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Summary.—Introduciory (Purpose of Investigation).—This report is a sequel to previous work by Williams, Starkey
and Taylor (R. & M. 20981} and by Williams and Fine (R. & M. 2099%) and treats the problem of the stress distribution
in a stringer-reinforced cylindrical shell (representing a modern monocoque fuselage) under transverse loads when the
reactions at the supported end are provided by four fixing points. Tt is assumed that these reactions are transmitted
to the shell through four heavylongitudinal members, or longerons,and the purpose of the report is to discuss the manner
in which the load in these members is passed on via the skin to the adjacent stringers.

Range of Investigation—Two cases are considered. In the first the longerons are assumed to be of constant cross-
section and to extend from end at end of the shell. In the second the longerons are tapered from the root outwards
in such a way as to maintain a constant stress. Appendices I and III of the report treat the problems with some rigour
and the solutions obtained are made the bases of quick approximate methods that can be applied with facility to any
practical case.

The results obtained by the approximate methods agree very satisfactorily with those derived by the far longer
basic method.

Conclusions.—From working out typical cases it is inferred that for the end-to-end constant-section longerons the
disturbance due to the four-point fixing does not extend a greater distance from the root fixing than § to $ of the average
root diameter, this distance being greater the greater the value of the ratio of total stringer area to total skin area
in the cross-section. It is found that the constant-stress longeron tapers very quickly and appears to offer a good
practical basis for design. The most important stress concentration in both cases is the shear stress in the skin
immediately adjacent to the longerons at their root ends, and reinforcement of the skin thickness in this region is
probably essential in all practical cases, especially for the constant stress longeron. The extent of this stress concentra-
tion is indicated by certain contour diagrams of stress distribution included in this report.
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1. Introduction.—Williams, Starkey and Taylor (R. & M. 2098!) investigated the stress dis-
tribution in a stringer-reinforced flat sheet representing the stressed-skin cover of a two spar
monoplane wing. Williams and Fine (R. & M. 2099%), which is a sequel to the above, extended
the investigation to the case of a box-beam with a cambered instead of a flat surface. It also

* R.A.E. Report No. A.D. 3144, received 29th April, 1941.
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treated the tubular or shell-beam with circular, oval and trapezoidal cross-sections intended to
represent various shapes of fuselage cross-section. In the first report the effect of connecting
only the spar flanges at the root was found, but in the second report the assumption was made
throughout that the stringers were all securely fastened at the fixed end. The present report
deals with the stress distribution consequent upon fixing the root section at isolated points,
and 1s therefore an extension of the latter investigation. The general scheme of the report
and an account of the ground covered may conveniently be given here.

The first case considered is a cylindrical shell of circular cross-section uniformly reinforced
by stringers and fitted with four longerons of constant cross-section symmetrically arranged.
The method of solution for this case is outlined in the first section of the report and given fully
in Appendix I. The results of two numerical examples worked by this method are next given
and their implications discussed.

In practice it is seldom desirable for the longerons to extend from root to tip and in the case of
fuselages use is often made of stub longerons. It is clear that if these are to be efficient they
should be tapered in some way, preferably so as to ensure constant stress at all sections. A
method of solving this problem of the constant-stress longeron is set out fully in Appendix III,
still using a circular cross-section. The results obtained by applying this method to one of the
numerical examples above mentioned are discussed and it is shown that, apart from a greater
degree of shear stress concentration in the root panels adjoining the longerons than in the case of
the uniform longerons previously considered, this type of design has practical merits.

The drawback to the methods of solution above alluded to is that they are rather lengthy.
Approximate methods have therefore been devised to give much the same results far more
quickly. These approximate methods are designed first to enable an oval section to be adequately
represented by an “ equivalent " circular section and then to provide a quick solution for the
latter. The bases of the approximate methods are described and the formulae to be used are
given. Curves are also shown which indicate how closely the approximate results approach
those obtained by the more rigorous but longer methods.

To justify the method used for converting an oval section into an equivalent circular section
it was necessary to solve the problem of the oval section shell by a suitable adaptation of the
method of Appendix I.  An actual fuselage section was taken and its outline closely represented
by a combination of cycloids. The results of applying the rigorous method to this problem
were then compared with those derived from the equivalent circular section, and, as the curves
show, good agreement was obtained. The effort to represent an actual fuselage was made
because a few results of tests on it were available and it was desired to compare these with the
theoretical curves. Good agreement was not expected because the stub longerons used on this
fuselage were short and of uniform section and therefore offer a problem not readily amenable
to the present methods. There was however agreement on the order of the magnitude and
distribution of the stresses. Some of the more important conclusions are set out in § 8.

2. The Circular Cylindrical Shell, Stringer Reinforced and Held at the Root at Four Points ;
Longeron Section Constant from Root to Tip.—

Upper longe~oms )(\ «
v

(Fixed)

Lower longerons (Fixed)
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The general scheme of the analysis will be given first. We consider a circular cylindrical shell
attached by four longerons to fixed points. The longerons are symmetrically placed about
vertical and horizontal planes through the axis of the cylinder. The shell is uniformly reinforced
by stringers which, for convenience, we replace by an equivalent sheet of thickness ¢, capable of
withstanding direct stress only. It is reinforced by transverse circular rings also. We assume
the rings to be infinitely stiff in their own plane, so that all points on a ring move through the
same vertical distance » under load, and perfectly flexible normal to their plane. We assume
the rings are so close together that this is true for all sections.

The longitudinal displacement # in the representative quadrant shown above is considered
separately for (a) surface 1, () surface 2 and (c) longeron. The vertical displacement v, normal
to the axis of the tube, however, is assumed to be the same at all points of the periphery at any
given section, 7.¢. it varies only with distance along the axis.

The longitudinal displacements in (), (8) and (c) are written down in the form of three separate
trigonometrical series with coefficients P, , P,, (both of which are functions of ) and P, (constant
coefficient) respectively that are later evaluated by applying those boundary conditions that are
not inherently satisfied by the form of the series. A somewhat similar series with undetermined
constant coefficients V, is assumed for the vertical displacement v,

The condition of equilibrium in sheets 1 and 2, together with the condition of equality of
displacement of these two sheets where they meet at the longeron, enable each of the coefficients
P, P, and P, to be expressed in terms of new constant coefficients 4,, ¥V, and V|,

Finally the latter are evaluated by using the condition of equilibrium between sheets and
longeron and the condition that at each section there must be equilibrium between the internal
shear and the applied external load.

The method of solution is given in detail in Appendix I.

3. Discussion of Results.— e e T

3.1. Dimensions for Numerical Examples.—The
following dimensions were chosen for the two
numerical examples that were worked : —

Thickness ¢ of shear skin = 0-025in.

F &0 Inches
Thickness #, of stringer = 0-0144 in. (1st example)
sheet (¢.e. total stringer
area divided by periphery) 0-0072 in. (2nd example)
Cross-sectional area of each
longeron =0-8sq.in. /T~ N .

Length of shell = 240 in. Fic. 2.

Ratio of Gt/Et, (G and E being the elastic moduli) = 0-7 (Ist example)
1-4 (2nd example).
Vertical load applied at free end and root fixed only at the four longerons.

3.2. Direct Stress Distribution.—We need only consider the quadrant AF (Fig. 2) in view of
the symmetry of the structure. Fig. 3 shows the distribution of stress along the longeron C and
along various stringers, two of them located in the arc AC and two in CF as shown in the inset
diagram of Fig. 3. In each case the comparable stress distribution given by the simple engineering
theory of beams is also plotted.

It will be noted that engineering theory is adequate except over a region extending from the
root outwards to a distance equal to £ of the diameter. As the root is approached from the
section defined by that distance, the stringer stresses maintain a constant value for another

(77130) A2
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1 diameter and only dip down to zero over the final } diameter. Correspondingly the longeron
stresses sweep up to their root value in the same distance. As the root value for the longeron
stress is known, the curve of stress for the root region can almost be drawn in by eye since it
has to be tangential to the engineering stress curve at $ diameter from the root. Especially is
this possible after inspection of a typical curve such as that of Fig. 3.

3.3. Effect of Altering the Ratio Gt/ Et.—The effect of changing the ration of shear to longitudinal
stiffness G#/Et, is shown in Fig. 4, where ¢, has been halved and the value of the ratio therefore
doubled. No appreciable departure from engineering theory now takes place until a point is
reached % diameter from the root. Moreover, the downward dip of the stringer stress to zero
and the corresponding up sweep of the longeron stress to its root value begins in earnest only
1 diameter from the Toot as compared with } diameter for the smaller stiffness ratio. A still
thicker skin or smaller stringers would of course result in a further localisation of the region of
serious departure from engineering theory.

3.4. Shear Stress Distribution.—Fig. 5 shows the distribution of shear stress for the lower
value of the stiffness ratio just discussed. The region of serious departure from engineering
theory is seen to be much the same as the corresponding region for the direct stresses. The
amount of the departure from the simple theory is, however, of much greater importance, the
maximum stress being many times greater than that given by that theory.

Considering the root section (Fig. 5) it is noted that over the arc AC, as was to be expected,
the shear stress is of opposite sign to that given by engineering theory but that from C to F it
has the same sign. We note also that, although the arc AC subtends only half the angle of the
arc CF, the higher stringer stresses in AC make the maximum shear stress greater than the
maximum in arc CF. These maxima are located immediately to the left and right of the longeron
for infinitely close pitched stringers, but for a 6-in. pitch the stress at 3 in. from the longeron
represents well ecnough the average stress in the panel. At the root this average has values
above and below the longeron of about 5 and 4 times respectively that of the maximum shear
stress given by engineering theory. The analysis of §9 neglects the effects of finite frame
flexibility lengthwise, of peripheral movements due to finite stiffness of the frames in their plane,
and of relative movements at riveted joints. These effects will tend to reduce the shear stress
and so this estimate is conservative. Fig. 6 shows the shear stress distribution in a different
way and includes a contour diagram of stress that clearly indicates the regions of high stress.
The very local character of these high stresses suggests that they can be reduced to predetermined
limits by a correspondingly local reinforcement of the skin thickness. Such a thickening of the
skin, increasing as it does the value of the ratio G¢/E#,, will have the effect of reducing the stress
rather more than inversely proportional to the skin thickness.

Figs. 7 and 8 show the corresponding stress diagrams when ¢, is halved (ratio G¢/Ef, doubled).
The effect of this change, as in the case of the direct stresses, is to localise the region of departure
from engineering theory still further as well as to reduce the absolute value of the maximum
shear stresses.

4. Stub Longerons.—In practical fuselage design it is seldom desirable to extend the longerons
from end to end and, as their main function is to concentrate at four points at the root the loads
that would otherwise be distributed among the stringers, the tendency is to cut them short at a
point where their function has been largely carried out. It is obvious that if these stub longerons
are constant in section they cannot be very efficient, for the stress at their outer end must be very
small compared with that at the fixed end. Constant-section stub longerons have also the
disadvantage that they induce a considerable degree of shear stress concentration at their outer
as well as at their root ends. Tt is also clear that the root shear stresses must be greater for the
stub longeron than for the continuous longeron of equal section, because the root longeron load,
which is constant, must be got rid of in a shorter distance. It would therefore seem desirable
to give the longerons some sort of taper.
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5. Constant-stress Longeron.—The longeron will itself be most efficient when its stress is
constant and equal to the maximum permissible stress. As the cross-sectional area of the
stringers is usually constant from end to end, it is impossible to ensure constant stress in the
longeron by giving it a longitudinal variation of sectional area, without stipulating negative
values near the free end. In practice, however, we are concerned in ensuring a constant stress only
in the root portion of the longeron and the variation of section thus obtained is little affected by
an incorrect variation at points further away. The actual taper would not be carried further
than a point somewhat short of the section where the area is reduced to that of a stringer:

Fortunately the problem of the constant-stress longeron does not offer much mathematical
difficulty (R. & M. 17809%) and the analysis is given in Appendix III. The first numerical example
of § 3.1 was worked out with the uniform longerons replaced by constant-stress longerons. The
results are shown in Figs. 10 and 11. Fig. 10 gives the rate of taper and Fig. 11 shows the shear
stress distribution at the longeron near the root. On comparing these with those for the uniform
longeron shown in Fig. 5, it is seen that the shear stresses associated with the constant-stress
longerons are, as expected, somewhat greater. It would be more useful, however, to compare
the constant-stress tapered longeron with the uniform stub longeron which it is designed to
replace. Not knowing the values of the stresses for the latter, one can only say that the tapered
longeron scores distinctly in the matter of weight and that there is no reason to suppose that it
compares unfavourably in the matter of the shear stresses induced.

A longeron that is properly tapered to give constant stress under a vertical transverse end load
will in general not have a constant stress under a side transverse load. The root stress under the
side load can of course be immediately found and a convenient way of determining whether the
stress at any other point rises above the constant stress o, for the vertical load is as follows.
It is clear that if the longeron root stress under side load is, say, # times o, (where » must be less
than unity unless ¢, is below the allowable stress) the root sectional area could be reduced in the
ratio . Assuming this to be the new root section for the side load case, the proper taper for a
constant stress can be found. If the curve of sectional area so found never rises above that of the
actual taper, it may reasonably be assumed that the allowable longeron stress is never exceeded
and that the shear stresses in the adjacent panels are not greater than those produced by the
vertical load. :

6. Approximate Methods.—1It is rather a lengthy task to apply the above methods to numerical
examples and it is therefore highly desirable from a design point of view to develop some
approximate procedure which, while giving substantially the same results, can be applied far
more quickly. Such an approximate procedure has been devised which can be applied with
slight differences to both the constant-section and the constant-stress longeron. The required
formulae are set out in the following sections, and curves are also given which show how nearly
the results obtained approach those obtained by the longer method. These formulae apply to a
shell of circular cross-section but it has been found that an oval section can be simply dealt with
by converting it into an ‘“ equivalent ”’ circular section before applying the formulae. Curves

are given to show that the conversion method is accurate enough for practical purposes (see
Fig. 12).

As the taper given to fuselages is usually small, and as also the effect considered here is a local
one, the cross-section at the root may be justifiably assumed to apply at all points along the
length. It is safe to do this because Reissner* has recently shown that the effect of taper is
generally to reduce stress concentrations due to shear lag.

6.1. Formulae for Circular Cross-sections with Constant-section Continuous Longerons.—The
formulae in §§6.1-6.3 are obtained by methods explained in § 6.4.

6.11. Longeron stresses—The difference between longeron stress according to engineering
theory (with longeron and stringers all fixed at the root) and the approximate longeron stress
is 4 times the former stress, where d is given by the formula

d = (1/R) (1 — R) e~# , . . . . .. .. (1Y

!
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where R = ratio of the second moment of the longerons about the neutral plane, to the second
moment of the longerons and stringers combined,

i.e. 1/R =1 + =at [4S cos® « , .. .. . .. . .. .- (2)

B = 2)IK* S

1 8 1 4

where K =1—-p > Y B R e L ms“_")’ @
"\ - n2A? 4 cos? « cosh nin/2 48 cos?u

where » takes odd positive values. (4 is defined in eqn. (7) of § 9 : other symbols are defined at
the beginning of §9.)

This series is rapidly convergent and the curves of Fig. 12 are based on three terms of the
series. The curves of Fig. 13 are drawn up, from eqns. (3) and (4), to obviate calculating series
(4) and to give & rapidly.

6.12. Shear stresses adjacent to longeron.—The excess of the shear stress as calculated by the
approximate method over that given by engineering theory gives, when divided by the latter
stress,

7, = — lke~* on the crown side of the longeron .. .. .. (5)
R %
ik (1 —R— s tan @) on the neutral axis side of the

and Ty = ek

R at

1+ SS tan o) longeron. . .. (6)

6.2. Formulae for Circular Section with Constant-stress Longevons.—8.21. Taper of longeron
cross-sectional avea.—The approximate longeron area S is given by the equation

ZS(1 =% T pvntor 0 < x <L . ..
S S“( l) 4C0920c( e for 0 Ysgo @)
(foré < x < I we must replace ¥ by (! — x) in the exponent),
where kR = 2/IK, . . .. . . ce .. .. (8)
8 1

d K o=1—= , 9

an 1 a? 2 %2{ 1 +%7z/'l sinh #4 (z/2 — a) cosh nda\ )
1 4 »* A% 4 cos® « cosh nin/2 J

n taking odd positive values. Fig. 13 again obviates the use of a long calculation in finding %’

In practice of course the taper will not be carried beyond a point where the cross-section
approaches that of a single stringer.

This series is similar to that for K given by eqn. (4) and is rapidly convergent. Five terms of
the series give a longeron area which differs by a negligible amount from that of Fig. 10.

6.22. Shear stresses adjacent to longeron.—,’, v, are the approximate shear stresses on the

crown and neutral axis sides of the longeron respectively due to unit transverse load at the free
end.

* Tt can be shown by St. Venant’s principle, that the product IK approaches asymptotically a constant value aslis

progressively increased, and that once ! exceeds about twice the diameter, the root stress distribution changes little
with further increase of /.
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Then T, = Wae PR . . - \ )
;o 1 (m? — 16L cos &) Rl .., _ 11

" T Imcose T 16515, cos® « o o o ()

n—!

) sin oo @ sinh 74 (z/2 — «) sinh #ia

‘ (—1) 1 T
- ~+ n*A 4 cos « cosh nin/2 J 12
where L=2= %{ I 7nd sinh i (w2 — o) cosh naa) 12
1 -+ n22? + 4 cos® « cosh nin /2 S
» taking odd positive values.
It is sufficiently accurate, for metal fuselages, to take
L:%ma.” . . . . S .. (18)

6.3. Shells of Oval Section*—An oval section shell may conveniently be dealt with by first
converting it into an ““ equivalent " circular section.

The dashed symbols refer to the equivalent circular section and the following additional
notation is used (see Fig. 18) :—

/ -
S

I = section moment o6f inertia—entire section
IO

q., = shear stress adjacent to longerons
on crown side

q,, = shear stress adjacent to longerons
on neutral axis side

Y Load
Fi1e. 18.

I

section moment of inertia neglecting longerons

calculated for unit transverse load,
by simple beam theory with entire
root fixed.

g, = shear stress corresponding to ¢, \_

g, = shear stress corresponding to g, Iallowmg for stress concentration.

* The authors are grateful to Mr. Rao for pointing out a mistake in the conversion, as originally stated, and for his
help in correcting it.
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6.31. Basis of method of conversion.—The following quantities, at any distance from the root,
are made the same for the oval section and the equivalent circular section :—

(a) stresses in the longeron away from the root,

(b) loads in the longeron away from the root,

(c) shear stresses in the skin adjacent to the longeron away from the root,
(d) shear loads in the skin adjacent to the longeron away from the root,
(¢) root stress in the longeron,

(f) root load in the longeron,

(g) strains corresponding to the above stresses.

There is thus agreement away from the root and at the root as regards the two shells. It is
to be expected that there is agreement over the root region also. The method assumes this
and comparison of the ““ conversion ” method with more rigorous analysis verifies this for a
particular case (Figs. 12 (¢), 12 (¢)).

6.32. Application of method.—The above conditions become
o = §sin~* (2 latg,, cos «fl,), 1

!

@' = a cos asec o,

l

¢, = I [na",

R ¢ 1)
=1, [
S’ = S.

Knowing the equivalent circular section from eqn. (14), the values of £ and of £’ corresponding
to constant-area and constant-stress longeron respectively may be calculated.

The stresses are then given by eqns. (1), (5), (6), (10), (11), (13) as before and the taper to
maintain constant stress by eqn. (7), provided that «, @ and ¢ in these formulae are replaced
by o', @’ and ¢ respectively.

There is one point to be noted in calculating «’. If & is a solution of the first equation of (14),
then (90 deg.— &) is also a solution; thus if «'=171 sin=* 0-5, then « = 4 X 30 deg. or 4 x 150 deg.
= 15 deg. or 75 deg.

A rule for deciding which value to take is obtained by actually evaluating «' against o« for
slightly oval shells and by using the knowledge that a circular shell must have itself as its
equivalent. The analysis, which is not given here, leads to the following rule :— if the load is
applied parallel to the major axis, take the value of «’ which is greater than « and if both values
of o' are greater than « choose the smaller ; if, however, the load is applied parallel to the minor

axis, take the value of «" which is less than « and if both values of «' are less than « choose the
greater. »

6.4. Basis of Approximate Method.—6.41. Constant-section longeron.—The method is based on
assuming d to be of the form given by eqn. (1). This gives d the correct value at x =0. £k 1is

then determined by the condition that J‘ * 4 dx is to have the same value as that given by the more
]

elaborate method, which we intend to short circuit. We thus obtain eqns. (3) and (4).

!
The shear stresses are obtained by assuming that 7,/7, is constant, that J 7, dx has the same
0

value as that given by the more elaborate method and that the approximate longeron load is
in equilibrium with the approximate adjacent shears. (These conditions automatically make

J4 7, dx also agree with the value given by the longer method.) Eqns. (5) and (6) follow from
these conditions.
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6.42. Constant-stress longeron.—The * constant-stress’ solution shows that the variation of
the longeron cross-sectional area can best be represented by a linear taper from root to tip, upon
which is superimposed a further reduction of area that is independent of the longeron root section
and that is also practically constant over most of the length. The dip down to zero value at the
ends takes place over a restricted length the extent of which depends upon the size of the cross-
section. Fig. 19 shows what is meant.

(X4

OA represents the root cross-sectional area of the
constant-stress longeron, its value being fixed by
the allowable stress. To get the proper variation A
of the cross-section we first represent a linear T‘
taper to zero by the straight line AB, and then
draw a parallel line A,B, where AA, is independent 8
of the size of the root section of the longeron and JL
depends only on the position of the longeron
(given by o), the stringer-sheet thickness #, and the
radius « of the fuselage cross-section. Its value §, I
is given by ' I'

8, = mat /4 cos® a. |

This value of ¢, is the correct value for a long '
cylinder and is a very good approximation for a o —= |
fuselage. It is now necessary to ‘‘ join ”’ the two Rock IP
straight lines by curves CA and C,B. These are :
symmetrical in the sense that intercepts EE, and
FF,, equidistant from the central ordinate PP,, are
equal. The true curve “joining”’ the two parallel B
lines through A and A, can be well represented Fie. 19.
by an exponential curve CA expressed in the form

6 = By,

where the exponent £’ is such as to make the area intercepted between A;C and AC (shown

shaded) equal to the corresponding area intercepted by A,C and the curve obtained by the more
rigorous method.

" Diskarce alon9 Fu«sc,laao_

The approximate shear stresses are determined by assuming that (rz’ — -ﬂl —)/Tll is
at cos o
constant, that the approximate longeron load is in equilibrium with the adjacent shear loads

and by making Jl 7, dx have the same value as by the longer method.
Q

8.5. Accuracy of A;b;bmximaie Methods.—The curves of Fig. 12 which are based on using only
three terms of the series for K in eqn. (4), indicate that this approximate method, while being
rapid, is sufficiently accurate for all practical purposes in the case of the circular shell with

constant-section longerons and that the assumption made in converting non-circular to equivalent
circular shells is valid.

In Fig. 12, curves () and (a’) show a comparison between the results obtained by the exact
and the approximate methods for the first numerical example of §3.1. Curves (a) give the
direct stresses in the longeron and curves (a) the corresponding shear stresses. Curves (b) and
(0"} show the corresponding results for the second numerical example. Both these sets of curves
apply to a shell of circular cross-section. '

As explained above it is necessary in dealing with a shell of oval cross-section to find the
equivalent circular cross-section before applying the approximate methods proper. It was
desirable therefore first to work out the exact results for an oval cross-section by an adaptation
(not included in this report) of the analytical solution of §9. The shape of the oval chosen was
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the fuselage cross-section of an actual fighter aeroplane and it was found possible to represent
this very closely by a cycloid and its reflexion in the axis of symmetry joining two cusps. The
results obtained are shown in Fig. 12 by the full curves of (¢) and (¢’). The approximate method
was applied by first converting the oval section into the equivalent circular section in the way
described in §6.31 and then using this as a basis for computing the stresses. The results are
shown in Fig. 12 (¢) and (¢’) where also the stresses given by the simple engineering theory (with
all stringers fixed at the root section) are shown for comparison. It is seen that there is
satisfactory agreement between the approximate and the ‘“ exact ”’ methods.

The corresponding curves for the constant-stress tapered longeron are shown for a shell of
circular cross-section in Figs. 10 and 11 where the results obtained by the approximate method are
shown dotted. The curves obtained for rate of taper of the longerons by the exact and the
approximate methods are indistinguishable (Fig. 10) and the shear stresses are also in good
agreement (Fig. 11).

It is to be expected that the same good agreement would obtain between the results of the
approximate and the ¢ exact ”” methods for an oval-section shell with constant-stress longerons.

6.6. Practical Application of Approximate Methods.—6.61. Constant-section longeron.—In
order to facilitate the application of the method the curves of Fig. 13 have been drawn. These
curves enable the die-away factor % to be readily determined when the structural dimensions of
the equivalent circular section are known.

The curves are used as follows :—First the value of the non-dimensional coefficient u = af/S
is calculated and the value of ka corresponding to this value of x and the known value of « is

read from the graph directly or by interpolation. This value of %a is then multiplied by 9 J EG_tt
to give the final value of ke and hence of . '

It is to be noted that the value of k thus obtained is independent of the length of the shell
the assumption having been made that the length is at least twice the diameter.

The stress in the longeron may now be obtained very simply by the use of eqns. (1) and (2)
of §6.11 above, in conjunction with the known stress given by the simple engineering theory.
The shear stresses adjacent to the longeron (where they are greatest) are similarly obtained by
the use of eqns. (5) and (6) of § 6.12 and the known stresses as given by simple engineering theory.

6.62. Constant-stress longeron.—The die-away factor £’ may be obtained similarly from Fig. 13.

Thus, in order to find %’ the value of &’a corresponding to the known value of « is determined

from the graph and this value is multiplied by 9 J Gt to give the final value of A’a and hence

£
of .

The longeron taper is now readily obtainable from eqns. (7) and (8) and the shear stresses are
obtained from eqns. (10), (11) and (13).

In this case also the same assumption is made as was made in § 6.61, viz. the shell length is at
least twice the diameter.

7. Some Test Results—The particular fuselage mentioned in §6.5 was one for which a few
test results happened to be available and these are plotted in Figs. 14, 15, 16 and 17 for comparison
with the results calculated by the present methods. The type of longeron used in this fuselage
was a short stub member of constant section and the adjacent shear panels were reinforced by
patch plates to withstand the expected concentration of shear stress. Thus the conditions were
not satisfied for the application of either of the theoretical cases—constant-section or constant-
stress longeron—dealt with in this report. It would be surprising therefore if the test results
agreed well with either of the two methods. As however the conditions more nearly approach
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those of the continuous constant-section longeron (at least close to the root), this is the case
with which the test results have been compared. The theoretical results were worked out first,
assuming that the skin contributed nothing to the effective stringer cross-sectional area (Figs. 14
and 15) and next assuming that it was completely effective (Figs. 16 and 17). By adopting
the latter hypothesis we see from Fig. 16 that fair agreement between the curve and the test
points is obtained over the root part of the stub longeron. Now the rate of die-away of the
load in the stub longeron must clearly be higher than that in a longeron extending from end to
end of the fuselage, for the load must drop almost to zero in the short length of the stub longeron.
The way we have obtained the agreement shown by Fig. 16 is by assuming an excessive amount
(the whole in fact) of the skin to be behaving as a stringer, for the greater the stringer area the
greater the rate of die-away. If in actual fact the longeron had been continuous all the way, the
rate of die-away would have been less and agreement between test and theory, both under these
conditions, would presumably be obtained by assuming an appropriate fraction (less than the whole)
of the skin to be added to the stringer area. It is likely that the opposite extreme assumption
(Fig. 14) whereby the skin takes no end load makes the die-away too slow in all cases. The
most suitable intermediate assumption is not known and the need for experimental work for
settling points like these is clear. Failing this it is safest to assume that the skin carries no end
load for the purpose of calculating the longeron stress and carries its full share when the shear
stresses are being estimated.

8. Conclusions.—By generalising from the above examples, we are led to the following
conclusions.

8.1. Constant-section Longerons Continuing from End to End of Shell (or Fuselage).—(i) For a
stringer-reinforced cylindrical shell subject to a single transverse load at its free end and fixed
at the root by four constant-section longerons that stretch from end to end of the shell the region
where the stress appreciably departs from that given by the ordinary engineering theory of beams
is confined to the root section and its immediate neighbourhood.

(if) The greater the value of the ratio G#/Et, the more restricted is that region : with a value
of 0-7 the region extends from the root outwards to a distance equal to 2 diameter, but a value
of 1-4 reduces the distance to § diameter. It is of interest to note that, for  vertical ”’ loading,

the rate of decay is most rapid when the longerons are near the top and bottom of the fuselage
(oc = 20 to 30 deg.).

(iif) The direct stress in the longerons and the shear stresses in the adjoining panels over this
root region can be estimated accurately enough by making use of the approximate method,
described in this report.

(iv) Large shear stresses are induced in. the sheet immediately adjacent to the longeron at the
root. The area of high shear stress, however, is very limited so that it should be an easy matter
to reduce the stresses to any desired degree by increasing the skin thickness. The actual extent
of these restricted areas of high shear stresses may be estimated by means of the approximate
method in conjunction with the stress contours for typical cases given in Figs. 6 and 8.

8.2. Constant-stress Tapered Longerons.—In practical design it will usually be undesirable to
carry the longerons from end to end, and therefore the correct taper to use for an abbreviated
longeron becomes important, for the use of stub longerons of constant section is inefficient from
the weight point of view. Based on the rigorous method given in Appendix III, an easily applied
approximate method has therefore been included, (§6.2), which enables the correct taper for
maintaining constant stress in the longeron to be found and which also gives the degree of shear
stress concentration in the adjoining panels. In practice the taper should clearly not be carried
beyond a point where the cross-sectional area of the longeron has dropped to that of a stringer,
and would normally not be carried as far. The length of taper involved is of the order of one
diameter. Over this length it may be convenient to taper the longeron in steps rather than
continuously and so long as no fewer than three steps are used it is unlikely that the shear
stresses will be appreciably increased thereby.
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The shear stresses associated with the constant-stress longeron are somewhat higher than
those for the constant-section longeron but probably very little, if at all, higher than for a
constant-section stub longeron of the same length.

The effect of altering the ratio Gt/E¢, is much the same as'that indicated in § 8.1 (ii) above.

8.3. Effect on Flexural Stiffness of Four-point Root Fixing.—A side issue, which has not been
discussed in the body of the report, is the effect on the flexural stiffness of fixing a fuselage at
only four points at the root section. The deflection can easily be deduced from the work of
Appendix I and for the first example of §3.1 the loss of stiffness was over 20 per cent. In
estimating the flexural stifiness of a fuselage, therefore, a reduction of something like 20 per cent.
should be allowed for, if the root section is held at only four points.
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APPENDIX I

Detailed Method of Solution for a Circular Shell with Constant-section Longerons
Definition of Terms Used.—Referring to Fig. 1 (p. 2), let the symbols be :—

thickness of metal sheet cover capable of withstanding shear stress only
length of shell

radius of cross-section

cross-sectional area of longeron

origin of co-ordinates at centre of root section
axial distance from O, positive towards free end
vertical distance from O, positive downwards
displacement in x-direction

displacement in y-direction

distance along the arc of a section measured clockwise from the crown of
the section

= sfa

value of 9 at longeron
value of end transverse load
tensile stress

shear stress.

v e e v O a o

Qe €

The surface between the crown and longeron is surface (1). The surface between the longeron
and the neutral plane is surface (2). Suffices 1 and 2 refer to surfaces (1) and (2) respectively. A
suffix o refers to the longeron at y = «. When the meaning is plain the suffices will be omitted
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Internal Equilibvium.—For the internal equilibrium of surfaces (1) and (2)

oo ot
e bt =0,

ou T ou dv . _ ou dv .
but as O'—«E’*B;C—,and'é—'—é‘;—!"-dES].n'lp—a—aw‘—*—%sn’l’lp,
we have, by substitution _
z Gt 2%u Gt dv
Blsataap vt osv=0
o%u av atEt, 9*u
_— == Dt N — .. .. .. .. (AL
_or aw2+adxcosw—[— R 0. ( )

This is our fundamental differential equation for the displacements # and v, and is the same
equation as previously derived in R. & M. 20992,

Assumed Forms of the Displacements—We cannot assume that# = >’ A4, sin Ehid %
q

2
(g=1, 3,5, etc.) as was done in the previous investigations, for this makes # zero everywhere
when x = 0. We therefore assume :

0%u, 1 %o, X

_B?—E—E_W:Pw—i—zq: P,qCOS%‘—“,(T:l,Z,OC), . -(AI2)
where g takes the values 1, 2, 3 . . . and the P’s are functions of y but not of . (By using a
convergent series for the 2nd derivative, we ensure that the series for the Ist derivative and
for the function u, itself, obtained by successive integration, are also convergent.) We can
allow for discontinuities by having different constants of integration for 1, 2 and «. Integrating
eqn. (A.L.2) gives

o _ o _ 9w Il <Py . gmx o
i O FE E +xP,0—|—ﬂqZ, . S ,(r=1,24), .. (AL3)

where o, is the stress at x = 0.
But for surfaces (1) and (2), o, = 0 for x = 0 and ¥ =/,

and so 10y Pro» 059, and Py each vanish ; .. .. .. .. .. (A.L.3a)

and as ¢, = 0 when x =/,

du, _ 04 x l P, . gux
_L_i_x__E<1_T>_|_;_Z,_gLsm——,.. . . .. (A.I.3b)

= !

o, being the Anown longeron root stress.

Integrating eqn. (A.1.3) for surfaces (1) and (2) gives, using eqn. (A.L.3a),

2
=gt &SPl —cos ), =12, .. .. . (ALY

T q>lq Z

where u,, is the displacement at x = 0.

Integrating eqn. (A.I.3b) gives

oy N P P, g }
U, = 5 1— (1 __Z> —|——n—2 ; qz" (1 — €08 »—l—) , .. (A.L4a)
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the constant of integration being adjusted to make #, — 0 when x = 0. We have now intro-
duced three sets of unknown coefficients—P,, P,, (both functions of p) and P, (constants)—and

in addition two unknown functions of yp—u,, and u,—to express the longitudinal displacements
1, 1, and u,.

For the vertical displacement », we express dv/dx in the form
dv nx i
dx:V0+zV"COSﬂ .. .. .. .. .. ..(A.I.S)

]
q=1 l

where the Vs are constant, since dv/dx is a function of x alone and therefore independent of ».

Solution of the Fundamental Differential Equation.—The quantity « as given by eqn. (A.1.4)
and dv/dx as given by eqn. (A.1.5) must satisfy eqn. (A.L1). Substituting from eqns. (A.1.4) and
(A.L5) in eqn. (A.IL1), equating terms indepcrdent of x, and remembering that u,, P,, are
functions of v, we have, for surfaces 1 and 2 respectively,

a4 2 aP 1
HZ;O +n_22 -Bﬁi . Fﬁ—aV,, cos p = 0, .. .. (A.I.6a)
po
a> [ a:P 1
dz;ur =3 z} “d‘ﬁ o +aV,cos p = 0. . . .. (A.1.8b)
q=

Equating coefficients of cos I%ﬂ_f gives, for surface 1,

—7%5%%1 + alV,cos p —}—PME%E%——-O,
or ;l;— d;f:;" — (1?;2 “ZGZ?:‘— : i—zPM = ag®V, cos y,
which on putting Ei;%&:zz N W s
gives }{; 622521" — A ; P, = ag’V cos y. .. .. .. .. (A.1.8a)
Similarly for surface 2,

}Z;fgf;;q —w¢ LPy=agV,cosy. .. .. . . (Alsh)

The solutions of these two differential equations, which we shall discuss before considering egns.
(A.16a) and (A.1.6b) further, differ only in the arbitrary constants and may be written

s . aq®V, cos

— P,, = B, sinh giy 4 A, cosh giy — w, . AL(9)
where 7= 1or 2and B,, A,, are constants.

As P, is even in y, B, = 0,

2 aq®V, cos
and 7 Pu= 4y cosh giy — HL TS0 - cﬂ;” : .. (A.L102)
Also as P,, = 0 when y = /2,

2 . . 2 aq’V, cos p 1.1

P, = By sinh i (3 —p)— Mo o (ALIOY)



15
But P,, = P,, when y = «, so that

2 cosh glo . ad®V cos
P, =4, 7 sinh g1.(F — v)— -ﬁl—i—?;—;ﬁ (ALY
smh gi (~ — oc)

and we may rewrite eqns. (A.1.10a) and (A.1.11), with a slight change of notation, in the form
Z2

ag’V, cos p

. T
g P,,= A, sinh ¢gA (—i — oc) cosh gy — T g5t .. (A.1.12a)
2
b = A, cosh gla sinh gi (; — 1!’) — ‘aqlz C;;_w . .. (A.1.12b)

The coefficients P, originally unknown functions of g, have thus been reduced to known functions
of » and constant coefficients 4,and V.

We can now proceed to find the initial displacements #,,and #,, Returning to eqns. (A.1.6a)
and (A.L.6b), we find on substituting from eqn. {A.1.12a) in eqn (A.1.6a) that

d2 A aV,cos p
A2 A, sinh gA{ % — a)cosh giy - ? =0,
o Agsinh g (5 — x)eosh gy + 3 T
which on integratmg gives
. A, aV, cos y
uw*mglqz smhql(~—oc>cosh giy +q§) ] +qaz2 +B v+,
but #,, is even in y so that B, = 0; and #,, = 0 when y = «. This makes

Uy = z _gzi sinh ¢ (FZ— _ m) (cosh glo. — cosh giwp)

g=1

v,
a (cos y — cos . . (A.L13a

+ ( Qp “ ;Z>—o: 1 + q2ﬁ.. ( )

Substituting similarly from eqgn. (A.I.12b) in eqn (A.1.6b) we get
d2 |4
20 4 22 ZA cosh gia sinh g <-- — V’) + a cos p g : +;2&2 —0.
[ ‘7 —

Thus = le cosh gao sinh ql(z zp)—g—acosng i _}_9222 + B,y + C,.
But %99 = 0 when y = % and when » = «, giving C, = — %—Bz,

—_ Aq
B, _{a oS oc; T qzﬁ — Z 7 cosh gia sinh g <_-~ m)}/<~_ — a)

(G- ‘

Thus Uy = Z L cosh gla ﬁ ( ) sinh g4 (—725 —~ oc) — sinh g4 (—g- — W) :>
J

. A.L(13b)

(3-7)
+a{cos ~~:§-—-—ip~cosoc} Ve
v q>o 14 ¢%2°

G
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The displacements u, (» = 1, 2) are then given by eqn. (A.1.4) after substituting from egns.
(A.L.123), (A.1.12b), (A.1.13a), (A.1.13b).

When y = «, we bave u, = u,

_ _ Wf.i_{ ~ T ) cos *w}
qzl: (1 cos *5 ) 7 A,sinh qﬂ.( 5 oc) cosh gio T
B 1 . 7T ‘ aq*V, cos «

Z ?{Aqsmh g <~2——~ o:) cosh gl — — T }

2
- == cos qvx/l -{ A, sinh g2 (-» — oc) cosh glo — nql I;cg(;zzoc } -(AL14)
g=1 .

and this must equal #, as given by eqn. (A.l.4a), viz.
lcra0 2 x* 7 P, Paq qnsx
( zf)*”?{ﬁ Z 0 Z cos T .. .. AL(15)

It is now necessary that the right-hand side of eqns. (A.1.14) and (A.I.15) should be equal for
all values of x and for the purpose of satisfying this condition we expand the expression

o 2% 2%\ . . . :
Z a9 < »> in a Fourier series, thus :—

,a«

log (20 2N o, 2o, cos gaxfl A LIS
2 () s 2 T - ALY
Substituting in eqn. (A.1.15) from eqn. (A.I.16) we have
ZU¢,0 ,14 20’00 qn% .
o, = - Z i P, -+ ) oS .. (A1.17)
It is to be remembered that up to this point the stress E . du,/dx has been based on the
log (2% %%\ . .
57 ('T — 7§> is taken at its face value and not replaced by the first

n terms of its Fourier Expansion. We must therefore look upon this expansion as merely a
convenient method of obtaining the best possible values of P, in terms of 4, and V,. Having
obtained them we must, in testing the equality of egns. (A. 1 14) and (AL 15), still Tetain the
above term in its finite form.

Equating terms independent of x in eqns. (A.1.14) and (A.1.17) we obtain

2
> ~12~ { A, sinh g4 <% — oc) cosh qia — ag"V, 05 o | ZG“‘"
921

TTigr LT3
Leaving this for a moment and going on to equate coefficients of cos gnx/l in egns. (A.I.14) and
{A.1.17), we obtain

1 . n ag*V , cos Z2 1 2
?{ A, sinh g (—,Z — oz)cosh qha — w } = ( o + G“"
ag’V,cos « 20, I
1+ ¢*22 [E =*
It is seen that this would also satisfy eqn. (A.L.18) identically if the series were taken to infinit
(because Z 1/g® == 2*/6) but in so far as only a finite number of terms are taken it will on
g

approumately satisfy eqn. (A.L.18). Now, provided we can find the constant coefficients »
V., V, we can write down all the displacements and consequently all the stresses.

(A.1.18)

12

. 7T
whence 2 P, = A,sinh g2 ('2— — m) cosh gio —

. (ALIS
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Evaluation of Displacement Coefficients.—Three relations connecting 4,, V, and V; may now
be obtained by equating the internal to the external overall shear and by expressing the condition
of equilibrium between the rate of change of the load in the longeron and the shears in the adjacent

panels.

" The shear across any section and the applied shear must be equal, 7.e.

6 [[/( 2 12 ny) 4 [

(If the load is not a single end load, then we express the shear in the form W,+ =" W, cos @_) .

!
g=1
On substituting in this equation for #,, #,, dv/dx in terms of their series form and equating terms
independent of x we get

dv . . w
-I—%Slntp :|51n1pd1p———»74—.

aaip

@ . A4 v,
Jo {VO sin p — g qq sinh g4 <—2— — oc) sinh giy — siny > T g

q=20

. . V .
+ > qs1nhq/1<—~— oc)smh giy +SIHWEW}51H v dy

g=1 q221

. A4, sinh g (z/2 — o) cosh gia
T {osny — Z SERS

. cos o V, . w
— V,sin » + /2—m§1+g212} Smwdw:——élGar

which, on integration, becomes
SVycosa A, v 1\ Ww/l—a
A et A — h g2 ZAA T S
gl 1+ ¢*A*  ag® ssinh ¢ ( “)COS 9 af 4 Gat cos o -V
This is the first of the relations mentioned at the beginning of § 1.4. It should be noted that the
relation contains ¥, and all the coefficients 4, V. "

/o cos . .. (A1.20)

Equating coefﬁc1ents of cos Q’__ then gives

-5

jn/ I'1chosh gAo.cosh ga (%_

¢ sinh ga (_ — a) sinh gAy - 6%-5% —aV sin p } sin pdy

) — “T___Z‘I_S;?}’? 4+ aV, sin 1/)} sin 9 dy = 0.
i.e. rag® V, = —l———cos o cosh g4 = 5 =0. .. . .. (A.L21)

This is the second relation. It contains one 4, and the corresponding ¥, and no other unknowns.

For equilibrium at the longeron (y = «), we have

d
[% So) +1tm—m)| =0,
o, au]
or ) 2 Y% — O s
>+ [ ’l/) 81/) p=q
, ' dSdu, _ o du, 8, aul] _
ie. By 5L *Ea['a‘{p“a‘; —0... .. .. (AL2)

(77130)
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If S is constant S d % is known as a cosine series. If S is not constant we must express the

first two terms on the left-hand side of eqn. (A.1.22) as a cosine series in terms of the

coefficients 4,, V,, and o, giving us

as du, d2u g%
T S =5 =K, +§1K cos <= . (A.1.23)
which reduces, if S is constant, to
Ko:—%‘"” K,=SP, .. .. .. .. (AL24)

where P, is given by eqn. (A.I.19). The remaining term of the left-hand side of eqn. (A.1.22)
Gt [8%2 8%{'

Ea cy Oy
Gt [acosa Vq 1 A,
~ Ea [n/Z—a q;o [T ¢2 72 = x Zl 7 ! sinh ga (-— - oc)(,osh gia
T > —~00>hq2 cos ¢ J o LU (AL29)
g=1

Substituting from eqns. (A.1.25) and (A.I.23) in eqn. (A.1.22) and using eqn. (A.1.20) gives us,
on equating terms independent of x,

w
Kot gy iGlcos a0
. W
1.€. Ka-{—mw . (A.I.26)

This is an incidental result that was known beforehand giving the load in the longeron at its root

under the given bending moment. Equating coefficients of cos {]«%x gives the relation

Gt 14, -
q—{—E gcshq}-Z———O .. .- .. . AT.(27)
This is the third relation. When S is constant this relation contains one 4, and one ¥, only.
If Sis not constant this equation contains all the A, V,. Egns. (A.1.27) and (A.1.21) suffice to
determine A, and V, and then eqn. (A.1.20) gives V,,.

When S is constant the solution of these equations is

Vo 2ls,, sec oc/{ /1 g = sinb gl ( ) cosh gl nat, }’ (A.1.28)
‘o 1+ ¢%2®

a*agtE 4 cos® o cosh gz /2 4S cos® «
Aaw sec o g*
Ay = T "1 .. (AL2
! 4 cosh gamn[2 (A.1.29)
nf2 — [
y, = W (/2 466;) sec? o s 4 fsect 0 SV, .+ (A130)

g=1

When S varies with x the method of solution in general entails a prohibitive amount of labour.
A notable exception is the longeron tapered to maintain constant stress.
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 Accuracy of Solution.—The stresses and displacements are thus obtained as infinite series.
Taking only a finite number of terms will therefore give values which are not exact. Suppose
we take # terms. _

Then eqns. (A.I.3a), (A.I4), (A.I.12a), (A.I.13a), (A.1.12b), (A.I.13Db) give for the longitudinal

displacements
lo, % \? P2 P, g
%a - Z——E {1 - (1 - —l—> } —i—'—'"z‘ § ‘—2‘q<1 — COS Z ) » .t (A’I‘Sl)

i1 4

where P,, is given by eqn. (A.I.19),
#, =a (cos p — cos &) V,

" A, . 7 _a(cosyp —cos a) V, grx
—I—qu q—-jsmh Ql<—Q- — oc) o qf <1 — CoS T)’ (A.1.32a)

" — 72 — y i éz_qsinh g (%/2 — «) cosh gla 4 aV, cos p

2_775,/2—06,,:19

wj2 — y i v,
—a (n/z — /) 08 ocqgo T
_ qé f;_;cosh giosinh g (x/2 — y) — %}msq”% . (A.L32b)
From eqn. (A.L5)
“_y, >vesBE L L (AL
=
where, from eqn. (A.I1.20),
W (=)2 — &) v, A, . _ }
Vo= 4G at cos® o qzl U+ ¢2 ag Sinh g2 (nf2 = o) cosh ghocsec o - (AL34

Examination of the analysis shows that only one condition of the problem is not satisfied.
The displacement of the longeron is not equal to the displacements of points on the adjacent
sheets, although the displacements of the sheets are the same. Fig. 9 shows the displacements
of the longeron and adjacent sheets given by twenty terms for a particular example. The agree-
ment between the two displacements is quite good.

A clearer idea of the inaccuracy may be obtained as follows :—Beyond one diameter from the
root the difference between the displacements is constant (and therefore the stresses are the same).
If the longeron be uniformly compressed so as to bring it into coincidence with the sheéts one
diameter from the root, then the ratio of the required compressive stress to the longeron root
stress is a measure of the error. Knowing the displacements this stress may be readily calculated.
For the example considered it is less than 4 per cent. of the root stress.

When performing a calculation based on this report it will be necessary to take enough terms
to ensure that the above error is reasonably small. A noteworthy feature of the method is that
the terms are evaluated with the same ease for any number of terms.
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APPENDIX II

Method of Plotiing Shear Stress Curves

The series for the shear stresses obtained from eqgns. (A.1.4), (A.I.12a), (A.1.12b), (A.1.13a) and
(A.I.13b) do not converge very rapidly. The series obtained by term-by-term integration
converge quite rapidly and the gradient of curves thus obtained gives the value of the shear
stress at any point.

A simple example of this method is given here. Consider the series

3 (—1) D2 cos guxfl
4 + Zq N qn - S ’
where ¢ is odd and greater than 0.

The sum of 6 terms gives very poor agreement with the sum to infinity especially at x = 0
and /. Integrating this series from / to x we obtain

-1
g I (—1) . qEX
—L de_z(l—x)—lzq—-g—z;z———.smT
et
1 3 x (— 1) * . gnx
Therefore “T«[lde—Z(luj)_zq:TSIH-l_‘

The sum of 6 terms of the series agrees very well with the sum to infinity. In view of this, the
curves of shear stresses given in this report have been obtained by measuring the slopes of the
easily drawn curves obtained by analytically integrating the shear stress expressions. This
vxample is rather extreme, for the curve obtained by integrating the series may be easily differ-
entiated graphically as it consists of two straight lines. But even when the curvature changes,
graphical differentiation of such an integrated series will give a more accurate value than the
actual series, especially at the extreme values.

APPENDIX III
Constant-stress Longeron
Instead of eqn. (A.I.3a), we have, since o, = o,, for all z,
du,jdx = o, [E , .. .. .. .. .. .. .. (A.L3a)’

where a dash over the number of the equation indicates that it corresponds to the undashed
equation in Appendix I.

Integrating this gives
#, = o, X[E , .. .. . . . .. .. . .. (A.l4a)
since #, = 0 when x = 0.

From eqn. (A.1.14)
B 1 . e aq*V, cos cx}
[711:]w=a = E 1 ? {Aq sinh g4 (7 — oc) cosh gla — _I—W

2y
- %ﬂl{ A, sinh g (% —_ oz)cosh gho — fi?lr_{___%‘ } (A.L14)

g=1
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and this must equal #, as given by eqn. (A.I.4a)’. For convenience we expand #, in a Fourier
series

t, = 05/ E = logf2E — 2 - .fl Zl—éj D cos TL. ALy
q=

Equating terms independent of x in eqns. (A.1.17)" and (A.1.14) gives

. 2
zl—[}z {Aq sinh g (% — a)cosh gi o _ag; Ii’ ;(2);2“ } — ZZG;:E ) .. (AL18)
q=

Equating coefficients of cos gnx/l in eqns. (A.1.17)’, (A.1.14)’ gives

? 20,
a? IE

o . n __ag’V, cos a
(1 — (— 1)9) = A4, sinh g2 (7 —_ oc) cosh gix lfqéﬂ—z .

.. (A.L19)’

If an infinite number of terms were taken then eqn. (A.I.18)" would be identically satisfied in
virtue of eqn. (A.I.19). In so far as a finite number of terms is taken eqn. (A.1.18)" is only
approximately satisfied. ,

The conditions expressing the equality of externally applied and internally produced shear
are the same as before and are given by eqns. (A.1.20) and (A.1.21) which, with eqn. (A.1.19)’
suffice to determine A4,, V,, V, and hence the stresses everywhere.

To find the area of the longeron we express the condition for equilibrium.

We assume first that

D s+ =S amLy

ax ‘ !

giving S= S+ 8%+ L= Dtgingupy, .. .. .. .. (AIL2
[) n q 2 - -

where S, is the root area.

For equilibrium at the longeron

l:c% (Sou) + ¢ (r, — Tl)]w _0,

=qa

which giVGS S,Gao + 04 Z Sq COs QTCX/Z + @[a e Z qu 3
a 7T ¢ >0 1 —l—- g A
5 [e.d
_ 1 Ay Ginh g2 (2 — o) cosh gree + =22 cosh ginf2 cos gmafl | = 0. .. (A1.25)
_7‘_7:_ — o g= 1 q ~ g=1 g
2 «

(77130) c
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On equating coefficients of terms independent of x in right-hand side and left-hand side of
eqn. (A.1.25)" and using eqn. (A.1.20) we get

, W,
S0+ 4a cos o =03
14
but %0 = 448, cos o’
and therefore S, =— —1S" .. .. .. .. .. .. .. - .. (A.IIL3)

and this, with eqn. (A.II1.2), gives S — 0 when x = /. Equating coefficients of cos ¢gnx/I in eqn.
(A.1.25)" gives

G2 Ay coshgim/2. .. .. .. .. (AIIL4)
aGaO q

S = —

q

The solution of these equations is

7T
Agn sinh ga (5 — o) cosh gia -
V, =~ acsecq [{ ot + gesioh ¢ (5 — ) o p (AIILS)
‘ mlabg® VA W B 4 cos® o cosh gin/2

Aan sec a g*V,

/1(1 _— T(;JST}W 5 .. (A.III.6)
. 11
Agm sinh g4 <— — oc) cosh gia .
S o ks / { ° 2 } (AIIL7)
! [ cos® o 1 + gA* 4 cos® a cosh gin/2 ’
W (=2 — a) sec’x WI* sec’a
Vo = iCal T 8Eas, - (AIILS)

where ¢ takes odd positive values. For other values of g the coefficients V,, 4,, S, are zero.
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