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Summary.--In many problems relating to the stressing of thin-walled cylinders, and in particular those concerned 
with the stresses set up in a cylinder under torsion when one section is restrained against warping, it has been commonly 
assumed that sections have their shape retained by closely spaced stiff ribs. Justification for this assumption is that, 
for certain types of loading, the ribs of most practical structures do little work in maintaining the section shape (and 
the analysis is considerably simplified). 

In this report the effect of discrete, flexible ribs has been investigated and the results have been incorporated in a 
number of graphs which show the effect of rib-flexibility in a long thin-walled cylinder of arbitrary shape under end 
constraint. Some of the results of these investigations are, as would be expected, of a negative character, in that 
they show that  for certain types of end conditions (roughly, those in which the predominating self-equilibrating loads 
act parallel to the cylinder axis) the effect of rib-flexibility is negligible. But rib-flexibility is of paramount importance 
when self-equilibrating shear-distorting forces are applied to a cylinder--such as occur at a wing cut-out or near an 
overhanging engine--and this report makes the stress distribution in such a case readily determinable. 

It  is shown that  the complete stress die-away pattern depends, apart from the boundary conditions, on two non- 
dimensional parameters. These parameters are functions of the type of end constraint as well as of the structure 
dimensions and elastic constants. Expressions are given for determining these parameters when the cylinder shape 
and loading are arbitrary. 

The simplified case of a four-boom cylinder Of rectangular section under torque is treated separately in a second 
appendix. 

The solution is strictly true for a four-boom cylinder or when the self-equilibrating end-load system is orthogonal 
(eigenload)5 ; but  as minimum-energy methods are used in the analysis, the results are believed to be substantially 
correct for a smoothly varying end-load system applied to a cylinder of arbitrary shape. 

1. I~troduct ion. - -When a thin-walled cylinder undergoes torsion, or bending with shear, 
there will be in general an axial warping of all sections ; however, if one section is restrained 
against warping then a self-equilibrating stress system will exist at, and in the neighbourhood of, 
the restrained section. I t  is convenient to regard the stresses in such a cylinder as being made 
ap of two parts, the one due to the primary applied loads and the other due to the self-equili- 
brating system. This system can be regarded as that  which will just liquidate the warping at 
the constrained section. 

* R.A.E. Report Structures 6, received 8th November, 1947. 



In calculating the magnitude and rate of decay of these self-equilibrating stresses it has been 
commonly assumed that  the cylinder sections have their shape retained by closely spaced stiff 
ribs. This assumption has the advantage of considerably simplifying the analysis and it is 
usually sufficiently accurate in problems in which the ribs do little work in retaining the cylinder 
shape and may therefore be regarded as infinitely stiff. However, in such problems as the 
stress determination near large cut-outs, etc., this assumption is not valid. 

I t  will be noticed that  by considering the ribs to be flexible we have introduced a second 
degree of freedom for the cylinder displacements, and hence the stresses will have two independent 
modes. Here, therefore, we consider the stresses set up by applying to one end of a long cylinder, 
stiffened by uniformly spaced flexible ribs, two self-equilibrating sets of stresses. The first of 
these corresponds to the case where the root section is subjected to axial warping alone and 
no shear distortion ; the second to the case where there is only shear-distortion of the root section 
(i.e., distortion in its own plane) but no axial warping. Any end condition may be obtained by a 
linear combination of these two fundamental systems. 

Mention has been made earlier of the application of this work to the ' torsion problem ' and, 
although the main part of the analysis here is concerned with the more general problem of 
applying any smoothly varying self-equilibrating system to one end of a long cylinder of arbi trary 
shape, the particular application to the torsion of a cylinder of rectangular section is dealt with 
in Appendix II. 

2. Assumptions and Method of Solution.--The fundamental  assumption made is that  tile 
distribution of direct stress round a section is constant along the cylinder. This is strictly true 5 
only in the case of a four-boom cylinder or when the stress distribution is ' orthogonal ' (as it is 
for example, in the building-in effect of a tube of rectangular section under torque). The method 
developed here cannot therefore be applied to find the effect of rib-flexibility on the stresses in 
a cylinder to one end of which is applied a ' four-point loading ', and other problems where the 
stress diffusion has a discontinuous character. But, as stated in the summary, the method 
used here being a minimum-energy one, the stress die-away pattern will be substantially 
correct--being the best possible subject to the given assumptions. The second main assumption 
tha t  the direct stress varies linearly between ribs is then in agreement with previous investi- 
gations ~. 

In addition to these assumptions the following are also made:  the material is isotropic and 
the stress-strain relations are l inear;  tile structure is integral and constant along its length ;  
stringers, if present, may be spread into a stringer sheet ; the peripheral stresses are negligible 
in comparison with the longitudinal and shear stresses. The ribs are assumed to have no stiffness 
normal to their plane. Reference is made throughout to an ' equivalent shear-rib thickness '  : 
for a rib of framework construction this is understood to mean the thickness of a simple shear 
rib (i.e., a uniform sheet) which has the same stiffness as the actual rib. 

The method of solution is an energy one. The direct-stress distribution round tile section at 
the root is one of tile data of the problem and, by introducing a representative decay factor 
(because of the two possible modes of stress distribution there will be four decay factors altogether, 
two increasing and two corresponding ones decreasing), the variation along the cylinder is also 
known. From considerations of equilibrium the shear stresses in the cylinder walls and the 
rib stresses are therefore known in terms of the unknown decay factor. The total  strain energy 
of the system is now evaluated and Castigliano's Energy Theorem used to get the quartic equation 
which determines tile decay factors. 

For the particular case of end constraint of a cylinder of rectangular section under torsion it 
is of interest to note that  the decay factors obtained by this method are in complete agreement 
with those obtained by solving the difference equation which results from considering com- 
patibil i ty of displacements and stresses. 
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3. Description of Results.--In Appendix I an equation for determining the decay factors 
is derived; these factors are shown to be functions of two non-dimensional parameters, one, 
/3, a measure of the rib pitch and the other, ~,, a ' generalised rib stiffness '. Precise definitions 
of/3 and y for cylinders of arbitrary shape are given in equation (40). For the particular case 
of a rectangular box under torsion $ and ~ are given by equations (92) and (93). 

3.1. Influence of Rib-Flexibility when one Section is Restrained against Shear Distortion.-- 
In Appendix IA the particular problem of the effect of uniformly spaced flexible ribs on the 
stresses due to a self-equilibrating system applied to a long thin-walled cylinder, when one 
section--the root section--is restrained against shear-distortion, is considered in detail. This 
condition of zero shear-distortion may be regarded as produced by  a stiff root rib. 

Figs. 1 to 4 show the effect of/3 and ~ on the direct stresses and shear stresses at the root. 
Previous theory, in which cross-sections are assumed to retain their shape, corresponds to the 
particular case when/~ is zero and ~ infinite ; it is seen therefore from Figs. 1 to 4 tha t  the 
functions plotted there, i.e., lye, ¢~ and A~, may be regarded as factors b y  which the stresses 
obtained by such theory hereafter called elementary theory, must be multiplied to give the 
correct stresses. Over the current practical range of/3 and ~ (roughly,/~ < 1, ~ > 2) the factor 
for the direct stresses lies between 0.9 and 1.0 and for the shear stresses between 0:6 and 1.0. 

Fig. 5 shows the maximal value of the self-equilibrating shear-distorting forces applied to a 
rib in terms of the forces exerted by the stiff root rib ; this ratio is less than 0.5 over the practical 
range of $ and 7. The most highly stressed rib may be determined from Fig. 6 : it is usually 
the first or second. 

The ratio of the direct stress at the first rib to tha t  at the root has been plotted for 
various /~ and 7 in Fig. 8 ;  it will be seen tha t  rib-flexibility is relatively unimportant  
and this ratio differs little from that  given by elementary theory (shown by broken 
line). A more marked dependence on rib-flexibility is shown in Fig. 9 where the ratio 
magnitude of self-equilibrating shear stresses in firs* bay has been plotted. 
magniCude of self-equilibrating shear stresses in root bay 

The direct stress distribution along the cylinder when each rib is infinitely stiff has been 
plotted for various/3 in Fig. 10. I t  is of interest to note that  the area under each curve is in- 
dependent of/3 and it follows that  the direct stresses at rib stations are lower than those given 
by elementary theory but are higher between ribs. 

For a full explanation of the curves in Figs. 7 and 11 reference should be made to A.6.3 where 
the concept of a ' r i b  med ium'  is introduced. 

The functions 21, ,t2 of Figs. 12 and 13 are for use in determining the stresses along the cylinder ; 
they apply to this particular end condition and when there is zero axial warping at the root. 

3.2. Influence of Rib-Flexibility when one Section is Restrained against Axial Warping.-  
In Appendix IB the particular problem of the effect of uniformly spaced flexible ribs on the 
stresses due to a self-equilibrating system applied to a long thin-walled cylinder, when one section--  
the root section--is restrMned against axial warping, is considered in detail. This condition of 
zero warping may be regarded as produced by a self-equilibrating shear-distorting system 
applied at a section in the middle of a long cylinder ; it will be seen from symmetry  that  this 
root section will not experience axial warping. 

From a physical point of view it would be expected tha t  the degree of rib-flexibility and 
spacing would have a marked effect upon the stresses and their rates of die-away. This is 
abundant ly  clear from Figs. 14 to 18 where numerous families of curves, analogous to the previous 
ones, have been drawn. 

That  part  of the notation which is relevant to Figs. 1 to i8 is reproduced in Note II, 
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3.3. Ap2blication to a Cylinder of Rectangular Section under Torsion.--This has been treated 
in detail in Appendix 1I where expressions for the standard decay factor, k and the non-dimen- 
sional rib spacing and stiffness parameters $ and ~, have been given ; these expressions are given 
in A.9.2 and are more manageable than the general ones derived in Appendix I. 

A complete numerical example demonstrating the practical application of this report is given 
at the end of Appendix II. 

An equivalent ), for a cylinder with walls of sandwich construction is found in A.12 where a 
simple formula is given in equation (101). 

3.4. Subsidiary Problems.--Numerous particular cases of the general problem have been 
investigated in Appendices IA and IB, e.g., the concept of a rib medium, etc." and the effect 

o f  a rib medium in combination with discrete ribs is discussed in A.6.4. 

4. Conclusions.--When one end of a thin-walled cylinder is subjected to a smoothly varying 
self-equilibrating system, it has been general to assume that  cross-sections have their shape 
retained by closely spaced stiff ribs. In this report the effect of flexible and discrete ribs has 
been investigated, and the stess at any point in the cylinder is shown to be that  given by 
elementary theory multiplied by an appropriate function of two non-dimensional parameters. 
Expressions are given for these parameters, and the functions referred to above have been 
plotted in Figs. 1 to 18. 

I t  is shown that  the effect of rib-flexibility upon the stresses in a cylinder when one section 
is restrained against shear-distortion is small (producing errors, over the current practical range, 
of less than 10 per cent in the direct stresses and less than 40 per cent ill the shear stresses, and 
these on the conservative side). 

The corresponding problem when one section undergoes shear-distortion but  is prevented 
from axial warping has been investigated and the stresses are shown to be markedly dependent 
upon rib-flexibility. Such a condition of rib distortion may occur near large cut-outs in a 
cylinder under torsion or where a sudden torque is applied in a ' non-Batho ' manner, e.g., an 
up-and-down torque produced by an over-hanging engine in an aircraft wing. 

An example demonstrating the practical application of this report has been given at the end 
of Appendix II. 

5. LIST OF SYMBOLS 

Notation of A2bpendix I 
E, G Elastic moduli 

z Distance along cylinder measured from a rib (1), (2) 
s Distance around section measured from a fixed point (3) 
u Axial displacement, assumed to be of the form us(s) u~(z) (1) 

= ~(s) which determines the direct-stress distribution 
round a section (1) 

f Constant of proportionality such that  
f~  Direct stress (axial stress) (1) 

n Number of rib or bay (see Diagram 1) (1) 
r Stress decay factor (1) 
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Notation of Appendix I--continued first in t roduced 
in equat ion : - -  

p 
t 

t, 
q 
Q 

Oo 
F~ 

P 

A 

A.. 

R 
S 

H 
S ' , H '  

t r i b  

N 
WR 
WF 

Ws 
WQ 

W 
B1, B~, B3 

eo 

k 

Y 

Rib pi tch (assumed constant)  
Skin thickness of cyl inder  walls 
Str inger-sheet  thickness 
Shear stress in cylinder walls 
qt = shear flux 
Value of Q a t s  = 0 
Section area of j t h  flange 

Leng th  of perpendicular  from Oz to t angen t  to point  
on section 

Total  area of cylinder section = l C p  ds (area of equi- 
valent  shear rib) 

Area of section bounded by  radii from Oz to s = s~, 
S = S m 

(13) 

, ° ° ° ° ° ° ° ° ° ° ° ° ° , ° 

Rib bounda ry  shear flux 
Values of S, H at s = s' 
Thickness of equivalent  shear rib 

. ° . , , . ° , . , , ° , , , ° 

Strain energy stored in rib 
Stra in  energy stored in flanges 
Strain energy stored in str inger-sheet  
St ra in  energy stored in cyl inder  walls (due to shear) 
Total  s t rain energy 

. . . , ° ° , , ° . ° , . ° . , 

. ° ° , . . . .  , ° . , . . . ° 

' S tandard  decay factor ' 
' Non-dimensional  rib pi tch measure ' 
' Generalised rib stiffness ' 

(29), 

(40), 

(40), 

rl = r~(fl, ~) ~[. values of r whose modnli are less than 
r2 ---- r~(¢{, ~) f un i t y  

(2) 
(3) 
(3) 
(3) 
(S) 
(S) 

. (6) 
(7) 

(11) 

(19) 

(13) 
(14) 
(is) 
(17) 
(19) 
(19) 
(19) 
(19) 
(21) 
(24) 
(25) 
(27) 
(30) 
(3s) 
(70) 
(40) 
(76) 
et seq. 

(42) 

Additional notation in Appendices IA and IB 

fl, f~ Values of f corresponding to rl, r2 
~1, ~2 . . . . . . . . . . . . . . . .  

~ 0 ~ o  • ° , , ° , , ° , , ° ° . . . .  

z ~ ;  ° * * ° , , • • , , ° ° . . . .  

21, 22 . . . . . . . . . . . . . . . .  

J ° • * • ° , , • ° , ° ° . . . .  . 
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(43) 
(52) 
(53) 
(54) 

(s6), (57) 
(S9) 



Additional notation in Appendices IA and IB--continued 

A~ 

A~Q 
F, 

e 
¢o 
# 

AD 

z] DO 

(59) 
(60) 
(61) 
(64) 
(77) 

(79) et supra 
(8o) 
(8o) 

(82) et supra 
(86) 

The notation used in Appendix II  is given in section A. 1.9. 
The notation relevant to the Figures only is given in Note II.  
Throughout all Greek letters are non-dimensional. 

No. Author 

1 M. Fine and D. Williams . . . . . .  

2 D. Williams . . . . . . . .  

3 H . L .  Cox . . . . . . . . . .  

4 H. Ebner . . . . . . . .  

5 S. Hadji-Argyris and P. C. Dunne 

R E F E R E N C E S  

Title, etc. 

The effect of end-constraint on thin-wMled cylinders subject to 
torque. R. & M. 2223. May, 1945. 

The stresses in certain tubes of rectangular cr9ss-section under 
torque. R. & M. 1761. May, 1936. 

On the stressing of polygonal tubes with particular reference to the 
torsion of tapered tubes of trapezoidal section. R. & M. 1908. 
December, 1942. 

Torsional stresses in box-beams with cross-sections partially 
restrained agMnst warping. N.A.C.A. Tech. Memo. 744. May, 
1934. 

The general theory of cylindrical and conical tubes under torsion 
and bending loads. J.R.Ae.S. February, 1947. 

A P P E N D I X  I 

Derivation of Equation for Determining the Decay Factors 

~ B A Y  0 BAY l BAY "n 

~RIB 0 ~I:I.IB I \RIB 2 "RIB'n ~IB'II.I-I 

= ROOT RIB 

Diagram 1. Elevation of cylinder showing rib and bay notation. 
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A.I.1. Direct S t resses . - -We  have assumed the seK-equilibrating direct-stress system applied 
at the root to be proportional to a given axial warping g, a function of s only, to vary linearly 
between consecutive ribs and to decay as a geometric progression at rib positions. We can 
thus write the direct stress at the n th  rib in the form: 

E ~u,,= f~r,~, . . . . . . . . . . . . . . . . . .  (1) 
~z 

where f is a constant of proportionality and r a representative decay factor*. Thence the direct 
stress in the n th  bay is given by 

where z is zero at the n th  rib. 

A.1.2. 
between flanges, we have 

E ~  + U s ( q ~ )  = 0,  

which on substitution from (2) gives 

f ; t  
" r " ( r -  1 ) +  ~s (qt) 

Shear Stresses . - -For longitudinal equilibrium of direct and shear-stresses in the region 

. . . . . . . .  (3) 

= o  . . . . . . . . . . . . .  (4) 

Hence, apart from changes in shear flux qt = Q, due to flange loads, 

Q = Q o + f r " ( r - 1 )  f i t s ~ d S ' p  • . . . . .  

where Qo is the value of Q at s = 0. 

. . . . . .  (5) 

Changes in shear flux due to the presence of flanges will now be considered. 
in the j t h  flange 

and so 

= F~/a/'{1 + ; (r --1)} 

F~f~5 r"(r --  1) 
• , ,  p + d / 2  = 0 ,  . . . . . .  

where AjQ is the increase in Q due to load in F~. 

Hence Q due to flanges alone = E AgQ, . . . . . . . . . .  
0 

where E denotes summation over the interval (0, s), 
0 

s _ fr"(1 -- r) E Fjaj . . . . . . . . . .  
p o 

The flange load 

. . . .  (~) 

. . . .  (7) 

. . . .  ( s )  

. . . .  (9) 

* By writing r" in the form exp(~ log r) we can regard the decay as exponential. 
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Equations (5) and (9) give the total  shear flux 

I ) p t,~ ds + 2o Fj~j . ( l o )  

Since the system is self-equilibrating the torque must vanish;  
(20. Taking moments about Oz gives 

i.e. 

and, writing, 

~Q P ds = O, 

becomes 

2AQo = 

this condition determines 

, , o o 

t ]  ds = 0 

Z, P ~ F~#j ds for P ~ Fj~ ds, 
0 0 

s i n _  1 

. . . .  ( 1 1 )  

. . . .  (12) 

. . . . . .  (12) 

A .... ~) Z F ~  . .  
0 

(13) 

or  (2o = fR~'~(1 - r) /5 , say . . . . . . . . .  

where R depends only on ~ and the geometry of the cylinder. 

Consequently from (10) and (t4), and introducing tile suffix ,, 

Q~--fr'~(1-- r) R + J'i ts~ ds + ~ Fj~ i .. 
0 * ° 

. .  (14) 

. .  ( i s )  

/ s r ' ~ ( 1  - r )  
-- p , say . . . . . . .  

where S depends only on ~ and the geometry of the cylinder. 

(1~)  

A. 1.3. Limitation on Possible Forms for S . - - ! t  will be seen from the above that  for a given 
smoothly varying ~ we can find the corresponding shear-stress distribution given by S ; that  
the converse is not necessarily true is evident from the fol lowing'differentiat ing (16) we have 
in the region between flanges, 

~S 
~-~ = t ~  . . . . . . . . . . . . . . . . . . . . .  ( l ~ a )  

Now, because of the continuous character of G it will be seen tha t  (16a) determines ¢2 all round 
the section. Substi tuting the value of ~ given by (16a) in (16) it will be seen tha t  unless there 
are jumps at the flange positions in S of magnitude (F/t,)(aS/Os) there is no corresponding 
smoothly varying form for ~. 
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A.1.4. Rib Stresses.--  

BAY "n-1 P, IB ~ 

Diagram 2. Shear flux along boundary of rib. 

Consider the forces per unit  length tha t  act at a point s on the boundary of the n th  rib. For 
equilibrium we have : 

H ,  + Q , - -  (2,_I = O, . . . . . . . . . . . . . .  (17) 

where H is the ' rib-boundary shear flux '. 

Using (16) we can write (17) in the form 

H ,  --  fSr ' -~  (1 -- r) ~ . . . . . . . . . . . . . . . . .  (lS) 
P 

I t  will be seen from the above equation tha t  the distribution of H round the rib periphery is 
proportional to S and is therefore similar to the distribution of Q. 

A.2. Strain Energy . - -The  total strain energy will now be found and Castigliano's Energy 
Theorem applied to obtain an equation for the decay factor r. 

A.2.1. Energy Stored in the R ibs . - -As  has been stated above the distribution of shear flux 
round the rib periphery is proportional to S, i.e., if we know the numerical value of H at any 
point, say at s = s', then, provided that  value ( =  H',  say) is not identically zero, the shear 
flux at all other points on the rib periphery is known. 

Now we have assumed tha t  the stress-strain relations are linear and hence the strain energy 
in a rib will be proportional to the square of the shear stresses. These shear stresses are pro- 
portional to H '  and so we may write : 

strain energy in rib n ~ WR.~ 
(H.') 

- - N A ( H ~ ' ) 2 ,  say, . (19) 
- -  , * * ° . ° ° ° * • ° ° ° 

- -  2Gtrib 

where N is a non-dimensional coefficient dependent on the geomet ry  and elastic properties of 
tile rib and the mode of connection between the rib and the cylinder walls. The form of equation 
(19) has been chosen so that  N -= 1 when the ribs are rectangular (in a four-boom cylinder of 
doubly-symmetrical rectangular section) and of uniform thickness and when the applied ~ is 
tha t  obtained when the cylinder undergoes pure torsion. 

Using (18), (19) becomes 

p ( S ' ) ~ N A r  2'~-2 (1 -- r)~ 
WR,,~ --  2p~Gt~ib 

9 
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A.2.2. Energy Due to Direct Stresses.--The strain energy in the flanges in bay  n due to 
direct stress is 

WF.,~ --= 1 ~u 
2E £ E ~  dz . . . . . . . . . . . . . .  (21) 

- z, F j g  "~ = l + ~ Z  (r --  1) dz, from (2), 
0 

( 2 2 )  

= f f P  r=~(1 + r + r 2) £ Fj~i 2 .. (23) 
6 E  ' . . . . . . . . . .  

the  summat ion  being taken  over all values of j .  

Similarly the s t ra in  energy due to direct stress in the  skin and stringers in bay  n is 

Ws, ffP f , = 6 - E  r="(1 + r + r ~) t,~ ~ ds . . . . . . . . . . . . .  ( 2 4 )  

A.2.3. Energy Due to Shear Stress in the Cylinder Walls.--Due to the  shear flux Q, the  s t ra in  
energy in b a y  n is 

Wo," = ~ . . . . . . . . . . . .  (25) 

_ f i r = " ( 1  _ r ) = . l  S ~ 
-- 2pG ~ ~- ds, from (16) . . . . . .  . . . . .  (26) 

A.2.4. Total Strain Energy.--The to ta l  s t rain energy stored in bay  n and rib n will be 

W,, = WF,,~ + Ws,~ + Wo.,~ + WR . . . . . . . . . . . . . . . .  (27) 
and the  total  s t ra in  energy for a long cyl inder  is 

"co 

W = E W , ~  . . . . . . .  
Ib=O 

where 

Now r 2'~-- 1/(1 -- r~), [r[ < 1, and hence from (27) and (28)" 
lZ,~O 

w = / ~  f~E!~-  +- r _+ r~) B~(1 - r) B3(1 - r) 3 t 
6(1 --  r ~) + 2p(1 + r) + pa2r~(1 + r) . . . . .  

2 

B , = ~  Tds . .  

B3 -- (S')= N A p  
Gtrib 

10 
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A.3. E x t e r n a l  Forces  A p p l i e d  at the R o o t . - - I n  order to apply an energy theorem, by means 
of which we can evaluate the decay factor r, we must first find out-what  are the externally 
applied forces and the displacements through which they move. 

The externally applied direct-stress system is one of the data of the problem and was assumed 
to be given by 

. . . . . . . . . . . . . . . . . . .  

L ~J~oo~ 
which is a p r i o r i  independent of r, and it will be seen later from equation (37) that  the corres- 
ponding axial displacements need not be found. 

Consider now the external self-equilibrating shear loads that  are applied at the root and the 
displacements through which they move. 

The externally applied shear flux is given by 

H0 + 9o (= Q-l) 

fS(l -- r) , from (16) . . . . . . . . . . . . . . .  (32) 
pr 

To find the displacements through which Q-I moves we find the corresponding root-rib 
peripheral movement--which is necessarily the same. 

At the root rib we have from (18) 

~0 _ / s ( 1  - r) ~ . . . . . . . . . . . . . . . . . .  (33) 

pr 

and the strain energy in the root rib is 

N A H o 2  • . . . . . . . . . .  (34) 
W R , o - -  2Gtrib ' " . . . . . . .  

hence the generalised displacement of the root-rib periphery will be 

aw~,o (as) 
eo, say, -- ~Ho . . . . . . . . . . . . . . . . . .  

=fSNA(I -- r) ~ ' from (33), (34) . . . . . . . . . . .  (36) 
prGtrib 

From cOntinuity of displacements e0 will be the displacement of the externally applied shear 
flux Q-1. 

A.3.1. We can now apply Castigliano's Theorem, in the form • ' When a structure obeying 
Hooke's Law is in equilibrium under a system of external forces the correct stress distribution 
is such tha t  for a small change in that  stress distribution the change in the strain energy stored 
in the structure is equal to the work done by the changes in the external forces moving through 
their equilibrium displacements.' . . . . . . . .  . . . . . . . .  (37) 

This theorem may therefore be written • 

the direct stresses at the root are, as stated in (31), independent of the parameter r and so 
contribute nothing towards (38). 
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A.3.2. 

Subs t i tu t ing  from (29), (34) and (36) in (38) and dividing b y f f  gives 

f Bl(1 + + B (1- ) 

p4B~r(r2 + 4r + 1) -- 6p2B2r(1 - -  r) 2 + 6B3(1 -- r) ~ 

We now introduce k, p and 7, defined as follows : - -  

k = ~ / B ~  

B~(1 - r) 2 
_ p 3 ~ 3  t 

= 0 . . . . .  (39) 

= klb (non-dimensional) ~ . . .  

_ B2 ~ B2 | 
/ 

and 7 B1B3 ~ -  k2B3 (non-dimensional) J 

(40) 

From the definition of the  B's ,  given in equat ion (30), it will be seen tha t  k is independent  of 
the  r ib-pitch and flexibili ty and tha t  fl is independent  of the  rib-flexibili ty and proport ional  
to the  rib-pitch. All are independent  of the  magni tude  of 8. 

W i t h  this nota t ion  the equat ion for r m a y  be wri t ten  

~ -  ~3{4 + 782(1 - ~2/6)} + ~2{6 + 27~2(1 + ~2/3)} 
- -  r { 4 - t - r ~ ( 1  - - / ~ / 6 ) }  + 1 = 0 ,  . . . . . . . . . .  (41)  

a reciprocal equat ion of which two roots are therefore less than  un i t y  and two greater. 
We shall call the  roots • 

rl, lira, r~, llr~ 
where, say, Ir,,~[ < 1 . . . . . . . . . . . . . . . .  (42) 

A.4. D e t e r m i n a t i o n  o f f . - - I n  A.I.1 it  was assumed tha t  the direct stresses at the  n th  rib 
were given by  

E 0u,, Oz - -  far'~ ' . . . . . . . . . . . . . . . . . .  (1 bis) 

but  from (42) it will be seen tha t  there are four different values of r, i.e., there are four possible 
modes of axial  stress dis t r ibut ion and the complete form of (1) will be* 

E Oz - -  ~ ( f ~ r ; ' +  f 2 r ~ " +  f3r~ -~ + f~r~ -'~) . . . . . . . . . . . .  (43) 

* The f's and r's are not necessarily real. The accompanying 
diagram indicates the region (shaded) in the fl - 7 domain in 

which the f's and r's are complex. 
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For a cylinder of finite length the  four unknown f ' s  in (43) are de termined from the  four end  
conditions, viz., the magni tude  of the direct stresses and the rib distort ion at each end of the  
cylinder. 

In  the  following work we assume the  cylinder is long enough for it to be considered semi- 
infinite (i.e., conditions at the  root end do not  appreciably affect those at the far end), in which 
case f3 and f ,  in equat ion (43) are zero. 

In  Appendix  I a  the part icular  problem in which there is no shear-distort ion of the  root rib 
is considered and in Appendix  IB tha t  in which there is distort ion at the  root but  zero axial 
warp. All systems of self-equilibrating load applied at the  root may  be obta ined by  a suitable 
combinat ion of these two systems. In  bo th  cases the root direct stress and rate of stress 
die-away, etc., are found for varying values of the  parameters/~ and 7. 

A P P E N D I X  IA 

Particular Case of Zero Shear-distortion at the Root 

In  Appendix  I the equat ion for determining the  decay factors r was found--see equat ions 

_ 1 + z ( r  - ) 
az p ' 

which on in tegrat ing over bay  n gives 

__f~pr~(1 + r) . 
2E 

therefore --  u0 = u~ --  u0, since u® is zero,. 

= u=) 
0 

: f u P ( {  2E =-- + { )  from equat ion (46) . . . .  

= ~ for the  part icular  case under  consideration. 
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(2 bis) 

. .  ( 4 6 )  

. .  (47) 

. .  (4s) 

A.5.1. 
(41) and (42). The roots of this equat ion whose moduli  are less than  un i ty  are 

rl = rd$, r) "~ (44) 
, . , , , , , • * • ° • , ° • , 

and r= = r2(fl, 7) O 
and the  direct stresses at the  n th  rib in a long cylinder are given by  

(45) E Yffz ---= e( f ,  rd  + f=r= '>) . . . . . . . . . . . . . .  : -  

wi th  a linear variat ion between ribs. 

A.5.2. Determination off~ andre . - -We shall now find the f ' s  for the case when there is no 
shear-distort ion of the  root rib and when the axial warp at the  root is --  ~. (Chosen negat ive  
so" t ha t  if ~ is a warp in the  unconst ra ined state of the  cy l inder - -under  torsion, s a y - - t h e n  for 
complete building-in at the  root we should have u0 + # = 0, i.e., Uo ---- --  ~.) 

F rom (2) we have, leaving out the suffices 1 and = and considering the  general term, 



Hence, in t roducing the suffices ~ and ~ and rearranging, we get 

- 7 ,  + / ~  ~ - 7 ,  - p . . . . . . . . . . .  (49) 

The Condition of zero shear-distort ion at the root implies tha t  the root rib is unstressed, i.e., 

H0 = 0 . . . . . . . . . . . . . . . . . . . . .  (SO) 
Hence from (18) • 

f , ( 1  r,)2 d f2(1 -- r2) ~ --  0 . . . . .  (51) 
~Vl r 2 . . . . . . .  

This condit ion of zero shear-distort ion at the root can be regarded as produced by an infinitely 
stiff root rib even though flexible ribs have been considered in deriving the  decay factors. 

Equat ions  (49) and (51) determine f ,  andre ,  which are of the form 

where from (44 f''2 " (E/p)~,2 (r~, r2), say, \ 
= ~(~, r) J . . . . . . . . . . . .  (52) 

A.5.3. Direct Stress at the Root.--The direct stress at  the  root is 

E a  
~;(f, + f2) = ~ -  (~, -t- ~2) from (52) 

= E a ~  (e' + ~) 

= Eak~%, say . . . . . . . . . . . . . . . . .  (53) 

where W, is non-dimensional ,  being a function of p and y only. The suffix w has been in t roduced 
as the  end conditions of the self-equilibrating system which we are applying to the structure are 
such tha t  there is axial warping at the root section and no shear-distortion. In Appendix  IB 
we consider the effect of a self-equilibrating system which produces shear distortion and no axial 
warping of the root section. 

Two ~0~-//-~ families of curves have been drawn in Figs. 1 and 2, one showing lines of constant  
t2he other  lines of constant  y. I t  will be seen from these tha t  over the current  practical range 

< p < 1) it is sufficient to assume fi = 0 ;  this assumption is shown in A.6.3 to be the 
same as assuming the ribs to be spread out into a homogeneous ' rib med ium ' 

A.5.4. Direct Stress along the Cylinder.--Owing to the existence of two decay factors there 
is no simple ' exponen t i a l '  expression for the  direct stress along the cylinder ; there is however  
a simple recurrence relation for the  stresses at the n th  rib. 
The ratio m a g n i t u d e  of self-equi l ibrat ing axial  s t resses  a t  first r ib  

m a g n i t u d e  of self-equil ibrat ing axial  s t resses  a t  root  rib 

__  f i l l  + f2r2 
f l + f 2  

where A~ 

A,~, say . . . . . . . . . . . . . . .  

= A~(fi, ),). The A,,,-fl-y family of curves has been drawn in Fig. 8. 

!4 
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In  general  we have  

se l f -equi l ibra t ing  ax ia l  s tresses a t  n t h  rib 

se l f -equi l ibra t ing  ax ia l  s tresses a t  root  r ib f l + f 2  

A .... say, 

= ~IA . . . .  1 --  22A . . . .  2 

by  vi r tue  of (55) and  where  

~ = r~ + r~ = E ~ ,  r) 
and 

2~ = r~r~ = 22(3, Y) 
t I O I O 

Figs. 12 and  13 show the 21-~-y and  2~-/3-), families of curves. 

A ~,o which occurs in (56) when n = 2, is, of course, uni ty .  
wr i t t en  A ~,,~ = A~ as there  is no risk of ambigui ty .  

We have  for convenience 

(55) 

(56) 

(57) 

A.5.5. Externally Applied Shears.--In order to keep the root  section free f rom shear dis- 
tor t ion  there  mus t  be applied to the  cylinder,  ei ther  external ly  or by  a stiff rib, a sys tem of shears 
which  will be de te rmined  by  equat ion  (16) wi th  n = - -  1 (or zero, by  v i r tue  of the  par t icu lar  
end condit ions under  consideration).  

We  therefore have  : 

S { f ~ ( 1 - - r d , & f ~ ( 1 - - r ~ ) }  • . . . . . .  (58) 
Q _ I - ~  r~ r ~  ' " . . . . .  

using equat ion  (52) we m a y  wri te  this in the  form 

J ~---Q_I ---- k~ESA,~ . . . . . . . . . . . . . . . . .  (59) 

where  A~ is a funct ion of ~ and 7 only. The A~-/~--~ family  of curves has been d rawn in Fig. 4. 

Al te rna t ive ly  we can express J in terms of the  direct  stresses at  the root. W e  then  have  the  
re la t ion :  

(direct stress at root) + - ~  = ~o~ + A .  

Fig. 3 shows the  ¢~-~-y family of curves. 

. . . .  (6o) 

A.5.6. Shear Stresses along the Cylinder.--The self-equilibrating shear flux in bay  0 ----- Q0* 

= Q-I - H0 from (17) 

= J ,  since H0 is zero . . . . . . . . . . . . . . .  (61) 

The rat io Q1 • Q0 will be denoted  by  A~Q (this is Similar to the no ta t ion  used in A.5.4). 

The A~0-//-y family of curves is shown in Fig. 9. The  shear flux in t h e  n t h  bay  Satisfies 
the  recurrence  relat ion 

~ Q , , , - -  ~ Q  .... 1 - ~2~0,,,-~ . . . . . . . . . . . . . . . .  (63) 
where  A~Q,~ = Q,, "Qo . 

* This must not be confused with the Q0 of equation (5). 
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A.5.7. Rib Stresses.--The root rib undergoes no shear-distort ion and is therefore unstressed. 
The ribs at the  far end of the  cylinder are uns t ressed- - f rom the principle of Saint-Venant.  The 
self-equilibrating rib shear flux H is however  not  zero near  the  root but  increases towards a 
maximal  value and then  decreases to zero as indicated in Diagram 3 below ; 

j ~  
J 

l J  f 

/////////I 0 

"x. 

"n 
T-----7 

Diagram 3. Variation of rib distortion (oc H) along the cylinder. 

The  maximal  value of H can be expressed in the  form 

Hmax---- s j ,  . . . . . . . . . . . . . . . . . .  (64) 

where 3 r is the  external ly applied self-equilibrating shear flux (see A.5.5), and ~ = 2 (/3, 7) ;  
this has been p lo t ted  in Fig. 5. 

The position of the  most  highly stressed rib is also a function of/~ and ), only. Fig. 6 gives 
the  appropriate  value of n for given values of p and 7 ; e . g . ,  if /3 = 0.4, r = 4, it follows 
tha t  the  2nd rib is the  most  highly stressed. 

A.6. Some Particular Cases and a Physical Interpretation of k, ~ and ~.--The results obta ined 
in this Appendix  will now be adapted  to the  following special cases : 

(a) the  ribs are infinitely s t i f f - - the  rib-pitch being finite 
(b) the  rib-pitch tends to zero--r ibs  of finite stiffness 
(c) the  ribs are considered to be spread out into a uniform elastic r ib-medium of effective 

thickness triu/P per uni t  length. 

A.6.1. Case (a).--Since the ribs are infinitely stiff we have, in effect, tr~U = oO and hence 
from equat ion (30) B3 = 0. I t  follows from equat ion (40) tha t  ~ = oo which means tha t  the  
equat ion for the  decay factor r takes the  form 

r ~ -  2 ( ~  + ~2/3 '  _ ~ ) r  + 1 = 0 . . . . . . . . .  . .  (65) 
% 

The direct stress at the root is 

2E¢/(" 1 --  (66) + . . . . . . . . . . . . . . . .  

where I rll < 1. This reduces to 

Egk 1 + , . . . . . . . . . . . . . .  (67) 

which is in agreement  wi th  the  results obta ined in Ref. 4 where a doubly symmetr ical  rectangular  
box under  torsion was considered. The variat ion of direct stress along the  cylinder for various 
values of/~ is shown in Fig. 10. 
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A.6.2. Case (b).--Since tile rib-pitch tends to zero it is reasonable to assume tha t  the  variat ion 
of direct stress from one rib to the  next  will be very  small. We accordingly search for a solution 
in the  form 

r = 1 + c , p  + c ~  ~ + O ( p  3) . . . . .  . . . . . . . .  (68) 

where the  c's are constants.  Observing tha t  as p --> 0, ), --+ oo and so the equat ion for r is a 
part icular  case of equat ion (65). Subst i tu t ing (68) in (65) gives c~2ib 2 = /~2, 

i.e., c~ = + k , • . . . . . . . . . . . . . . . . .  (69) 

terms of higher order in p being neglected. 

The expression for the  direct stress at the  n th  rib becomes • 

Oz = / ,a(1 + kp)" + f # ( 1  - - k p ) '  

= l i m ,  f~a(1 + kp)"/P + f~a(1 --  kp)'/P; 
p---->0 ) 

where z is now measured only from the root, 

= a(f~  e ~' + f~ e-k0 . . . . . . . . . . . . . . .  (70) 

Thus k has been identified wi th  the decay factor obta ined when cross-sections are assumed 
to retain their  shape (since 7 = oo).  For this reason it is convenient  to call k the  ' s t a n d a r d  
decay factor '. This k, given by  equat ion (40), is in agreement  with tha t  obta ined by  other  
writers in considering cylinders under  torsion 1,2. 

For  a long cylinder where there is complete building-in at the root (70) becomes 

Ou 
E ~z = - E a k  e - ~  . . . . . . . . . . . . . . . . . .  (71) 

/3(= k/b) may  be regarded as a non-dimensional  measure of the rib-pitch. 

I t  is of interest  to note  tha t  to re tain the shape of cross-section it is necessary and 
sufficient tha t  p = 0 and ~ = 0% i.e., l im (tr~b/p)= oo. Previous writers have  

p--+0 
assumed tha t  p = 0, and, in effect, trib = ~0. Provided  the ribs are infinitely close 
together  they  could, in theory,  even have  zero stiffness, e.g., if tr~b behaves like ~¢/p as 
p - + 0 .  

A.6.3. Case (c).--The concept of  a stringer-sheet,  in which the stringers have been spread out 
into a uniform sheet with equivalent  uni-directional  properties, is well known and this concept 
may likewise be ex tended  to the  discrete ribs of the  present problem. In  this case the individual  
ribs are represented by  a uniform elastic r ib-medium of thickness trib/P per unit  length. This 
means tha t  ~ is unchanged.  The properties of this med ium are such tha t  it distorts in a manne r  
dmi lar  to tha t  of the  individual  ribs and tha t  there is no axial interaction.  

As in Case (b) the  direct stresses will decay exponent ia l ly  and accordingly we put  r ---- 1 + clp 
+ O(p 2) so tha t  as p - +  0 the solution takes the form 

E Ou 0z --  f¢~ exp(clz) . . . . . . . . . . . . . . . . .  (72) 

The result ing equat ion  for cl i s  the quadrat ic  in cl 2 

c~ ~ - ~h~e? + ~k ' = 0 . . . . . . . . . . . . . . . . .  (73) 
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Let  the  roots of this equation,  corresponding to decaying stresses only, be c~ = --  k~ and  
--  ha. The condit ion of complete  axial building-in at the root  is 

f~ f~ E (74) 
+ L = ' . . . . . . . . . . . . . . . . . .  

and  for zero shear-distort ion at the  root 

k?f  + = 0 .  . .  

The direct stress at the root is now 

(75) 

+ 71/~)1/~\ 
~2(f, + f~) = E~k~7~/~ - 

_1_ ~1/2 j • L 
(76) 

This function of 7 is of course a par t icular  case of the  ~ of equat ion  (53). I t  will be seen from 
Figs. 1 and 2 t ha t  over the  current  pract ical  range of ¢~, 0 . 2  < ¢? < 1, this funct ion of 7 gives 
a good representa t ion  of ~p~, i.e., for the  par t icular  problem under  considerat ion the assumpt ion  
tha t  the effect of rib-flexibility m a y  be es t imated  sufficiently accura te ly  by  spreading the  ribs 
out  into a uni form elastic rib med ium is justified. Because of this fact and  tha t  7 oc t,ib/p it is 
convenient  to call ), the  ' generalised rib stiffness ' 

There  are pract ical  cases where an equivalent  r ib -medium does ac tual ly  exist. For  example,  
consider a cyl inder  whose walls are of a sandwich construct ion.  Any  shear distort ion of the  
section will be resisted by  the bending  stiffness of the wails and  we have  in effect an equivalent  
r ib-medium. The fictitious value of trib/P which we mus t  use for calculat ing 7 is tha t  which,  
when  subjected to a set of self-equilibrating shears pe r uni t  length  (proport ional  to S), will 
store the  same amount  of s train energy as the  actual  s t ructure.  An example  is given in A. 12. 

A.6.3.1. Direct stresses away from the root . - -The direct  stresses along the cyl inder  have been 
plot ted,  in non-dimensional  form, for various values of ~ in Fig. 11. I t  will be seen tha t  over 
the  cur rent  pract ical  range (approx imate ly :  1 < ~ < 32) the effect of r ib -medium flexibility 
is small. One reason for this is tha t  at  the  root, where rib distort ions would produce most  effect 
on the  direct stresses, we have  p reven ted  any  distortion. 

A.6.3.2. Rib distortion along the cyl inder.--The r ib -medium distort ion is proport ional  to 
(e -~1~- e -1~-'') and  is therefore of the  form indica ted  in Diagram 4 below. 

RIB-MEDIUM 
DISTOI~TION 

O 

Diagram 4. Rib-medium distortion. 
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If z ,  is the value of z at  which the distort ion is a m a x i m u m  then we have  the relat ion : 

_ arg cosh (~,1/~/2) for ), > 4 
k z , n -  )}1/4()11/2 2)1/2 

. . . . . . . . . .  (77) 

arc cos (~,~/~/2) 
and y~/~(2 -- ~1/~)1/~ for y < 4 

These have been plot ted  in Fig. 7. 

If it were desirable to keep the distort ion of the  section everywhere as small  as possible then  
an ext ra  rib in the  s t ructure  at the  section z = z~, where the distort ion would otherwise be very  
large, would be most  effective. 

A.6.4. Combination of Rib Medium with Discrete R ibs . - -Wi th  a slight modification of the  
analysis  in Appendix  I we can derive expressions for the stresses at the rib s tat ions and the 
variat ion,  now non-linear,  between ribs. These are of academic interest  only as the  effect of 
discrete flexible ribs upon the various stresses is, in most  cases, a second-order one, and there  
is no just if ication for inves t iga t ing  accurate ly  the  combinat ion of two second-order effects (since 
this  would introduce third-order  effects). 

I t  is probable tha t  in such a case (combination of r ib-medium wi th  discrete ribs) the  following 
device will give the stresses, etc., wi th  sufficient accuracy : 

let suffix ,,~ refer to the  r ib-medium and suffix ~ to the  discrete ribs and let F(;?, ~) be a stress 
or bending moment ,  say, 

t h e n :  ( ~ , ) ' ~  ) F ( t ? , y ~ - } - y , ~ ) + (  7,, ) F ( 0 ,  yr-i-y,~). F - " -  , + y , ~  )', + y,,, 

A P P E N D I X  IB 

A.7. 
(41) and (42). The roots of this equat ion whose moduli  are less t han  un i t y  are 

rl = rl($, ~,) l 

f and  r2 = r2(p, ),), 

and  the  direct stresses at  the  n t h  rib in a long cyl inder  are given by  

E~u~ 
~ --  a(flr~ ~ + f2r~ ~) . . . . . . . . . .  

with  a l inear var ia t ion between ribs. 

Particular Case of Zero Axial  Warp at the Root 

Ill Appendix  I the  equat ion for determining the decay factors r was found, see Equat ions  

.. (44 bis) 

. .  ( 4 s  b is )  

A.7.1. Expressions for Determining f~ and f 2 . - - I n  Appendix  IA the special case of zero shear- 
distort ion at  the  root was considered ; in this Appendix  tile similar problem of zero axial  warp, 
bu t  non-zero shear-distortion, at the  root is considered. All systems of self-equilibrating load 
applied at  the  root m a y  be obtained b y  suitable combinat ion of these two systems. 
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To fix ideas we consider a long cylinder, as represented in Diagrams 5 and 6, to one rib of which 
is applied a self-equilibrating shear system 2J  proportional to S. From symmetry  it will be 
seen that  there will be no axial warping of the section at this (root) rib. For slightly increased 
generality we take the stiffness of this ' root rib ' to be 2q times the stiffness of each of the other 
ribs ; the 7 in the following work refers to the rest of the structure. 

I 

~ ~ ~ - - - -  1 / t - > ' ~  ~ ------ 

Diagram 5. Self-equilibriating shear system. 

,,: p 

BAY I 

Diagram 6. 

Z <--O--~ z 
¢/2p:1 

p "~=:: p >~ P 

BAY O BAY O BAY I 

\\ OOT R,B 
Section of cylinder showing ribs. 

t 

The condition of zero axial warp at the root is, from equation (47), 

(~ ~1) (1 + r~) f~ _+r~ + f ~  i - -  r = 0  . . . . .  (78) 

The equation of shear equilibrium is evidently 

2J  = 2eHo + 2Qo,  . . . . . . . . . . . . . . . .  (79) 

which, on substituting from equations (16) and (18), gives another relation between f l  and f2. 

A.7.2. Direct Stress at the Root.--Solving equations (78) and (79) for f l  and f~, we obtain 
the following expression for the direct stress at the root" 

E ~u0 
- a ( f l  + 

( j e )  . . . . .  (8o) CD 
= S-k ( 2 e - - 1 ) ~ + l  ' " . . . . . . . .  

where CD and ~ are functions of fl and ~, only. These have been plotted in Figs. 14 and 18. I t  
will be observed that  the magnitude of g in (80) is immaterial as it is proportional to that  of S, 

20 



i f  2q = 1, i.e., all ribs are equally stiff, equation (80) reducesto  

C) E - ~ - =  ~ 4 D  . . . . . . . . . . . .  

and it will be seen tha t  ~ is analogous to 4w of equation (60). 

(81) 

A.7.3. Direct Stress along the Cylinder.--The ratio : 

magnitude of self-equilibriating axial stresses at first rib has been denoted by AD and the AD-/~-7 family 
magni tude  of self-equilibriating axial  stresses a t  root  rib 

of curves has been drawn in Fig. 16 ; and using the notation : 

self-equilibriating axial stresses at  n th  rib : AD ,~ . . . . . . . . . . . . . .  (82) 
self-equilibriating axial stresses a t  root  rib 

we have the recurrence relation, similar to tha t  of equations (56) and (63), 

AD,n = /~IZ~D,r~--I - -  ~2ZJD, n--g . . . . . . . . . . . . . . .  ( 8 3 )  

This enables the direct stress to be found at any point along the cylinder. 

A.7.4. Rib Loads . - -That  part of the applied self-equilibrating shear flux 2J  which is taken 
by the root rib is given by 

4ttoJ . . . . . . . .  (84) 
H 0 = 1 + ~ ( 2 0 _ 1 ) ,  " . . . . . . .  

which, when all, the ribs are equally stiff, reduces to 

Ho = 2~J . . . . . . . . . . . . . . . . . . .  (85) 

The shear flux taken by each adjacent rib is 

. . . . . . . .  . . . . . . .  (86) 

where ADD =- AvD (8, ;~) and is shown in Fig. 17. 

Using the notation : 

- -  . . . .  . . . . . . . . . . . . . . .  (87) 

we have the recurrence relation 

~ , , ,  = ~1A~,,~-1 - -  ~ d ~ , . _ 2  . . . . . . . . . . . . . . .  (88) 

A.8. Rib M e d i u m . - - W h e n  such a self-equilibrating shear system is applied to a cylinder 
with a r ib-medium--such as tha t  mentioned in A.6.3--the direct stress at the root is given by 

E Oz -- ~ rl/4( 2 + rl/~) ~/2 . . . . . . . . . . . . .  (89) 

This function Of r is analogous to tha t  of equation (76) and is a particular case of 4~. 

The direct-stress distribution along the cylinder has been plotted (in non-dimensional form) 
for various values of ~ in Fig. 15. 
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A P P E N D I X  i i  

Application to a Rectangular Box under Torsion 

A.9. We consider now the particular problem of the effect of self-equilibrating constraints 
applied to a cylinder of rectangular section under torsion. The cylinder is stiffened by uniformly 
spaced flexible ribs. Expressions are given for k, ~, 7, etc., which are more manageable than 
the general ones derived in Appendix I: 

The notat ion--given below--is similar to that  of R. & M. 1761h 

A.9.1. Notation 

Diagram 7. Section of box. 

E , G  
2a 
2b 
I 
t 

Ap 

p 
t~ib 
M 
T 

suffices I,, and p 
suffix 0 refers to 

Elastic moduli 
Distance between front and rear spars 
Distance between top and bottom panels 
Moment of inertia of spar section about its centre-line 
Skin thickness 
Area of section of top panel capable of taking direct stress 

= Area of section of bottom panel capable of taking direct stress 
Rib pitch 
Thickness of equivalent shear rib 
Bending moment in spar or panel 
Applied torque 
refer to front spar, rear spar and top or bot tom panel, 
the root section. 

A.9.2. Expressions for k, ~ and y.--Introducing ~, I~, CI, C2 and C~ defined by the relations • 

1 + bMp/Ij 
1 + bMp/Ir 

2 / I ,  = 1 / i ~  + , / L  

C1 = 1/ats + 1~at, + 2/btp 

c~ = 1/at~ + 1 / a t r -  2/b6 

we have the following expression for k ~ 

16abG 
k 2  - -  . .  o .  

C1C3E 

, . . . . . . . .  ( s o )  

. . . . . . . . . . . . . .  ( 9 1 )  
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and hence 

= 4p  \ C ~ - ~ E , /  

= p k  . 

The equation for y corresponding to equation (40) is 

Cltrib 

(92) 

(93) y -  . . . . . . . . . . . . . . . . . .  

A.9.3. Direc t  a n d  Shear  Stresses  at the R o o t .  (Constant torque case).--We shall now find 
the self-equilibrating shear loads and bending moments at the root due to complete building-in 
at that  section when a constant torque is applied to the far end of the box. This end condition 
corresponds to that  of Appendix IA. 

In the unconstrained state there will be shear stresses distributed according to the Batho- 
Bredt torsion theory, i .e. ,  a constant shear-flux round the section, and no direct stresses. There 
will also be in general an axial warping of all sections and if this warp is given by ~ then there 
must be applied to the box at the root a warp of -- ~* in order that  there will be complete 
building-in. (For partial building-in we impose a warp o f -  K#, etc.) We shall concern our- 
selves with the stresses due to this self-equilibrating system as was done in Appendix IA. I t  
is clear tha t  since ~ will be proportional to the applied torque T we can express the stresses at 

(94) 

the root directly in terms of T. 

I t  readily follows tha t  

_ / E k C 2 I , \  

and M~0 = ~Mj0 J 
This equation corresponds to equation (53) where the stresses at the root were considered-- 

bending moments being, of course, meaningless for a section of arbitrary shape. 

The self-equilibrating shear-flux system is of the form indicated in Diagram 8 below, but we 
can considerably simplify our working is we consider the total shear load in the spars and panels 
(S, and Sp) and not the d i s t r ibu t ion  along the spar webs and panels .  

=~- Sp 

L Sp < 

Ts) 
Diagram 8. Distribution of self-equilibrating shear system. 

With the notation introduced above we have the equilibrium relation 
2bSp = 2aSs , . . . . . . . . . . . . . . . . . .  (95) 

and the equation corresponding to equation (60) of Appendix IA is 

( kC~ ~ M,o . . . . . . . . .  (96) 
2aS~ = \ 2 a Z J ¢ ~  ' . . . . . . . .  

*In order to ensure that  the resulting system is self-equilibrating it will generally be necessary to add to ~ a linear 
warp of the form A + Bx + Cy. 

23 



and that  corresponding to equation (59) • 

4aS~ = 2aS~ + 2bSp = C-1 TAw . . . . . . . . . . . . .  (97) 

I t  will be remembered that  these shear loads are in addition to the Batho-Bredt torsion loads. 
If these are designated by S 1 we have the following relation • 

4aSs 1 = 2aSs I --  2bS, 1 --  T . ' . . . . . . . . . . . . .  (98) 

A.9.4. Stresses along the Cyl inder . - -The direct and shear stresses along the cylinder may be 
found by using the recurrence relations given in equations (55) and (63). 

A.10. Varying Torque . - -When  the torque is not constant but is a function of z the ~ at 
the root may be calculated by standard methods (e.g., Ref. 2) with sufficient accuracy and the 
present method used for determining t h e  direct stresses due to building-in ; these stresses will 
be additional to those due to the rate of change of torque. If the torque varies considerably 
over any one bay then the stressing problem may need further investigation. 

A.11. Direct and Shear Stresses at the Root whe~,¢ that Section undergoes Shear-distortion 
only.--Proceeding on lines similar to those of Appendix IB and using the notation of the previous 
sections we obtain the following relation between the bending moments at the ' r o o t '  and 
the applied shear system 2J"  

M,,o= \ kCo ) --  + 1 . . . . . . . . . . . . .  (99) 

where J is as in Diagram 8. As in section A.9.3 we have the simple relation between the front 
and rear spar bending moments : 

M,o = TMso . . . . . . . . .  . . . . . . . . . .  (100) 

The application of the rest of Appendix IB is quite straight-forward and requires no explanation. 

A.12. Rib-Medium Representation of Cylinder with Walls of Sandwich Construction.--It  was 
mentioned in section A.6.3 that  in cases where the cylinder walls were of a sandwich construction 
any  shear-distortion of the section will be resisted by the bending stiffness of the walls and we 
have in effect an equivalent rib medium. This means that/3 is zero and we can use the results 
of equations (72) to (76). 

We shall now give an expression for ~ when the section of the box is as in Diagram 9 below. 

2b 

J - 2 6  

,1 

J 
j I 2  

Diagram 9. Section of cylinder with walls of sandwich construction. 
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We introduce the following additional notat ion" 

I1 moment of inertia of unit axial length of top panel section 
= , . . . . . . . . . . . . . . .  bottom panel section 

I~ . . . . . . . . . . . . . . . .  front spar web section 
= , . . . . . . . . . . . . . . .  rear spar web section. 

By considering the strain-energy stored in the structure when self-equilibrating loads of the 
type Shown in Diagram 8 are applied and comparing the strain energy with that  which would 
be stored in a ' pure shear rib ' ( i .e . ,  a rib of constant skin thickness) we arrive at thi s equation 
for ~ :,-- 

3 E C ~ ( a  b )  -1 
- zGk ab Y +L . . . . . . . . . . . . . . .  (101) 

EXAMPLE 

A long thin-walled cylinder of doubly symmetrical rectangular section is resisting a constant 
torque applied at one end of the cylinder. The other end of the cylinder is rigidly built-in, and 
the top and bottom panels and the ribs are removed over a length L from this encastr6d end. 
The rest of the cylinder is stiffened by uniformly spaced ribs, tile junction rib being o times the 
stiffness of each of the remainder. The problem is to determine how the spar bending moments 
throughout, and at the junction rib in particular, are influenced by rib-flexibility and spacing. 
An expression is also derived for the load taken by the junction rib. The results are also given 
in Figs. 19 to 22. 

,~o; (INNER 

, j0NcT,oN R,B 

/ 

STRUCTURE) Y //COUTER STRUCTU~:>'" 
/ 

,r"" I j ' /  / i 
i (" T 
I I i 

I I I 

7 
l 

@s 
Diagram I0. Torque applied to rectangular box with cut-out. 
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T 
I 
L 

2a, 2b 
S 

M(x) 
Mo 
M 

E , G  
x, y 

k 

Applied torque (constant throughout) 
Moment of inertia of front and rear spar 
Distance along cylinder (from encastr6d end to the junction rib) in 

which the spars alone are present to resist torsion 
Width and depth of cylinder section 
Shear load in each spar (as in Diagram 10) 
Bending moment in spars between encastr6d end and junction rib 
Value of M(x) at junction rib 
Bending moment in spars just outboard of junction rib 
Elastic moduli 
Co-ordinates measured from junction rib (see Diagram 10) 
Standard decay factor 

J,  ~ow, ~.,, Aw, 4,~ 

Other symbols introduced where necessary. 

as in Appendix II. 

We proceed to find relations between the spar slopes and spar bending-moments in the inner 
and outer structures at the junction rib section. Compatibility of slope and moment at that  
section then determines each. 

Inner Structure.--The torque is resisted solely by the spars and hence 

2aS = T . . . . . . . . . . . . . . . . . . . . .  (i) 

Also, M(x) = E I  daY--  Mo -- Sx  . . . . . . . . . . . .  (ii) 
d x ~  • . . 

Integrating (ii) gives 

E I  dy Mo(x --  L) S dx = -- -~(x -- L 2) . . . . . . . . . . . . .  (iii) 

it being assumed that  the spars are rigidly encastr6d at x = L. At the junction rib the spar 
slope (due to bending) given by (iii) must be the slope of the spars in the outer structure at tha t  
section ; and we have : - -  

( d y )  L ( S L -  2Mo) (iv) 
d-x o-- 2 E I  . . . . . . . . . . . . . .  

Outer Structure.--Bending Moments . - -The  bending moment at the junction rib section in 
the front and rear spars of the outer structure will be slightly less than M0 because of the con- 
tribution in bending stiffness of the top and bottom panels. We can write however 

M = MolK . . . . . . . . . . . . . . . . . .  (v) 

where K is a constant depending on the section dimensions of the outer structure. 

If Ap is the area of section of the top and of the bottom panel capable of taking direct stress 
the bending moment taken by these panels will be b~Ap/2I of the moment in the adjacent spars, 
a result obtained by equating the stresses in the panels and in the spars at their common points. 

The value for K above is accordingly 

1 + b~Ap/2I . . . . . . . . . . . . . . . . . . .  (va) 
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Shears . - -We  regard the up-and-down shears to be made up of two systems one of the type : 

"-- kS/~b 

which represents a Batho system, and the other : 

which is a stir-equilibrating ' J '  system. 

The Batho system will produce a slope of the front spar (equal and opposite to that  in the 
rear spar) given by 

-  vi, 
32Gb . . . . . . . . . . . . . . . .  

Equation (vi) may be deduced from first principles or indirectly from equation (94) when closely 
spaced stiff ribs are considered; the bending moment that  would be caused by building-in 
would then decay as exp(-- hx) and may be integrated to give this slope. 

The self-equilibrating shear and differential bending system may be split up into two further 
systems, as was done in Appendices IA and IB, one in which axial warping only of the section 
at the junction rib is permitted and the other in which shear-distortion of the section and no 
axial warping is permitted. Distinguishing these two systems by using suffices w and v we 
can therefore write. 

M =  M w +  MD 

and S/2 = Sw + SD 

And from equations (96) and (99) : - -  

Mw = CCwSw , 

M y  = CCD'S~ 

where C = -- 2a~I/kC8 

} 
o • 

J .  

(vii) 

(viii) 

(ix) 

and Cv' is the modified ¢~, to take account of different flexibility of the junction rib, and is given by 

¢ ~  . . . . . . . . .  (x) 
C D ' =  (2~ - 1)~ + 1 . . . . .  

Of the four unknowns Mw, Mv,  Sw and SD, the first alone produces a slope in the spars due to 
differential bending. Accordingly we solve (vii) and (viii) for M w  : - -  

M w -  M -  C¢v'S/2 . . . . . . . .  (xi) 
- 1 - ¢ ~ ' / ¢ w  . . . . . .  
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The slope in the spars due to Mw is proportional to the axial warping due to Mw and is given by  

- -(dy) = Mw/EkI~w (xii) 
0 . . . . .  ' '  " . . . . . . .  ' '  

The total differential spar slope is given by (vi) and (xii) and must be the spar slope (due to 
bending only) of the inner structure at the junction rib : given by (iv). Equating these spar 
slopes gives : - -  

L (SL -- 2Mo) = M -  C¢~,'S/2 TC2 (xiii) 
2EI  Eklww(1 -- ¢~'/4w) 32Gb . . . . . .  

and hence 

M = TL~/4a + ( G -  CdgdTEI/32Gb 
L K  + 1 / k g ~  . . . . . . . . . .  (xiv) 

where 
=  w(1/Cd - 1/4w) ) 

(xv) 
and g= = 6.'gl 

I t  is worth noting that  for closely spaced stiff ribs gl becomes infinite and g~ becomes unity. 
We accordingly expect the bending moment at the junction rib to be very small when 

L~_/4a + C~EI/32Gb = O; 

which on substituting for C2 and simplifying gives 

L -"- ~/{(single boom area) a/tp)} . . . . . . . . . . . . .  (xvi) 

Die-away of Bending Moments along the Cylinder.--The bending moments elsewhere in the 
outer structure may be found accurately as follows. Mw is calculated from equation (xi) and 
thence My by  subtraction from M. The bending moment varies linearly from the junction 
rib to the first rib where it has the value 

MI = AwMw + ADMv 

= A t M ,  say ;  

and, in general, at the nth rib 

M,  = A ,M , 

} . . . . . .  (xvii) 

. . . . . .  (xviii) 
where the A's are found from the recurrence relationship 

A~ = ZlA,,_I - -  GA,,_~ . . . . . . . . . . . . . . .  (xix) 

Aw, A~, ~,~ and G are taken from the figures at the end of the report. 

Considerable errors may be made if the bending moments are assumed to die away as 
exp -- (kx), as will be seen from Figs. 19 and 21 which show graphically the results of the 
numerical example below. 

Load taken by the junction rib.--The load taken by the junction rib is given directly by equation 
(84), and we have 

2/~eS~ 
S jR -- 1 + ~(2e -- 1) . . . . . . . . . . .  . . . .  (xx) 

and So, found from (vii) and (viii), = ¢wT/4a -- M/C Cw -- Ca' . . . . . . . . . .  (xxi) 
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Numerical example.--Let us a s s u m e  t h a t  

2a ----- 30 in. 

2b = 10 in.  

t , =  O. 1 in. 

tp = 0 . 0 4  in. 

A~ = 1"5 in. 2 

So t h a t  Ip = 110 in. 4 

b o o m  a rea  = 0 .44  in. 2 each  

So t h a t  I = 30 in. a 

G / E = 0 . 4  
p = 6 i n .  

tr~b = 0" 02 in. (0" 03 in. shee t  w i t h  l igh ten ing  holes) 

L = 8 in. [Case (a)], 24 in. [Case (b)]. 

S u b s t i t u t i n g  in equa t ions  (90), (91), (92) a n d  (93) we h a v e  

2 2 
C 1 - -  15 × 0 .1  + 5  × 0 . 0 4 - -  11 .3  , 

2 2 
C~ = 15 × 0 . 1 - - 5  × 0 . 0 4 - -  8 . 6 7  , 

Ca = a2I + b~If = 6750 + 2750 = 9500. 

16 × 15 x 5 × 0 . 4  
T h e r e f o r e  k s = = 0 .00446  

11.3  x 9500 

a n d  k = 0 .0668  

a n d  fl = 6 k  = 0 " 4 0  

11 .3  × 0 . 0 2  
a n d  ~ = 0" 00446 x 12 = .4-2 

25 × 1"5 
K (see e q u a t i o n  (va)) = 1 + 60 - -  1 .62  

- -  2 X 153 × 30 
a n d  C (see e q u a t i o n  (ix)) = 0 .0668  × 9500 = - -  2 1 . 3  . 

These  va lues  of/~ a n d  7 give  

~w = 0 .94 ,  ¢w = 1.47,  4o = 0 .318 ,  ~ = 0 .392 .  

These  were  o b t a i n e d  d i r ec t ly  f r o m  t h e  F igures  a t  t h e  e n d  of t h e  repor t .  

F o r  Case (a) in w h i c h  L = 8 in. we h a v e  f r o m  e q u a t i o n  (xiv) • 

M 8~/60 + ( - -  8 .67  - -  11.3/gl)30/32 X 0 . 4  × 5 

T - -  8 × 1 .62  + 1/0"0668g2 

(3 + 5.33/gi) 
~ , , * • • • ° • • • 

13 + 15/g2 
I f 0  = 1-  

0 .318  

C D ' = I  + 0 " 3 9 2  

= 0 " 2 2 8 ,  

f rom e q u a t i o n  (x) 
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a n d  hence  

a n d  & = 0 " 2 2 8  X 3"49  
a n d  t he re fo re  f r o m  (xxii) 

: - - 0 . 1 4 2  . 

gl = 0 " 9 4 ( 1 / 0 . 2 2 8  - -  1 /1 .47)  = 3 -49  

= O. 796 

M / T  

I f o  = 4" 

0 . 3 1 8  
Cv' - -  1 -}- 2" 7 4 -  0"0850  , 

so t h a t  gl = 10.4 ,  g2 = 0 . 8 8 5  
a n d  t he r e fo r e  

M/T = - -  0 . 1 1 7  

F o r  closely s p a c e d  stiff r ibs  t h r o u g h o u t  we h a v e  M/T 

I f  L = 24 in. t he  e q u a t i o n  c o r r e s p o n d i n g  to  (xxii) b e c o m e s  

M 5" 54 - -  5" 33/gl 
r 39 + 15/g2 . . . . . . . .  

= - - 0 . 1 0 7 .  

a n d  if 0 = 1 

M/T= + 0 . 0 7  , 
i f o  = 4 

. . . . . .  (xxiii) 

M/T= + 0 . 0 9  , 

a n d  for  c losely  s p a c e d  stiff r ibs  t h r o u g h o u t  M/T = + O- 103. 

T h e  l oad  t a k e n  b y  t he  j u n c t i o n  r ib (expressed  in t e r m s  of t he  ve r t i ca l  shears  a p p l i e d  b y  i t  to  
t h e  spars)  is g iven  b y  (xxi), a n d  we can  wr i t e  th is  in  t he  f o r m  

S:R/T = I- 
I l L  = 8 i n .  a n d o  

S:~/T - -  

1 -F- 0 .392(20  - -  1) 1 .47  - -  ¢v . . . . .  (xxiv) 

• = 1 "  

0"784  V0.0246 - -  0 " 1 4 2 / 2 1 . 3  l 
1 .392  L ~ .Tt'~ - - 072~28 

O. 0081 , m 

c.f. 1/43 = 0 . 0 1 6 7  
B a t h o  d i s t r i bu t i on .  

if we a s s u m e  t h e  j u n c t i o n  r ib a lone  p u t s  t he  u p - a n d - d o w n  t o r q u e  i n t o  a 

I f o  = 4 "  

SjR/T = 0 . 0 1 1 5  . 

S imi l a r ly  for L = 24 in. we h a v e  • 

i f 0  = 1 

S:~/T 0 . 7 8 4  [ 0 . 0 2 4 5  + 0_i07/21.3  ] 
- -  1 .392  1:4-7 : 2 - ~  J 

= 0 . 0 1 2 5  . 
a n d  if 0 = 4 • 

SjR/T = 0 . 0 1 7 4  . 

All  these  n u m e r i c a l  resu l t s  are s h o w n  in  g r a p h  f o r m  in Figs.  19 to  22. 
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N O T E  I 

Summary  of Formulae for Various Functions of 8, r 

~1 and  G calculated from : - -  

1__ (1 + 41 + ,t2)" ---- 16 + ~,~2(4 + ~2/3) , 
22 

42 

and  
~(1 - -  G) 1 --~.~ 

---- $ 

¢~ = 1 --  41 + G flV(yG) 

~ w  = f l { 1  + ;,1 - -  42(6  - -  4~ - -  )~2)} ' 

AW : 1 "-~ 4 1  - -  ~ , 2 ( 6  - -  "~1 - -  42 )  "q 

4 1 -  222 
ZJ  W - -  1__42 , 

Aw o -~ 41 --  22 , 

4fig 
¢~ = ( 1  - - G ) ( l + ~ t ~  + 2 3 )  ' 

41 + G --  1 
A D - -  2 

ADD 
G(4 - -  32.1 - -  443 + A~G + 412) 

1 + 41 - ~ ( 6  - 41 - ~ )  

2 ( 1  -[- 21 - -  3 G )  - -  1 
= (1 - 4~)(1  + 41 + 43) 

N O T E  I I  

On the curves of Figs. 1 to 18 

Accuracy of the Graphs . - -The values of 41 and  G (---- rl + r~ and  rlr~) have been calcula ted to 
six significant figures for some fifty pairs of values of $ and  ~, over the range 0 < /~ < 3, 1 < 7 
< 64. The various functions of ~ and  ~ in the  Figures have  been calcula ted to three  places of 
decimals using tile formulae t abu la t ed  in Note  I I  and  t h e  values of ~1, G men t ioned  above.  
In  most  cases lines of constant  ~ have  been d rawn and  in such cases there  is a change of scale at  

= 1;  this has been done to include the  effect of compara t ive ly  large values of /~(/~ ~< 4) 
wi thou t  al ter ing the  accuracy  of the  curves over the pract ical  range. In  Figs. 2, 6 and 7 a scale 
for ~ over the  range 0 < ~, < ~ is given ; this has been obta ined  from a l inear scale by  a t rans-  
format ion  of the  form ~ = 4x/(1 --  x). 
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Nota t ion  relevant to Figs .  1 to 18 

E Young's Modulus 

k 'S t anda rd  decay factor ', see equations (40), (30), (16) or (91) 

Non-dimensional rib-pitch measure 
= k × rib-pitch 

7 ' Generalised rib stiffness ', see equations (40), (30), (16) or (93) 

A warping, round a section of the cylinder, which determines the dis- 
tribution of the self-equilibrating direct stress around a section: see 
A.I.1 

S A function of the cylinder dimensions which is proportional to the mag- 
nitude of ~ and determines the distribution of self-equilibrating shear-flux 
across a section, see equation (16) 

J Self-equilibrating shear-flux applied at root to semi-infinite cylinder" 
it is proportional to S. 

Those Figures which appertain to the particular end condition investigated in Appendix 
IA, i.e., axial warping but zero shear-distortion at the root, have the sign (~  displayed at the 
head of the page" those which refer to the complementary case of shear-distortion but zero 
warp have the sign (B). 
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FIG. 19. Influence of junc t ion  rib stiffness on spar bending moments.  
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