R. & M. No. 2994
(17,440)
A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
- REPORTS AND MEMORANDA

| Velocmes on Two D1mens1onal Closed
and Sem1 Infinite Aerofoils at
~ Zero Inc1dence
B
S. Neumark, Techn.Sc.D., F.R.Ae.S.,

and
B. Tawarres, M.A., Ph.D., A.F.R.Ae.S.

Crown Copyright Reserved

- LONDON : HER MAJESTY’S STATIONERY OFFICE

- 1957
Price 45 6d ~NET




Velocities on T'wo-Dimensional Closed and
Semi-Infinite Aerofoils at Zero Incidence
| , By : : |
S. Neumarg, Techn.Sc.D., F.R.Ae.S., and B. Tuwaires, M.A., Ph.D., A.F.R.Ae.S5.

CoMMUNICATED BY THE PRrincipaL Direcror oF ScientiFic Researca (AIR),
MINISTRY OF SUPPLY

Reports and Memoranda No. 2994*
January, 1955 |

Summary.—An attempt is made to clarify the position as to the comparative two-dimensional velocity distributions
on a thin doubly symmetrical aerofoil and on the corresponding semi-infinite body, the front part being the same in
the two cases. It isshown that the approximate linear method may be used with advantage to investigate the problem.
The method provides a simple general proof that the supervelocity at the mid-chord station of a closed doubly
syminetrical profile of any shape is approximately halved when the rear half is replaced by a semi-infinite parallel body.
No such simple relationship applies to the entire chordwise distribution on the front part. An exact solution of the
velocity distribution has been obtained for one particular semi-infinite profile and several alternative examples have
been studied by the linear method. It is found that the ratio of maximum supervelocities may often considerably
exceed 0-5 and sometimes rise to nearly 1-0.

1. Introduction.—In a recent discussion the question was raised as to the comparative
two-dimensional velocity distributions on a thin doubly symmetrical aerofoil and the corre-
sponding semi-infinite body. The purpose of this report is to investigate the matter. It has been
found, using the well-known linear perturbation theory of thin symmetric aerofoils, that the
value of the supervelocity at mid-chord station on any thin doubly symmetrical aerofoil gets
very nearly halved when the rear half is replaced by a semi-infinite parallel body. No such simple
rule, however, applies to the entire chord-wise supervelocity distributions in the two cases.
At more forward stations, the ratio of corresponding supervelocities may assume values con-
siderably in excess of 0-5, often not much lower than 1. This is shown below not only by general
reasoning but also by working out complete velocity distributions by the linear method in several
examples, including the biconvex parabolic profile, the ellipse, one very blunt oval, and one oval
with particularly thin rounded nose. An exact solution has been found for one semi-infinite
profile which is found to have rather exceptional properties in that the maximum supervelocity
occurs at mid-chord for both the closed and semi-infinite aerofoil. In many other cases of doubly
symmetrical profiles, the maximum may occur not at mid-chord but further upstream, either
for the semi-infinite profile, or for both closed and semi-infinite ones.

It is expected that the present note will further emphasize the usefulness of the linear method.
- It is true that the method is only approximate and that it usually fails in small regions near to
stagnation points at leading and trailing edges; it may therefore not appeal to pure mathemati-
cians. It is very useful, however, in many practical applications, and often provides rapid and
simple solutions where more rigdrous methods would lead to much longer and more elaborate
calculations.

An acknowledgement is due to Miss F. M. Ward who has prepared the illustrations.

B

* R.A.E. Tech. Note Aero. 2362, received 29th April, 1955. This report has been modified to include the results
given by Thwaites in A.R.C. 17,158.
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2. General Considerations.—The linear perturbation method for determining velocity distribu-
tion on thin two-dimensional symmetrical aerofoils at zero incidence is well known. It has been
discussed in some detail in Ref. 2. Tt consists in introducing an approximate continuous system
of sources and sinks along the chord (Fig. 1a), the local source intensity being proportional to the
slope of the profile at the relevant chordwise station. The incremental velocity (supervelocity) at
any point P of the profile is calculated approximately as the velocity induced by the source
system at the corresponding point A of the chord. If 7, denotes the free-stream velocity and
V' the velocity at P, then the supervelocity is (V' — V), and it is shown in Ref. 2 that this
supervelocity can be calculated by the simple formula*: ' '

v, =Vl & @)
X — X .

. where the integration must be performed along the entire source-and-sink line LT. The integral
is improper, and the principal value must be taken in the usual way. The same formula may be
applied to calculate the supervelocity along the x-axis outside the profile, in which case the
. integral is not improper. '

Let us suppose now that the profile is doubly symmetrical, i.e., that, in addition to the symmetry
about its chord, it has also fore-and-aft symmetry, as in Fig. 1a. The source-and-sink system is
then anti-symmetrical, fore-and-aft, so that every source element S in the front half corresponds
to a sink element of the same intensity in the rear half. It is obvious that, at the mid-chord
point P, (or A,) the velocities induced by the front and rear halves of the source-and-sink system
are exactly equal (and of the same sign). :

If we now replace the rear half of the aerofoil by a semi-infinite parallel body (Fig. 1b), the
linear theory can still be applied to the resulting semi-infinite aerofoil but, as the profile slope in
the rear part has become zero, the rear sink system must be simply removed, while the front
source system remains as it was in Fig. la. The formula (2.1) will still apply, but the integration
is to be performed along LA, only. It is at once obvious that the supervelocity at P, will be half
that in the previous case, and this result is quite general, irrespective of the particular shape of
the profile. The result is only approximate, of course, but the accuracy should be good for
small values of the thickness ratio #/c.

It must be stressed that this simple ratio 0-5 applies only to the mid-chord (maximum
thickness) station of doubly-symmetrical profiles. If we consider points on such profiles further
upstream, the ratio will normally be greater than 0-5, as may be seen again by a simple general
reasoning. The supervelocity at any such point (R in Fig. 1a) on the closed profile may again be
considered as consisting of two parts, one contributed by the sources, the other one by the sinks.
The latter contribution will be generally smaller, however, because the sink elements are at a
greater average distance from R than the source elements. In the case of the semi-infinite
aerofoil the smaller contribution disappears, and the larger one remains, and hence we may expect
the relevant ratio to be anything between 0-5 and 1. This reasoning is perhaps not quite
convincing, expecially if we consider points quite near to the leading edge. A considerable part
of the source system then induces negative contributions to the supervelocity so that, in most
‘cases, the total supervelocity eventually becomes negative, for both closed and semi-infinite
aerofoils (not simultaneously for both). The ratio of supervelocities in the two cases may then
assume any positive or negative values, between zero and infinity, but the ratio itself becomes
meaningless. In addition, the linear theory generally gives unreliable (sometimes absurd) values
very near to the stagnation point at the leading edge. To get a clearer picture of comparative
velocity distributions in the two cases, some numerical examples are obviously needed, and these
are given in subsequent sections.

* There is a slight change in notation from that of Ref. 2, and the positive direction of x-axis has been taken
downstream.
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The problem may be generalised for’ profiles with no fore-and-aft symmetry. The semi-infinite
aerofoil will then be obtained by replacing the rear part of the closed profile behind the maximum
thickness station by two parallel tangents at that station. The linear theory will provide velocity
distributions in such cases as well (with somewhat more complicated calculations). It is not
intended to pursue the matter here, but one remark may be interesting. Suppose that the
maximum thickness station of the closed aerofoil is located well forward (e.g., at 20 per cent
chord), and the rear part has a very mild slope through most of the remaining chord. The
contribution of the sink system to supervelocities on the nose will be very small, and cutting
this system off will produce almost no effect.

3. Exact Solution for a Particular Case (Cycloidal Profile).—We consider the flow past a particular
symmetrical body having a rounded front part faired into two infinite boundaries parallel to the
stream, which has a simple hodograph representation (see Fig. 2). The maximum supervelocity
occurs at the ends of the rounded front part (at P, and P,"). It is shown in Appendix I that the
parametric equations for the rounded part of the profile are:

% = % sin® 2 '
T, (3.1)
Yy : .2 2
- = §(r — 1)(A 4+ sin 4 cos 1) ‘
The maximum velocity is #V,, and the thickness ratio is given by:
_ctz-;ﬂ(r—l), 3y
where ¢ is the chord of the equivalent closed aerofoil ; thus the maximum supervelocity is:
9 4 .
Vs — Vo= (r — WV, =2ty N & )
7e

so that, e.g., for ffc = 0-1, it ié 0-0637V ... The maximum supervelocity for the corresponding
closed aerofoil has been evaluated by Goldstein’s third approximation® and found to be 0-122V,,.
We have therefore, in this particular case : :

Maximum supervelocity for the semi-infinite body  0-0637V, — 0-529
Maximum supervelocity for the closed aerofoil ~— 0-1227,

and this differs very little from the simple approximate value 0-5. The exact formulae, in terms
of x, for the velocity distribution along the curved front part and also along the straight rear
boundary, where (V7 — V) is positive but tends to zero when x— o, have been found (see
Appendix I) and are respectively:

v _ L 34
Ve J{1+(7~1)2(2%6—1>]
o e e S S e

This latter formula also applies to the velocity distribution along the x-axis in front of the aerofoil.
In the latter case V < ¥V, and that is why the absolute value of (V — V) is indicated in the
second term. The formula cannot be solved explicitly for V, but this does not cause any serious
difficulty for computation. A :

3

(4626) i Ax



The formulae (3.4) and (8.5) have been used to produce exact curves of velocity distribution for
the semi-infinite aerofoil derived from a closed one of thickness ratio 0-1 (see Fig. 5). For
convenience, the supervelocity ratio (V — V,)/V,, has been plotted, as in all subsequent figures.

A striking feature of the graph is the abrupt kink of the curve at P,, with the vertical tangent
to the right-hand part of the curve. This feature suggests a violent discontinuity of curvature
. at P, which seems puzzling: the thickness ratio being small, one would expect a very small
curvature of the profile at P,. The curvature is 0, of course, on the straight boundary downstream,
so the discontinuity is there without doubt, but the shape of the curve still seems surprising.

The matter is easily explained, however, if we calculate the radius of curvature of the profile
exactly. The formula is:

et . 4 £ 3/2 '
Qzét_sm"’lcosl(l—l—;z?cotzl) , .. .. .. .. (3.6)
and hence at P, (where x = 0-5¢; A = =n|2) the radius of curvature is zero, and the curvature 1f%ﬁmie !

This seems preposterous but is perfectly correct. The fact that the profile seems to have a very

feeble curvature at P, may be explained by calculating ¢ very near to P,. It is easily found that,
if #/c is small, then:

for x = 0-495¢, we have cos A = 0-1, ¢ = 0-155¢%¢,
for x = 0-48¢, wehave cos i =0-2, ¢ == 0-293c%¢, etc.,
so that the radius of curvature becomes quite large at very small distances from P,.

This geometrical singularity of our curve is a very unusual thing for a wing profile, but is
nothing new in mathematics. The same sort of singularity occurs at cusps of many elementary
curves, e.g., of a semi-cubic parabola, or of an ordinary cycloid. Now, it is easily found that, if
4 is varied from (— o) to (4 ) in equations (3.1), we obtain a curve (Fig. 3) consisting of an
infinite number of identical branches, with an infinite number of cusps, very similar to a cycloid.
And, in the special-case » = 2, our curve actually becomes a cycloid, the equations becoming
then: : :

¥—lo(l —cos21), y—1le@i-4sin2l). .. .. .. .. (37

If 7 is given any alternative value (which will be only little in excess of 1 if the thickness ratio

is to be small), the ordinates y are simply scaled down, and we obtain curves  affine’ to the
cycloid.

4. Cycloidal Profile Treated by Linear Method.—1t is interesting to find the supervelocity on the

cycloidal semi-infinite aerofoil by applying the linear approximation, ¢.e., the formula (2.1). As
shown in Appendix II, the result is:

V—V. . 2 | ) | |
=== O<x<d).. .o . . . (4]

el
o

and . _
V%fw = — 11— N/(1"--- ). >l orx<0)... .. (49

The formula (4.1) gives, somewhat surprisingly, a constant supervelocity along the entire curved
front part of the aerofoil, the value being, however, the same as the exact maximum obtained
by the rigorous method (see 8.3). This result becomes understandable when we examine the
exact formula (3.4). The factor (» — 1)* being small of the second order in terms of thickness
ratio, the expression (3.4) differs from # only by a small term of the second order, except near
the leading edge where the difference assumes increasingly large values. Our result is therefore
consistent with the assumptions of the linear theory. -
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The formula (4.2) applies for both ¥ > 4c and x << 0, and gives the supervelocity on the straight
boundary of the semi-infinite aerofoil, and on the x-axis in front of it, respectively. The results
are plotted again in Fig. 5 for the case #/c = 0-1, and marked * lin. approx.’”. It will be noted
that, for x > {c, the approximate curve lies so close to the exact one that the differences cannot
be seen on the scale adopted. For x < 0, the differences are only just visible.

The linear method can also be applied to the closed profile and, in view of the fore-and-aft
symmetry, the curves can be drawn at once, by simply adding the ordinates of the previous
curves corresponding to x and (¢ — x), respectively. The formulae in this case are:

VI_/OOV“’ZO'— D2 — V{1 — /(2 — 2x)}] o (O<x<§>
= — D2 — {1l —¢22)] (5 iy < c) (4.3)

= — D2 — V{1 — 25} — V{1 — /(2 — 20}]  (x>c,orx<0) |

- The curves have also been traced in Fig. 5, and it is seen that there is a true cusp at the mid-chord
station. An alternative curve for the closed aerofoil, marked ¢ almost exact ’, is also shown, as
obtamned by adding the ordinates of the exact curve referring to the semi-infinite body, which
correspond to x and (¢ — %), respectively. This procedure is still not perfectly exact, but errors
should be very small, in particular in the region near the stagnation points.

The cusp at mid-chord station is a very unusual feature in a velocity graph. It is obviously
due to the geometrical singularity of the profile described in the previous section. From this
point of view, our example would not perhaps be very fortunate if a comparison with experiment
were required. The point is that it would be extremely difficult to manufacture a thin model
with such an accuracy as to have really zero radius of curvature at maximum thickness, and
experimental pressure plotting would probably never reveal a true cusp. Irrespective of this .
difficulty, Fig. 5 shows clearly that the ratio of supervelocities on the semi-infinite and closed
aerofoil equals 0-5 only at mid-chord station, while it assumes considerably higher values further
upstream (e.g., about 0-75 at ¥ = 0-1c). The ratio 0-5 applies, however, to maximum super-
velocities, as these happen to occur at mid-chord station for both aerofoils. This feature is rather
unusual, as will be shown by alternative examples.

5. Alternative Example : Biconvex Parabolic Profile—For the biconvex parabolic profile
(Fig. 6) the linear method gives particularly simple solutions. It is more convenient in this case
to place the origin of co-ordinates at mid-chord. The equation of the profile is then: .

y = 3t(1 — &), where £ = 2x/c . . . . . .. .. (5.1)

and, as shown in Appendix III, the supervelocities on the semi-infinite and closed aerofoil are
given, respectively, by the following formulae: "

V_V. 2t )1+5H o |

T—;5l1 SlnT (semi-infinite) .. .. .. . .. (5.2)
V-V, 4 t[y .. [1+e¢

—VT—;‘;{I 2§1n'1_§J(’close_d). N X

Both formulae apply throughout the entire range of £ from (— o) to (4 =), the straight brackets
being used to-denote the absolute value. A graphical illustration is given in Fig. 6, for thickness
ratio 0- 1. ' ' :
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. The ratio of supervelocities in the two cases is, of course, 0-5 at & — 0, and the respective
values are, curiously enough, exactly equal to those found previously for the cycloidal profile.
However, only for the closed profile does the maximum occur at mid-chord station. For the
semi-infinite aerofoil, the curve presents a vertical inflexion tangent at & = 0 (effect of discontinuit
of curvature), and the maximum value, at about & = — 0-218, amounts to about 0-64 of that
for the closed profile. The ratio of corresponding supervelocities further upstream from mid-
chord station increases from 0-5 to about 0-7 (at & = — 0-4). All these numerical results are
only approximate but the accuracy is certainly good enough.

6. Further Examples : Oval Profiles, including Ellipse.—A family of oval profiles was considered
in Ref. 2 (Appendix I, example VI, Fig. 19), the equation being:

y=31— @ (k) withé =20 .. .. .. .. .. .. (6]

where is.; a variable parameter. If & = 0, this represents an ellipse ; for % increasingly positive,
the profile becomes fuller (Fig. 9), and for % increasingly negative we obtain profiles with gradually
thinner noses (Fig. 7). The supervelocities on both semi-infinite and closed aerofoils are derived

by linear method in Appendix IV. The formulae are somewhat complicated but simplify
considerably for the elliptic profile, for which we obtain: :

(@) Semi-infinite aerofoil with elliptic front part :

V-V, |, £ 1+ 4/(1 —¢&) 2
Le=LERr Al n\/(l_gz)lnl_\/(l_gz)}, (2 < 1) (6.22)
t 4o & NP JrE— 1] . .
:%{1—;@5__ tan N/ m)} C(®@>1 .. .. (62D
(6) Closed elliptic aerofoil:
V-V, ¢
V_V._1t (& < 1) ... (8.3)
V., c , |
25{1_J(§2fi } (&> 1) .. .. (6.3b)

Tllustrative graphs, for thickness ratio 0- 1, are givenin Fig. 8. At £ = 0, there is again a vertical
inflexion tangent for the semi-infinite aerofoil. “The drop in supervelocity is, however, less abrupt
than in the previous cases, and this is understandable as the radius of curvature of the ellipse,

at & = 0, is comparatively large (0-5¢°f, as against 0-25¢2[¢ for the parabolic profile, and 0 for
the cycloidal profile). .

The constant value obtained by the linear method for the closed ellipse is a well known result.

The exact velocity distribution on an elliptic profile (and along the x-axis in front and behind the
profile) is easily obtained by conformal transformation : '

Y—I_/;&Z,(“FQAV/Q;(11__(5;/02)52)_1' (&< 1) ... (64a)

te |{_ J( F‘Z;‘H—/c )] (e>1) .. .. (6.4b)

T 14
and the illustrative curves are also given in Fig. 8. The differences between (6.3a) and (6.4a) are
small of second order in #/c, except near the stagnation points. An ¢ almost exact ’ curve for the
semi-infinite aerofoil has been obtained from the approximate one, by deécreasing its ordinates

by the corresponding differences between those of the exact and approximate curves referring
to the closed ellipse. :
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It is seen again that the ratio of supervelocities in the two cases becomes considerably larger
than 0-5 on the front half of the profile, reaching the value about 0-78 at é§ = — 0-7. The ratio
of maxima is nearly 0-75. : o

It is interesting to compare Figs. 5 and 8 (cycloidal and elliptic profile). There are considerable
differences in supervelocity curves, although the two profiles seem so similar. The true difference
between the profiles can be better appreciated in Fig. 4, where the ordinates are scaled up to
thickness ratio 1.

Further illustrative graphs are presented in Figs. 7 and 9 for two oval profiles of the type (6.1).
They have been calculated from the formulae given in Appendix IV (linear method only). In
Fig.7, k = — 0-4, and we have a thin-nosed profile (still with a rounded edge). The supervelocity
curves are rather similar to those of Fig. 6 along major parts of the chords, but differences are
considerable near stagnation points where the accuracy is poor anyhow. It may be noted that
the radii of curvature of the two profiles at & = 0 are nearly equal (0-25¢/¢ in Fig. 6, 0-278¢%[¢
in Fig. 7). Fig. 9 refers to a rather extreme case of a very full blunt profile (¢ = + 0-4). The
radius of curvature at £ = 0 amounts to as high a value as 2-5¢%/¢, and this accounts for the fact
that the singularity of the velocity curve for the semi-infinite aerofoil is almost invisible—a
vertical inflection tangent is, however, still there. The supervelocities in the front part of the
profile rise to very high values for both semi-infinite and closed aerofoils, and the true maxima
must occur not far from the leading edge. The errors must be large in this region. There is no
doubt, however, that the ratio of supervelocities in the two cases must rise to remarkably high
values—about 0-85 or 0-9 for the maxima.
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: APPENDIX I
Derivation of some Exact Formulae Pertaining to the Cycloidal Profile (Section 3)

To derive the exact solution for a semi-infinite aerofoil, let us consider the hodograph plane
(Fig. 2), where the interior of the circle ’

o [ — ¥V, |=4V,
corresponds to the exterior of the aerofoil in the physical plane. The complex potential
w = bty has: been expressed in terms of ¢ = V, — 1V, by the relationship: ‘ '
. 1 7* 1
— - M[ _ ] (L
w=¢ 4w I T (Y 7ol (L.1)

which represents a doublet of strength M at { = V', together with its image at { = #V /(2 —» ).
Values on OP, are: .

'l/) = O , Z@} — (j‘ﬁ
=7V cds@.e“ioizdﬂ:e-w@i‘i T *e e - (1.2)
e 2 ds
7
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and so

ds:mseCOdtﬁ, . ‘. .. . . .. .. (13)
whence
dé
dx = 2
x V.,
(I.4)
__tan 0 d¢
V.,

Substituting the value for ¢ from (1.2) into (I.1), we find
_2Mr — 1 1+ tan® 6

¢_V_w2—7’(7/—1)2—|—tan20 (L5)
and, if ‘ '
tan 0 = (r — 1) cot 2 . .. . . .. .. .. (L6
this becomes: ' ‘
b — 2M sin® A + (r — 1)®cos® 4 _ (1.7)

V. r—1)(2—7)

The geometric scale may now be fixed by putting 4M = c¢(r — 1)V 2, ¢ being the chord of the
corresponding doubly symmetrical aerofoil. Using (I.7) to integrate (I.4) we then obtain the
-parametric equations of the curved front part of the semi-infinite aerofoil :

x = 1sin® 2

y =3 — 1}(2 4 & sin 24)

<1< (I.8)

bl R
]

The formulae for the velocity V = d¢/ds along OP, is found from (I.3) and (I.6), and we obtain:

%:7[14-(?—1)%0911—1/2 L ae

or, in terms of x:

v

.
T—/; - . _ el & _ } .

/\/{1 L —1) (276 1)
A similar method can be applied to determine velocity distribution along P.Q or SO. In both
cases 1V, =0, =V and » =0, w = ¢, so that:

o 1 72 1
¢—M[V—Vw_2—7(2——7)V—VVJ' e S )

Differentiating (I.11) with respect to x and noting that d¢/dx = V, we obtain the following
differential equation with separated variables V and x:

dx 7* . 1

M [V{(Z — NV -V, 2 VIV — V)
This equation must be integrated separately along PO (Wﬁere V, <V < V,r, and the constant
of integration must be determined so that V' = V7 for x = ic) and along SO (where 0 < V <V,

and V = 0 for x = 0). It is easily found that the formula (3.5) applies on both P;Q and SO,
provided the absolute value of (V' — V) is always taken in the second term.

8
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APPENDIX II
Deyivation of Fovmulae for Cycloidal Pyofile by Linear Method (Séctioﬂ 4)
Applying (2.1) and (8.1), we obtain for the semi-infinite aerofoil :

V—V, 1 gy v— 1 14cos21l
A A
Ve Jx ox—x J 2(x[c) — sin® ld

7“1j (1+ x/f_—l“(’jr/‘/zosm A28 . .. .. .. (LD

The integral of the second term is improper and easily found to be equal to 0 ‘when
‘|4(xfc) — 1]<< 1; it is not improper and equal to m4/(1 — ¢/2%) when |4(x/c) — 1|> 1. This
leads directly to (4.1) and (4.2).

APPENDIX III ‘
Derivation of Formulae for Biconvex Parabolic Profile (Section 5)

Applying (2.1) and (5.1), we obtain for the semi-infinite aerofoil :

“T%:"g‘tf:z%_ J(—_._—>d§ Ly

The integral of the second term is improper if — 1 < £ < 0, and not improper for & > 0 or
¢ < — 1. The formula (5.2) is obtained in all cases.

For the closed aerofoil, the upper limit of integration in (III.1) must be changed to (4 1),
and the integral will be improper when [£|< 1. In all cases the formula (5.3) will be found to

apply.

' APPENDIX IV
Dervvation of Formulae for Oval Profiles, including Ellipse (Section 6)
Applying (2.1) and (6.1), we obtain for the semi-infinite aerofoil :

VoV _ t EL— 2%+ 3k o | V1
B el I U & R § A0 )

Substituting ‘ |
E=sina, .. .. .. .. .. . . ..(1v2

~we may write (IV.1) as follows:

VTV _ ¢ 8ksin®c+ (1—2)sina

Ve T mc) —ia sin @ — &
=t/ [313 sin® @ 4 3ké sin & 4 (1 — 2k + Ske?) - S — 28 + 3’352)} do. (IV.3)
7€ J —tn . , sin o — & .
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For the closed aerofoil the same formula (IV.3) will apply, with the upper limit of integration
changed to (+ n).

The first three terms in (IV.3) are easily mtegrated The fourth mtegral will assume three
different forms for various intervals of &, viz. :

0 Ao . 1 1 -+ \/(1 - 5) 2 w
Lz_.nsincb—ﬁ_ 2\/(1~E)11-—\/(1—§) (<1,
2 _ E—1
- _ tan-1! > - 1, .. .. .
V@__Uml\/§+1 (>1, (V4
— -1 £+ 1 -
_+\/§2—1tan \/(—5—1 E<—1) )
and
Jlnsmw—émo . (& <D,
- T ’ £>1), .. .. .
VE-T - = (I8
BRETGE ==
Using (IV.4) and (IV.5), we finally obtain:
for the’ seni-infinite aerofoil: ‘
V-V, t I
V—w"‘[(“— >——‘f o
Bhia £l -2 3RE) 1V - ey
+ 2 2r4/(1 — &%) 'nl——\/(l—éz)} ( ) L. (1v.6)
_? ‘ | U
“E[Q““4)_“—E
B 2 1/2
%_3k§ 2(1 — 2k -+ 3kE?) (523_ tqnq\/(f—L U’J
and for the closed one :
Vo Ve b g pey | | | ,<52f<1>,1_
” t " S - (IV.7)
:EP—Jk+%¥—U—£h+%ﬂJ§tTQ] (&>UJ

The formulae (6.2) and (6.3) are particular cases of (IV.6) and (IV.7), for 2 = 0.

It may be mentioned that the first derivative of (IV.6) becomes logarithmically infinite for
& = 0, and hence the supervelocity curves for the semi-infinite aerofoils in Figs. 7, 8 and 9 have
vertical inflexion tangents at mid-chord station, in agreement with the fact that ‘there is a dis-
continuity of curvature there. An exceptional case occurs, however, when %2 = 0-3, for which
value the first derivative becomes finite at £ = 0. Itis easﬂy found that the radius of curvature
of any oval profile of our family, at & = 0, is expressed by the simple formula:

oeo = 2L — %K), .. .. ... ...avy

so that it becomes oo for 2 = 0-5. ‘When % increases beyond 0-35, the ovals acqmre a waist in the
middle, and the problem is of no practical significance. : ‘
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F1c. 6. Supervelocity distribution on biconvex parabolic aerofoil, closed and semi-infinite.

Linear approximation.
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F1c. 7. Supervelocity distribution on thin-nosed oval aerofoil, closed and semi-infinite.

Profile formula (6-1). %= — 0-4. Linear approximation.
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F16. 8. Supervelocity distribution on elliptic aerofoil, closed and semi-infinite.
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Linear approximation.

Profile formula (6-1).

(4626) Wt,20/9036 K.7 8/57 Hw.

k=404
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