Fig. 4 applied at the rib stations 1 to 6 and denote the matrix of the
redundancies:

Y = {Y1 Y2 Y3 Y4 Y5 Y 6} • (76)

The elements of the structure affected by each of the V-systems are shown in Fig. 11. The rib
flanges are loaded neither in the basic system nor by the redundancies and need not be considered
at all.

To calculate the stress distribution under any system of loads R and the corresponding
flexibility f we require initially only the very simple matrices b., 101 and f. However, the
computational work and the programming is considerably simplified by suitable partitioning of
the Do and b i matrices; the reader may consult Ref. 1 and in particular Hunt" for more details
of the procedure. Suffice it here to state that we write b, in the form:

1 .... 12 1 .... 12

b"J
bOla

1
s.,

1buzb bOll,

bos 0

j
(77)

bO,,'a b owa

l bOU'b

J
bOwb

bOr 0

where the numbers above the columns refer to the loads 1 to 12. SUbscripts z,,, w' r are used to
denote longitudinal flanges, covers, spar webs and ribs respectively; SUbscripts a and b refer to
front and rear spar respectively. Note that by virtue of the choice of the basic system b., and boy
are zero matrices. In compiling Do we take advantage of the symmetry of the structure by
writing terms for the top surface only. The rows follow in each of the submatrices the numbering
of the elements which, in each case, is from the root to the tip. The total number of rows in
b, is thus:

2x6+2X6+1x6+1x6+1x6+1x7=~.

The choice of the basic system ensures very simple submatrices which can, in fact, be written
down by inspection. This may be seen from Table 3, where bOla and bowa of dimensions 12 X 12
and 6 X 12 respectively are given. On the other hand if we had selected the E.T.B. and Bredt­
Batho stresses of the tube as statically equivalent stress system, the calculation of b, would, in
comparison, have been quite complicated. This illustrates clearly our comments on page 8
on the best choice of the basic system.

The b, matrix of 49 rows is similarly partitioned to give:

1 .... 6
b lla

1
bllb

, b.,
0 1 =

,

(78)
b i wa

bl1<b

Jb1r
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where the numbers above the columns refer to the six redundancies and the suffices have the
same meaning as in the case of boo The elements of the submatrices are obtained immediately
from the information on Fig. 4. The simplicity of these matrices may be seen on b lla and b1", a

shown in Table 3.

The corresponding partitioned form of the flexibility matrix f of the unassembled elements is:

I:"
0 0 0 0 0

fib 0 0 0 0

f= 0 0 f s 0 0 0 (79)

l~
0 0 fwa 0 0

0 0 0 f"'b 0

0 0 0 0 f
r

where fla, fib are calculated from equation (22) and f s to f, from equation 17. The submatrix fib
is shown in Table 4; the factor 2 is introduced to take care of the lower flange since b, and b1

contain only the loads for the top flange.

We cannot emphasise sufficiently the great simplicity of the derivation of the three basic
matrices b., b., f. Although our example is naturally trivial the method is basically the same
in the case of much more complex aircraft structures, e.g., delta wings, once we can ignore the
effect of cut-outs, have selected the simplest possible basic system and have tabulated all
information for the b1 and f matrices.

The analysis of section 6 requires the matrix multiplications b/fbo,b/fb1 and bo'fb o. Using
the above partitioned form of the basic matrices we find the simple result:

Do = b/fbo= [b/fboJla + [b/fboJlb + [b/fboJwa + [b/fboJ"'b

D = b/fb1 = [b/ fb.] la + [b,: fb.] Ib + [b,' fb.], +
+ [b/fb1J"'a + [b/fb1J"'b + [b/fb1Jr

Fo = bo'fbo = [bo'fboJla + [bo'fboJlb + [bo'fboJ"'a + [bo'fboJ"'b

l
t·
J

(80)

These matrix multiplications and additions are very easily programmed for the digital computer
where the form of D, Do, fin (80) is most useful, especially in the case of large structures, since
it allows an efficient use of the computer store (see Huntv'). Naturally it is also advantageous
when we use a mere desk machine. If the number of external forces exceeds say 50 and that of
the redundancies say 32, it will be necessary to partition the b, and 1>1 matrices also by columns
(the numbers given refer to the Ferranti Pegasus). The partitioning of the b1 matrix by columns
is actually closely related to the idea of a statically indeterminate basic system (see section 1
and Ref. 1. p. 82. March, 1955).

Raving D we find the inverted matrix 0-1 and the product 0-lDo most conveniently and
speedily on the digital computer especially if the latter operates, as do the Ferranti machines,
with a matrix interpretive scheme (see Rune). In our present example D is of order 6 X 6 and
the inversion requires on the Pegasus only 14 sec, whilst approximately 6 hours are necessary on
the desk machine when using the Jordan technique. If we are interested only in the stress
distribution for a particular load group Ft, we can form on the digital computer DoR (which is a
column matrix) and then find [)-l[DoRJ without first obtaining 0- 1

. This shortens further the
computing time. For example, on the Pegasus the time of 14 sec for D-1 is reduced to 9 sec
when calculating the column matrix 0-1[DoR]. Naturally, these times increase rapidly with the
order of the D matrix, but they are not more than 17 min 52 sec and 7 min 19 sec respectively
when this order is 32 X 32. Again the quoted times apply to the Pegasus on which we would
have to use partitioning when D is of higher order (see also statement at end of previous
paragraph).
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The D- 1 and D matrices for the present example are given in Table 4. It is now very simple
to find from equations (42) and (43) the final b matrix and the exact 12 X 12 flexibility f. Table 5
shows, in particular, the submatrices b., and Ibl£.a whilst IF is found on Table 6. Finally, we
present the flange loads and shear flows in the webs for a single load R 3 = 1,000 lb. in Fig. 12.

15. Thermal Stresses.-We determine next the stresses and distortion of the same structure
due to a non-uniform temperature distribution. For this purpose we assume that the upper
flange of spar' a ' has the temperature distribution shown in Fig. 15. The variation is taken to
be linear between nodal points and hence is defined by the values at the nodal points. The
column matrix [1]J of the initial strains at the beginning and end of each element of the top flange
, a' is: .

II l2 l3 £4 l5 l6

[1]J = {{rxe1 rxe 2} {rxe 2 rxe 3} {rxe3 rxe 4} {rxe4 rxe 5} {rxe 5 rxe 6} {rxe 6 rxe 7} } • (81)

Following equations (46) and (48) of section 7 we require the generalised strains H corresponding
to the linearly varying flange loads. These may be found from equation (24) which in the present
case may be written:

H =1[1]J
where

11 0 0 10 0

~l10 12 0 10 10

1=
10 0 L 0 10 0

L ' ..
10 10 0 0 0

0 0 0 0 15

~J0 10 0 10 0

(82)

(83)

in which, since l is the same in each bay, all L's are identical matrices given by equation (25).
The matrix 1 is written out in full in Table 7.

The redundancies Yo due to temperature may now be derived from equation (48) :

Yo = - ll)- l b/ {H O} = - 1D-1b
lla ' H . .. (84)

This last relation follows since the initial strains are only applied to the upper flange of spar' a '.
Using blla from Table 3 and taking o: = 23 X 10- 6

, we find (in lb in.) :

Yo = {- 41,330 - 36,590 - 27,770 - 18,000 - 13,980 - 11,230} . (85)

The thermal stresses can now be determined from:

So = b 1Yo .. (86)

In particular, Fig. 15 shows the flange loads and web shear flows.

Of some interest is finally the thermal distortion of the structure. Thus, using the simple
relation equation (51), the deflections r Oj at the stations 1 to 12 are:

(87)

since the free thermal strains exist only in the upper flange' a ', b., is the true stress matrix
corresponding to the unit loads R 1 to R 12 and is given in Table 5. We find (in in.) :

123 4 5 6
r 0 = {- 0·019 - 0·081 - O· 191 - 0·327 - 0·492 - 0·693

7 8 9 10 11 12
- 0·016 - 0·071 - 0·171 - 0·308 - 0·474 - 0·661}. (88)

I t will be seen that the complete determination of the thermal stresses and distortion is surprisingly
simple.
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16. Effect of Cut-Outs.-In this paragraph we give a number of applications of the method
developed in sections 8 and 10 for cut-outs.

Three different cases of cut-outs are investigated (see Fig. 11 for notation) :

(1) Elimination of web w3, i.e., web of spar 1 a 1 in the third bay

(2) Elimination of two fields, web w3 and cover s2, and an additional cut of the flanges of
spar 1 a 1 at the root

(3) Elimination of flange 13.

Two particular loading cases are considered:
(a) Single load R; = 1,000 lb
(b) Thermal loading of Fig. 15, but only for cut-out cases (1) and (2).

Inspection of formulae (62), (65) and (68a) shows that we require the submatrices blh and biz,
These are easily extracted from the available matrices h1 and b. Then we have to form:

b1Iz D- 1b
1,.'

and invert it to find:
(89)

The order of this matrix is 1 X 1, 3 X 3 and 2 X 2 for cut-outs (1), (2) and (3) respectively.
All these data are collected in Table 8. By substitution of these matrices into equations (62)
and (68a) we obtain the stress distributions for the cut-outs and loading cases considered. The
results are given in Figs. 12, 13, 14 for the load Rg = 1,000 lb and Figs. 15 and 16 for the thermal
loading. For the single cut-out (1) we consider also the flexibility Fe of the cut-out structure.
Its derivation is particularly simple since in this case:

i.e., a scalar. Thus:

[b D-1b 'J-1 192
2

1h 1h = 3. SOl X 106 '

1922
1

Fe = F + LlF = F + 3. SO1 X 106 b, b, , ..

(90)

(91)

where the elements of the 12 X 12 matrix b,.'bh are obtained merely by single multiplications.
The incremental change LlF of the flexibility due to the cut-out is given in Table 6.

17. M odijied Structure.-The last example to be analysed is one illustrating the applications
of the method in section 11. The case investigated is that of the tube of section 13 but with the
cross-sectional areas of flanges II and 12 firstly halved and secondly doubled.

The stress distribution in the two modified structures may now be derived from the original
stress distribution using equation (71). To do this we have to find:

[ b D-1b 1 + __(3_ f -lJ -1 (92)
1h 1h (3-1 h

which, in the present case, is a matrix of order 4 X 4. The factor (3 is t and 2 when the cross­
sectional areas are halved and doubled respectively, and Table 9 gives the corresponding two
matrices (92). For a single load of R; = 1,000 lb the flange loads and web shear flows in the two
modified structures are shown in Fig. 17 and can be compared with the stress distribution in
the original structure.

In conclusion we draw attention to the extreme simplicity of the methods on cut-outs and
modifications given in Ref. 1 and this paper. The reader may consult in this connection also
Huntv",
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TABLE 3

Basic Matrices

1 2 3 4 .5 6 7 8 9 10 11 12

-1 -2 -3 -4 -5 -6 0 0 0 0 0 0 t,
0 -1 -2 -3 -4 -5 0 0 0 0 0 0 {20 -1 -2 -3 -4 -5 0 0 0 0 0 0
0 0 -1 -2 -3 -4 0 0 0 0 0 0 {30 0 -1 -2 -3 -4 0 0 0 0 0 0

20 0 0 0 -1 -2 -3 0 0 0 0 0 0 {4b"za= "6 0 0 0 -1 -2 -3 0 0 0 0 0 0
0 0 0 0 -1 -2 0 0 0 0 0 0

{.50 0 0 0 -1 -2 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 0

J}60 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 1
0 1 1 1 1 1 0 0 0 0 0 0 2

1 () 0 1 1 1 1 0 () 0 0 0 0 3
b eu,,, ,.= 'G 0 () 0 1 1 1 0 0 0 0 0 () 4

I) () 0 () 1 1 0 0 0 0 () 0 .5
() () () 0 0 1 0 0 0 0 0 0 6

1 2 3 4 .5 6

I 1 0 0 0 0 0 l1
0 1 0 0 0 0 {20 1 0 0 0 0
0 0 1 0 0 0 }30 0 1 0 0 0

bIz" =
1 0 0 0 1 0 0
6 0 0 0 1 0 0 I l 40 0 0 0 1 0 J

0 0 0 0 1 0 Il.50 0 0 0 0 1

J}6l 0 0 0 0 0 1
0 0 0 0 0 0

-1 1 0 0 0 0 1
0 -1 1 0 0 0 2

10 0 0 -1 1 0 0 3
bl WU = -(3':<: 320 0 () () -1 1 0 4

() 0 0 0 -1 1 .5
() (j 0 0 0 -1 6

Numbers against rows denote elements.
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TABLE 4

Basic Matrices-continued

Y1 Y2 Y3 Y4 Ys Y6

I 16·800 - 8·334 2·083 0 0 0 l- 8·334 40·126 -11,448 2·083 0 0

D = 10-8 X
2·083 -11'448 44·133 -10,712 2·083 0

I0 2·083 -10,712 47·892 -10,974 2·083

l 0 0 2·083 -10·974 52·081 -10,270

J0 0 0 2·083 -10,270 57·240

I 6·6384 1·3916 0·0347 - 0·0558 - 0·0132 - O' OOO3 l
1·3916 2·9840 0·7156 0·0249 - 0·0244 - 0·0053

D -1 = 106 X l
0·0347 0·7156 2·5828 0·5494 0·0088 - 0·0184

I- 0·0558 - 0·0249 0·5494 2·3167 0·4661 - 0·0007
- 0·0132 - 0·0244 0·0088 0·4661 2·0885 0·3578 J
- 0·0003 - 0·0053 - 0·0184 - 0·0007 0·3578 1·8112
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TABLE 5

True Stress Distribution: Typical Matrices

1 2 3 4 5 6 7 8 9 10 11 12

-1'447 -2·098 -2,726 -3·385 -4,071 -4,749 -0,433 -1,100 -1,797 -2,479 -3,156 -3,832 1
0·398 -0,841 -1·658 -2·434 -3,268 -4,088 -0'096 -0,681 -1,482 -2,311 -3·134 -3,954 2
0·011 0·430 -0,971 -1·966 -2,974 -3,994 -0'004 -0,164 -0,950 -1·964 -2·997 -4,024 3

b1a = -0'016 -0,017 0·323 -1·080 -2,134 -3,182 0·004 -0'006 -0,213 -1,082 -2·158 -3,239 4
-0·004 -0·021 -0,030 0·246 -1,066 -1,992 0·001 0·006 -0,006 -0,207 -1,038 -2,002 5
-0,000 -0,003 -0'017 -0·038 0·266 -0,945 0·000 0·001 0·007 0·002 -0·126 -0,824 6

~ 0 0 0 0 a 0 0 0 0 a a a 7
(j;)

Numbers opposite rows refer to rib stations. Duplicated rows for the two elements meeting there are merged into one.

Numbers above columns refer to loads R1 to R12•

r 120·15 101·78 95·87 92·22 87·62 83·13 10·52 13·08 9·82 5·24 0·69 - 3·81 r- 12·11 102·21 83·99 77·11 71·69 65·44 2·88 16·15 16·63 10·86 4·28 - 2·18 2
bwa = 10- 3 X - 0·83 - 13·97 102·93 90·20 88·74 87·88 0·22 4·95 23·05 27·55 26·20 24·52 3l 0·38 - 0·14 11·03 103·94 95·87 89·35 - 0·08 0·36 6·47 27·35 35·02 38·66

J~0·12 0·57 0·40 - 8·87 104·11 99·70 - 0·03 - 0·14 0·38 6·54 28·49 36·82
0·00 0·10 0·53 1·18 - 8·30 95·20 - 0·00 - 0·04 - 0·21 - 0·07 3·93 25·74

Numbers opposite rows refer to web elements.



TABLE 6

Flexibility of Continuous Tube and Increment Due to Cut-Out Web w3
1 2 3 4 5 6 7 8 9 10 11 12

121
.
54 27·62 35·67 41·42 48·36 55·32 4·43 11·27 18·42 25·43 32·38 39·32

27·62 73·68 103·4 132·9 164·0 194·8 10·82 36·50 67·23 98·25 129·0 159·7
35·67 103·4 192·4 265·9 342·3 419·1 . 17·30 65·22 136·1 212·8 289·4 365·9
41·42 132·9 265·9 428·3 576·0 . 722·2 23·71 94·30 210·9 355·1 504·3 653·1
48·36 164·0 342·3 576·0 843·6 1090·3 30·05 122·9 285·1 501·9 747·7 997·3

F = 10-6 X 55·32 194·8 419·1 722·2 1090·3 1510·6 36·42 151·6 359·3 649·3 996·9 1373·0
4·43 10·82 17·30 23·71 30·05 36·42 10·81 17·21 23·53 29·88 36·25 42·61

11·27 36·50 65·22 94·30 122·9 151·6 17·21 49·40 78·73 107·4 136·1 164·9
18·42 67·23 136·1 210·9 285·1 359·3 23·53 78·73 157·7 232·1 306·2 380·4

J
25·43 98·25 212·8 355·1 501·9 649·3 29·88 107·4 232·1 383·8 530·6 677·5

~ 32·38 129·0 289·4 504·3 747·7 996·9 36·25 136·1 306·2 530·6 788·1 1036·9

"" 39·32 159·7 365·9 653·1 997·3 1373·0 42·61 164·9 380·4 677·5 1036·9 1424·7

0·01 0·11 - 0·83 - 0·73 - 0·71 - 0·71 0·00 -0'04 - 0·19 - 0·22 - 0·21 - 0·20
0·11 1·89 - 13·95 -12,22 -12'02 -11,91 -0,03 -0,67 - 3·12 - 3·73 - 3·55 - 3·32

-0,83 -13,95 102·8 90·04 88·59 87·73 0·22 4·94 23·01 27·50 26·15 24·48
-0,73 -12,22 90·04 78·91 77·63 76·88 0·19 4·33 20·16 24·10 22·92 21·45
-0,71 -12,02 88·59 77·63 76·37 75·63 0·19 4·26 19·84 23·71 22·55 21·10

LlF = 10-6 X -0'71 -11,91 87·73 76·88 75·63 74·90 0·19 4·22 19·66 23·48 22·33 20·90
0·00 - 0·03 0·22 0·19 0·19 0·19 0·00 0·01 0·05 0·06 0·06 0·05

-0,04 - 0·67 4·94 4·33 4·26 4·22 0·01 0·24 1·11 1·32 1·26 1·18
-0,19 - 3·12 23·01 20·16 19·84 19·66 0·05 1·11 5·15 6·16 5·86 5·48
-0·22 - 3·73 27·50 24·10 23·71 23·48 0·06 1·32 6·16 7·36 7·00 6·55
-0,21 - 3·55 26·15 22·92 22·55 22·33 0·06 1·26 5·86 7·00 6·66 6·23
-0,20 - 3·32 24·48 21·45 21·10 20·90 0·05 1·18 5·48 6·55 6·23 5·83



TABLE 7

TABLE 8
1. Cut-out web w3

1
192 [ 0 o -1 1 o o J

2. Cut-out web w3, covers s2 and flange 11 at root

1
0 0 0 0 0

6

b1h = 0 0
1 1

0 0- 192 192

0
1 1

0 0 0
320 320

I 184·40 0·07856 -0,7067 1
bll,D-1b1h' = 103 X 0·07856 0·10310 0·02185

l- 0·7067 0·02185 0·04039 J
I 0·005893 - 0·02979 0·1192 l[b D-1b 'J-1 - 10-3 X l ~0'02979 11·1063 - 6·53051h 1h -

0·1192 - 6·5305 30·380

3. Cut-out flange element 13

o
o

o
o

1

o
o
1

o
o

o l
o J

[
7 ·1744 1· 5261J

b1hD-lb1h' = 10
4

X 1.5261 6.4353 [
0·1468 -0'0348 J

[b1hD-1blh'] -1 = 10-4 X
-0'0348 0·1636
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TABLE 9

Flange Elements ll, l2 Modified

b,,~~ r
1 0 0 0 0 0 10 1 0 0 0 0

0 1 0 0 0 0

Jl 0 0 1 0 0 0

[
0·18440 0·03865 0·03865 0·00096

]
0·03865 0·08289 0·08289 0·01987

blhD-lblh' = 106 X
0·03865 0·08289 0·08289 0·01987

0·00096 0·01987 0·01987 0·07174

[ O·~O -0,325 0 0

]fh - 1 = 106 x -or 0·650 0 0

0 0·650 -0,325

0 -0,325 0·650

1. f3 = 1/2. (Flange areas 11,12 halved), fJ/(fJ - 1) = - 1, 1·4025 0·5705 -0,1769 -0,0924

10·5705 1·6237 -0,2823 -0·1648
[b D-'b '+ f -'J-' ~ 10-' XlIh Ih h -0,1769 -0'2823 1·7100 0·7309

J-0,0924 -0,1648 0·7309 1·6992

2. fJ = 2. (Flange areas ll, 12 doubled), fJ/(fJ - 1) = 2

,-1.3971 -0,8025 -0·1525 -0,0973

1-0·8024 -1'2898 -0·1788 -0,1190
[b D-'b '- 2f -'J-' ~ 10-' Xl

Ih 1/1, h -0.1525 -0·1788 -1,2007 -0,6578

J-0,0973 -0,1190 -0,6578 -1,1749
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force, Rs = 1,000 lb with and without cut-out web w3, cover

82 and flange 11 at root.
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