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Summary.--An attempt is made to clarify the position as to the comparative two-dimensional velocity distributions 
on a thin doubly symmetrical aerofoil and on the corresponding senli-infmite body, the front part being the same ill 
the two cases. It is shown that the approximate linear method may be used with advantage to investigate the problem. 
The method provides a simple general proof that the supervelocity at the mid-chord station of a closed doubly 
symmetrical profile of any shape is approximately halved when the rear half is replaced by a semi-infinite parallel body. 
No such simple relationship applies to the entire chordwise distribution on the front part. All exact solution of the 
velocity distribution has been obtained for one particular semi-infinite profile and several alternative examples have 
been studied by the linear method. It is found that the ratio of maximum supervelocities may often considerably 
exceed 0-5 and sometimes rise to nearly 1.0. 

1. Introduction.--In a recent  discussion the  quest ion was raised as to the compara t ive  
two-dimensional  veloci ty  dis tr ibut ions on a th in  doubly  symmet r i ca l  aerofoil and  the  corre- 
sponding semi-infinite body.  The purpose of this report  is to invest igate  the  mat te r .  I t  has been  
found, using the  wel l -known l inear  pe r tu rba t ion  theory  of th in  symmet r i c  aerofoils, t ha t  t h e  
value  of the  superveloci ty  at  mid-chord  s ta t ion on any  th in  doubly  symmet r i ca l  aerofoil gets 
ve ry  near ly  ha lved  when  the  rear  half  is replaced by  a semi-infinite parallel  body.  No such s imple  
rule, however,  applies t o  the  entire  chord-wise superveloci ty  dis tr ibut ions in the  two cases. 
At  more  forward stations, the  ratio of corresponding supervelocit ies m a y  assume values con- 
s iderably  in excess of 0 .5 ,  often not  much  lower than  1. This is shown below not  on ly  by  general  
reasoning bu t  also by  working out  complete  veloci ty  dis tr ibut ions b y  the  l inear m e t h o d  in several  
examples,  including the  biconvex parabolic profile, the  ellipse, one ve ry  b lun t  oval, and  one oval  
wi th  par t icu la r ly  th in  rounded  nose. An exact  solution has been found for one semi-infinite 
profile which  is found to have  ra ther  except ional  propert ies  in t ha t  the  m a x i m u m  superve loc i ty  
occurs at  mid-chord  for bo th  the  closed and  semi-infinite aerofoil. In  m a n y  other  cases of doub ly  
symmet r i ca l  profiles, the m a x i m u m  m a y  occur not  at  mid-chord  bu t  fur ther  ups t ream,  e i ther  
for the  semi-infinite profile, or for bo th  closed and  semi-infinite ones. 

I t  is expected t ha t  the  present  note  will fur ther  emphasize  the  usefulness of the  l inear method .  
• I t  is t rue  t ha t  the  m e t h o d  is only a p p r o x i m a t e  and  tha t  i t  Usually fails in small  regions near  to  

s tagna t ion  points  at  leading and  t rai l ing edges ; it m a y  therefore  not  appeal  to pure  m a t h e m a t i -  
cians. I t  is ve ry  usefffl, however,  in m a n y  pract ica l  applications,  and  often provides rapid and  
simple solutions where  more  r igerous methods  would  lead to m u c h  longer and  more  e labora te  
calculations.  

An acknowledgement  is due to Miss F. M. W a r d  who has p repared  the  i l lustrations.  

* R.A.E. Tech. Note Aero. 2362, received 29th April, 1955. 
given by Thwaites in A.R.C. 17,158. 

(4626) 

This report has been modified to include the results 

A ' 



2. General Considerations.--The linear per turbat ion method for determining velocity distribu- 
tion on thin two-dimensional symmetrical aerofoils at zero incidence is well known. I t  has been 
discussed in some detail in Ref. 2. I t  consists in introducing an approximate continuous system 
of sources and sinks along the chord (Fig. la), the local source intensity being proportional to the 
slope of the profile at the relevant chordwise station. The incremental velocity (supervelocity) at 
any point P of the profile is calculated approximately as the velocity induced by the source 
system at the corresponding point A of the chord. If V~ denotes the free-stream velocity and 
V the velocity at P, then the supervelocity is ( V -  V,), and it  is shown in Ref. 2 that  this 
supervelocity can be calculated by the simple formula* : 

where the integration must be performed along the entire source-and-sink line LT. The integral 
is improper, and the principal value must be taken in the usual way. The same formula may be 
applied to calculate the supervelocity along the x-axis outside the Profile, in which case the 
integral is not improper. 

Let us suppose now that  the profile is doubly symmetrical, i.e., that,  in addition to the symmetry 
about its chord, it has also fore-and-aft symmetry, as in Fig. la. The source-and-sink system is 
then anti-symmetrical, fore-and-aft, so that  every source element S in the front half corresponds 
to a sink element of the same intensity in the rear half. I t  is obvious that ,  at the mid-chord 
point Pc (or At) the velocities induced by the front and rear halves of the source-and-sink system 
are exactly equal (and of the same sign). 

If we now replace the rear half of the aerofoil by a semi-infinite parallel body (Fig. lb), the 
linear theory can still be applied to the resulting semi-infinite aerofoil but, as the profile slope in 
the rear part  has become zero, the rear sink system must be simply removed, while the front 
source system remains as it was in Fig. la. The formula (2.1) will still apply, but  the integration 
is to be performed along LAc only. I t  is at once obvious that  the supervelocity at Pc will be half 
tha t  in the previous case, and this result is quite general, irrespective of the particular shape of 
the profile. The result is only approximate, of course, but  the accuracy should be good for 
small values of the thickness ratio t/c. 

I t  must be stressed that  this simple ratio 0.5 applies only to the mid-chord (maximum 
thickness) station of doubly-symmetrical profiles. If we consider points on such profiles further 
upstream, the ratio will normally be greater than 0-5, as may be seen again by a simple general 
reasoning. The supervelocity at any such point (R in Fig. la) on the closed profile may again be 
considered as consisting of two parts, one contributed by the sources, the other one by the sinks. 
The latter contribution will be generally smaller, however, because the sink elements are at a 
greater average distance from R than the source elements. In the case of the semi-infinite 
aerofoil the smaller contribution disappears, and the larger one remains, and hence we may expect 
the relevant ratio to be anything between 0.5 and 1. This reasoning is perhaps not quite 
convincing, expecially if we consider points quite near to the leading edge. A considerable part  
of the source system then induces negative contributions to the supervelocity so that,  in most 
cases, the total  supervelocity eventually becomes negative, for both closed and semi-infinite 
aerofoils (not simultaneously for both). The ratio of supervelocities in the two cases may then 
assume any positive or negative values, between zero and infinity, but  the ratio itself becomes 
meaningless. In addition, the linear theory generally gives unreliable (sometimes absurd) values 
very near to the stagnation point at the leading edge. To get a clearer picture of comparative 
velocity distributions in the two cases, some numerical examples are obviously needed, and these 
are given in subsequent sections. 

* There is a slight change in notation from that  of Ref. 2, and the positive direction of x-axis has been taken 
downstream. 
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The problem may be generalised foYprofiles with no fore-and-aft symmetry. The semi-infinite 
aerofoil will then be obtained by replacing the rear part  of the closed p rone  behind the maximum 
thickness station by  two parallel tangents at that  station. The linear theory will provide velocity 
distributions in such cases as well (with somewhat more complicated calculations). I t  is not 
intended to pursue the mat ter  here, but one remark may be interesting. Suppose that  the 
maximum thickness station of the closed aerofoil is located well forward (e.g., at 20 per cent 
chord), and the rear par t  has a very mild slope through most of the remaining chord. The 
contribution of the sink sys tem to supervelocities on the nose will be very small, and cutting 
this system off will produce almost no effect. 

3. Exact Solution for a Particular Case (Cycloidal Profile) . - -We consider the flow past a particular 
symmetrical body having a rounded front part faired into two infinite boundaries parallel to the 
stream, which has a simple hodograph representation (see Fig. 2). The maximum supervelocity 
occurs at the ends of the rounded front part (at Po and Pc'). I t  is shown in Appendix I that  the 
parametric equations for the rounded part  of the profile are: 

X 
_ _  1 s i n  ~ 4 2 

c 

Y - ½-(r - 1) (4  + s i n  4 c o s  4) 
C 

(3 .1 )  . . . . . . . .  

The maximum velocity is rV,o, and the thickness ratio is given by" 

t 
- -  { - ~ ( r -  1) . . . . . . . . . . . . . . . . . .  (3 .2 )  

C 

where c is the chord of the equivalent closed aerofoil ; thus the maximum snpervelocity is" 

.... = ( r -  1)V  -2tV . . . . . . . . . . . . . . . .  
~ C  

(3.3) 

so that ,  e.g., for t/c = 0.1, it is 0.0637V~. The maximum supervelocity for the corresponding 
closed aerofoil has been evaluated by Goldstein s third approximation 1 and found to be 0. 122V~. 
We have therefore, in this particular case : 

Maximum supervelocity for the semi-infinite body 0"0637Vo~ 
Maximum supervelocity for the closed aerofoil -- 0- 122V. 

-- 0.522 

and this differs very little from the simple approximate value 0.5. The exact formulae, in terms 
of x, for the velocity distribution along the curved front part  and also along the straight rear 
boundary, where ( V - -  V,) is positive but  tends to zero when x--+oo, have been found (see 
Appendix I) and are respectively" 

-V r 
. .  (3.4) 

x r 11  2 ( r - -  1)V~V rV~- -  ( 2 - - r ) V ]  .. (3.5) 
c--  4 (V--Voo){rVo~--(2: r ) v } - - l n  r l V _  Vool -]" 

This latter formula also applies to the velocity distribution along the x-axis in front of the aerofoil. 
In the latter case V < V~, and tha t  is why the absolute value of (V -- V~) is indicated in the 
second term. The formula cannot be solved explicitly for V, but  this does not cause any serious 
difficulty for computation. 

3 
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The formulae (3.4) and (3.5) have been used to produce exact  curves of veloci ty  dis t r ibut ion for 
the  semi-infinite aerofoil derived f r o m  a closed one of thickness rat io 0.1 (see Fig. 5). For  
convenience, the  superveloci ty rat io (V -- V~)/V~o has been plotted,  as in all subsequent  figures. 

A str iking feature of the  graph is the  abrup t  k ink of the  curve at Pc, wi th  the  vert ical  t angen t  
to the r igh t -hand par t  of the  curve. This feature suggests a violent  d iscont inui ty  of curvature  
at  Po which seems puzzling:  the  thickness ratio being small, one would expect  a very  small  
curvature  of the profile at  Pc. The curvature  is 0, of course, on the  s t raigh t bounda ry  downstream, 
so the d iscont inui ty  is there wi thout  doubt,  bu t  the  shape of the  curve still seems surprising. 
The ma t t e r  is easily explained, however; if we calculate the  radius of curvature  of the  profile 
exactly.  The formula is:  

_ ~ c  ~ ( 4 P  )i/2 O - - ~ 7 - s i n a  ~ c ° s ~  1 + ~ c o t  21  , . . . . . . . .  (3.6) 

and hence at Pc (where x = 0.5c ; ~ = ~/2) the radius of curvature is zero, and the curvature infinite ! 
This seems preposterous bu t  is perfect ly correct. The fact t ha t  the  profile seems to have  a very  
feeble curvature  at  Po m a y  be explained b y  calculat ing e very  near  to Pc. I t  is easily found tha t ,  
if t/c is small, t hen :  

for x = 0. 495c, we have cos ~ = 0 . 1 ,  ~ ~ 0. 155#/t, 

for x = 0.48c, we have  cos t = 0 . 2 ,  e ~ 0.293c~/t,  etc., 

so t h a t  the  radius of curvature  becomes quite  large at very  small distances from Pc. 

This geometrical  s ingular i ty  of our curve is a ve ry  unusual  th ing  for a wing profile, bu t  is 
no th ing  new in mathemat ics .  The same sort of s ingular i ty  occurs at  cusps of m a n y  e lementary  
curves, e.g., of a semi-cubic parabola,  or of an ord inary  cycloid. Now, i t  is easily found tha t ,  if 
Z is varied from (-- m) to ( +  oo) in equations (3.1), we obta in  a curve (Fig. 3) consisting of all 
infinite number  of identical  branches,  wi th  an infinite number  of cusps, very  similar to a cycloid. 
And, in the special-case r = 2, our curve actual ly  becomes a cycloid, the  equat ions becoming 
then  : 

x = }c(1 - cos 24) , y = lc(21 + sin 2t) . . . . . . . . .  (3.7) 

If r is given any  a l ternat ive  value (which will be only li t t le in excess of 1 if the  thickness rat io 
'is to be small), the  ordinates y are s imply scaled down, and we obtain curves ' a f f ine '  to the  
cycloid. 

4. Cycloidal Profile Treated by Linear Method.--It  is in teres t ing to find the superveloci ty on the  
cycloidal semi-infinite aerofoil by  applying the linear approximat ion,  i.e., the  formula (2.1). As 
shown in Appendix  I I ,  the  result  is :  

and 

V - - V ~  2 t  
- r 1 - (0  < x < ½c) . . . . . . . . . .  ( 4 . 1 )  

Vm ~C' 

. . . . . . .  c ) , (x  > o r  x < 0)  ' ( 4 . 2 )  
Vo~ 

The formula (4.1) gives, somewhat  surprisingly,  a cons tant  superveloci ty along the entire curved 
front  par t  of the  aerofoil, the  value being, however, the  same asl t h e  exact  m a x i m u m  obtained 
by  the rigorous method  (see 3.3). This result  becomes unders tandable  when we examine the 
exact  formula (3.4). The factor (r --  1) 2 being small of the  second order in terms of thickness 
ra t io ,  the  expression (3.4) differs from r only by  a small  t e rm of the  second order, except near  
the  leading edge where the difference assumes increasingly large values. Our result is therefore 
consistent wi th  the  assumptions of the l inear theory.  



The formula (4.2) applies for both x > ½c and x < 0, and gives the supervelocity on the s t raight  
boundary of the semi-infinite aerofoil, and on the x-axis in front of it, respectively. The results 
are plotted again in Fig. 5 for the case t/c = 0.1, and marked ' 1in. approx.'. I t  will be noted 
that ,  for x > ½c, the approximate curve lies so close to the exact one that  the differences cannot 
be seen on the scale adopted. For x < 0; the differences are only just visible. 

The linear method can also be applied to the closed profile and, in view of the fore-and-aft 
symmetry,  the curves can be drawn at once, by  simply adding the ordinates of the previous 
curves corresponding to x and (c -- x), respectively. The formulae in this case are" 

V - -  V ~  _ (r  - -  1 ) [ 2  - -  % / { 1  - -  c / ( 2 c  - -  2 x ) } ]  
W¢o 

= ( r - -  1)[2 -- V(1 -- c/2x}~ 

= (r -- 1)[2 -- ~/{1 -- c/2x} - -  %/{1 -- c/(2c - -  2x)}] 

0 < x < ~  

( ~ < x < c )  

(x > c, or x < 0) 

(4.3) 

• The curves have also been traced in Fig. 5, and it is seen tha t  there is a true cusp at the mid-chord 
station. An alternative curve for the closed aerofoil, marked ' almost exact ', is also shown, as 
obtained by adding the ordinates of the exact curve referring to the semi-infinite body, which 
correspond to x and (c -- x), respectively. This procedure is still not perfectly exact, but  errors 
should be very small, in particular in the region near the stagnation points. 

The cusp at mid-chord station is a very unusual feature in a velocity graph. I t  is obviously 
due to the geometrical singularity of the profile described in the previous section. From this 
point of view, our example would not perhaps be very fortunate if a comparison with experiment 
were required. The point is that  it would be extremely difficult to manufacture a thin model 
with such an accuracy as to have really zero radius of curvature at maximum thickness, and 
experimental pressure plotting would probably never reveal a true cusp. Irrespective of this 
difficulty, Fig. 5 shows dear ly  tha t  the ratio of supervelocities on the semi-infinite and dosed 
aerofoil equals 0.5 only at mid-chord station, while it assumes considerably higher values further 
upstream (e.g., about 0.75 at x = 0. lc). The ratio 0.5 applies, however, to maximum super- 
velocities, as these happen to occur at mid-chord station for both aerofoils. This feature is rather 
unusual, as will be shown by  alternative examples. 

5. Alternative E x a m p l e "  Biconvex Parabolic Prof i le . - -For  the biconvex parabolic profile 
(Fig. 6) the linear method gives particularly simple solutions. I t  is more convenient in this case 
to place the origin of co-ordinates at mid-chord. The equation of the profile is t h e n "  

y = ½t(1 -- ~2), where ~ = 2x/c . . . . . . . . . . . . . .  (5.!) 

and, as shown in Appendix III ,  the supervelocities on the semi-infinite and dosed aerofoil are 
given, respectively, by  the following formulae" 

v - v ~  2 t  ]1~-~ V~ =-~c{1 -- ~ln - - [ }  (semi-infinite) . . . . . . . . . . . .  (5.2) 

V - -  V ,  4 ~ - -½21n 1 q-~ (closed) - - 5  • 
. .  . . . .  

Both formulae apply throughout the entire range of ~ from (-- oo) to ( +  oo), the straight brackets 
being used to denote the absolute value. A graphical illustration is given in Fig. 6, for thickness 
ratio 0.1. 
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The ratio of supervelocities in the two cases is, of course, 0 .5 at ~ = 0, and the. respective 
values are, curiously enough, exactly equal to those found previously for the cycloidal profile. 
However, only for  the closed profile does the maximum occur at mid-chord station. For the 
semi-infinite aerofoil, the curve presents a vertical inflexion tangent at ~ = 0 (effect of discontinuity 
of curvature), and the maximum value, at about ~ = - -  0. 218, amounts to about 0-64 of that  
for the closed profile. The ratio of corresponding supervelocities further upstream from mid- 
chord station increases from 0.5 to about 0.7 (at ~ ~ --  0-4). All these numerical results are 
only approximate but the accuracy is certainly good enough. 

6. Further Examples : Oval Profiles, imludir~g Ellipse.--A family of oval profiles was considered 
in Ref. 2 (Appendix I, example VI, Fig. 19), the equation being: 

y ½t(1 --  ~)1/= (1 4-k*2),  with ~ = 2x/c . . . . . . . . . . . .  (6.1) 

where k is a variable parameter. If k = 0, this represents an ellipse; for k increasingly positive, 
the profile:becomes fuller (Fig. 9), and for k increasingly negative we obtain profiles with gradually 
thinner noses (Fig. 7). The supervelocities on both semi-infinite and closed aerofi~ils are derived 
by linear method in Appendix IV. The formulae are somewhat complicated but simplify 
considerably for the elliptic profile, for which we obtain: 

(a) Semi-i~cfi~ite aerofoil with elliptic fror# part : 

V - - V .  t { ~ In 1 + v ' (1  - e )l 1) 
1 - -  ~ / ( 1 - -  ~ ) 1 '  

~ - - 1  t a n - * % / ( ~ ) }  ;.  ( ~ ' >  I) 

(6.2a) 

= ~  1 - - -  
a ~=-- 11 

(b) Closed elliptic aerofoil." 

V - - V .  t 
, (~ < I) . . . .  (6.aa) V~o c 

(6.2b) 

Illustrative graphs, for thickness ratio 0.1, are given in Fig. 8. At ~ --  0, there is again a vertical 
inflexion tangent for the semi-infinite aerofoil. The drop in supervelocity is, however, less abrupt 
than in the previous cases, and this is understandable as the radius of curvature of the ellipse, 
at ~ = 0, is comparatively large (0.5c~/t, as against 0.25c~/t for the parabolic profile, and 0 for 
the cycloidal profile). ~ 

The constant value obtained by the linear method for the closed ellipse is a well known resulP. 
The exact velocity distribution on an elliptic profile (and along the x-axis in front and behind the 
profile) is easily obtained by conformal transformation: 

- -  1 - -  ~2 
V V,o ( I  q - ~ ) % / ( i  (I t2/c')~ ')  - - 1  ( ~ ' <  1) (6.4a) 

V c o  - - '  - -  - -  ) ) " " " 

-- I -- t/c I -- ~2_ 1 q- t2/c ~ ' (~  > 1) . . . .  (6.4b) 

and theil lustrat ive curves are also given in Fig. 8. The differences between (6.3a) and (6.4a) are 
small of second order in t/c, except near the stagnation points. An ' almost exact ' curve for the 
semi-infinite aerofoil has been obtained from the approximate one, by decreasing its ordinates 
by the corresponding differences between those of the exact and approximate curves referring 
to the closed ellipse. 
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I t  iS seen again that  the ratio of supervelocities in the two cases becomes considerably larger 
than 0.5 on the front half of the profile, reaching the value about 0.78 at ~ = -- 0.7. The ratio 
of maxima is nearly 0.75. 

It  is interesting to compare Figs. 5 and 8 (cycloidal and elliptic profile). There are considerable 
differences in supervelocity curves, although the two profiles seem so similar. The true difference 
between the profiles can be better appreciated in Fig. 4, where the ordinates are scaled up to 
thickness ratio 1. 

Further illustrative graphs are presented in Figs. 7 and 9 for two oval profiles of the type (6.1). 
They have been calculated from the formulae given in Appendix IV (linear method only). In 
Fig. 7, k = -- 0.4, and we have a thin-nosed profile (still with a rounded edge). The supervelocity 
curves are rather similar to those of Fig. 6 along major parts of the chords, but differences are 
considerable near stagnation points where the accuracy is poor anyhow. It  may be noted that  
the radii of curvature of the two profiles at ~ = 0 are nearly equal (0.25c~/t in Fig. 6, 0.278c~/t  
in Fig. 7). Fig. 9 refers to a rather extreme case of a very full blunt profile (k = + 0.4). The 
radius of curvature at ~ ----- 0 amounts to as high a value as 2.5c~/t, and this accounts for the fact 
that  the singularity of the velocity curve for the semi-infinite aerofoil is almost invisible--a 
vertical inflection tangent is, however, still there. The supervelocities in the front part of the 
profile rise to very high values for both semi-infinite and dosed aerofoils, and the true maxima 
must occur not far from the leading edge. The errors must be large in this region. There is no 
doubt, however, that  the ratio of supervelocities in the two cases must rise to remarkably high 
values--about  0.85 or 0.9 for the maxima. 

No. Author 

1 S. Goldstein . . . .  

2 S. Neumark . . . .  
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A P P E N D I X  I 

Derivat ion  o f  some Exac t  F o r m u l a e  P e r t a i n i n g  to the Cycloidal Profi le (Section 3) 

To derive the exact solution for a semi-infinite aerofoil, let us consider the hodograph plane 
(Fig. 2), where the interior of the circ!e 

, - xrv l= ½rV= 

corresp0nds to the exter ior  of the aerofoil in the physical plane. The complex potential 
w = ~ + i ~  has been expressed in terms of ~ = V~ - i v y  by the relationship- 

[ 1 r ~ 1 ] . . . .  (I.1) 
w = ¢ : + i v : M  ¢ - -  V~ 2 -- r (2 -- r) ~ -- rV~ ' 

which represents a doublet Of strength M at $ ---- V~ together with its image at $ ---- r V ~ / ( 2  - - r  ). 
Values on OPo are" 

w 0 ,  w = ¢  

= rVo: cos 0 e_~0 _ dw _ e_~O d¢ . . . . . . . .  (1.2) • ~ -  
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and  so 

whence 

ds-- 1 
rV~o 

--  - -  sec 0 d ¢ ,  

d x -  de 
rV~ 

dy --  t an  0 de 
rV~ 

. .  (I.3) 

. .  ( I . 4 )  

Subst i tu t ing  the  value for ~ f rom (1.2) into (I.1), we find 

2 M r - -  1 1 + t a n  ~0 
V~ 2 - - r ( r - -  1) ~ + t a n  ~0 

and, if 

this becomes : 

. . . . . . . . . .  (i.s) 

t an  0 = (r --  1) cot 4 . . . . . . . . . . . . . .  (I.6) 

¢ --  2M sin 2 X q- (r --  1) ~ cos ~ 2 . . . . . .  (I.7) 
V~ ( r - -  1 ) ( 2 - - r )  . . . .  

The geometr ic  scale m a y  now be fixed by  pu t t ing  4M = c(r : -  1)Voo ~, c being the  chord of the 
corresponding doubly  symmet r i ca l  aerofoil. Using (I.7) to in tegra te  (I.4) we then obtain the  

p a r a m e t r i c  equat ions  of the  curved  front par t  of the  semi-infinite aerofoil : 

x = ½ s i n  2 4 )} = = . .  ( I . 8 )  

y = ½ ( r -  1) (4 q- ½ sin 24 --  ~ ~< a < ~ . . . . .  

The  formulae for the  veloci ty  V = d ¢ /d s  along OPt is found from (I.3) and  (I.6), and we obta in :  

V 
- -  rE1 -ff (r  - -  1) ~ c o t  ~ X1-1 /2  . . . . . . . . . .  ( I . 9 )  

V .  

or, in terms of x: 

g 1, 
. . . . . . . . . .  ( I . 1 0 )  

6 

A similar m e t h o d  can be applied to de termine  veloci ty  dis t r ibut ion along PcQ or SO. In  bo th  
cases Vy = 0, ~. = V and  ,11; = 0, w = 6, so t h a t :  

[ 1 r ~ 1 1 . . . . .  (I.11) 
¢ = M  V - -  V~ 2 --  r (2 --  r) V --  rV~o " " 

Different iat ing (I.11) wi th  respect  to x and not ing tha t  d ¢ / d x  = V ,  we obtain  the following 
differential equat ion  wi th  separa ted  variables V and  x : 

] dV (1.12) v ( v -  v )2j . . . . . . .  

This equat ion  mus t  be in tegra ted  separa te ly  along P~Q (wlJere Vo~ < V < Voor, and  the  cons tant  
of in tegra t ion  mus t  be de te rmined  so t ha t  V ----- V j  for x = ½c) and  along SO (where 0 < V < V~, 
and  V = 0 for x = 0). I t  is easily found t ha t  the  formula  (3.5) applies on bo th  P~Q and  SO, 
p rov ided  the  absolute value  of ( V -  V.)  is always t aken  in the  second term. 
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APPENDIX II 

Derivation of Formulae for Cycloidal Profile by Linear Method (section 4) 

Applying (2.1) and (3.1), we obtain for the semi-infinite aerofoil: 

_,_.,f:o V~ ~ o x --  ~ zc 2(x/c) --  sin ~ i 

r - -  I S (  1 4- 2 =- 4(x/c) ) d(2i) 
o ' 4(x/c) 1 + cos 2i  " 

The integral of the second term is improper and easily found to be equal to 0 
[4(x/c)- 11 < 1; it i s n o t  improper and equal to a ~ / ( 1 -  c/2x) when 14(x/c)- 11> 1. 
leads directly to (4.1) and (4.2). 

(II.1) 

when 
This 

APPENDIX I I I  

Derivation of Formulae for Biconvex Parabolic Profile (Section 5) 

Applying (2.1) and (5.1), we obtain for the semi-infinite aerofoil: 

 ,fo ) 
- - I - d j  . . . .  ( I I I . 1 )  

V~ ~c - 1 ~ - - ~  ~c - ,  ~ - - ~  " "" 

The integral of the second term is improper if -- 1 < ~ < 0, and not improper for ~ > 0 or 
< -- 1. The formula (5.2) is obtained in 111 cases. 

For the closed aeroIoil, the upper limit of integration in (III.1) must be changed to ( +  1), 
and  the integral will be improper when [ ~ [ < 1. In all cases the formula (5.3) will be found to 
apply. 

APPENDIX IV 

Derivation of Formulae .for Oval Profiles, including Ellipse (Section 6) 

Applying (2.1) and (6.1), we obtain for the semi-infinite aerofoil : 

Substituting 

v - v ;  t fo ~(1--2k+3kP)  dg. (IV.I) 

= sin~5 . . . . . . . . . . . . . . . . . .  (IV.2) 

we may write (IV. 1) as follows : 

V - -  V = _  t ~o 3ksin  3 c 5 +  ( 1 - - 2 k )  sin~vd~ 
V~ ~c -~  sin ~5 - -  

= t fo [ 3k  s in  ' ~5 -+- 3k# sin c5 + (1 - -  2k + 3k# 2) + ~(I - -  2k -l-,-3k#-")] d ~  

9 

(IV.3) 



For the  closed aerofoil the  same formula (IV.3) will apply, with the  upper  l imit of integrat ion 
changed to ( +  ½a). 

The first three  terms in (IV.3) are easily integrated.  The fourth integral  will assume three 
di f ferent  forms for various intervals of 8, viz.  : 

= +  

f 
o de5 
->  sin c5 -- 8 

1 l n l + V ' ( 1 - - 8  5 ) (8 = <  1), 
2v/(1 - 8 5) 1 - v~(1 - ~=) 

V'(8 = -  i) t a n - l ~ /  8 +  (8>~ 1), 

2 J (  8 +  1) ( 8 < - - 1 )  ~/(~'~ - -  1) tan-1 --  8 -  1 

and  

~,, sin ~ --  ~ 

. . . .  = (8 > 1) ,  
~ / (8  ~ - - -  l) 

- - - t  = ~/ (8  2 - 1) 

Using (IV.4) and (IV.5), we finally obta in :  

for the '  seni-infinite aerofoil: 

v~o - - c  2, - 7  

3k ~(1 --  2k + 3k82) 
+ ~ - ~ -  2 . V ( 1 - ~ )  ' i n  

- c - t [ ( ½ _ k ) s ,  - 7 3 k ~  

- ( 8 5 ~ , ,  + 3k 85 _ 2(1 2k -P 3k8 ~) \ 8 '  
2-  = - -  12 

and for the  closed one : 

V - - V o o  
V ,  

1 + v/(1 --  8~)] 
1 --  %/(1 -- 82)j 

(~ < -  1). 

t n-'l - 
• 'X/ ' , ~  4 , -  1)  

(8=< 1) 

(IV.4) 

- -  - t (1  - , k  + 3k8"-) 
C 

IV.S) 

(8 ~ > 1) 

(.~ < 1) 

? 
( 8  ~ > 1 ) . . |  

J 

; ( IV .6 )  

(iv.7) 

10 

The formulae (6.2) and  (6.3) are part icular  cases of (IV.6) and (IV.7), for k = 0. 

I t  may  be men t ioned  tha t  the  first der ivat ive of (IV.6) becomes logari thmical ly infinite for 
8 = 0, and hence the  superveloci ty  curves for the  semi-infinite aerofoils i n  Figs. 7, 8 and 9 have  
vert ical  inflexion tangents  at  mid-chord stat ion,  in agreement  wi th  the  fact tha t  there is a dis- 
cont inui ty  of curvature  there. An exceptional  case occurs, however,  when k = 0"S, for which 
value the  first der ivat ive  becomes finite at  ~ = 0. I t  is easily found tha t  the  radius of curvature  
of any  oval profile of our family, at  8 = 0, is expressed by  the  s imple  formula" 

r 
i , 

e~=o = d / 2 t ( 1  - -  2k) ,  . . . . . . . . . .  . . . . . . .  (IV.8) 
. . ( 

so tha t  it becomes oo for k = 0.5. W h e n  k increases beyond  0.5,  the  ovals acqmr e a waist in the  
middle,  and the  problem is of no practical significance. 
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