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Summary.—A rtelatively simple method for calculating the aerodynamic forces on an oscillating aerofoil is
developed and used to derive the aerodynamic coefficients for M =0-7, 0-8 and 0-9 for a range of frequency

parameter values.

The two-dimensional aerofoil is represented by a flat plate and the usual assumptions of linearized theory for unsteady
flow are made. The problem is reduced to one of finding the solution of an integral equation for the velocity potential
of the disturbed flow. This is solved by the use of the known solution of a related problem in incompressible flow in
which the aerofoil oscillates at a frequency increased by the factor (1 — M?)—* and for which the condition for tangential
flow is suitably modified. By successive approximation to this modified boundary condition, it is possible to obtain
solutions to any desired accuracy. Formulae for the aerodynamic coefficients may also be derived for each approxima-
tion. Those given by the first approximation are of sufficient accuracy for use in stability calculations when the
frequency parameters involved are low. For higher values, more complicated formulae corresponding to higher-order
approximations could be derived if required. -

The results obtained confirm that values given in Ref. 6 which were derived by Dietze’s method for M = 0-7 and by
Schade for M = 0-8 are substantially correct.

Introduction.—The problem of the oscillating aerofoil in two-dimensional subsonic flow has
been considered by many writers. Possio*, in 1938, reduced it to one of finding the solution
of an integral equation. He obtained some numerical values for the aerodynamic coefficients
corresponding to plunging and pitching oscillations of the aerofoil for particular Mach numbers.
Frazer?, in 1941, repeated Possio’s calculations and improved the accuracy of the numerical
solution given by the latter. Then followed the work of Eichler® (1942), Schade? (1944) and
Dietze® (1944). Both Eichler and Schade reduce the problem to the solution of a set of linear
algebraic equations, while Dietze solved Possio’s integral equation by an iterative method. Tables
of aerodynamic coefficients for different Mach numbers and a range of frequency parameter values
have been given by Minhinnick®. They are based mainly on results obtained by Dietze’s iterative

" method and Schade’s values.

An alternative method of approach suggested by Reissner and Sherman’ (1944), Timman®
(1946) and Billington® (1949) is to solve the wave equation directly in terms of series of Mathieu
functions. Timman, Van de Vooren and Greidanus™ (1951) have given tables of the aerodynamic
coefficients derived on the basis of Timman’s earlier analytical treatment of the problem. As
shown in Table 1 their values differ appreciably in some cases from those given in Ref. 6.

* Published with the permission of the Director, National Physical Laboratory.
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In view of the discrepancies between the various theories it seemed desirable that the exact
solution should be found. With this object in view, the method of solution suggested in Ref. 11,
with slight modifications, is used to calculate the aerodynamic coefficients for M = 0-7 and 0-8
for a suitable range of values of the frequency parameter. The results obtained agree closely
with those given in Ref. 6 and it appears that the coefficients tabulated in Ref. 10 are in error.

As a matter of mathematical interest, calculations were also done for M — 0-9 for a smaller
range of frequency parameter values. The results corresponding to Approx. III (3) given in
Table 1 are believed to be reasonably accurate except possibly those for the largest frequency
parameter value considered. However, it did not seem worthwhile to proceed to Approx. IV

as the values obtained would in any case require modification to allow for thickness and boundary-
layer effects in practice.

LIST OF SYMBOLS AND DEFINITIONS

c(= 2I) Chord
¥(=1X = —lcos ¥ Distance along OX axis of point P
z(=lz' e Downward displacement at mid-chord
a(= o e?) Angular displacement
¢ Downward displacement at P (see Fig. 1)
U, Wind speed
W= {T|U,) Time
w(= 1w &) Downwash distribution
$(= @ ¥ rol) Velocity potential
M Mach number
& = 20 = pc|U, Frequency parameter
w:r_iﬁé; x=Mv; 2=M%; =1/(1 — M
k(= IK e't+eD)) Discontinuity in velocity potential at surface of aerofoil and wake
K=o, — 9, Discontinuity in &
w ( = %’ S Downwash distribution corresponding to @

K, distributions

K, = Z{Sin 9 -+ e" cos @ [Xo(v)ﬁ- + 2 § (— 4. X,0) sin %9”

'nzl n
= 2 X, (v)e ™ ... ... .. X =1
K, = sin ¢ - g%%?‘
sin (n + 1)¢  sin (w — 1)9
K, = —_— L. =
n % + ] n — ] 3 n 2
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I, distributions

P, = K, + o

ry,=2 [C(v) cotg - v sin 19:,

: - , . sin 249
Fl___—2311119'+cot§—|—w<51nﬁ—)— 2 )
. . {sin (# 4 1)¢  sin (n — 1)@
— U - - ; >
r, 251nnﬁ—+zv[ w1 p— ..o n =2

— H,"()
 H®() + (HP(»)

Xolv) = COVolv) +2[1 — CO)1u()
Xul) = CO)ulr) — [l = COITL )

Clv)

Lift and Moment Integrals
R = 2 COIM) = 4001+ § U0 + S0}

Ro= = (1= 1)) + i40)
w22 Rom (i 1= ) )+ T3]

R, — Qn{C(v)[ Jo(A) — i ()] + % [JJ(2) + ]2’(2)]}

R = = (1= DY@ + 00 — 52 L) + 40

n>z”meq_mu%@fﬁﬁﬁum+LHvﬂ+;mﬂm+Lﬂw@

Equations of Motion.—Let U,, p,, p, be the uniform velocity, pressure, and density respectively
of the air stream in the undisturbed state, and let ¥, denote the velocity of sound. Then if
U, + u, w denote the velocity components of the disturbed flow at a point «x, z at time ¢ due to
the presence of the oscillating aerofoil, the linearized equations for the motion will be

w__lep dw_ 1y "
it v S PR .. .. .. .. .

where p is the pressure and 4/d¢ = 8/of + U, 8/ox. The corresponding equation of continuity is
ap 21 0w _
dt—j—ans dx+az =0. .. o . . . . (2)



Let ¢ denote the velocity potential of the disturbance superimposed on the steady flow. Then
u = 8¢ (0%, and w = 8¢ /0z, and substitution in (1) and integration yields

b _ o % _ _P—b
dt—azﬁ_{_U”ax“ o + £ - . . .. . . (3)
Since ¢ and p — , are zero at an infinite distance away from the aerofoil and its wake, f(f) must
also vanish everywhere.

Let ¢, and ¢, represent the value of ¢ immediately above and ]ust below the sheet of discon-
tinuity representing the aerofoil and its wake. Then, it follows from (3) that the lift distribution
I(x) is given by

. ak
%) = pp — pa= pPo\ =, —{— > .- .. .. .. . .. (4)
where £ = ¢, — ¢,. In the wake, since there is no discontinuity in pressure, the condition
ok ok
"zﬁ—}—U"@“O .. .- .. .. .. .. .. .. (5)

must be satisfied. From (2) and (3) it may also be deduced that ¢ satisfies the equation

a* , (0% 0%
= V(G t o e e, (6)

over the whole field of flow. Furthermore, it must be such that the condition of tangential flow
at the aerofoil’s surface is satisfied. If £(x, #) is the downward displacement at any point at time ¢,
the corresponding downwash at that point is '

o¢ ag of
Tz 825 (7)

The problem is then reduced to one of finding a solution of (6) which satisfies (5) in the wake and .
condition (7) on the aerofoil.

Method of Solution.—Firstly, the variables x, z, ¢ are replaced by X, Z, T, where

IT
x=1X; p=IZ ; 5 (8)

and where § = 4/(1 — M?%. The symbol / denotes half-chord, and M(= U,[V,) is the Mach
number. :

If f is the frequency of the oscillation, the velocity potentlal ¢ of the disturbance may be
expressed conveniently in the form ,

$=l@ebxten 9

where w = 2=fl/U, and 4 = M*w /ﬂ2 It then follows from (6) that @ must satisfy the wave |
equation )

Rk S 9ED '
7X24 872+% =0 .. . .. .. .. .. .. (10)
where » = Mo /p% The corresponding boundary condition is
00  w _. '
2 a—i{AXtel)
W = 57 ﬂe , .. e . .. ce s (11)
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Whefe w is defined by (7). Furthermore, by the use of (4) and (9), it may be shown that

0 0 .
— o _ H{AX +oT)
| [(X) = poU, 8T+8X>Ke .. .. .. .. .. .. (12)
where K=o, — o,
Write y =21+ o =uw/f® .. .. .. .. .. .. . .. (13)
. 9K ’
and F:M}K—I—BT(.- .. .o .. . .. .. (14)

Equation (12) then yields
UX) = poU,l e¥+eh) . .. . . .. .- .. (15)

Since {(X) is zero in the wake, I' = 0, and K(X) is defined in terms of its value at the trailing
edge by - -
: KX)=K(l)e >V .. X>1. .. .. . . .. .. (16)

If K(X) represented the circulation in incompressible flow, (16) would be the wake condition
corresponding to an oscillation of frequency f/*, since v = o/

It is shown in Ref. 11 that the solution of (10) may be derived from the integral equation

2eW(X,) = —J K(X) aZZ E tH B ur/(x — %, + 212)}] ax, . . (17)

where H,® (== J, — 1Y,) is Hankel’s function of zero order. When 2z — 0, (17) yields, after
integration by parts, the relation

” 1 d L. O .
2= W (X,) :J_lx o I:K(A) =3 (Y,(o) + ¢]1(a))} ax, .. .. .. (18)
where ¢ = »|x — x,| and J,, Y, are Bessel functions. This may be expressed as -
© 1 8K :
her ol — | L R(X) plo)] X 20
where nl = lxl_an[ (X) p(0)] . . .. .. .. ( )
and p(o) = 1+ 5 o(Yy+i]y)
2 ) 4 5 y
—5(—1+oai+ 5 ) —(r—+ees+s) T (21)
: -+ etc.

.J

The function v is represented fairly accurately by the first two terms of the above series over the
range 0 < ¢ < 2. For values of ¢ > 2 more terms would have to be taken into account. It
should be noted that equation (19) is precisely the equation that arises in incompressible flow
if W 4 I is regarded as a known downwash distribution, and if the frequency of oscillation is
changed to f8~* to satisfy the wake condition I" = 0 and equation (16). However, [ is unknown
since it is dependent on the distribution K(X) which is to be determined.
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The solution of (19) has been discussed in Ref. 11, and it is suggested in that report that by
iteration and successive approximation to I the problem could be solved to any required accuracy.
Only the first approximation to I, in which terms of higher order than the first in frequency were
neglected, was considered, and formulae for the aerodynamic coefficients were obtained. These
gave good agreement with the values of Ref. 6 for M = 0-7 at low values of » and fair agreement
for higher values in the flutter range. In the present paper a slightly different method is used.

If W - I were known, equation (19) could be solved exactly by the use of known results from
incompressible-flow theory. However, I is unknown and the solution can only be obtained by
iteration, as in Ref. 11, or by transforming (19) to an equivalent set of linear algebraic simultaneous
equations. The latter more direct approach is used in this paper.

Let the distribution K(X) (= @, — ®,) be represented by the linear combination
K=1U, 2 C,K, . .. .. .. .. .. . . (22)

where K,, K,, etc., are well-known functions which occur in incompressible-flow theory and
Co, Cy, ... C, are arbitrary constants. The K, distributions are defined in the list of symbols,
and it should be noted that only K, does not vanish at the trailing edge, ¥ = =, and in the wake.
By substituting (22) in (19) and (20), the following equations are obtained :

«®

W 4- I = U,[Cy + Ci(} + cos #,) + 122 C,cosnd] .. .. .. .. (23)

<«

and - I=U, 2 CJl,, .. .. 2

where [, the function corresponding to K, is expressible in the form
I,L:r__E_OI,L,cosrﬂl. .. .. .. .. .. .. .. .. (25)

For an aerofoil describing plunging and pitching oscillations about mid-chord as indicated in
the following diagram :

, 1Pt
a=a'e
Y=o m P V=T
— ) 3 e — — - X
0 ~-Z !'f‘zx' _4 z
I ot p=2r¥
| z=12%2 " w =Pl
I Uo
l
¥
G, 1.
the downward displacement at the point P is
=1z 4 X,o') e?. .. . . .. . . . (26)
By the use of (7) and (11) it may then be shown that the amplitude @’ of w is given by
w = Ugltwz + o' + 10X o] e . .. .. .. . (27)
and that
W = p~'w’ e .. .. .. .. .. . .. .. (28)
Since X, = — cos ¢, the exponential term may be expressed in terms of Bessel functions of
parameter A. Thus
et st = Jo(4) + 2 2 i ],(2) cos v, .. . . . . .. (29)



and, hence,

= Ui g 2] o
30
_ %, ' 9 N4+23 i ' =
=5 @ — wo' = o) + 2 2 7 /,(4) cos 78,

where @ = o’ + 1wZ’. Then substitution in (20} and comparison of coefficients of cos 79, yield
the following infinite set of equations :

c, = 1 3
Co + -2_1 - fz:o CnInO = E ((I — W& &>j0(l)

. (31)
C— 3 cln="a—wxl) Jia
o pep “wtar T ﬁ a w 8/1 7 )
where » =1, 2, 3, ... . The coefficients /,, are given‘in Appendix I in the form of series in

ascending powers of (= M) up to the fourth—terms of order »° log, » and higher being neglected.
For particular values of frequency and Mach number, equation (31) may then be solved to give
Cy, Cy, Cy, etc. It was found that solutions of sufficient accuracy could be obtained by solving
the first four equations with C, = 0, > 4 assumed. For the frequencies and Mach numbers
considered, the differences in the values of the derivatives obtained from solutions based on the
first three and the first four equations are small. It also appears that there is little loss of accuracy
due to the neglect of terms of order »° log, » and higher in the 7,, coefficients when = is not much
greater than unity. This is shown by a comparison of the results given in Table 1 for Approxi-
mations I, IT and III.

Approximation I was obtained by neglecting terms of order higher than the first in frequency.
In this case, as shown in Ref. 11, I,, ~ 6, where

M 1 1 — M? ' '
0 =log, - + (1 — M? log, + VA ),.. . o .. (32)
2 M
and the infinite set of equations reduces to two equations, namely
] .
a = BCy(1 — ind) +- %11 '
Co .. . - .. (33)
(@i — wa') = BC;
These yield
pC, = twl’.a 4+ o' b
' ‘ ;. . (34)
BC, = ih.10Z’ + (A — w)’
where “— (1 - %) / (1 — ir) )
. (35)

and b :-[1 JJ(_(”Z_@]/U — i) JL |

Approximation 11 includes terms of second order in frequency in the 7,, coefficients. Solutions
obtained by solving two, three and four equations of the infinite set defined by (31) correspond
to Approx. II(1), 1I(2) and II(3) respectively in Table 1. It was found that Approx. II(2),
obtained when only C,, C, and C, were assumed to have non-zero values, gave results in close
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agreement with those derived for Approx. 11(3) when the C, term was included. Hente; without
loss of accuracy, the infinite set of equations could be reduced to four equations at most. These
could be solved algebraically but, since the I,, coefficients are rather complicated and would
not lead to simple formulae for the aerodynamic coefficients, they were solved numerically.

Approximation 111 takes terms of fourth order in » into account but neglects those of order
x°log, ». Since the results corresponding to Approx. III(8) differ little from those given by
Approx. 11(3), which neglects terms of order »* log, » and higher, it is assumed that terms of
order »°log,» neglected in Approx. 1II(3) have negligible effect on derivative values for the
Mach numbers and frequency parameter values considered. Furthermore, since Approx. I11(2)
and Approx. III(3) give almost identical results, it is not necessary to solve more than four
equations of the infinite set defined by (31). For values of » < 1, the method appears to be
rapidly convergent.

Aerodynamic Coefficrents —When the arbitrary constants C,, C,, C, appropriate to the prescribed
motion have been determined, the K distribution is given by (8). The corresponding I" distri-
bution is then known and the lift distribution is expressible in the form

B 0 o 4
_ (7 ] H{AX - wl)
Z(X.> — °<8T - aX)Ke

= poUs Z,C,0,e®ren o (38)

oK,

‘ Fa :K it
where L= kK, - X

andy = wp™?. Let

~
rL

R, = J I, e dXx
-1
R .. .. . .. (37)

and

1
iR, = — J r,. X e¥*dX
-1
%4

where R, = 02,/o4 and I, is here assumed to be independent of i. The lift 7 and pitching
moment 3 about half-chord are then given by

L = /)OZZJO2 Z’O Can ein

- 38
and M = pPU z 1CR, e (38)

where the integrals R, R," are the known functions of M and v given in the list of symbols.

"The aerodynamic coefficients are defined in terms of the chord ¢(= 21) as standard length
by the formulae

L

e = b k) T (i) 1

IW o » o . . e o+ e (39)

4

P-;C?U—oz = (m, + 1dm;) . + (m, + 1d M) o

S I

where & = 20 = pc/U,.



The coefficients C,, C,, etc., in (31) are hnearly dependent on z and «. By comparison of (38)
and (89), it is then possible to derive formulae or numerical values for the derivative coefficients.
In the simplest case (Approx. I), it may be deduced from (34), (35) and (38) that

~

I, +iel, = Z—g [aR, + 2AR,]
by 1l = [bR + (A — w)R,]

m, - iom; — — % [aRy & ARy

: v ;o ,
M, - DM, = 1 [OR," + 1(2A — )R] ] |
Similar formulae are given in Ref. 11, but in that report @ = 1 4 &6 — i and b = 1 + @6 +
$i(o — 1), whereas, for (40), 4 and b are defined by (35).

Concluding Remarks.—The method of calculation used in this report could be extended to
higher frequency parameter values by taking more terms in the series expansion for the function
p in (20). However, since the results given for the frequency and Mach numbers considered
agree closely with those of Ref. 6, it did not seem worthwhile to embark on further confirmatory
calculations for M = 0-7 and M = 0-8. Fettis"” has also done some calculations by a different
method which add further support to the view that values of the derivatives given by Dietze’s
method are correct.

In practice, however, aerodynamic coefficients calculated on the basis of linearized theory
require some modification to allow for thickness and boundary-layer effects. Some allowance
for such effects can be made by the equivalent thin-profile method of Ref. 13 in which the
measured steady-motion characteristics of the aerofoil are introduced into the unsteady linearized
theory. Recently this process has been used with some success to estimate the pitching-moment
damping on an oscillating aerofoil in subsonic compressible flow™.

Acknowledgment.—The numerical work required for this report was done by Miss Sylvia W.
Skan of the Aerodynamics Division, N.P.L.
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APPENDIX 1

Evaluation of Integrals

(i) Integral 1,

Since K, (X) = Ky(1) e~ "~ in the wake, equation (6) may be expressed in the form

2ily = | o o [Ko(X) p(¢]| X — X|)]dX

- J S Sty eh ax

X —Xax

1

1
1 a J 7 S — X
:J X_l—:—:Y X (Kol dX — [ X, X 0X (pem ¥y dX

+ O Ky (1) e

[
(41)
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where, as shown in Ref. 11, Appehdix I,

M 1 [ — M '
0 =log. % + /(1 — M?log, +\/](V[ M) U (42)

Furthermore, the function y(x|X — X,|) defined by (7) is expressible in the form

(X — X,)* X — X,))*

'1/) ==

where
— ., 1 % 1
G—')/ 2+10gﬂ4+2

L =log, 2|X _ Xl} — _ 9 § cos nd cos 1 '

n=1 n

By substituting (43) in (41) and integrating by parts, it may be deduced with the aid of (14) that

Iy = S I cosrd,, e (44)
r=90

w2

where o = & Xo{r) o) P + Z%‘[l —C0) + i1:G<C('V) + ZE }

4 iy
+ %{G[% — 20%C + 2*C — 1) + 41'ij|

o wtC 3(C — 1)
%" 2 T 2

+4(1—C) + 3@6}

To = — DXL )P + 22—
- %{GWC il — o)) + 2 L 8 gne 1)}
Iy = — 20 X) Js)P — MS— P e+)
+%§[~i—’§—3’:§c+”—;<c _ 1>]
I = 2X,f0) Jofp) P — LM
Iy = 20X, )P + Jae
w> 4,0 1y, = 2 X)) [,0)P . . B g y N - s)

11



In the above formulae M» = % and

Cl) = Hy® ) [[H,2() + TH()] |
~1if o =it (P =G = D) (=)
Xo() = CO) o) + (1 — C)IT,0)

2 4
P:a+%(% LM) MQ%% )

and f:y+5;—+1ogeg:@+%—1oge%”. e (48)

(it) Integral I, ,
When #» = 1, 2, 3, etc., K,(1) = 0 and equation (6) yields
) o
%m~=y1§~—XﬂXLK< ) w(x|X — X)) ax

N_§J19F+L_%@—XNW+L—§hX.. S

which may be expressed in the form

2, = rzo 2nl,, cos 79, . .. .. .. . . .. (48)

From (47) is readily follows that

To = — 256( +
In =g 128( T 12>
I — ,/j Z (c
12 — —{ 128< +

2 %t
D= — 18 7 Toz4

%4
VT

%4

L 647 160 (49)



when terms of order »° log, » are neglected. Similarly,

I%:”_;g_’;ig ;Izlzd
Im:%;—% G+214 1Ly =0
I“:_gé_lg;o =0
T = 5 10
131:"1%—2;+gg<G +g> il =0
133:§;+235L640 Ly =0
135=_~1%20_§;"1210 I =0
o= i T =0
, I4°:_32§24<G‘g) Lo =0
L = _2%)"3—2"5630 o =
Py .
T = 355120 % 56~
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TABLE 1

Aervodynamic Coefficients for Mid-chord Axis

M=07
Approx, 11 Approx. 111
Derivative ) Approx. 1 , Ref. 6 | Ref. 10*
1 2 3 1 2 3
0-2 0-1900 | 0-1849 | 0-1848 0-1848 | 0-1848 0-1849 | 0-193
0-4 0-3160 | 0-2084 | 0-2972 | 0-2972 | 0-2979 | 0-2967 | 0-2967 | 0-2975 | 0-313
Ly 0-6 0-3505 | 0-3189 | 0-3134 | 0-3134 | 0-3164 | 0-3109 | 0-3108 | 0-3120 | 0-360
0-8 0-3299 | 0-2835 | 0-2678 | 0-2677 | 0:2751 | 0-2594 | 0-2593 | 0-2613 | 0-317
1-0 0-2211 ] 0-1883 | 0-1879 | 0-2001 | 0-1672 | 0-1668 | 0-1678 | 0-241
0-2 3-054 3054 3-054 3-054 3-054 3-054 3-050
0-4 2-483 2-504 2-505 2-305 2-504 2505 2-505 2-504 2-505
Z; 0-8 2-223 2-265 2-270 2-270 2-264 2269 2-269 2-269 2-250
0-8 2-094 2-157 2-172 2-172 2-155 2-170 2-170 2-172 2-120
1-0 2-111 2-146 2-148 2-108 2-143 2-143 2-148 2-077
0-2 |—0-0657 |—0-0629 |—0-0629 —0-0629 |—0-0629 —0-0629 {—0-063
0-4 —0-1441 |—0-1325 | —0-1329 [—0-1329 |—0-1324 |—0-1329 [—0-1329 |—0-1330 [-—0-147
— 0-6 —0-2206 |—0-1989 |—0-2014 {—0-2014 |—0-1988 |—0-2014 |—0:2014 |—0-2016 |—0-212
0-8 | —0-2953 |—0-2672 |—0-2756 |—0-2755 |—0-2669 |—0-2759 |—0-2758 |—0-2768 |—0-288
1-0 —0-3371 {—0-3588 |—0-3587 |—0-3370 |—0-3603 |—0-3602 {—0-3626 |—0-375
0-2  |—0-7417 {—0-7398 |—0-7424 - |—0-7398 |-—0-7424 —0-743 —0-745
0-4 —0-5611 |—0-5705 |—0-5807 |—0-5807 |—0-5706 |—0-5809 |—0-5809 |—0-5808 {—0-582
—m; 0-6 | —0-4462 | —0-4726 |—0-4956 |—0-4956 |—0-4734 |—0-4964 |—0-4964 |—0-4960 —O0-487
0-8 1—0-3542 |—0-3983 | —0-4383 |—0-4383 |—0-4008 |—0-4407 |—0-4407 |—0-4406 |—0-427
1-0 —0-3298 |—-0-3892 |—-0-3891 |—0-3358 |—0-3946 |—0-3946 |—0-3948 |—0-380
0-2 3-105 3-117 3-117 3117 3-117 3117 3-11
0-4 2-582 2-838 2-638 2-638 2637 2-638 2-638 2637 2-63
L 0-6 2-359 2-470 2-471 2-471 2-469 2-471 2-471 2-471 2-435
0-8 2285 2-444 2447 2-447 2442 2-446 2446 2448 2-38
1-0 2-496 2-505 2505 2493 2-503 2-503 | 2-508 2-40
0-2 |—3-977 |—3-878 |—3-878 —3-877 |—38-877 —3-881 |—8:85
0-4  |—1-336 |—1-276 |—1-277 {—1-278 |—1-273 —1-274 |—1-274 |—1-277 |—1-45
b 0-6 1—0-3970 \—0-3736 |—0-3749 |—0-3749 |—0-3656 |—0-3670 |—0-3670 |—0-3705 |—0-46
0-8 |+0-0284 |--0-0231 | 0-0202 | 0-0200 |+0-0391 | 0-0359 | 0-0355 [+-0-032 |—0-07
1-0 0-2086 | 0-2020 | 0-2016 | 0-2367 | 0-2285 | 0-2283| 0-225 [40-15
02 1—0-7590 |—0-7595 |—0-7594 —0-7595 |—0-7594 —0-7595 |—0-755
0-4 1—0-6022 |—-0-6167 |—0-6164 |—0:6164 |—0-6169 |—0:6166 |—0-6166 |—0-6166 {—0-617
— 0-6 | —0-5146 | —0-5474 |—0-5467 |—0-5467 |—0-5484 |—0-5476 |—0-5476 |—0-5474 |—0-532
0-8 1—0-4542 |—0-5027 [—0-5013 |—0-5013 |—0-5058 |—0-5042 |—0-5042 |—0-5043 |—0-488
1-0 —0-4623 | —0.4595 | —0-4595 |-—0-4702 |—0-4663 |—0-4664 |—0-4656 |—0-445
0-2 1-728 1-668° 1-668 1-668 1-668 1-669 1-670
0-4 1-027 0-9737 | 0-9758 | 0-9758 | 0-9734 | 0-9756 | 0-9756 | 0-9761 1-010
— 0-6 0-7627 | 0-7296 | 0-7343 | 0-7343 | 0-7289 | 0-7342 | 0-7342 | 0-7350 | 0-770
0-8 0-6291 | 0-6192 | 0-6277 | 0-6278 | 0-6182 | 0-6282 | 0-6282 | 0-6301 | 0-648
1-0 0-5603 | 0-5740 | 0-5741 | 0-5594 | 0-5758 | 0-5759 | 0:5779 | 0-592

* Values were derived by interpolation of results given in Ref. 10.
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TABLE 1—continued

M =0-8
Approx. II Approx, III
Derivative ) Approx. 1 Ref. 8 | Ref. 10
1 2 '3 1 2 3
0-2 0-2569 | 0-2475 | 0-2473 0-264
0-4 0-4189 | 0-3934 | 0-3910 0-3908 | 0-3884 0-3886 | 0-421
[ 0-6 0-5004 | 0-4601 | 0-4529 | 0-4527 | 0-4480 | 0-4403 | 0-4401 0-502
0-8 0:-5532 | 0-4982 | 0-4868 | 0-4856 | 0-4599 | 0-4500 | 0-4489 | 0-4514 | 0-520
1-0 0-5998 | 0-4970 | 0-5201 | 0-5153 | 0-4342 | 0-4425 7 0-4398 0-511
0-2 3-180 3-190 3-191 . 3-17
0-4 2-488 2-532 2-539 2-531 |- 2-539 2-530 2-50
l; 0-6 2-186 2-252 2-281 2281 2-251 2-280 2-280 2-20
0-8 2-008 2-088 2-161 2-161 2-088 2-161 2-160 2-149 2-06
1-0 1-859 1-952 2-092 2-092 1-954 2-093 2-093 1-985
0-2 |—0-0907 |—0-0845 |—0-0846 —0-089
0-4 |—0-1882 —0-1676 |—0-1703 —{0-1675 |—0-1703 —0-1680 |—0-178
—m, 0-6 |—0-2675 |—0-2384 |—0-2529 |—0-2528 | —0-2387 |—0-2542 |—0-2541 —0-266
0-8 |—0-3133 |—0-2869 |—0-3325 |-—0-3321 |-0-2913 |—0-3395 |—0-3390 |—0-3343 |-—0-348
1-0  |—0-3108 |—0-2964 |—0-3961 |—0-3946 |—0-3132 |—0-4189 |—0-4170 —0-425
0-2  {—0-7371 |—0-7396 |—0-7430 —0-746
0-4 | —0-4640 |—0-5000 {—0-5357 —0-5013 |—0-5371 —0-5403 |—0-521
—; 0-6 |—0-2662 [—0-3395 |[—0-4141 |—0-4145 —0-8452 |—0-4195 |—0-4199 —0-400
0:-8 |—0-09687 |—0-2007 |—0-3144 |—0-3157 |--0-2152 {—0-3278 |—0-3293 |—0-3322 |—0-307
140 |4+0-0504 |—-0-0822 |—0-2203 |—0-2238 |—0-1077 |—0-2443 |—0-2484 —0-225
0-2 3-243 3-275 3:275 3-25
0-4 2:598 2-706 2-710 2-706 2-709 2-696 2665
Ly 0-6 2-331 2-521 2-534 2-534 2-521 2-534 2-534 2-418
0-8 2-190 2-462 2-493 2-493 2-467 2-499 2-499 2-481 2-340
1-0 2-084 2-433 2-486 2487 2-455 2-510 2-510 2-835
0-2 |—5-603 |—5-436 |—5-434 —5-95
0-4 |—1:959 |—1-912 |—1-908 —1-895 |—1-890 —1-902 |—2-16
L 0-6 |—0-8045 |—0-8452 |—0-8429 |—0-8429 |—0-8045 |—0-8026 |—0-8026 —0-96
0-8 |—0-3263 | —0-4318 |—0-4429 |—0-4430 |—0-3600 {—0-3721 |—0-3720 {—0-3817 |—0-44
1-0  |—0-1031 |—0-2517 |—0-2911 |—0-2912 |—0-1483 |—0-1894 |—0-1892 —0-21
0-2 [—0-7608 |—0-7672 |—0-7706 —0-762
0-4 |—0-5192 |—0-5603 |—0-5733 —0-5618 |—0-5748 —0-5771 |—0-561
W, 0-6 |—0-3567 |—0-4273 |—0-4539 |—0-4539 |—0-4345 |—0-4603 |—0-4603 —0-434
0-8 |—0-2241 |—0-3020 |-0-3391 |—0-3391 |—0-3222 ;—0-3559 |—0-3560 \—0-3602 |—0-318
10 |—0-1125 {—0-1765 |—0-2128 |—0-2129 |—0-2166 |—0-2438 |—0-2442 —0-210
0:2 2-401 2-268 2-271 2-27
0-4 1-364 1-275 1-288 1-274 1-289 1-269 1-37
— 0-6 0-9648 | 0-9353 | 0-9658 | 0-9658 | 0-9358 | 0-9698 | 0-9699 1-00
0:8 0-7381 1 0-7508 | 0-8034 | 0-8036 ; 0-7584 | 0-8174 | 0-8176 | 0-8042 | 0-82
1-0 0-5810 | 06093 | .0-6802 | 0-6807 | 0-6325 | 0-7126 ;| 0-7131 0-71
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TABLE 1—conéinued

M =09
Approx. II Approx, ITT
Derivative & Approx. I
1 2 3 1 . 1 3
0-2 0-3762 0-3569 0-3577 0-3578 0-3488 0-3496 0-3496
L, 0-4 0-5692 0-5184 0-5504 0-5501 0-4983 0-5257 0-5255
0-6 0-6422 0-4794 (0-6688 0-6631 0-4486 0-5909 0-5880
0-2 3-179 3-228 3-239 3-239 3-261 3-272 3-272
L 0-4 2713 2-356 2-433 2-433 2-356 2430 2-430
0-6 1-854 1-949 2-126 2-137 1-886 2-076 2-080
0-2 —0-1361 —0-1198 | —0-1217 | —0-1217 | —0-1187 | —0-1213 | —0-1213
— 0-4 —0-1837 | —0-1630 | —0-1990 | —0-1987 | —0-1677 | —0-2053 | —0-2049
0-6 —0-0592 | —0-1050 | —0-2148 | —0-2125 | —0-1257 | —0-2466 | —0-2438
0-2 —0-5362 | —0-5930 | —0-6554 | —0-6557 | —0-6085 | —0:6713 | —0-6717
—m; 0-4 +4-0-0373 | —0-1469 | —0-3274 | —0-3334 | —0-1644 | —0-3451 | —0-3516
0-6 0-3636 +0-0463 | —0-1481 | —0-1781 +0-0226 | —0-1818 | —0-2168
0-2 3-254 3-353 3-360 3-360 3-385 3-393 3-393
Ly 0-4 2-401 2-581 2-631 2-631 2-586 2-635 2-635
0-6 1-955 2-243 2-343 2-350 2-215 2-321 2-324
0-2 —8-541 —8-270 —8-288 —8-288 —8-056 —8-073 —8-073
Iy 0-4 —2-913 —2-947 —3-106 —3-105 —2-794 —2-933 —2-933
0-6 —1-288 —1-254 —1-670 —1-662 —1-094 —1-420 —1-416
0-2 —0-5744 —0-6342 | —0-6784 | —0-6786 | —0-6500 | —0-6944 | —0-6946
— My 0-4 —0-0405 —0-1984 | —0-3232 | —0-3265 | —0-2206 | —0-3434 | —0-3471
0-6 0-2633 +0-0362 | —0-0894 | —0-1069 | —0-0048 | —0-1267 | —0-1476
0-2 3:673 3-319 3-372 3-372 3-302 3-359 3-359
— i, 0-4 1-503 1-440 1-636 1-635 1-474 1-682 1-681
0-6 0-5505 0-6580 0-9138 0-9135 0-7506 1-036 1-036
J4347 Wt.19/8411 K7 2/56 D&Co, 34/263 PRINTED IN GREAT BRITAIN
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