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Summary.--The experiments described in this report are part of a programme of model experimenfs-'-d~signe---=dto ~ ......... 
establish an accurate method for calculating the critical whirling speeds of complex systems. 

The critical whMing speeds and natural vibrations of a single shaft ~flexibly supported and carrying a flexible rotor 
of appreciable moment of inertia have been investigated' and good agreement has been obtained between experimental 
and cMculated results for the rotating system. There is some discrepancy between calculated and experimental results 
for the vibration of the non-rotating system, which is thought to be due to the operational characteristics of the flexible 
bearing. 

1. Introduct ion.--The problems associated with shaft whirling have already been discussed 
by the author in a previous report 1, and preliminary experiments have been carried out on a 
model rig s , confirming the fundamental theory of shaft whirling. 

The experiments described in the report are part  of a programme of model experiments 1 
designed to establish an accurate method for calculating the critical whirling speeds of complex 
systems. The particular system investigated is essentially a rotor mounted on a cantilever 
shaft having an additional lateral support, the whole having degrees of flexibility introduced 
additional to that  of the shaft itself. Flexibili ty of known value is introduced symmetrically 
at the lateral support. Flexibility is also provided in the rotor, which has four flexible arms 
enabling i t t o  distort out of the plane of rotation. The whole system has kinetic symmetry,  
and the moment of inertia of the rotor can be varied without changing its mass. 

The dynamics of the system, when vibrating and whirling, were investigated theoretically 
using methods suggested by Morris "a and based on the Jeffcott theory of shaft whirling ~,5 (1919), 
the forms of vibration considered involving only shaft bending without torsion. It  is shown 
that  for this particular system there will be one critical whirling speed which increases as the 
inertia of the rotor increases. The lower natural  frequency of vibration of the non-rotating 
system is shown to decrease as the inertia of tile rotor increases. For a particular rotational 
speed of the rotating system the natural  vibrations will be circular, there being four resonant 
frequencies which vary with rotational speed. These circular vibrations are exponentially 
stable and a critical whirling speed occurs only when the frequency of the forced vibration due 
to rotor unbalance coincides with a natural  frequency of vibration of the rotating system. 

The effect of tile inertia couples due  t o  the rotor, on the deflection forms for the whirling 
system, and for the non-rotating system vibrating naturally, was obtained experimental ly;  
and these deflection forms were compared with that  of the non-rotating system due to a static 
load at the point of at tachment of the rotor. 

* R.A.E. Report Structures 97, received 16th April, 1951. 
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The natural  frequencies of the non-rotating system and the-crit ical  whirling speeds were 
calculated for different amounts of rotor inertia, and the results compared with measured critical 
whirling speeds and natural  frequencies. The comparison gives good agreement between 
calculated and measured critical speeds but  the calculated natural  frequencies of the non-rotating 
system were approximately 10 per cent below those measured. This is considered to be due to 
the outrigger bearing imposing a greater constraint on the non-rotating system when vibrating 
transversely than on the rotating system when whirling, thus causing a change in the mode of 
vibration and an increase in the natural  frequency. 

Following these investigations the natural  frequencies of the rotating system were calculated 
over a range of shaft speeds. Two sets of calculations were made, one assuming the rotor arms 
to be rigid, and another allowing for the flexibility of the arms. These frequencies were then 
measured experimentally. A comparison between calculated and measured frequencies gave 
good agreement, and it was shown that  the allowance for flexibility in the rotor arms increased 
the accuracy of the calculations, especially when the measured natural  frequencies of the system 
were remote from the natural  frequency of the rotor arms. I t  is concluded therefore, tha t  
providing the constraints in a system are known, accurate calculations of the critical whirling 
speed and natural  frequencies can be made using the theoretical t reatment described. 

2. Theoretical I~¢vestigations.--2.1. Analytical Treatment.--2.1.1. The whirling condition.- 
In this case the dynamics of a shaft (Fig. 1) supported in bearings of symmetrical stiffness 
carrying a load W of mass m and of appreciable moments of inertia a, a, c (c being the polar 
moment and a the moment about a diameter in lb in. sec ~ units) are considered. 

In  Fig. 1 the line OZ is drawn through 0 the point of a t tachment  between the rotor and the 
shaft parallel to the centre-line of the bearings. The point O' represents the displaced position 
of 0 having co-ordinates X and Y relative to the major (fixed) axes OX and OY. 

The point G represents the c.g. of the rotor assumed to be displaced an amount h from O' in  
the plane XOY.  The motion of the system is considered relative to the three axes Gx, Gy and 
Gz drawn parallel to the major axes OX, O Y and OZ. 

The positions of the principle axes of the rotor in a general displacement of the system are 
represented by GA, GB and GC, the inertias relative to these axes being a, a and c respectively. 
The positions of these axes is determined by imagining first a small rotation # in the xz-plane 
about the y-axis, then a small rotation 0 about the displaced x-axis and finally a rotation ~t  
about the axis GC. 

The rotations ~ and 0 are assumed to be small which would be the case in practice and ~ is 
the angular speed of the shaft. 

The instantaneous angular velocities about the axes AG, BG and CG are represented by 
0)1, 0)2, 0)3 respectively and are obtained by summing the components of the angular velocities 
#, 6 and f2 in the planes BCG, ACG and ABG respectively. 

Thus 0)1 ---- ~ sin ~t  -- 6 cos ~t  
0), = # cos ~gt + $ sin ~t  ~ . . . . . . . . . . . . .  (1) 
0)  3 ~ if2 

The angular momenta due to the angular velocities of equations (1) are respectively aol, 
a0)2 and c0)3 and therefore the component angular momenta in the directions y to z and z to x 
are given by 

h, ---- a0)1 cos ~t  -- a~o~ sin ~t  + c0)3 • 
. . . . . . . .  ( 2 )  

and hy = a0)1 sin ~t + a0)2 cos ~t  + c0)8 0 
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Subst i tu t ing for ~1, ~o~ and ~3 from (1) in (2) gives 

h, = - -  a0 + c~gq~, . .  . .  

hy = a #  - / c ~ 9 0  . . . . . . .  

a t 

• O 

• • 

• • 

• • 

• • 

• • 

• o 

• n 

• • 

. .  ( 3 )  

. .  ( 4 )  

The co-ordinates of G relative to the  axes O X  and O Y  will be X -  h cos (~gt + ~) 
and  Y --  h sin (zgt + ~) respectively where ~ is the angle between O'G and G A  and (tgt + ~) 
is the  angle between O'G and G X .  Since h is small it may  be assumed tha t  the  following forces 
will act on the  shaft  at  0 ' .  

(a) An inertia force --  m [ X  + hi? ~ cos (g t  + ~)] in the  direction of the X axis . . . .  (5) 
(b) A couple due to the  change of angular  m o m e n t u m  --  hy ---= --  (a# + c~9~) about  an 

axis through O' parallel to Gy in the direction z to x . . . . . . . . . .  (6) 
(c) An inert ia force --  m[Y + h~92 sin (t?t + ~)] in the  direction of the Y axis . .  (7) 
(d) A couple h, = --  (a0 --  ct?~b) about  an axis th rough  O' parallel to Gx in the  direction 

z t o  y . . . . . . . . . . . . . . . . . . . . . . . .  ( 8 )  

The equat ions of mot ion are therefore 

X = - -  m [ R  + h~Q 2 COS ( ~ t  .A[_ ~])~Yll - -  ( a #  + Cff20)Zll . . . . . .  (9) 

O = - -  J'J~[X -7[- h ~  2 COS ( g t  + ~)IZll  - -  (6~¢ + C90)~11 . . . . . .  (10) 
Y = --  m[52 + hi? 2 sin (g t  + V)]Yn --  (aO - -  c 9 ¢ ) z ~ t  . . . . . .  (11) 
0 = --  m[~ ~ + h 9  2 sin ( g t  + ~)~zll - -  (aO - -  c9¢)¢11 . . . . . .  (12) 

where Yn is linear deflection due to uni t  load at the point  of a t t achment  
¢11 Angular  deflection due to unit  couple at  the point  of a t t achmen t  
z~1 Angular  deflection due to unit  load at the  point  of a t t achmen t  

= linear deflection due to unit  couple at the point  of a t t achment  

A part icular  solution of equations (9), (10), (11) and (12) will be of the  form 

X = X0 cos (zgt + V) Y = Xo sin (g t  + v) 

= q~0 cos (zgt + V) 0 ---- q~0 sin (tgt + V) 

and subst i tut ing for X, Y, # and 0, in these equations gives • 

( - -  ncy~f2 ~ + 1)Xo + (c - -  a ) z ~ s g ~ o  = - -  my~lht? ~ 

- -  ~]4~gllQ2X0 "~-- [(C - -  a ) (~ l l~  2 -7[- 11 qs0 ----- --  m z n h D  2 

from which 

and 

where  

X o  = - m h g ~ [ ( c  - a ) ( y ~ l ¢ ~ l  - z ~ 2 ) ~  ~ + y ~ , ] / Q  

4o = - -  m h ~ 2 z n / Q  

Q = - m ( c  - a ) ( y l ~ ¢ 1 1  - z l ? ) ~  ~ + [ (~  - a ) ¢ 1 ~  - m y ~ 3 ~  ~ + 1. 

I t  follows therefore tha t  O' will describe a circle about  the axis O Z  with s teady motion.  

Also X0 and 4o become infinite when Q --  0, therefore the  equat ion 
m ( c  - a ) ~ t ?  ~ - [ ( c  - a ) ¢ 1 ,  - m y l l ] ~  ~ - 1 = 0 . . . . . .  

will give the critical whirling speeds 

[where A = (Y11¢11 - -  Z l 1 9 ) ]  . 

(13) 

If c is greater  than  a which is usually the  case, then  only one value of ~92 given by equat ion  
(13) will be posit ive and hence there will be one critical speed only. 
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2.1.2. The natural vibrations of the rotating system.--The natural  vibrations of the rotating 
system are next considered, appropriate to the case where the forcing due to the out 0f balance 
h is absent. For these there will be a solution of the form 

X = X0 cos (~ot + ~) Y = X0 sin (cot+ ~) 

4 = 4o cos (~ot+ ~) , ,  0 = 4osin (cot + ~) ~ 

which constitute circular vibrations of amplitude X0 and 40 an'd frequency ~/2~.~ Inserting 
these Values in equations (9), (i0), (11) and (12) with h put  equal to zero gives 

(-- my11~o ~ + 1)Xo + (-- aco 2 -k C~(D)Zll40 : 0 
and 

- mz~o~xo + [ ( -  a ~ +  c/2~)¢~1 + 1]~0= 0. 

:Eliminating Xo and 40 from these two equations gives t h e  frequency equation 

maA~o' -- mcAgw a -- (a4,1, + my11)eo a -~, C611/2co -~- 1 -=,0 .. • . . . .  (14) 

yi,,  ¢i,, and A being positive and c > a. 

I t  may be shown that  there are four real roots to this equation two of which are positive and 
two negative. This means that  for any value of ~9 there will be four natural  free vibrations 
which are circular. The negative roots correspond to circular vibrations in the opposite direction 
to  the rotation of the shaft and the positive roots to circular vibrations in the same direction. 

The whirling speed occurs when co = ~9, i.e., when the forced circular vibration due to out- 
,of-balance has the same frequency as a positive natural v ibra t ion of the rotating shaft. 

2.1.3. The natural vibrations of the non-rotating system.--The frequencies of vibration of the 
non-rotat ing system are obtained by substituting /2 = 0 in equation (14)which gives 

maA~o 4 (a¢1~ -k myra)co 2 -k 1 = 0 

from which 

1 (my~ + a61~ ± ~/[(my~ + a¢~) ~ -- 4maA] 
co ~ - -  2 . . . . . . . .  ( 1 5 )  

The lower of the two frequencies obtained from equation (15) is considered to be the most 
impor tant  for the purpose of these investigations and is given approximately by 

1 a z l l  ~ Zll  2 
oa~--my~ + Yl~ + a~A . .  ( 1 6 )  m y l l ~  . . . .  . . . . . .  

The solution given by equation (16) for a particular case has been found to be within 0 . 1  
per cent of the more accurate solution obtained from equation (15). 

2.2. Calculated Results for the Experimental System.--2.2.1. The effect of rotor inertia on the 
natural vibrations of the non-rotating system.--Using equation (16) section 2.1.3 in conjunction 
with the flexibility coefficients obtained from Appendix I, the natural  frequencies of the non- 
rotating system were calculated for the particular range of rotor inertias investigated in the first 
serms of experiments (section 3.2.1). 

2.2.2. The effect of rotor inertia on the critical whirling speed of the system.--Using equation 
(13) section 2.1.1 in conjunction with the flexibility coefficients obtained from Appendix I the 
critical whirling speeds were calculated as in 2.2.1. 
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2.2.31 The natural vibrations of the rotating sys tem.--The natural vibrations of the rotating 
system are given by the four real roots of equation (14) section 2.1.2, viz., 

maAco 4 - -  inca f2~o 8 --  (a~l~ + myli)co 2 + c~[2co + 1 = O. 

In order to facilitate the computation this equation is written in the form 

maA co~ - -  (aq~il @ myii)co 2 @ 1 
t2 = cco(mAco ~ _ ¢~) . . . . . . . . . . . .  (17) 

When the rotational speed ~9 : 0 the frequencies of vibration of the rotor are given by 
± ~ and 4- ~ where ~ and r2 are the values of co 2 which satisfy the equation 
maAco 2 ~ (a$x~ + my~)co ~ + 1 = 0. If co is plotted against ~9 there will be four asymptotes 
given by  

co = 0, co ---- -t- ~/~--A and o~ : c - -  . 
a 

The :family of curves given by plotting co against D was obtained by substituting appropriate 
values of co in equation (17) above and solving for ~2. 

2.2.4. The effect of flexibility of the rotor arms on the natural vibrations of the rotating s y s t e m . -  
The calculations of 2.2.3 were made with the assumption that  the rotor arms were rigid. An 
approximate allowance for the flexibility of the arms was made to the calculations using a method 
propounded by Morrlst The natural frequency of the arm was measured and from this measure- 
ment  and a knowledge of the mass of the arm and its tip load the flexibility coefficient y~ was 
estimated. The correction for arm flexibility is then made by substituting [611 + #a~/2] for 
$~ in the frequency equation (17) w h e r e / ~  : y~/l~ ~, l~ being the length of the rotor arm. 

3. Experimental Investigations.--3.1. Details of Model Rig and Experimental Techniques. 
The model rig described in a previous report 1 was used for the experimental investigations. 
The shaft used was L-in. diameter and 12-in. long and was operated as a cantilever with a flexible 
outrigger bearing of symmetrical stiffness placed 10 in. from the fixed end of the shaft. A four- 
arm rotor was fitted to the free end of the shaft to simulate a four-blade propeller. The arms 
were made from screwed rod, each arm carrying a brass weight weighing 0.1 lb. The position 
of the brass weights could be varied along the arms so that the inertias of the rotor could be 
changed without affecting its mass. The arrangement of shaft and rotor is shown in Fig. 7. 

Whirl forms and amplitudes at the free end of the shaft were recorded photographically and 
shaft speeds were recorded electronically and synchronised with the recording of the whirl forms. 
The deflection form of the shaft itself under the various conditions tested was obtained by 
illuminating the shaft and using photographic methods of recording. 

Before carrying out whirling experiments the rotor inertias were measured using the unifiler 
suspension method and the spring constants of the svstem were obtained by direct loading, 
deflections under load being measured by means of a 0.0005-in. dial gauge. The flexibility 
coefficients were deduced from this measurement by the methods of Appendix I and used in the 
theoretical calculations of section 2.2, which were later compared with the experimental results. 
Dimensional details of the rig relevant to the calculations are given in Appendix II. 

3.2. Details of Experiments.--3.2.1. Critical whirling speeds of the system and the natural 
vibrations, of the non-rotating sys tem.--From measurements of whirl amplitudes and shaft 
rotational speeds, amplitude-frequency curves have been plotted (Fig. 2) showing the effect of 
varying the inertias of the rotor. From these curves the critical whirling speeds for particular 
values of rotor inertia Were obtained and are compared in Fig. 3 with the calculated critical 
speeds of section 2.2.2. 
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The lower natural  frequency of the non-rotating system was measured for the same values of 
rotor inertias used in the whirling experiments and is shown in Fig. 3 compared with the 
calculated frequencies of section 2.2.1. 

The deflection forms of the shaft when statically loaded at the rotor end, when vibrating 
transversely (non-rotating system) and when whirling were recorded and are compared in Fig. 4. 
I t  was not practicable to record the three deflection forms at the same tip amplitudes and for 
the purpose of comparison the measured forms were adjusted accordingly. The vibrating and 
whirling deflection forms were recorded with maximum possible rotor inertias. 

3.2.2. The natural vibrations of the rotating system.--For these investigations the rotor inertias 
were set at the maximum possible values (c = 0.0526 lb in. sec 2, a = 0.026 lb in. sec ~) and 
the rotor was accurately balanced. The rotating shaft was excited b y m e a n s  of a motor- 
driven crank elastically coupled to the shaft. Although the excitation was in a lateral direction, 
because of the inertia coupling it was effective in exciting the circular vibrations. An inductance- 
type proximity pick-up was used to investigate the resonant frequencies of t he  shaft, the signal 
from the pick-ups being recorded from a cathode-ray tube by means of a continuous-film camera 
and the frequencies measured against a fifty-cycle timing trace. 

The frequencies of the natural  vibrations of the rotating shaft were obtained at various speeds 
of shaft rotation by running the shaft at a particular speed and exciting it over the frequency 
range of the exciter ; the resonant frequencies were observed visually on a monitor cathode-ray 
tube and then recorded to give an exact frequency reading. The range of shaft speeds over 
which investigations were carried out was chosen to cover speeds from zero r.p.m, to a value 
well above the critical whirling speed of the shaft. The results of these experiments are shown 
plotted in Figs. 5 and 6. 

4. Discussion of the Results.--4.1. The Critical Whirling Speeds of the System and the Natural 
Vibrations of the Non-rotating System.--From Fig. 3 it is seen that  the calculated values of 
critical whirling speeds agree closely with those measured, but  there is some discrepancy between 
measured and calculated natural  frequencies of the non-rotating system, the difference being 
approximately 10 per cent over the range of rotor inertias investigated. This confirms the 
results of previous experiments on this rig 2. I t  is considered that  the outrigger bearing imposes 
an extra constraint on the non-rotating system when vibrating transversely which is not present 
when the shaft is whirling thus changing the mode of vibration and increasing the natural  
frequency. 

The deflection forms of Fig. 4 show clearly the effect of the inertia couples arising from the 
appreciab'le inertia of the rotor. Theoretically when the shaft is vibrating transversely the 
inertia couple will act in phase with the displacement of the shaft and have the same effect on 
the system as an increase in the flexibility coefficient Y11, i.e., reducing the natural frequency. 
This is shown in Fig. 4 by the increased curvature of the transverse vibration form compared 
with the static deflection form. When the shaft whirls the inertia couple theoretically acts in 
opposite phase to the displacement of the shaft thereby increasing the critical whirling speed : 
again this is shown in Fig. 4 by the decrease in curvature of the whirl deflection form, compared 
wi th  the static form. 

4.2. The Natural Vibrations of the Rotating System.--Figs. 5 and 6 show the measured natural  
frequencies of the rotating shaft. 

In Fig. 5 the measured frequencies have been plotted as they actually appeared, i.e., as definite 
frequencies at particular shaft rotational speeds, either in a forward or reverse sense with respect 
to the direction of rotation of the shaft. At ~ ----- 0 there are the two natural  frequencies 
appropriate to the non-rotating system (see section 2.1.3). When the system is rotating, four 
frequencies are obtained in divergent pairs from the original two. The  theoretical explanation 
of this phenomenon may be obtained from equation (14) (section 2.1.9.) which gives the frequencies 
of the free vibrations (~o) for any rotational speed (~). When ~ is zero there are four roots 
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of equation (14) given by ~o = :t: c¢ and co = 4- ), : the negative roots of ~o correspond to the 
reverse whirls and the positive roots correspond to forward whirls. When the shaft is rotating 
the roots of equation (14) are no longer symmetrical, the negative roots decrease in frequency 
with increase of shaft speed and the positive roots increase in frequency, the negative roots 
are asymptotic to o~ = 0 and co = -- ,~/(611/mA) respectively and the positive roots are asymp- 
totic to ~o = + ~/(¢~/mA) and co = c(~?/a) respectively. 

In Fig. 6 the natural frequencies of Fig. 5 are plotted algebraically, positive and negative 
appropriate to forward and reverse motions respectively. Three sets of results have been 
plotted (co against s~), two calculated (one assuming rigid rotor arms and one allowing for 
flexibility in the rotor arms) and a set of measured results obtained by exciting the rotating 
system. I t  is seen that  the lower frequencies are not appreciably affected by the flexibility 
of the rotor arms;  the effect on the critical whirling speed of introducing arm flexibility into 
the calculations was found to be of the order of 1 per cent. However, the higher frequencies 
are affected to a greater degree, which is to be expected as the natural frequency of the r o t o r  
arms, was 58 c.p.s, and the measured value of y was 60 c.p.s. The calculated roots of the negative 
frequency originating in -- ~, are higher than those measured when the flexibility of the rotor 
arms is ignored, whereas on correcting for this flexibility the frequencies obtained are lower 
than those measured although the discrepancy between theory and experiment is less than in 
the latter case. In the case of the root originating in + y again the correction for rotor arm 
flexibility is too-great for the lower rotational shaft speeds but as the shaft speed increases the 
two curves of calculated and measured results quickly converge as the frequency of the circular 
vibration becomes appreciably greater than the natural frequencies of the rotor arms. 

5. Conclusions.--The experiments described show that, providing the constraints in a system 
are known precisely, it is possible to predict accurately the critical whirling speeds and the 
natural  frequencies of the rotating system for a rotor of appreciable moment of inertia. The 
allowance for flexibility of the rotor arms increases the accuracy of the calculations, especially 
when the frequencies are appreciably different from the natural non-rotary frequencies. The 
method has the additional advantage that  it is easily applied to the basic theory since only a 
change in the flexibility coefficient ¢~1 is required. 

The self-aligning outrigger bearing used in the experiments is shown to operate satisfactorily 
when the shaft is whirling, though the restraint on bending increases the natural frequency of 
vibration when the shaft is not rotating. 

6. Further Developments .--The effect of bearings on tile critical whirling speeds of shaft 
systems, having regard to the constraints imposed on the system, and also the nature of the 
support given to a system when plain bearings are used, forms an important aspect in design 
calculations. A programme of tests on a large model rig is at present being carried out at 
Royal Aircraft Establishment to investigate the constraints in plain bearings of different lengths 
and clearance. Where possible, measurements are being taken of similar constraints in full- 
scale test rigs and aircraft power plant installations. 
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A P P E N D I X  I 

The Calculation of the Flexibility Coefficients Yn¢n and zn 

The flexibility coefficients are best calculated by means of the energy method. 

"~ Z, >- 

o 2. P w 

SPRING ~ 
STIFFNESS 
S' I b./in. 

The installation to be considered consists of a cantilever shaft 01 carrying a load W at 1 and 
supported by a flexible prop at point 2. A couple C is assumed to act about point 1. 

Let P be the force exerted by the flexible prop. 

Let S be stiffness (lb/in.) of the prop. 

Let M02 be the bending moment  at any section of the shaft between 0 and 2 distance x from 0. 

Let M12 be the bending moment  at any section of the shaft between 1 and 2 distance x from 0. 

Then Mo2 = W(l  - -  x) + C --  P(a  --  x) 
and M12 -~ W ( 1 -  x) + C. 

Between 0 and 

E l  d~Y 
d x  2 

E1 dy 
dx 

E l y  

At point 2, 

Therefore 

2 

--  Mo2=  W ( l - -  x) + C - -  P ( a - -  x) 

2} 

y ----y~, P = Sy~, x = a. 

E l y 2  = W + ~ - -  S y ~  

Therefore I + -~-j  y= = W + ~ - .  

For the actual system a = 10 in., 1 = 12 in., E1 = 5446 lb in. s, S = 82.89 lb/in. 

w ( 6 0 0 -  167) + 50c 
Therefore Y~ ----- 5446 + 10952 : 0-0264W + 0-00305C. 

Therefore P = Sy2 = 0 . 8 6 8 3 W  + 0. 1003C. 
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The work done in bending the shaft is given by 

V -- 1 Mo2~dx -J- M122dx + P 
2EI  o ~ 2Y~ 

= ½[0-0367W ~ + O.OI050WC,::,+ 0.0013C ~] . . . . .  

Let Yn be the linear deflection at 1 due to unit load at 1 
zn be the linear deflection at 1 due to unit couple at 1 

= angular deflection at 1 due to unit  load a t  1 
¢n be the angular deflection at 1 due to unit couple at 1. 

Then due to the load W and couple C, the linear deflection at point 1 

= Wy l + Cz11. 

Angular deflection at point 1 : WZ~ + CCn ...... 

and the work done by couple C and load W ,~ , 

= -}[W~yn'+ 2WCzi-~ + C~¢n]. ' . . . . . . . .  

Equat ing the expressions on the right-hand sides of equations (1) and (2) gives 

½[0.0367W ~ + O:OI050WC + 0.0013C ~] 
1 2 = ~[Wyn  + 2WCz~ + C~¢n] 

whence Yn = 0.0367 in./lb 

zn = O" 00525 in./lb 

and ¢n = 0"0013 radn/lb in. 

(1) 

(2) 

A P P E N D I X  II  

Dimensional Details of Model Rig 

Effective length of shaft 

Distance of outrigger bearing from the' fixed end of the shaft 

Equivalent  weight of shaft 

Weight of rotor ~' 

Hence equivalent end load 

Measured spring rate of outrigger bearing support 

Measured stiffness of shaft alone 

Measured stiffness of shaft and outrigger bearing support combined 

The deflection coefficients, calculated in Appendix II, are : - -  

Yll = 0" 0367 in./lb 

411 = 0"0013 radn/lb in. 

z11 = O. 00525 in./lb in. 
From measurements taken on the rotor 

Ua,/la ~ = 0 '  0 0 0 3 3 .  

9 

12 in. 

10 in. 

O. 0443 lb 

O. 888 lb 

O. 9323 lb 

32.89 lb/in. 

9.47 lb/in. 

27.3 lb/in. 
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FIG. 1. The whirling condition. 
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